
Kokkos 4.4 Release Briefing

New Capabilities

August 27, 2024

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SANDXXXX PE

August 27, 2024 2/49

Outline

4.4 Release Highlights

▶ Organizational

▶ New Feature: Kokkos::View from std::mdspan

▶ Backend updates

▶ General Enhancements

▶ Build system updates

▶ Deprecations and other breaking changes

▶ Bug Fixes

▶ View Of Views

August 27, 2024 3/49

Find More

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https:
//github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://kokkos.org/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.org/kokkos-core-wiki
https://kokkosteam.slack.com

August 27, 2024 4/49

Kokkos Usage

Would like to strengthen community bonds and discoverability

List of Applications and Libraries

▶ Add your app to https://github.com/kokkos/kokkos/issues/1950

▶ We are planning to add that to a Kokkos website.

▶ Helps people discover each other when working on similar things.

GitHub Topics

▶ Use kokkos tag on your repos.

▶ If you click on the topic you get a list of all projects on github with that topic.

https://github.com/kokkos/kokkos/issues/1950

August 27, 2024 5/49

Organizational
Content:

▶ Linux Foundation

▶ develop Branch

▶ Targetting C++20 for Kokkos 5.0

August 27, 2024 6/49

High Performance Software Foundation

Kokkos is now a member of the

HPSF supports the community development of key HPC projects

Member Organizations

▶ Labs: LLNL, SNL, ORNL, LANL, ANL, CEA

▶ Industry: HPE, AWS, NVIDIA, Intel, AMD, Kitware

▶ Academia: U-Oregon, U-Maryland, CDAC

Member Projects

▶ Spack, Kokkos, Trilinos, AMReX, WarpX, Viskores, HPCToolkit, E4S,
Charliecloud, Apptainer

August 27, 2024 7/49

High Performance Software Foundation

What will HPSF do?

▶ Provide framework for collaboration on common community concerns (working
groups for CI, software security, training etc.)

▶ Help organize user-group meetings and trainings

▶ Pay for some community infrastructure (e.g. webpage, CI, Slack?)

Getting Involved:

▶ Talk to us - Christian, Damien and Julien are all active in HPSF

▶ We are still in bring-up phase: working groups are not yet constituted

August 27, 2024 8/49

Release Mechanisms

develop is now the default branch of Kokkos Core and Kernels

▶ Switched with 4.3 release

▶ master branch is deprecated - still updated to 4.4 right now

Started to publish signed release artifacts

▶ Release page: https://github.com/kokkos/kokkos/releases/latest

▶ Source distributions: source archives uploaded by the Kokkos team

▶ Summary files: Hashes and keys to verify integrity of hash

▶ Assets: All the files. Note: Source code (zip/tar.gz) are GitHub autogenerated
and do not promise a stable checksum

https://github.com/kokkos/kokkos/releases/latest

August 27, 2024 9/49

Verify integrity

Commands for 4.4:
KOKKOS_RELEASES=https:// github.com/kokkos/kokkos/releases

wget ${KOKKOS_RELEASES }/ download /4.4.00/ kokkos -4.4.00. tar.gz
wget ${KOKKOS_RELEASES }/ download /4.4.00/ kokkos -4.4.00 -SHA -256. txt
wget ${KOKKOS_RELEASES }/ download /4.4.00/ kokkos -4.4.00 -SHA -256. txt.asc
wget https:// kokkos.org/downloads/signing -keys/dalg24.asc

gpg --import dalg24.asc

gpg --verify kokkos -4.4.00 -SHA -256. txt.asc

grep kokkos -4.4.00. tar.gz kokkos -4.4.00 -SHA -256. txt | sha256sum -c

Relevant Output:

gpg --verify kokkos -4.4.00 -SHA -256. txt.asc

...

gpg: Good signature from "Damien␣Lebrun -Grandie␣<dalg24@gmail.com >" \[unknown \]

gpg: WARNING: This key is not certified with a trusted signature!

...

grep kokkos -4.4.00. tar.gz kokkos -4.4.00 -SHA -256. txt | sha256sum -c

kokkos -4.4.00. tar.gz: OK

August 27, 2024 10/49

Kokkos 5 and ISO C++20

Kokkos 5 is comming Summer 2025

We will require C++20!

Start preparing now:

▶ Check availability of compilers on your systems

▶ Test with C++20 enabled: start with a CPU build

▶ Minimum Compiler requirements will change (more details later)

Nothing wrong for your project to require C++20 now if you feel ready!

August 27, 2024 11/49

mdspan Interoperability

August 27, 2024 12/49

What is mdspan?

▶ std::mdspan is a non-owning multidimensional view of data

▶ Has many similarities to Kokkos::View, but unlike View, does not own memory
or reference count.

▶ Part of the C++23 standard, and is a major component of new standard C++
features like std::linalg

▶ std::mdspan improves interoperability between code for array-like data

August 27, 2024 13/49

API

▶ We added conversion functions to and from std::mdspan

explicit(traits :: is_managed) View(const NATURAL_MDSPAN_TYPE &mds);

template <class El, class Ex , class L, class A>

explicit(/*...*/) View(const mdspan <El, Ex , L, A> &mds);

template <class El, class Ex , class L, class A>

constexpr operator mdspan <El, Ex, L, A>();

template <class A = Kokkos :: default_accessor <typename traits :: value_type >>

constexpr auto to_mdspan(const A &other_accessor = OtherAccessorType {});

Conversion rules to and from mdspan follow the same principles as between different
View or mdspan types respectively.

August 27, 2024 14/49

Natural MDSpan

The natural mdspan of a View is the mdspan that is compatible with the view. An
mdspan m of type M that is the natural mdspan of a view v of type V :

▶ M::value type is V::value type

▶ M::index type is std::size t

▶ M::extents type is std::extents<M::index type, Extents...> with
Extents... being the static extents of the view

▶ M::layout type is
▶ std::layout left padded<std::dynamic extent> if V::array layout is

LayoutLeft
▶ std::layout right padded<std::dynamic extent> if V::array layout is

LayoutRight
▶ std::layout stride if V::array layout is LayoutStride

▶ M::accessor type is std::default accessor<V::value type>

August 27, 2024 15/49

Application Benefits

There are two primary use-cases where mdspan can be benefitial in the long run:

▶ interfaces with non-Kokkos code
▶ fully standardized replacement for unmanaged View

▶ https://eel.is/c++draft/views.multidim

Kokkos ::View <const double**> A = /* ... */;

Kokkos ::View <const double*> x = /* ... */;

Kokkos ::View <double *> y = /* ... */;

// interop with C++26 linalg:

std:: linalg :: matrix_vector_product(A.to_mdspan(), x.to_mdspan(), y.to_mdspan ());

https://eel.is/c++draft/views.multidim

August 27, 2024 16/49

Backend Updates

August 27, 2024 17/49

Backend Updates CUDA (1/4)

▶ Improve compile-times when building with Kokkos ENABLE DEBUG BOUNDS CHECK

(approx. 3x faster to compile)

▶ Add support for --disable-warnings flag into nvcc wrapper

▶ Use team size recommended() as default team size

August 27, 2024 18/49

Backend Updates HIP (2/4)

▶ Add unified memory support for MI300:
▶ make HIPSpace accessible on the host
▶ need to opt-in with Kokkos IMPL HIP UNIFIED MEMORY
▶ introduced in 4.3.1

▶ Add options for user to control GPU compilation flags:
▶ Kokkos IMPL AMDGPU FLAG and Kokkos IMPL AMDGPU LINK
▶ we only set RDC flag
▶ user still needs to set Kokkos ARCH GFX but we do no set the architecture flag

▶ Rework atomics to use builtins

August 27, 2024 19/49

Backend Updates SYCL (3/4)

▶ Add support for Graphs

▶ Fix multi-GPU support

▶ Improve performance for top-level parallel reduce and parallel scan, and
team reduce

▶ Fix lock for guarding scratch space in TeamPolicy parallel reduce

August 27, 2024 20/49

Backend Updates Other (4/4)

▶ OpenACC: Make TeamPolicy parallel for execute on the correct async queue

▶ OpenMPTarget: Honor user requested loop ordering in MDRange policy

▶ OpenMPTarget: Prevent data races by guarding the scratch space used in
parallel scan

▶ HPX: Fix the compilation of the HPX backend with nvcc

August 27, 2024 21/49

General Enhancements

August 27, 2024 22/49

Array

Improve Array facility to align further with std::array

▶ Add to array()

char a[] = { ’f’, ’o’, ’o’, ’\0’ };

auto b = Kokkos :: to_array(a); // Kokkos ::Array <char , 4>

auto c = Kokkos :: to_array ({0, 2, 1, 3}); // Kokkos ::Array <int , 4>

auto d = Kokkos ::to_array <long >({0, 1, 3}); // Kokkos ::Array <long , 3>;

▶ Provide kokkos swap(Array<T, N>&, Array<T, N>&) specialization

▶ Make Array<T, N> equality comparable

Kokkos ::Array <int , 2> e = /* ... */;

Kokkos ::Array <int , 2> f = /* ... */;

KOKKOS_ASSERT ((e == f) != (e != f));

August 27, 2024 23/49

TeamPolicy CTAD

▶ Added CTAD deduction guides for TeamPolicy

TeamPolicy () -> TeamPolicy <>;

TeamPolicy(int , ...) -> TeamPolicy <>;

TeamPolicy(DefaultExecutionSpace , int , ...) -> TeamPolicy <>;

static_assert (!is_same_v <SomeExecutionSpace , DefaultExecutionSpace >);

TeamPolicy(SomeExecutionSpace , int , ...) -> TeamPolicy <SomeExecutionSpace >;

August 27, 2024 24/49

Structured binding support for complex

▶ Added tuple protocol to complex for structured binding support
▶ Based on structured binding support for std::complex added to C++26
▶ Add Tuple Protocol to complex

https://wg21.link/P2819R2

Kokkos ::complex <double > z(11., 13.);

auto&[r, i] = z;

Kokkos :: kokkos_swap(r, i);

KOKKOS_ASSERT(r == 13. && i == 11.);

https://wg21.link/P2819R2

August 27, 2024 25/49

Add converting constructor in Kokkos::RandomAccessIterator

▶ Harmonize View and (internal) random access iterator convertibility

Kokkos ::View <int *> x;

Kokkos ::View <const int *> const_y(x); // compiles

// Kokkos ::View <int *> y(const_x); // compiler error

auto x_it = begin(x);

decltype(begin(const_y)) const_it = x_it; // previously did not compile

August 27, 2024 26/49

Add a check precondition non-overlapping ranges for the adjacent difference algorithm

▶ Disallow the overlapping of source and destination iterators (in debug mode). See
https://eel.is/c++draft/numeric.ops#adjacent.difference-8

▶ DO NOT check overlapping if the source and destination iterators are constructed
from a single multidimensional view and the strides of these iterators are not
identical

// Case 0 No longer allowed (Source and destination iterators are the same)

Kokkos ::View <double*> a("A",N0);

auto res1 = KE:: adjacent_difference("label", exespace(), a, a, args ...);

// Case 1 Still allowed (b0/b1 iterates over even/odd numbers only)

Kokkos ::View <double [2]*> b("B",N0);

auto sub_b0 = Kokkos :: subview(b, 0, Kokkos ::ALL);

auto sub_b1 = Kokkos :: subview(b, 1, Kokkos ::ALL);

auto sub_first_b0 = KE:: begin(sub_b0); // 0, 2, 4, ...

auto sub_first_b1 = KE:: begin(sub_b1); // 1, 3, 5, ...

auto res2 = KE:: adjacent_difference("label", exespace(),

sub_first_b0 , sub_first_b1 , args ...);

https://eel.is/c++draft/numeric.ops#adjacent.difference-8

August 27, 2024 27/49

SIMD: Allow flexible vector width for 32 bit types

Use full vector width for 32 bit data types

▶ The vector width of Kokkos::simd was determined based on 64 bit data types in
available vector registers

▶ For 32 bit data types, Abi can be specified to use larger vector width

{

// For AVX512

using namespace Kokkos :: Experimental;

using native_type = native_simd <float >;

using simd_type = simd <float , simd_abi :: avx512_fixed_size <8>>;

using simd_larger_type = simd <float , simd_abi :: avx512_fixed_size <16>>;

static_assert(simd_type ::size() == native_type ::size ());

static_assert(simd_type ::size ()*2 == simd_larger_type ::size ());

}

Applied for: AVX2, AVX512, NEON

August 27, 2024 28/49

Host: Use unlikely attribute when reference counting views on host backends

▶ We use unlikely attribute from C++20 to improve reference counting in views
on host backends.

▶ This only impacts LLVM compilers.

August 27, 2024 29/49

Build Systems Updates

August 27, 2024 30/49

Build System Updates 1/2

New minimum compiler version requirements for C++20 support

Clang(CPU) 14.0.0

Clang(CUDA) 14.0.0

Clang(OpenMPTarget) 15.0.0

GCC 10.1.0

Intel not supported

IntelLLVM(CPU) 2022.0.0

IntelLLVM(SYCL) 2023.0.0

NVCC 12.0.0

HIPCC 5.2.0

NVHPC 22.3

MSVC 19.30

August 27, 2024 31/49

Build System Updates 2/2

▶ Add nvidia Grace CPU architecture: Kokkos ARCH ARMV9 GRACE

When enabled, adds -mcpu=neoverse-v2 -msve-vector-bits=128 flags

▶ Update Intel GPU architectures in Makefile to match CMake

▶ Fix incorrect path in Makefile.kokkos when using Threads

▶ Fix compilation with CUDA toolkit for CMake 3.28.4 and higher

▶ Do not require OpenMP support for languages other than CXX

▶ Fix use of OpenMP with Cuda or HIP as compile language

▶ Remove support for NVHPC as CUDA device compiler

August 27, 2024 32/49

Potentially Breaking Changes

August 27, 2024 33/49

Breaking Changes 1/1

▶ Dropped Array special treatment in View
▶ was treated as an extra compile-time dimension in the view
▶ now able to construct unmanaged view of arrays

▶ Got rid of Experimental::RawMemoryAllocationFailure
▶ no known usage
▶ internally catching them and rethrowing regular std::runtime exceptions

▶ Bug fix for thread safety can lead to deadlocks if user code violates Kokkos
sematics (see Bug Fixes - Thread Safety and View of Views)

August 27, 2024 34/49

Deprecations

August 27, 2024 35/49

Deprecations

▶ Deprecated allocation step inside deep copy(UnorderedMap,UnorderedMap)

Maps now must have the same capacity to deep copy

▶ Deprecated implicit conversions of integers to ChunkSize

Behavior only introduced in 4.3

▶ Deprecated implicit conversions to all execution spaces

August 27, 2024 36/49

Deprecate Array<...,Proxy> Argument

▶ Deprecated trailing Proxy template argument in Kokkos::Array

// DEPRECATED

// template <typename T = void ,

// size_t N = KOKKOS_INVALID_INDEX ,

// typename Proxy = void >

template <typename T, size_t N>

struct Array { /* ... */ };

▶ Deprecates non-owning, dynamically sized contiguous/strided functionality
▶ More in line with (always) owning & statically sized std::array

August 27, 2024 37/49

Deprecate is layouttiled

▶ Removed Kokkos::Experimental::LayoutTiled class template
▶ Never useable

▶ Deprecated is layouttiled trait
▶ Not useful, but no rush to remove it

▶ Deprecated Kokkos::layout iterate type selector
▶ Not useful outside of Kokkos implementation

August 27, 2024 38/49

Deprecate pair<T,void>

▶ Deprecated specialization of Kokkos::pair for a single element

// DEPRECATED

// template <typename T>

// struct pair <T, void > { /* ... */ };

▶ Never supported in std::pair
▶ Never documented
▶ Never tested
▶ No known usage

August 27, 2024 39/49

Bug Fixes

August 27, 2024 40/49

Bug Fixes - Inline static members variables

▶ Fix using shared libraries and --fvisibility=hidden
▶ Used in python wrappers, PETSc, RTLD DEEPBIND, . . .
▶ problematic with inline static member variables

August 27, 2024 41/49

Bug Fixes - Thread-Safety

▶ Submitting kernels from multiple threads to the same execution space instance
allowed

▶ They are guaranteed not to run concurrently.

▶ Requires locks even in synchronous execution spaces like Serial and OpenMP.

▶ Impact on View of View misuse and kernel in kernel calls.

August 27, 2024 42/49

Bug Fixes - Thread-Safety

Kokkos ::View <int > view("view");

Kokkos ::View <int > error("error");

auto lambda = [=]() {

Kokkos :: parallel_for(

Kokkos :: RangePolicy <>(exec , 0, 1), KOKKOS_LAMBDA(int) {

Kokkos :: atomic_store(view.data(), 0);

for (int i = 0; i < N; ++i) Kokkos :: atomic_inc(view.data ());

if (Kokkos :: atomic_load(view.data ()) != N)

Kokkos :: atomic_store(error.data(), 1);

});

};

std:: thread t1(lambda);

std:: thread t2(lambda);

t1.join ();

t2.join ();

August 27, 2024 43/49

Bug Fixes - Miscelleneous

▶ Return void for Experimental::for each, matching std::for each

▶ Support views with non-default constructible values in realloc

▶ Fix undefined behavior in View initialization or fill with zeros

▶ Fix compilation of sort by key when using a host execution space in the CUDA
build

▶ Fix view reference counting when functor copy constructor throws in parallel
dispatch

▶ Copy print configuration settings when combining two
Kokkos::InitializationSettings objects

August 27, 2024 44/49

View of Views

August 27, 2024 45/49

End of view object lifetime

What happens when a view object gets out of scope?

{

View <T*, HostSpace > v("v", n);

// [...]

} // calls view destructor , i.e. v.~View()

// equivalent to:

// parallel_for(

// RangePolicy <DefaultHostExecutionSpace >(0, n),

// KOKKOS_LAMBDA(size_t i) { v(i).~T(); }

//);

// kokkos_free(v.data ());

Now, what if T is a view, or some user-defined type that contains a view?

August 27, 2024 45/49

End of view object lifetime

What happens when a view object gets out of scope?

{

View <T*, HostSpace > v("v", n);

// [...]

} // calls view destructor , i.e. v.~View()

// equivalent to:

// parallel_for(

// RangePolicy <DefaultHostExecutionSpace >(0, n),

// KOKKOS_LAMBDA(size_t i) { v(i).~T(); }

//);

// kokkos_free(v.data ());

Now, what if T is a view, or some user-defined type that contains a view?

August 27, 2024 45/49

End of view object lifetime

What happens when a view object gets out of scope?

{

View <T*, HostSpace > v("v", n);

// [...]

} // calls view destructor , i.e. v.~View()

// equivalent to:

// parallel_for(

// RangePolicy <DefaultHostExecutionSpace >(0, n),

// KOKKOS_LAMBDA(size_t i) { v(i).~T(); }

//);

// kokkos_free(v.data ());

Now, what if T is a view, or some user-defined type that contains a view?

August 27, 2024 46/49

The infamous View of Views

Our programming guide states it clearly (paraphrased):

Please don’t.
But, if you do, here is the right way to do it:

using Naughty = Kokkos ::View <T*, SomeMemorySpace >

View <Naughty**, HostSpace > v(view_alloc("v", WithoutInitializing), 2, 3);

// create and initiliaze elements with a placement new

new &v(0,0) Naughty("w00", 4);

new &v(1,0) Naughty("w10", 5);

new &v(0,1) Naughty("w01", 6);

// [...]

// must ** manually ** call the elements destructor

v(0 ,0).~ Naughty ();

v(1 ,0).~ Naughty ();

v(0 ,1).~ Naughty ();

Lifetime management of element objects is the user’s responsability, and it must be
done on the host, not with a parallel region.

August 27, 2024 46/49

The infamous View of Views

Our programming guide states it clearly (paraphrased):

Please don’t.
But, if you do, here is the right way to do it:

using Naughty = Kokkos ::View <T*, SomeMemorySpace >

View <Naughty**, HostSpace > v(view_alloc("v", WithoutInitializing), 2, 3);

// create and initiliaze elements with a placement new

new &v(0,0) Naughty("w00", 4);

new &v(1,0) Naughty("w10", 5);

new &v(0,1) Naughty("w01", 6);

// [...]

// must ** manually ** call the elements destructor

v(0 ,0).~ Naughty ();

v(1 ,0).~ Naughty ();

v(0 ,1).~ Naughty ();

Lifetime management of element objects is the user’s responsability, and it must be
done on the host, not with a parallel region.

August 27, 2024 47/49

What if I forgot to clean up?

What happens depends on how the (outter) view was
constructed:

▶ If you passed the WithoutInitializing
allocation property, you potentially leak resources

▶ Otherwise, you program may hang when you
upgrade to 4.4
▶ Outter view destructor launches a parallel region to

end the lifetime of individual elements
▶ If an individual element being destructed causes

some non-empty (inner) view to go out of scope,
Kokkos semantics are being violated

▶ Inner view object being destroyed leads to an
attempt to acquire the lock that is already engaged
for the outter view cleanup

August 27, 2024 48/49

New SequentialHostInit view allocation property in 4.5

▶ Introduced new SequentialHostInit view allocation property in develop

▶ Does not support non-default-constructible element types

▶ May backport it to a 4.4.1 patch release if there is strong appetite for it

using Naughty = Kokkos ::View <T*, SomeMemorySpace >

View <Naughty**, HostSpace > v(view_alloc("v", SequentialHostInit), 2, 3);

// copy assign elements

v(0,0) = Naughty("w00", 4);

v(1,0) = Naughty("w10", 5);

v(0,1) = Naughty("w01", 6);

// v.~View() handles properly elements destruction

August 27, 2024 49/49

How to Get Your Fixes and Features into Kokkos

▶ Fork the Kokkos repo (https://github.com/kokkos/kokkos)

▶ Make topic branch from develop for your code

▶ Add tests for your code

▶ Create a Pull Request (PR) on the main project develop

▶ Update the documentation (https://github.com/kokkos/kokkos-core-wiki) if your
code changes the API

▶ Get in touch if you have any questions (https://kokkosteam.slack.com)

