
Kokkos 4.5 Release Briefing

New Capabilities

2024-12-10

2024-12-10 2/54

Outline

4.5 Release Highlights

▶ Organizational

▶ SequentialHostInit

▶ Feature Highlights

▶ General Enhancements

▶ Graphs Enhancements

▶ Backend updates

▶ Tuning changes demo

▶ Build system updates

▶ Deprecations and other breaking changes

▶ Bug Fixes

2024-12-10 3/54

Find More

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https:
//github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://kokkos.org/kokkos-core-wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack workspace for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.org/kokkos-core-wiki
https://kokkosteam.slack.com

2024-12-10 4/54

Kokkos Usage

Would like to strengthen community bonds and discoverability

List of Applications and Libraries

▶ Add your app to https://github.com/kokkos/kokkos/issues/1950

▶ We are planning to add that to a Kokkos website.

▶ Helps people discover each other when working on similar things.

GitHub Topics

▶ Use kokkos tag on your repos.

▶ If you click on the topic you get a list of all projects on github with that topic.

https://github.com/kokkos/kokkos/issues/1950

2024-12-10 5/54

Organizational
Content:

▶ HPSF and Kokkos Meeting 2025

▶ Targetting C++20 for Kokkos 5.0

▶ SequentialHostInit and Views of Views

2024-12-10 6/54

Kokkos User Group Meeting 2025

Kokkos User Group Meeting 2025 @ HPSF Conference

▶ When: May 5th-8th 2025

▶ Where: Chicago

▶ What: 2-days HPSF plenary + 2-days Project meetings
▶ KUG-Content Request: Focused on user experiences

▶ How do you leverage Kokkos?
▶ What are pain points?
▶ Kokkos based libraries of interest for the community

Registration will open in January!

2024-12-10 7/54

Kokkos 5 and ISO C++20

Kokkos 5 is comming Summer 2025

We will require C++20!

Start preparing now:

▶ Check availability of compilers on your systems

▶ Test with C++20 enabled: start with a CPU build

▶ Minimum Compiler requirements will change (more details later)

Nothing wrong for your project to require C++20 now if you feel ready!

2024-12-10 8/54

SequentialHostInit and Views of Views

Or: What to do if you need Views of ”complicated” objects?

2024-12-10 9/54

”Complicated” objects

To create a normal View the objects it views need to be:

▶ default-constructible in the View associated execution space

▶ destructible in the View associated execution space

This Means: Default constructor and desctructor:

▶ must be KOKKOS FUNCTION (or defaulted)

▶ can’t allocate or deallocate data

▶ can’t call Kokkos parallel operations (parallel for etc.)

▶ can’t create or destroy Views!

If your object does any of these things it is ”Complicated”!

2024-12-10 10/54

SequentialHostInit view allocation property in 4.5

▶ Construction and Destruction of objects will happen sequentially on Host!

▶ Backported to 4.4.1

using Complicated = Kokkos ::View <T*, SomeMemorySpace >

View <Complicated **, HostSpace > v(view_alloc("v", SequentialHostInit), 2, 3);

// copy assign elements

v(0,0) = Complicated("w00", 4);

v(1,0) = Complicated("w10", 5);

v(0,1) = Complicated("w01", 6);

// v.~View() handles properly elements destruction

Requirements for generic ”Complicated” types:

▶ T is default constructible and destructible on host

▶ SomeMemorySpace is host accessible (e.g. SharedSpace or HostSpace)

2024-12-10 11/54

How do I know I need this?

Since Kokkos 4.4 programs may dead-lock when creating or destroying View’s of
complicated objects!

Previously legal code leveraging ‘WithoutInitializing‘ with proper element clean-up
before destruction continues to be legal!

2024-12-10 12/54

Feature highlights

2024-12-10 13/54

Support building without RTTI

Kokkos can now be built with Run-Time Type Information (RTTI) disabled.

▶ RTTI is required to deremine the type of an object during program execution.
▶ It is used by:

▶ Exception handling
▶ dynamic cast
▶ typeid operator and std::type info class

▶ It can be disabled at configuration via -DCMAKE CXX FLAGS="-fno-rtti"

▶ Typical use case is to reduce the binary size when targeting systems with limited
amount of memory

2024-12-10 14/54

New KOKKOS RELOCATABLE FUNCTION annotation macro

Required when using Relocatable Device Code (RDC) with SYCL
▶ KOKKOS RELOCATABLE FUNCTION function annotation macro expands to

▶ extern host device with CUDA or HIP
▶ extern SYCL EXTERNAL with SYCL

▶ -DKokkos ENABLE {CUDA,HIP,SYCL} RECLOCATABLE DEVICE CODE=ON

▶ Can have non-trivial perfomance implications

// foo.cpp

#include <Kokkos_Core.hpp >

KOKKOS_RELOCATABLE_FUNCTION void foo() { Kokkos :: printf("foo\n"); }

// bar.cpp

#include <Kokkos_Core.hpp >

KOKKOS_RELOCATABLE_FUNCTION void foo ();

void bar() { Kokkos :: parallel_for (1, KOKKOS_LAMBDA(int) { foo (); }); }

2024-12-10 15/54

SYCL backend has matured

The SYCL backend is out of the namespace Experimental::.

▶ Keep non-deprecated aliases for now but will deprecate in upcoming releases
(potentially in 4.6)

▶ (Hopefully) very limited impact on user code when leveraging portable aliases
(DefaultExecutionSpace, SharedSpace, SharedHostPinnedSpace, etc.)

▶ If you specialized something for SYCL and really have to spell the SYCL class
names, you can always do

#if KOKKOS_VERSION_GREATER_EQUAL (4, 5, 0)

using MySyclExec = Kokkos ::SYCL;

#else

using MySyclExec = Kokkos :: Experimental ::SYCL;

#endif

2024-12-10 16/54

General Enhancements

2024-12-10 17/54

View initialization/destruction for trivial types (1/7)

Improved View initialization/destruction for non-scalar trivial types

▶ Skips fences and kernel launches to init or delete elements in a view

▶ Was only applied to scalar types previously

▶ Extended this to trivial types (trivially default constructible, trivially destructible)

2024-12-10 18/54

MDRangePolicy default tile sizes (2/7)

Added getters for MDRangePolicy tile sizes

using tile_type = Kokkos ::Array <array_index_type , rank >;

tile_type tile_size_recommended () const;

int max_total_tile_size () const;

▶ tile size recommended() returns a Kokkos::Array containing default tile
sizes

▶ max total tile size() returns the max valid tile size

▶ Independent of tile sizes specified during construction of MDRangePolicy

2024-12-10 19/54

Improve performance of Kokkos::sort (3/7)

▶ Found that Kokkos::sort is slower than std::sort on host

std::sort(view.data(), view.data() + view.size ());

Kokkos ::sort(view); // 2x slower

▶ Caused by reference counting and view access in RandomAccessIterator

▶ Replaced to use raw pointers in RandomAccessIterator if View is strided

2024-12-10 20/54

Range-based for loop support for Kokkos::Array (4/7)

Added free functions, begin() and end(), that take in a const or a non-const
Kokkos::Array. They are usable in constant expressions.

Kokkos ::Array a = {1, 2, 3, 4};

for (auto x : a)

Kokkos :: printf("%d␣", x);

Kokkos :: printf("\n");

// program output: 1 2 3 4

2024-12-10 21/54

Functors as reducers for team parallel reduce (5/7)

Functors can now be used as reducers for nested team parallel reduce

Kokkos :: parallel_for(Kokkos :: TeamPolicy <ExecSpace >(...) ,

KOKKOS_LAMBDA(team_member_type const& team) {

Kokkos :: parallel_reduce(TeamThreadRange (...),

functor_as_reducer {}, result);

});

▶ If a reducer is available, the reducer is used for reduction

▶ Without a reducer, the reduction type is deduced from an optional join on the
functor

▶ Otherwise, the reduction type is a sum

2024-12-10 22/54

Add atomic {mod,xor,nand,lshift,rshift} (6/7)

Updates to Kokkos::Atomics

Added more ”reduction” atomic operations, that is, operations that do not ”fetch” the
old value.

▶ atomic mod

▶ atomic xor

▶ atomic nand

▶ atomic lshift

▶ atomic rshift

template <class T>

KOKKOS_FUNCTION void atomic_[op](T* ptr , std:: type_identity_t <T> val);

// Atomically executes { *ptr = op(*ptr , val); }

2024-12-10 23/54

Allow using SequentialHostInit with Kokkos::DualView (7/7)

Fixed compilation error when SequentialHostInit is used with Kokkos::DualView

DualViewType dv(Kokkos :: view_alloc("view", Kokkos :: SequentialHostInit), N);

dv.resize(Kokkos :: view_alloc(Kokkos :: SequentialHostInit), M);

▶ SequentialHostInit property was considered during construction of the
device-side view

Restrictions

▶ Not compatible with WithoutInitializing

▶ Must not have a specifed execution space in the view allocation property, i.e.:

view_alloc(exec_space , Kokkos :: WithoutInitializing , "ViewString");

2024-12-10 24/54

Graphs Enhancements

2024-12-10 25/54

Graphs Enhancements: Basics (1/5)

Kokkos::Graph is an asynchronous execution model that requires all workloads to be
defined ahead of execution - as opposed to eager execution that you get with a regular
execution space instance.

A

B

C D

E

X

Y

▶ Makes your code semantics clear and portable.

▶ Reduces CPU overhead due to scheduling (Cuda and HIP).

▶ Enables as many compiler/driver optimizations as possible.

2024-12-10 26/54

Graphs Enhancements: PRs (2/5)

Main PRs for the current release that modified Kokkos::Graph

▶ core(graph): promote instantiate to public API

▶ core(graph): allow submission onto an arbitrary exec space instance

▶ graph(fix): defaulted graph submit control flow

▶ core(graph): allow create graph without closure

▶ graph: allow access to native graph object

▶ graph(diagnostic): enable compile-time diagnostic of illegal reduction target

▶ graph(global-kernel-launch): fix global launch for node kernel

https://github.com/kokkos/kokkos/pull/7240
https://github.com/kokkos/kokkos/pull/7249
https://github.com/kokkos/kokkos/pull/7271
https://github.com/kokkos/kokkos/pull/7248
https://github.com/kokkos/kokkos/pull/6904
https://github.com/kokkos/kokkos/pull/7460
https://github.com/kokkos/kokkos/pull/7365

2024-12-10 27/54

Graph Enhancements (3/5)

▶ Using a Kokkos::Graph is a 3-phase process

1. Definition
2. Instantiation
3. Submission

▶ Kokkos will instantiate the graph on the first submit if needed.

▶ Kokkos will submit the graph on the execution space instance provided during
definition by default.

auto graph = Kokkos :: Experimental :: create_graph <...>(exec ,

[&](const auto& root) {... /* add nodes */ ...});

graph.instantiate (); // optional

graph.submit(/* other_exec */);

2024-12-10 28/54

Graph Enhancements (4/5)

Then...
auto graph = Kokkos :: Experimentalcreate_graph <Kokkos ::HIP >(

exec , [&](const auto& root) {

auto node = root.then_parallel_ ...;

});

Now...

▶ Kokkos now allows graph definition outside of a closure.

▶ Kokkos allows access to the underlying backend graph (hipGraph t and so on).

auto graph = Kokkos :: Experimental :: create_graph <Kokkos ::HIP >(exec);

// Impl shall disappear at some point.

auto root = Kokkos ::Impl:: GraphAccess :: create_root_ref(graph);

auto node = root.then_parallel_ ...;

size_t num_nodes;

hipGraphGetNodes(graph.native_graph (), nullptr , &num_nodes);

2024-12-10 29/54

Graph Enhancements (5/5)

▶ The defaulted graph implementation received some attention (exec correctness),
but can still be enhanced.

▶ Kernels nodes with global launch were fixed (HIP and Cuda).

▶ Better compile-time diagnostic for illegal reduction target. It must be
device-accessible.

2024-12-10 30/54

Backend Updates

2024-12-10 31/54

Backend Updates: CUDA and SYCL (1/5)

CUDA Add unified memory support for Grace Hopper

▶ Make CudaSpace accessible on the host
▶ Need to opt-in with Kokkos ENABLE IMPL CUDA UNIFIED MEMORY
▶ Introduced in 4.4.1

SYCL Move SYCL out of Experimental namespace

SYCL Add option Kokkos ENABLE SYCL RELOCATABLE DEVICE CODE

2024-12-10 32/54

Backend Updates: HIP (2/5)

HIP Add support GFX1103 architecture: ”Phoenix” APUs, Ryzen 8000G, Radeon
740M, 760M, 780M, 880M, or 890M (ROCm does not officially support this
architecture)

HIP Update maximum waves per CU used for consumer cards (GFX1YYY)

HIP Warn if Kokkos runs on a different architecture than the one it was compiled for

HIP Fix global launch of a kernel graph

2024-12-10 33/54

Backend Updates: HIP (3/5)

HIP Add opt-in option Kokkos ENABLE IMPL HIP MALLOC ASYNC to use
hipMallocAsync instead of hipMalloc. This will be the default in the next
release.

HIP Rework MI300 architecture flags

▶ For MI300A use Kokkos ARCH AMD GFX942 APU
▶ For MI300X use Kokkos ARCH AMD GFX942
▶ Kokkos ENABLE IMPL HIP UNIFIED MEMORY has been removed, use

Kokkos ARCH AMD GFX942 APU

2024-12-10 34/54

Backend Updates: Threads and OpenMP (4/5)

Threads Fix compilation for parallel reduce using MDRangePolicy with Dynamic

scheduling

Threads Fix race conditions on ARM architectures (use atomic types instead of
volatile)

OpenMP Fix run time behavior when compiling with -fvisibility-hidden

(backported into 4.4.1)

OpenMP Fix linking with Cray Clang-based compiler

2024-12-10 35/54

Backend Updates: Others (5/5)

OpenACC Add support for the Clacc compiler

OpenACC Workaround NVHPC bug when using MDRangePolicy

HPX Add Experimental::partition space to create independent execution
spaces

Serial Kokkos ENABLE ATOMICS BYPASS also skips mutexes to remediate
performance regression

2024-12-10 36/54

Tuning Changes Demo

2024-12-10 37/54

Kokkos Runtime Tuning Overview/Review (1/7)

▶ Kokkos has runtime auto-tuning support when configured with
▶ Kokkos ENABLE TUNING CMake variable enabled at configuration time

▶ Kokkos internal auto-tuning support is enabled at runtime when
▶ --kokkos-tune-internals command line variable enabled at run time
▶ a Kokkos tool is used to provide the search

▶ Internal tunable parameters (available before 4.5)
▶ MDRangePolicy - X , Y , Z block sizes for CUDA, HIP execution spaces
▶ TeamPolicy - team size and vector length for CUDA, HIP execution spaces

▶ Arbitrary runtime parameters can be tuned with the same API, code modifications
required - we hope to simplify (or abstract) that API

2024-12-10 38/54

Kokkos Runtime Tuning New Features (2/7)

▶ New Internal tunable parameters (4.5)
▶ RangePolicy - Occupancy (with code modification) for CUDA execution space
▶ MDRangePolicy - Occupancy (with code modification) for CUDA execution space
▶ TeamPolicy - Occupancy (with code modification) for CUDA execution space

▶ Occupancy value tuned between [5:100], step size of 5

▶ Natural extension of PR #3379: “Experimental feature: control cuda occupancy”

“...passing prefer(policy, DesiredOccupancy(33)) to a parallel for(),
parallel reduce(), or parallel scan will bypass the block size deduction that
tries to maximize the occupancy and adjust the launch parameters (by fixing the block
size and requesting shared memory) to achieve the specified occupancy. The desired
occupancy is in percent.”

2024-12-10 39/54

Occupancy Example - code change required (3/7)

using memory_space = typename Kokkos :: DefaultExecutionSpace :: memory_space;

using view_type = Kokkos ::View <double **, memory_space >;

view_type left("process_this", 1000000 , 25);

/* Create a policy wrapper to request a tuned occupancy value from 0-100 */

auto const occupancy_policy = Kokkos :: Experimental :: prefer(

Kokkos :: RangePolicy <>(0, left.extent (0)),

Kokkos :: Experimental :: DesiredOccupancy{Kokkos ::AUTO });

const auto kernel = KOKKOS_LAMBDA(int i) {

for (int r = 0; r < 25; r++) {

double f = 0.;

for (int m = 0; m < left.extent_int (1); m++) {

f += left(i, m);

left(i, m) += f;

}

}

};

Kokkos :: parallel_for("Bench", occupancy_policy , kernel);

2024-12-10 40/54

APEX Auto-tuning Support (4/7)

▶ APEX 2.7.0 released: https://github.com/UO-OACISS/apex

▶ Included as git submodule in kokkos-tools:
https://github.com/kokkos/kokkos-tools/tree/develop/tpls/apex

▶ Profiling and tracing support for both asynchronous tasking runtimes and
“conventional” parallel models (MPI, OpenMP, OpenACC, OpenCL, CUDA, HIP,
SYCL, Kokkos, Pthreads, HPX, PaRSEC, StarPU, Iris...)

▶ Runtime adaptation search strategies (exhaustive, random, simulated annealing,
genetic search, nelder mead, auto) integrated with Kokkos tuning API

▶ Growing set of example cases:
https://github.com/khuck/apex-kokkos-tuning

▶ Long article on Kokkos autotuning with APEX: https://github.com/
UO-OACISS/apex/wiki/Kokkos-Runtime-Auto-Tuning-with-APEX

https://github.com/UO-OACISS/apex
https://github.com/kokkos/kokkos-tools/tree/develop/tpls/apex
https://github.com/khuck/apex-kokkos-tuning
https://github.com/UO-OACISS/apex/wiki/Kokkos-Runtime-Auto-Tuning-with-APEX
https://github.com/UO-OACISS/apex/wiki/Kokkos-Runtime-Auto-Tuning-with-APEX

2024-12-10 41/54

Running with APEX (5/7)

Specify the search strategy

export APEX_KOKKOS_TUNING_POLICY=nelder_mead

Specify the number of samples to be taken for each configuration

export APEX_KOKKOS_TUNING_WINDOW =4

Run with apex_exec

apex_exec --apex:kokkos -tuning ./ occupancy_example --kokkos -tune -internals

Possible (truncated) verbose output:

...

Nelder Mead: New best! 0.00197833 k: 1, Bench: 30

Nelder Mead: New best! 0.00196357 k: 7, Bench: 20

Nelder Mead: New best! 0.00196042 k: 10, Bench: 25

Nelder Mead: New best! 0.00195894 k: 48, Bench: 25

...

Converged after 43 iterations.

Total func evaluations: 114

APEX: Tuning has converged for session 1.

[25]

2024-12-10 42/54

Perfetto trace of example tuned by APEX for Nelder Mead search strategy (6/7)

2024-12-10 43/54

Kokkos Potential Future Tuning Plans (7/7)

▶ Simplified/abstracted API for custom tuning in user code (or at least some helper
functions)
▶ kokkosp declare [input,output] type - make it easier to create variables
▶ kokkosp [begin,end] context
▶ kokkosp request values

▶ Additional examples, performance studies

▶ Internal tuning for RangePolicy

▶ Internal support/testing for more execution engines (SYCL, OpenMP,
OpenMPTarget)

2024-12-10 44/54

Build Systems Updates

2024-12-10 45/54

Build System Updates (1/2)

Adding a RISC-V CPU with vectorization

▶ Support RISC-V CPUs (RVA22V) with the latest vectorization specification.

▶ CMake option Kokkos ARCH RISCV RVA22V

Major refactoring removing ‘TriBITS‘ paths

▶ Remove full TriBITS build option via Trilinos.

▶ Adding necessary options to the CMake build system.

2024-12-10 46/54

Build System Updates (2/2)

▶ Make CUDA related CMake options dependent options of Kokkos ENABLE CUDA

▶ CMake option IMPL CUDA MALLOC ASYNC default is OFF if CUDA backend is not
enabled. It should fix issues with some MPI implementations (Cray-MPICH, Bull,
. . .) or user codes relying on shared memory between processes.

2024-12-10 47/54

Deprecations and other breaking changes

2024-12-10 48/54

Some atomic operations deprecated (1/2)

atomic query version() No users, and not clear how it would be used

atomic assign() Use atomic store() instead

atomic compare exchange strong() Use atomic compare exchange() and
compare result

atomic {increment, decrement}() Use atomic {inc, dec}() instead

2024-12-10 49/54

Misc deprecations (2/2)

is asynchronous() Only existed in OpenMP and HPX backends and was unused

Tasking interface Unused, and is a maintenance burden

2024-12-10 50/54

Bug Fixes

2024-12-10 51/54

Bug Fixes (1/3)

▶ Fix storage lifetime of driver for global launch of graph nodes for CUDA and HIP
▶ Previously, graph nodes were not stored by the graph itself
▶ Undefined behavior for all future graph submit when a node goes out of scope

▶ Fix TeamPolicy array reduction for CUDA and HIP

Previously, array reductions did not compile

▶ Fix potential out of bounds view access in Kokkos::BinSort with Serial host
backend

2024-12-10 52/54

Bug Fixes (2/3)

▶ Fix for deep copy(exec, ...) in case where multiple host backends are enabled

Previously, passing Serial execution space was ignored in favor of a default host
parallel backend

▶ Using CUDA limits to set extents for blocks, grids in MDRangePolicy

Previous, Kokkos internal tuning was potentially overextend in the block.z
dimension

▶ In RangePolicy construction, no longer require round-trip convertability between
user provided IndexType and the internal member type

▶ Allow extracting host and device views from DualView with const value type

2024-12-10 53/54

Bug Fixes (3/3)

▶ Set an initial value index during reductions with MinLoc, MaxLoc, or MinMaxLoc

Previously, invalid index could be given for location if view contain uniform values

▶ Make value type for RandomAccessIterator non-const to match C++
standard

▶ Fix compilation error when using SYCL without architecture flags

KOKKOS ARCH INTEL GPU was being assumed

▶ Allow copy assign between simd mask with KOKKOS ARCH AVX2=ON

2024-12-10 54/54

How to Get Your Fixes and Features into Kokkos

▶ Fork the Kokkos repo (https://github.com/kokkos/kokkos)

▶ Make topic branch from develop for your code

▶ Add tests for your code

▶ Create a Pull Request (PR) on the main project develop

▶ Update the documentation (https://github.com/kokkos/kokkos-core-wiki)
if your code changes the API

▶ Get in touch if you have any question (https://kokkosteam.slack.com)

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-core-wiki
https://kokkosteam.slack.com

