
Kokkos 4.0 Release Briefing

New Capabilities

March 29, 2023

March 29, 2023 2/45

Outline

4.0 Release Highlights

▶ New minimum requirements

▶ Backend updates

▶ Build system updates

▶ Team- and thread-level sort

▶ Team-level MDRange policies

▶ SharedSpace

▶ Miscellaneous

▶ Deprecations and other breaking changes

March 29, 2023 3/45

Find More

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://kokkos.github.io/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki
https://kokkosteam.slack.com

March 29, 2023 4/45

Kokkos Usage

Would like to strengthen community bonds and
discoverability

List of Applications and Libraries

▶ Add your app to
https://github.com/kokkos/kokkos/issues/1950

▶ We are planning to add that to a Kokkos website.

▶ Helps people discover each other when working on similar
things.

GitHub Topics

▶ Use kokkos tag on your repos.

▶ If you click on the topic you get a list of all projects on github
with that topic.

https://github.com/kokkos/kokkos/issues/1950

March 29, 2023 5/45

Kokkos Topic

March 29, 2023 6/45

Kokkos user group meeting

▶ We are considering organizing a multi-day in-person user
group meeting

▶ Likely in Albuquerque

▶ August/September time frame
▶ Tentative content

▶ Updates from the Kokkos team (new features and planned
work)

▶ User experiences: porting to AMD and Intel GPUs
▶ User experiences: performance portability studies
▶ Best practices (also user-provided)
▶ Students and Postdocs showcase
▶ Feedback and discussion session

Lookout for survey to gauge interest

March 29, 2023 7/45

C++ Standard Change

Kokkos 4.0 requires C++17!

▶ Supporting C++17, C++20 and C++23

▶ Allows us to keep the testing amount manageable
▶ Will enable new interfaces and streamlined implementation

▶ Use of CTAD reduces the need to spell template arguments out
▶ Fold expressions help with internal implementation, and

improve compile times
▶ constexpr if reduces use of clunky SFINAE patterns

March 29, 2023 8/45

Toolchains minimum requirements change

New Compiler Minimums

Compiler Version
GCC 8.2
Clang 8.0
Clang as CUDA compiler 10.0
Intel 19.0.5
CUDA-NVCC 11.0
CUDA with Clang as CUDA compiler 10.0.1
ROCM 5.2.0
IntelLLVM (CPU) 2021.1.1
IntelLLVM (SYCL) 2022.2.0
NVC++ 22.3
MSVC 19.29
IBM XL Not Supported
Classic PGI Not Supported

March 29, 2023 9/45

A word on NVHPC

▶ NVIDIA is working on making NVC++ a single-pass CUDA
compiler

▶ Kokkos 4 recognizes NVC++ as a CUDA compiler

▶ While tested, this is still experimental and several compiler
bugs have been reported

▶ To use NVC++ as the host compiler with NVCC like before,
you must use nvcc wrapper and pass -ccbin nvc++ as cxx
and linker flags or set the environment variable
NVCC WRAPPER DEFAULT COMPILER

▶ Note as before, NVC++ does not use the GCC in your
environment. You must create a configure file with
makelocalrc pointing to a GCC supporting C++17

March 29, 2023 10/45

Backend Updates
Content:

▶ SYCL

▶ OpenMPTarget

▶ CUDA and HIP

March 29, 2023 11/45

SYCL Backend Updates

▶ For RangePolicy with parallel for, the workgroup size
can be specified manually:

parallel_for(

RangePolicy <ExecutionSpace >(space , 0, N)

.set_chunk_size (1024) , *this);

▶ Intel compiler flags very aggressive, applications might need

-fp-model=precise

or similar for correct results.

March 29, 2023 12/45

OpenMPTarget Backend Updates

▶ The backend now allows selecting the default GPU which can
be set by using --kokkos-device-id=<number>.

▶ The backend can now detect the number of devices on a
single node.

March 29, 2023 13/45

CUDA Backend Updates

▶ Allow CUDA PTX forward compatibility
▶ code compiled for compute capability 5.2 will now run on

device compute capability 7.5

▶ Improve CUDA cache config setting
▶ let CUDA runtime decide what is the best usage of the cache

(shared vs L1 balance)

▶ Do not rely on synchronization behavior of default stream
▶ default instance does not synchronize the other instances

▶ Add support for Hopper architecture

March 29, 2023 14/45

HIP Backend Updates

▶ HIP, HIPSpace, HIPHostPinnedSpace, and HIPManagedSpace
out of Experimental
▶ backward compatible change
▶ long term support of ROCm 5.2 and later

▶ Export AMD architecture flags when using Trilinos
▶ fix issue when compiling on node without GPU

▶ Do not rely on synchronization behavior of default stream

▶ Dropped support for MI25 and added support for Navi1030

March 29, 2023 15/45

HIP Backend Updates

▶ There is a compiler bug ROCm 5.3 and 5.4 when using
LocalMemory launch mechanism:
▶ sometimes hangs
▶ sometimes passes
▶ often error out with Reason: Unknown

▶ To fix the issue, force GlobalMemory launch mechanism

parallel_for(

Experimental :: require(

RangePolicy (0, N),

Experimental :: WorkItemProperty :: ImplForceGlobalLaunch),

...);

▶ We do not apply unconditionally because it reduces
performance

March 29, 2023 16/45

Bug fixes for CUDA and HIP Backends

▶ CUDA and HIP fixes:
▶ Fix incorrect offset when using parallel scan for < 4 bytes data

types
▶ Fix max scratch size calculation for level 0 scratch

▶ HIP fixes:
▶ Fix linking error when using amdclang (OLCFDEV-1167)
▶ Fix race condition when using HSA XNACK=1

March 29, 2023 17/45

Default instance synchronization behavior

▶ CUDA and HIP default instances used to implicitly
synchronize with other instances as well as raw CUDA and
HIP code

▶ This was NOT intentional behavior
parallel_for(N, f1);

// f2 would be sequenced after f1 in previous releases

parallel_for(RangePolicy <>(exec , 0 , N), f2);

▶ Call DefaultExecutionSpace().fence()
▶ Beware of non-Kokkos code calling CUDA or HIP

▶ MPI, BLAS, etc.
▶ Previously might have been implicitly synchronized with

Kokkos code

March 29, 2023 18/45

Build System Updates

C++ Standards Support
▶ CMAKE CXX STANDARD=23 is supported

▶ KOKKOS CXX STANDARD for the Makefile

▶ In CMake Kokkos will default to C++17 if no standard is
specified

March 29, 2023 19/45

Build System Updates

OpenMP and OpenMPTarget

▶ OpenMP flags are now determined by CMake’s FindOpenMP

▶ Makefile: libatomic only linked in OpenMPTarget builds

March 29, 2023 20/45

Build System Updates

CUDA

▶ Kokkos ENABLE CUDA LAMBDA set to ON by default

▶ Fixes to RDC flags when using CMake CUDA language

▶ Fixed CUDA 12 when using nvcc wrapper with CMake

▶ Fixes to using NVHPC as a compiler when CUDA is not
enabled

March 29, 2023 21/45

Team- and Thread-Level
(Nested) Sorting
Content: Sorting routines that use nested parallelism

▶ Callable from within a TeamPolicy kernel
▶ Sort a View using the calling team or thread

▶ View may be in global or scratch memory

▶ sort, sort by key functions

▶ Allow custom comparators

▶ In-place, not stable

More sorting capabilities to come in the next releases.

March 29, 2023 22/45

Nested Sorting

New functions:

▶ #include "Kokkos NestedSort.hpp"

▶ In namespace Kokkos::Experimental:
▶ sort team(teamMem, view[, compare])
▶ sort by key team(teamMem, keys, values[, compare])
▶ sort thread(teamMem, view[, compare])
▶ sort by key thread(teamMem, keys, values[,

compare])

March 29, 2023 23/45

Nested Sorting

Arguments to new functions:

▶ teamMem: the TeamPolicy::member type passed to your
kernel

▶ sort functions take a single view
▶ view: a View to sort

▶ sort by key functions sort key/value pairs according to key:
▶ keys: a View of keys to sort
▶ values: a View to permute along with the keys

▶ compare (optional): a comparator object/predicate
▶ If not provided, sort ascending (operator<)
▶ Otherwise: compare(a, b) returns true iff. a precedes b

▶ Defined as: bool operator()(a, b) const

March 29, 2023 24/45

Team-Level MDRange Policies
Content: Provide multidimensional support for nested parallelism

March 29, 2023 25/45

TeamMDRangePolicies

Additions to nested polcies:

▶ MD versions of nested team execution policies
▶ Supports multi dimension in nested parallel pattern

▶ TeamThreadRange

▶ TeamThreadMDRange

▶ TeamVectorRange

▶ TeamVectorMDRange

▶ ThreadVectorRange

▶ ThreadVectorMDRange

March 29, 2023 26/45

TeamMDRangePolicies API

API for TeamThreadMDRange, TeamVectorMDRange and
ThreadVectorMDRange

parallel_for(

TeamVectorMDRange <Rank <2>, TeamHandle >(team_handle , N, M),

[=](int i, int j) { /* ... */ }

);

▶ Takes in Rank<N,OuterDir,InnerDir> that describes its
iteration pattern

▶ Same behavior as regular MDRangePolicy
▶ N is number of dimensions (required to be [2, 8])
▶ Iterate is an enum { Default, Left, Right }
▶ Iterate is used to choose iterating left-most dimension or

right-most dimension
▶ Only OuterDir is used for TeamMDRange

March 29, 2023 27/45

TeamThreadMDRange Example

using TeamHandle = TeamPolicy <>:: member_type;

parallel_for(TeamPolicy <>(N,AUTO),

KOKKOS_LAMBDA (TeamHandle const& team) {

int leagueRank = team.league_rank ();

auto teamThreadMDRange = TeamThreadMDRange <Rank <4>,

TeamHandle >(team , n0, n1, n2, n3);

parallel_for(teamThreadMDRange ,

[=](int i0 , int i1, int i2, int i3) {

/* ... */

});

});

March 29, 2023 28/45

ThreadVectorMDRange Example

using TeamHandle = TeamPolicy <>:: member_type;

parallel_for(TeamPolicy <>(N, AUTO),

KOKKOS_LAMBDA(TeamHandle const& team) {

int leagueRank = team.league_rank ();

auto teamThreadRange = TeamThreadRange(team , n0);

auto threadVectorMDRange = ThreadVectorMDRange <Rank <3>,

TeamHandle >(team , n1, n2, n3);

parallel_for(teamThreadRange , [=](int i0) {

parallel_for(threadVectorMDRange ,

[=](int i1 , int i2, int i3) {

/* ... */

});

});

});

March 29, 2023 29/45

TeamVectorMDRange Example

using TeamHandle = TeamPolicy <>:: member_type;

parallel_for(TeamPolicy <>(N,AUTO),

KOKKOS_LAMBDA(TeamHandle const& team) {

int leagueRank = team.league_rank ();

auto teamVectorMDRange = TeamVectorMDRange <Rank <4>,

TeamHandle >(team , n0, n1, n2, n3);

parallel_for(teamVectorMDRange ,

[=](int i0 , int i1, int i2, int i3) {

/* ... */

});

});

March 29, 2023 30/45

TeamMDRangePolicies Notes

Thread and Vector Parallelism:

▶ Based on iteration direction (OuterDir)
▶ For now, at most 2 dimensions are parallelized

▶ Thread parallelism is applied to the slowest dimension
▶ Vector parallelism is applied to the fastest dimension

March 29, 2023 31/45

SharedSpace
Content:

▶ SharedSpace

▶ SharedPinnedHostSpace

March 29, 2023 32/45

SharedSpace & SharedHostPinnedSpace

Aliases for MemorySpaces that are accessible by every
ExecutionSpace.

SharedSpace is memory that is moved and then accessed locally.

SharedHostPinnedSpace is memory that is pinned to the host
and accessed via zero-copy access.

Backend SharedSpace SharedHostPinnedSpace

CUDA CudaUVMSpace CudaHostPinnedSpace

HIP HIPManagedSpace HIPHostPinnedSpace

SYCL SYCLSharedUSMSpace SYCLHostUSMSpace

host HostSpace HostSpace

March 29, 2023 33/45

Miscellaneous
Content:

▶ View value type requirements

▶ parallel scan with View return type

▶ Numerics update

▶ Drop volatile support from Atomic Views

March 29, 2023 34/45

View Value Type Requirements

Prior to Kokkos 4.0, the value type for a View must be
default-constructible.
This is not required anymore if

▶ the View is created with WithoutInitializing

▶ the value type is implicit-lifetime (it doesn’t require a
constructor for the type to be properly initialized), or

▶ the user initializes the View using placement new in a
subsequent kernel

▶ Kokkos will not call the destructor, it will just deallocate
memory

March 29, 2023 35/45

View Value Type Requirements

#include <Kokkos_Core.hpp >

struct MyValueType

{

double value;

MyValueType(double d) : value(d) {}

};

int main() {

using namespace Kokkos;

ScopeGuard guard;

// View <MyValueType*> view("view", 10); // doesn ’t compile

View <MyValueType*> view(

view_alloc("view", WithoutInitializing), 10);

parallel_for (10, KOKKOS_LAMBDA(int i) {

new (&view(i)) MyValueType (1.); // placement new

view(i) = MyValueType (1.); // simple assignment

printf("%f\n", view(i). value);

});

}

March 29, 2023 36/45

parallel scan with View return type

paralle scan Interface (also without std::string):

template <class ExecPolicy , class FunctorType >

parallel_scan(const std:: string&, const ExecPolicy&,

const FunctorType &);

template <class ExecPolicy , class FunctorType , class ReturnType >

parallel_scan(const std:: string&, const ExecPolicy&,

const FunctorType&, ReturnType &);

New: ReturnType can be a View

Reminder: parallel scan is (potentially) asynchronous, just like
parallel reduce depending on the memory space of the return
type if any.

March 29, 2023 37/45

Numerics update

▶ Promoted math constants to Kokkos::numbers::

namespace

▶ Added overloads of hypot that take 3 arguments

▶ Added fma fused multiply-add math function

▶ Support finding libquadmath with native compiler support

▶ Dropped reciprocal overflow threshold numeric trait

▶ Moved reduction identity out of
<Kokkos NumericTraits.hpp> into a new
<Kokkos ReductionIdentity.hpp> header (guarded with
#ifdef KOKKOS ENABLE DEPRECATED CODE 4)

March 29, 2023 38/45

Drop volatile

Drop volatile support from Atomic Views

Historically, CUDA used volatile because it had a non-standard
memory model.
This lead to problems when using custom types with Atomic Views.

March 29, 2023 39/45

Drop volatile

struct Custom {};

// ...

View <Custom [1], MemoryTraits <Atomic >> v(&a);

v[0] = a;

core/src/impl/Kokkos_Atomic_View.hpp:70: error:

passing ‘volatile AtomicDataElement<...>::value_type’

{aka ‘volatile Custom’} as ‘this’ argument discards

qualifiers [-fpermissive]

70 | *ptr = val;

| ~~~~~^~~~~

TestCustom.hpp: note: in call to

‘constexpr Custom& Custom::operator=(const Custom&)’

| struct Custom {};

| ^~~~~~

March 29, 2023 40/45

Drop volatile

Previously, one would have to add volatile declarations to their
custom types:

struct Custom {

Custom& operator =(const Custom &) = default;

void operator =(const Custom& src) volatile { /* ... */ }

// As well as other volatile qualified member functions

};

However, internally Kokkos no longer uses the volatile overloads,
and CUDA no longer requires combining volatile with atomic.

March 29, 2023 41/45

Drop volatile

Kokkos changes to internal Impl::AtomicDataElement:

▶ Dropped volatile overloads

▶ operator= uses atomic store(...,

memory order relaxed)

▶ operator value type() uses atomic load(...,

memory order relaxed)

Users

▶ Drop the (now unused) volatile overloads at your
convenience

March 29, 2023 42/45

Deprecations and other
breaking changes

March 29, 2023 43/45

Kokkos ENABLE DEPRECATED CODE {3,4}

▶ Do not rely on -DKokkos ENABLE DEPRECATED CODE 3=ON to
build your code

▶ We reserve the right to remove code deprecated in the 3.X
series at any time without prior notice

▶ New Kokkos ENABLE DEPRECATED CODE 4 configuration that
is ON by default (for now)

▶ Will be supported for the remaining of the 4.X series

▶ As usual, unless you explicitly turn
Kokkos ENABLE DEPRECATION WARNINGS OFF we will warn
you when something is being deprecated

March 29, 2023 44/45

Removing DEPRECATED CODE 3

▶ Code that was deprecated during the 3.X release series is now
being removed
▶ There are just a handful exceptions we will leave in for one or

two more minor releases to give more transition time

▶ Refer to the changelog or the deprecation pages in the wiki
▶ Best effort to keep the promise

if your code builds against 3.7 with C++17 and deprecated
code off, it will build against 4.0

Except for ...
▶ KOKKOS ACTIVE EXECUTION MEMORY SPACE * (correcting

oversight in release 3.6)
▶ Kokkos ENABLE CUDA LDG INTRINSIC configuration option

and macro (effectively was not used for a while)

March 29, 2023 45/45

Freshly deprecated (DEPRECATED CODE 4)

▶ ExecutionSpace::concurrency() becomes a non-static
member function

▶ Some volatile support in Kokkos::pair and
Kokkos::complex

▶ Kokkos ENABLE CUDA UVM configuration option

