
Kokkos 3.6 Release Briefing

New Capabilities

May 26, 2022

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7755 PE

May 26, 2022 2/58

Outline

3.6 Release Higlights
▶ Kokkos Core

▶ CMake Language Build Support
▶ UniqueToken Improvements
▶ More View Allocation Properties Support
▶ C++ Standard Algorithms
▶ Math Traits

▶ KokkosKernels

May 26, 2022 3/58

Find More

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://github.com/kokkos/kokkos/wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

May 26, 2022 4/58

CMake Build Language
Content:

▶ Using CMakes Language Extension Support

▶ CUDA for Windows

May 26, 2022 5/58

What is CMake Language Support

Every source file CMake compiles has a language

▶ Default == file extension (.cpp, .c, .f90, ...)

▶ But you can set it: set source files properties(f.bar

PROPERTIES LANGUAGE CXX)

Why does this matter for Kokkos?

CMake treats some language extensions that way, but not all:

▶ CUDA − > CMake language CUDA

▶ HIP − > CMake language HIP

▶ OpenMP − > Not a CMake language.

▶ SYCL − > Not a CMake language.

May 26, 2022 6/58

Kokkos and CMake Language

Pre 3.6 behavior

▶ All Kokkos containing files are C++ files (CXX)
▶ Kokkos’s build system adds compiler flags to make files

CUDA, HIP, OpenMP, or SYCL
▶ We add -fopenmp, -x cu, ...

▶ We use nvcc wrapper to make CMake not choke on nvcc

Advantages:

▶ Flags can be obtained via depending on target, language NOT

▶ Support for HIP before CMake supported it

▶ No need for users to set the correct language for each file -
Note: the need propagates, the setting doesn’t ...

Drawbacks:

▶ Not fully using CMakes native CUDA and HIP support

▶ nvcc wrapper only works on Linux

May 26, 2022 7/58

Kokkos and CMake Language

3.6 behavior

▶ Default: same as pre 3.6

▶ Set -DKokkos ENABLE COMPILE AS CMAKE LANGUAGE=ON to
use CMake Language mode.

▶ Use set source files properties on each source file
depending on Kokkos
▶ We export Kokkos COMPILE LANGUAGE to make that portable

Pifalls:
▶ CMAKE CXX FLAGS unused by Kokkos files

▶ CMAKE CUDA FLAGS for CUDA (equiv. for HIP)
▶ CMAKE CXX FLAGS for SYCL/OpenMP etc.

▶ YOU need to set CMAKE CUDA ARCHITECTURES downstream

▶ YOU need to add Kokkos COMPILE LANGUAGE to your project!

▶ For libraries: your users need to set all this too ..

▶ Interaction with MPI Wrappers iffy ...

May 26, 2022 8/58

CMake Language Example

Configure Kokkos:

cmake -DKokkos_ENABLE_CUDA=ON -DKokkos_ARCH_VOLTA70=ON \

-DKokkos_ENABLE_COMPILE_AS_CMAKE_LANGUAGE=ON ${KOKKOS_SOURCE}

Project CMakeLists.txt:

#find Kokkos before project declaration

find_package(Kokkos COMPONENTS separable_compilation)

project(Example CXX Fortran ${Kokkos_COMPILE_LANGUAGE })

set_source_files_properties(cmake_example.cpp PROPERTIES

LANGUAGE \${Kokkos_COMPILER_LANGUAGE })

add_executable(example cmake_example.cpp bar.cpp foo.f)

target_link_libraries(example Kokkos :: kokkos)

Configure Project:

cmake -DCMAKE_CUDA_ARCHITECTURES =70 ${PROJECT_SOURCE}

May 26, 2022 9/58

When Should One Use This?

Why should I use this, with all the complication?

▶ You may want to use native CMake CUDA/HIP support

▶ You may hate nvcc wrapper

▶ But most importantly:

This works in Visual Studio for MSVC + NVCC!

May 26, 2022 10/58

Deprecated in release 3.6

May 26, 2022 11/58

Deprecated

Configure with -DKokkos ENABLE DEPRECATED CODE 3=OFF to
disable

▶ Array reductions with pointer return types

▶ OpenMP::{validate partition,partition master}
▶ KOKKOS ACTIVE EXECUTION MEMORY SPACE * macros and

ActiveExecutionMemorySpace alias

▶ log2(unsigned) -> int

May 26, 2022 12/58

Namespace Change

Not technically deprecation since it was in non-backward
guaranteeing state!

Kokkos::Impl:: − > Kokkos::

is_array_layout

is_execution_policy

is_execution_space

is_memory_space

is_memory_traits

is_space

is_view

SpaceAccessibility

Timer // also header impl/Kokkos_Timer.hpp

Kokkos::Experimental:: − > Kokkos::

Iterate

MDRangePolicy

Rank

May 26, 2022 13/58

Removed

Removed:
KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST/DEVICE

Kokkos ::Impl:: ActiveExecutionMemorySpace

Kokkos ::Impl:: verify_space

Kokkos :: Experimental :: MasterLock

OpenMP/HPX:: partition_master

int log2(int) // we got double log2(INTEGRAL) and REAL log2(REAL)

is space member types removed:

is_space :: host_memory_space

is_space :: host_execution_space

is_space :: host_mirror_space

May 26, 2022 14/58

Backend Specific Things

CUDA and HIP Error management functionality removed, which
should never have been public:

CudaSpace :: access_error ()

CudaUVMSpace :: number_of_allocations ()

CUDA_SAFE_CALL

HIPSpace :: access_error ()

HIP_SAFE_CALL

Only partially supported by backends:

TeamPolicy :: vector_length () // only existed for some backends

Behavior change in UnorderedMap:

UnorderdMap :: value_at(i) with i>= capacity ()

UnorderdMap :: key_at(i) with i>= capacity ()

May 26, 2022 15/58

Interface Changes and Configure

Change in argument order:

// deprecated

create_mirror_view(space , view , WithoutInitializing);

// new

create_mirror_view(WithoutInitializing , space , view);

Array reductions:

▶ Array reductions, have a runtime length array as result.

▶ Only supported with functors, not lambdas (one has to define
value type and value count as members)

▶ Deprecated the option to provide raw pointer as the result
argument for parallel reduce, use a View instead.

Configure options Removed:

Kokkos_ARCH_EPYC -> ZEN/ZEN2 depending on platform

Kokkos_ARCH_RYZEN -> ZEN/ZEN2 depending on platform

Kokkos_ARCH=

Kokkos_DEVICES=

May 26, 2022 16/58

Threads is now std::threads
Content:

▶ Configure Changes

May 26, 2022 17/58

std::thread instead of pthread

We are now using std::thread instead of raw pthread

▶ No code change necessary - implementation detail of Kokkos

▶ Makes the Kokkos::Threads backend work on Windows

▶ The backend is more interoperable with other C++ facilities

One change: can’t use Kokkos ENABLE PTHREADS as CMake
option.

▶ Kokkos ENABLE THREADS is the new option

▶ We still export Kokkos ENABLE PTHREAD for downstream
users.

May 26, 2022 18/58

Improved UniqueToken
Content:

▶ Configure Changes

May 26, 2022 19/58

UniqueToken Recap

What is UniqueToken

UniqueToken is a portable way to acquire a unique ID for the
calling thread.

▶ ID is within a given range

▶ Can be used similar to a thread-id
▶ Most commonly used to acquire a resource from a

resource-pool
▶ E.g. per-thread temporary memory buffer
▶ Used internally for random generator pool

UniqueToken <ExecutionSpace > token;

int number_of_uniqe_ids = token.size ();

RandomGenPool pool(number_of_unique_ids ,seed);

parallel_for("L", N, KOKKOS_LAMBDA(int i) {

int id = token.acquire ();

RandomGen gen = pool(id);

...

token.release(id);

});

May 26, 2022 20/58

Performance Improvement

Identified Massive Performance Bug
UniqueToken <ExecutionSpace > token;

int N = token.size (); int M = N*x;

View <double**> dest(N,R), src(M,R);

parallel_for("UT", M, KOKKOS_LAMBDA(int i) {

int j = token.acquire (); memory_fence ();

for(int k=0; k<R; k++) dest(j,k) += src(i,k);

memory_fence (); token.release(j);

});

parallel_for("A" M, KOKKOS_LAMBDA(int i) {

for(int k=0; k<R; k++) atomic_add (&dest(j,k), src(i,k));

});

May 26, 2022 21/58

Performance Improvement

Identified Massive Performance Bug

May 26, 2022 22/58

More Information

Reason for Performance Issue

▶ Unnecessary many conflicts in acquiring token.

▶ Indicies acquired by threads in the same warp tended to be far
apart − > results in bad memory access pattern.

UniqueToken is discussed in the Kokkos Lectures Module 4!

Remember: still in Experimental namespace.
Feedback is welcome!

May 26, 2022 23/58

More View Allocation
Properties Support
Content: Support WithoutInitializing for

▶ resize

▶ realloc

▶ create mirror

▶ create mirror view

May 26, 2022 24/58

View Allocation Properties

Often initialization is not required when allocating.

New overloads for resize/realloc and create mirror[view]

supported for View-like types

▶ DualView

▶ DynamicView

▶ DynRankView

▶ OffsetView

▶ ScatterView

▶ View

May 26, 2022 25/58

Kokkos::resize

template <class I, class T, class ... P>

void

resize(const I& arg_prop , View <T, P...>& v,

const size_t n0, const size_t n1, const size_t n2,

const size_t n3, const size_t n4, const size_t n5,

const size_t n6, const size_t n7);

template <class I, class T, class ... P>

void

resize(const I& arg_prop , View <T, P...>& v,

const typename View <T, P... >:: array_layout& layout);

Resizes v to have the new dimensions while preserving the contents
for the common subview of the old and new View. The new View

is constructed using the View constructor property arg prop, e.g.,
WithoutInitializing.

May 26, 2022 26/58

Kokkos::realloc

template <class I, class T, class ... P>

void

realloc(const I& arg_prop , View <T, P...>& v,

const size_t n0, const size_t n1, const size_t n2,

const size_t n3, const size_t n4, const size_t n5,

const size_t n6, const size_t n7);

template <class I, class T, class ... P>

void

realloc(const I& arg_prop , View <T, P...>& v,

const typename View <T, P... >:: array_layout& layout);

Resizes v to have the new dimensions while preserving the contents
for the common subview of the old and new View. The new View

is constructed using the View constructor property arg prop, e.g.,
WithoutInitializing.

May 26, 2022 27/58

Kokkos::create mirror

template <class ViewType >

typename ViewType :: HostMirror

create_mirror(decltype(WithoutInitializing),

ViewType const& src);

template <class Space , class ViewType >

ImplMirrorType

create_mirror(decltype(WithoutInitializing),

Space const& space , ViewType const &);

Creates a new host accessible View with the same layout and
padding as src. The new View will have uninitialized data.

May 26, 2022 28/58

Kokkos::create mirror view

template <class ViewType >

typename ViewType :: HostMirror

create_mirror_view(decltype(WithoutInitializing),

ViewType const &);

template <class Space , class ViewType >

ImplMirrorType

create_mirror_view(decltype(WithoutInitializing),

Space const& space , ViewType const &);

If src is not host-accessible, it creates a new host-accessible View
with the same layout and padding as src. The new View will have
uninitialized data. Otherwise returns src.

May 26, 2022 29/58

Section Summary

▶ This release:
WithoutInitializing support for resize/realloc and
create mirror[view] for View-like types

▶ Upcoming release:
Overloads taking Kokkos::view alloc unifying the
interfaces and allow, e.g., passing execution spaces.

May 26, 2022 30/58

C++ Standard Algorithms
Kokkos implementation of a (growing set) of std algorithms

Objectives:

▶ Kokkos iterators

▶ Overview of supported algorithms

▶ Differences between the Kokkos and std API

▶ Examples

▶ Summary

May 26, 2022 31/58

▶ Iterators and std algorithms:
▶ Released with Kokkos 3.6
▶ Include via header: Kokkos StdAlgorithms.hpp

▶ Inside the Kokkos::Experimental
▶ Please use them and send us feedback!

▶ Documentation is available in the Kokkos wiki:
https://github.com/kokkos/kokkos/wiki

https://github.com/kokkos/kokkos/wiki

May 26, 2022 32/58

Kokkos random-access iterators

Kokkos::Experimental::{begin, cbegin, end, cend}

Declaration:
template <class DataType , class ... Properties >

KOKKOS_INLINE_FUNCTION

auto begin(const Kokkos ::View <DataType , Properties ...>& view);

▶ view: must be rank-1 with LayoutLeft, LayoutRight, or
LayoutStride.

▶ Dereferencing iterators must be done in an execution space
where ‘view‘ is accessible.

Kokkos::Experimental::distance(first, last);

Kokkos::Experimental::iter swap(it1, it2);

May 26, 2022 32/58

Kokkos random-access iterators

Kokkos::Experimental::{begin, cbegin, end, cend}

Declaration:
template <class DataType , class ... Properties >

KOKKOS_INLINE_FUNCTION

auto begin(const Kokkos ::View <DataType , Properties ...>& view);

▶ view: must be rank-1 with LayoutLeft, LayoutRight, or
LayoutStride.

▶ Dereferencing iterators must be done in an execution space
where ‘view‘ is accessible.

Kokkos::Experimental::distance(first, last);

Kokkos::Experimental::iter swap(it1, it2);

May 26, 2022 32/58

Kokkos random-access iterators

Kokkos::Experimental::{begin, cbegin, end, cend}

Declaration:
template <class DataType , class ... Properties >

KOKKOS_INLINE_FUNCTION

auto begin(const Kokkos ::View <DataType , Properties ...>& view);

▶ view: must be rank-1 with LayoutLeft, LayoutRight, or
LayoutStride.

▶ Dereferencing iterators must be done in an execution space
where ‘view‘ is accessible.

Kokkos::Experimental::distance(first, last);

Kokkos::Experimental::iter swap(it1, it2);

May 26, 2022 33/58

Algorithms: we use categories as in the C++ std

May 26, 2022 34/58

Algorithms: the key difference of our API

- API accepting iterators:

template <class ExeSpace , ...>

<return_type > algo_name(const ExeSpace& exespace , <iterators >);

template <class ExeSpace , ...>

<return_type > algo_name(const std:: string& label ,

const ExeSpace& exespace , <iterators >);

- API accepting Kokkos rank-1 views:

template <class ExeSpace , ...>

<return_type > algo_name(const ExeSpace& exespace , <views >);

template <class ExeSpace , ...>

<return_type > algo_name(const std:: string& label ,

const ExeSpace& exespace , <views >);

May 26, 2022 35/58

Algorithms: the API details

template <class ExeSpace , ...>

<return_type > algo_name(const ExeSpace& exespace , (1)

<iterators_or_views >);

template <class ExeSpace , ...>

<return_type > algo_name(const std:: string& label , (2)

const ExeSpace& exespace ,

<iterators_or_views >);

▶ exespace: iterators/views MUST be accessible from it
▶ label: passed to the implementation kernels for debugging

▶ For (1): “Kokkos::algo name iterator api default” or
“Kokkos::algo name view api default”

▶ iterators: must be random access iterators, preferably use
Kokkos::Experimental::begin,end,cbegin,cend

▶ views: rank-1, LayoutLeft, LayoutRight, LayoutStride

May 26, 2022 36/58

Algorithms: basic example

int main (){

// ...

namespace KE = Kokkos :: Experimental;

Kokkos ::View <double*, Kokkos ::HostSpace > myView("myView", 13);

// assuming myView is filled somehow

const double oldVal {2}, newVal {34};

// act on the entire view

KE:: replace(Kokkos :: DefaultHostExecutionSpace (),

KE:: begin(myView), KE::end(myView), oldVal , newVal);

// act on just a subset

auto startAt = KE:: begin(myView) + 4;

auto endAt = KE::begin(myView) + 10;

KE:: replace(Kokkos :: DefaultHostExecutionSpace (),

startAt , endAt , oldVal , newVal);

// set label and execution space (assumed enabled)

KE:: replace("mylabel", Kokkos :: OpenMP(),

myView , oldVal , newVal);

}

May 26, 2022 37/58

Algorithms: example with custom functor for comparison

template <class ValueType1 , class ValueType2 = ValueType1 >

struct CustomLessThanComparator {

KOKKOS_INLINE_FUNCTION

bool operator ()(const ValueType1& a, const ValueType2& b) const

{

// here we use < but you can put any custom logic needed

return a < b;

}

};

int main (){

// ...

namespace KE = Kokkos :: Experimental;

Kokkos ::View <double*, Kokkos ::CudaSpace > myView("myView", 13);

// fill a somehow

auto res = KE:: min_element(Kokkos ::Cuda(), myView ,

CustomLessThanComparator <double >());

//...

}

May 26, 2022 38/58

Algorithms: general considerations

▶ Implementations rely on Kokkos parallel for, reduce or scan.

▶ Debug mode enables several checks, e.g.: whether iterators
identify a valid range, the execution space accessibility, etc.,
and error messages printed.

▶ If needed, algorithms fence directly the execution space
instance provided:

template <class ExeSpace , ...>

<return_type > algo_name(const ExeSpace& exespace , ...)

{

// implementation

exespace.fence(/* string depends on algorithm */);

}

May 26, 2022 39/58

Section Summary

▶ Starting with Kokkos 3.6, Kokkos
offers many std algorithms

▶ Two main APIs: one for iterators
and one for rank-1 views

▶ Checkout the documentation in the
Kokkos wiki Figure: Wiki documentation

▶ Useful to make your code more expressive, allowing us to
worry about having performant implementations

▶ Please use them, and let us know of any issues!

▶ Try them with the new feature:
Kokkos::Experimental::partition space

▶ In progress: team-level implementations

May 26, 2022 40/58

Numerics
Content:

▶ Common mathematical functions

▶ Mathematical constants

▶ Numeric traits

May 26, 2022 41/58

Common math functions

Improvement/Bug fix
Unconditionally define long double overloads on the host side

namespace Kokkos :: Experimental {

KOKKOS_FUNCTION float sqrt (float x);

KOKKOS_FUNCTION float sqrtf(float x);

KOKKOS_FUNCTION double sqrt (double x);

long double sqrt (long double x); // 3.6

long double sqrtl(long double x); // 3.6

KOKKOS_FUNCTION double sqrt (IntegralType x);

}

Looking ahead
Math functions promoted to the Kokkos:: namespace in 3.7

May 26, 2022 42/58

Mathematical constants

▶ Defined in header <Kokkos MathematicalConstants.hpp>

which is included from <Kokkos Core.hpp>

▶ Provides all mathematical constants from <numbers> (since
C++20), such as pi and sqrt2

▶ All constants are defined in the Kokkos::Experimental::
namespace since Kokkos 3.6

May 26, 2022 43/58

Numeric traits

Improvement/Bug fix

▶ Add missing traits denorm min,
reciprocal overflow threshold, and
{quiet,silent} NaN

▶ Instantiate numeric traits on cv-qualified types

May 26, 2022 44/58

Section Summary

▶ Consistent and portable overload set for standard C library
mathematical functions, such as fabs, sqrt, and sin

▶ Backport of the C++20 standard library header <numbers>
and provides several mathematical constants, such as pi or
sqrt2

▶ New facility that is being added to the C++23 standard
library and is intended as a replacement for
std::numeric limits

May 26, 2022 45/58

KOKKOS IF ON {HOST,DEVICE}
macros

May 26, 2022 46/58

#ifdef CUDA ARCH idiom not portable

Motivating example

__host__ __device__ void terminate () {

#ifdef __CUDA_ARCH__

asm("trap;"); // inline PTX assembly when called on device

#else

_exit (); // OS call when called on the host

#endif

}

▶ NVIDIA HPC compiler uses a unified heterogeneous
compilation model (single-pass)

▶ NVC++ cannot support CUDA ARCH because that assumes
split compilation

May 26, 2022 47/58

Use cases

Overloading based on host and device attributes

struct MyS { int i; };

#ifdef __NVCC__

#ifndef __CUDA_ARCH__

__host__ MyS MakeStruct () { return MyS {0};}

#else

__device__ MyS MakeStruct () { return MyS {1};}

#endif

#else

__host__ MyS MakeStruct () { return MyS {0};}

__device__ MyS MakeStruct () { return MyS {1};}

#endif

Different class on host/device (NOT SUPPORTED)

struct solver {

// ...

#ifndef __CUDA_ARCH__

std:: ofstream output_;

#endif

};

May 26, 2022 48/58

KOKKOS IF ON {HOST,DEVICE} macros

Revisit overloading on host and device example

struct MyS { int i; };

KOKKOS_FUNCTION MyS MakeStruct () {

KOKKOS_IF_ON_HOST ((return MyS {0};))

KOKKOS_IF_ON_DEVICE ((return MyS {1};))

}

Things to note

▶ Both macros introduce a new scope

KOKKOS_IF_ON_HOST ((

int x = 0;

std::cout << x << ’\n’;

)) // scope of ’x’ ends here

▶ Cannot be used in a context that requires constant
expressions (constexpr)

▶ Do not play nice with other preprocessor directives

May 26, 2022 49/58

Preprocessor directives

KOKKOS_FUNCTION void host_compute () {

#if KOKKOS_VERSION >= 30700

auto sqrt2f = Kokkos ::sqrtf (2);

// ...

#else

auto sqrt2f = 1.41421356237f;

// ...

#endif

}

KOKKOS_FUNCTION void device_compute () { /* ... */ }

KOKKOS_FUNCTION decltype(auto) compute () {

KOKKOS_IF_ON_HOST ((return host_compute ();))

KOKKOS_IF_ON_DEVICE ((return device_compute ();))

}

May 26, 2022 50/58

Section Summary

▶ #ifdef CUDA ARCH idiom is not portable

▶ Release 3.6 introduces two macros: KOKKOS IF ON HOST and
KOKKOS IF ON DEVICE

Warning!

Avoid using as much possible. These macros are a last resort
facility for differentiating between host and device inside a kernel.
Consider other approaches such as partial template specialization
on execution spaces.

▶ Upcoming support for NVC++ (in the next release or two)

May 26, 2022 51/58

Kernels update

▶ Architectures support

▶ Batched linear solvers

▶ Block Sparse Matrices

▶ Batched GEMM

▶ Mixed precision

May 26, 2022 52/58

Platforms/Architecture support (Brian, Luc)

Architecture support:

▶ Nvidia fully supported with Cuda backend

▶ AMD fully supported with HIP backend, still optimizing for
performance

▶ Intel initial support with SYCL backend, more testing and
performance optimization needed

Spack updated with release 3.6.0, build tested on Summit,
Spock/Crusher and initial support on Arcticus.
Starting to support streams on device, inquire for details.

May 26, 2022 53/58

Batched Linear Solvers (Kim)

New batched linear solvers are introduced

▶ LU with static pivoting

▶ PCG

▶ GMRES

May 26, 2022 54/58

Block Sparse Matrices: BsrMatrix (NGA, Luc)

New BsrMatrix matrix format implemented, supports constant
block size sparse matrix mostly geared toward multi-physics
systems representation.
Currently supported algorithms:

▶ BrsMatrix

▶ Matrix-Vector product using SpMV interface

▶ Matrix-Matrix product using SpGEMM interface

▶ Gauss-Seidel smoother

The new format requires less memory and exposes dense linear
algebra usage within sparse linear algebra kernels, leading to
increased performance compared to point CrsMatrix.

May 26, 2022 55/58

Batched GEMM improvements (Evan, Vinh)

New heuristics and improved interface included a unified interface
for all levels of parallelism (TeamVector, Team and Serial) for
simplicity.

▶ row-major speedup is 1.17x

▶ column-major speedup is 1.26x

▶ dimensions 2 to 24: single
parallel-for with a RangePolicy over
entries of C

▶ dimensions > 24: double buffering
algorithm based on Magma’s
BatchedGemm, Kokkos team
cooperatively works on a tile.

Future work includes additional optimizations to the Kokkos
BatchedGemm algorithm.

May 26, 2022 56/58

Mixed precision algorithms (Jennifer)

▶ Kokkos Kernels provides
mixed precisions linear
algebra kernels.

▶ GMRES with iterative
refinement runs in single
precision, residual achieves
double precision via
iterative refinement

▶ Kokkos Kernels is also
providing interfaces for
experiments with 16-bit
precisions

Double IR
0

1

2

3

4

5

6

T
im

e
[s

]

Atmosmodj

Double IR
0

10

20

30

40

50

60

T
im

e
[s

]

BentPipe2D1500

GEMV (Trans)
Norm
GEMV (No Trans)

SPMV
Other

Solver Timings

Figure: Solve times for GMRES(50) double (left)
and IR (right) for the matrices Atmosmodj and
BentPipe2D1500. Each bar represents total solve
time, split up to give a breakdown of time spent in
different kernels.

May 26, 2022 57/58

Collaborations

Multiple new and ongoing collaborations are cultivated

▶ Nvidia: LU factorization for dense systems

▶ Ginkgo: development of batched gmres

▶ PETSc: providing a portable algebra layer

▶ ExaWind: preconditioner techniques

▶ AMD: library optimization and MFMA usage

▶ ANL: porting and testing on Intel platform

▶ NASA: performance optimization of sparse matrix-vector
product

and probably many more that I forget...

May 26, 2022 58/58

Future focus

Focus of future work

▶ Performance optimization in Block Sparse algorithms

▶ Format conversion of sparse matrix: Csc2Csr, Coo2Csr

▶ Sparse ILU and TRSV performance improvements

▶ more batched solver features and new batched ODE solvers

▶ more stream support for BLAS and Sparse kernels

▶ fast iterative ILUt algorithm

