Contents

I Intreduction|

SPSToolbox - User Manual

Sandor Kolumban

May 15, 2013

[2° Short description of the theory|

[3__Using the toolbox|

3.1 GenerateSPSSetup|

3.7 GeneratelestRegion|. L

3.8 SimulateBJSample]

3.9 SimulateSystem| .

4 Examples

4.1 Linear regression|

A1

testLinRegMembership.m| L oL o

)

showConfidenceRegion.m|

F13

testLinRegConfidence.m| L

4.2 LITsystems| . . .

A2

@22

Versions

Date

Author

Contribution

30. 04. 2013

Kolumban

Initial version

RN B e e Y Y .

O O O O 0N 933

[S=Y
-

1 Introduction

This paper briefly introduces a hypothesis testing procedure called sign perturbed sums (SPS) and describes the use
of the Matlab Toolbox that implements it. The method was developed in a series of papers [1, 2, 3] and it allows
hypothesis testing of parameters in case of linear regression problems and in case of LTI Box Jenkins models ([4]).
The important features of the method are that the only assumption about the noise or error values is that they have
symmetric distribution about zero and that no asymptotic theory is used. This means that the confidence of the
hypothesis test is rigorous.

For instruction on installation and licensing see Section 5]

The structure of the manual is as follows. Section [2]illustrates the principles of the algorithm without going into
details on a toy example. More details can be found in the cited references. The methods provided by the toolbox and
their usage is presented in Section [3|and examples are given in Section 4]

If you use the toolbox in published work, please cite as

@INPROCEEDINGS{kolumban2013aacs,

author = {S\’andor Kolumb\’an},

title = {SPS Toolbox for Matlab},

booktitle = {Proceedings of the Automation and Applied Computer Science Workshop
2013 (AACS’13)1},

year = {2013},

month = jun,

isbn = {978-963-313-078-0}

2 Short description of the theory

In order to introduce the terminology, this section briefly presents the SPS method on a toy example. We show the
steps of the method here and illustrate them on the simple one parameter problem

yr = 0o + ng k=1,...,N

Some of these steps are redundant in case of this toy example but in case of linear dynamical systems parameter
estimation they are needed. We want to create a confidence test for a model parameter § on confidence level 1 — ¢/m.
The steps of the algorithm are the following.

1. m — 1 random sign sequences of length N and a random permutation of length m should be generated.

a(i,k) =2roundRAND) —1 i=1,....m—1 k=1,...,N

a(0, k) = 1 is the first sign sequence and it is fixed.

2. Compute the noise sequence Ni (0) corresponding to the data and the tested model.
N k (@) = Yk — 0
3. Create perturbed noise sequences based on Ny ()

N (0) = (i, k) Nik(0) = ali, k) (ys —)

4. Using the perturbed noise sequences, create perturbed versions of the measurements
Y0(6) = 0+ Ri(6) = 0+ ali, k) (yx — 0)

Quadratic cost function is used for the estimation of the unknown parameter. The estimation is given by the
solution of the normal equation to this. For each noise realization there is a different cost function and a different
normal equation. It is important that from this point on there are m independent identification problems that are
considered. These are indexed with ¢ = 0, ..., m — 1 and the corresponding measurements)A/k(i) (0) are considered as
constant given values. Their dependence on 6 is made explicit because their value depends on it but in calculating the

cost function values .J(*) they are thought of as constants.

N
JO =3V (0) - 0)?

k=1

5. Calculate the gradient of the prediction errors. In this simple example these are

B =1

6. Compute the perturbed covariance estimate

(4) 1 ol @ [0
w0 = 50] =1
k=1

7. Calculate the normal equation of the cost function

i N)
8;;) =Y 20 -0) =0

8. The S; values are the gradient vectors of the cost function at 6 in the different identification scenarios.

N N
S =2N0 = 2v(0) = 2N0 = > 2[0 + ali, k) (g — 0)] ZQazk (y — 0)
k=1 k=1
9. Create the different Z; values which measure the length of the gradient weighted with the inverse of the

covariance matrix
-1
Zi=ST[w0] 5 =7

10. Order the different Z; values in descending order. In case of ties use the random permutation generated at the
beginning the make the ordering explicit.

11. If Z; is between the m largest Z value, then the model 6 is no part of the confidence set.

Since the LS estimate of the original problem will make Z; = 0, it will always be inside the set.

The basic underlying idea is that m different identification problems are created. From the perspective of 6 these
are identically distributed as the original problem and they are also independent from each other (showing this is a bit
more technical). We calculate the gradient of the objective function of the considered model 6 on each identification
problem (S;) and measure their length Z;. We say that the selected model is pretty good if it is closer to solving the
original problem than the other ones.

As we go to infinity with 6 it is easy to see in this simple case that Z, will outgrow every other Z value as the

coefficient of 6 is the largest here in absolute value.

3 Using the toolbox

This section describes the functionality of methods belonging to the toolbox. The main functions of the toolbox are

e GenerateSPSSetup: generates the random quantities required by the method, containing the random signs and
the random permutation to resolve ties.

e IsModelPartOfSPSConfidenceSet: examines if a given Box-Jenkins model belongs to the confidence set defined
by the given SPS setup and the measurement data.

e IsRegressionParamPartOfSPSConfidenceSet: examines if a given parameter belongs to the confidence set de-

fined by the given SPS setup and the measurement data in the linear regression case.

3.1 GenerateSPSSetup

A confidence set determined by the SPS method is characterized by the given measurement data, the random signs and
the random permutation to resolve ties. The random signs and permutations are encapsulated in a Matlab structure
that is generated by the function GenerateSPSSetup.

[sps] = GenerateSPSSetup(q, m, N)
Input parameters:
e ¢, m: positive integers for a confidence level 1 — ¢/m.
e N: the number of sample points.
Output parameters:

e sps: A structure containing an N X m matrix with the random sign sequences (sps.Signs). The first column
is the all-one column. The random permutation for tie resolution (sps.TieOrder) and the values related to the
confidence level are also stored (sps.q, sps.m, sps.Confidence).

3.2 IsModelPartOfSPSConfidenceSet

This routine checks if a given Box-Jenkins model is part of a confidence set defined by an SPS setup and the data or
not.

[inconf] = IsModelPartOfSPSConfidenceSet(model, sps, Y, U)
Input parameters:

e model: a Matlab structure describing a Box-Jenkins model of the form

B(q™")
Alg Y F(g™)
The coefficients of the polynomials are put as row vectors into a Matlab structure. The vectors should start

with their first non-zero elements. A, F, D and C should be monic (first element 1), deg(AF) > deg(B),
deg(AD) = deg(C) and C should be a stable polynomial.

ylk] = ulk] +

e sps: an SPS setup generated by GenerateSPSSetup.

e Y, U: column vectors of the same length containing the measured outputs and inputs respectively.
Output parameters:
e inconf: Boolean value showing whether the given model is inside the confidence set or not.

e Z: The vector containing the Z; values that was used to determine the rank of Zj.

3.3 IsRegressionParamPartOfSPSConfidenceSet

This routine checks if a given parameter vector is part of a confidence set defined by an SPS setup and the data or not.
It is assumed that the data is generated from the model

Y=X"90+E
[inconf] = IsRegressionParamPartOfSPSConfidenceSet(theta, sps, Y, X)
Input parameters:
e theta: a column vector of length ng containing the coefficients of the linear model
e sps: an SPS setup generated by GenerateSPSSetup.
e Y: column vector of length N containing the measured outputs.
e X: an ny-by-N matrix containing the regressor vectors as columns.
Output parameters:
e inconf: Boolean value showing whether the given model is inside the confidence set or not.

e Z: The vector containing the Z; values that was used to determine the rank of Z.

3.4 CalculateBJGradient
This routine calculates the gradient of the prediction errors for a given model and data.
[Psi] = CalculateBJGradient(model, Y, U)
Input parameters:
e model: just as in the case of IsModelPartOfSPSConfidenceSet
e Y, U: column vectors of the same length containing the measured outputs and inputs respectively.

Output parameters:

e Psi: an ny x N matrix containing the gradients. Each column £ is defined as ag[ek].

3.5 CalculateBJNoiseRealization
This routine calculates the noise sequence needed to generate the given measurements using the given model.
[N] = CalculateBJNoiseRealization(model, Y, U)
Input parameters:
e model: just as in the case of IsModelPartOfSPSConfidenceSet
e Y, U: column vectors of the same length containing the measured outputs and inputs respectively.
Output parameters:

e N: column vector with the same length as the input or the output.

3.6 DetermineRank
This routine is used to order count the number of values in a vector Z that are greater that the first item.
[r] = DetermineRank(Z, perm)
Input parameters:
e Z: row vector of length m.
e perm: a permutation of numbers 1,...,m
Output parameters:
e 1: the number of values in Z that are greater than Z(1). If two values are equal in the vector, then their order is
determined by the corresponding items in the given permutation.
3.7 GenerateTestRegion

In order to visualize a two dimensional confidence region, a point grid needs to be defined. This routine generates

points inside a convex polygon if its vertices are given.
[TR] = GenerateTestRegion(upperPoints, lowerPoints, stepsize)
Input parameters:
e upperPoints: coordinates of the vertices of the upper edges of the polygon as columns of a matrix.
o lowerPoints: coordinates of the vertices of the lower edges of the polygon as columns of a matrix.

e stepsize: column vectors of length two containing the resolution of the sample grid along the respective dimen-

sions.
Output parameters:

e TR: a matrix with two rows. Each column corresponding to a point inside the given polygon.

3.8 SimulateBJSample
This routine calculates the output of a Box-Jenkins model with a given noise realization and input.
[Y] = SimulateBJSample(model, U, N)
Input parameters:
e model: just as in the case of IsModelPartOfSPSConfidenceSet
e U, N: column vectors of the same length containing the inputs and the noise samples respectively.
Output parameters:

e Y: column vector containing the output of the system.

3.9 SimulateSystem
This routine calculates the output of a system in the form %:3.
[Y] = SimulateSystem(B, A, U)

Input parameters:

e B, A: row vectors containing the coefficients of the polynomials B and A. They should have the same length.

Pad with zeros if needed.
e U: column vector containing the input values.
Output parameters:

e Y: column vector containing the output of the system.

4 Examples

Along with the code of the toolbox, some example scripts are also attached to illustrate the usage of the routines.
These can be found in the "Samples" folder. Samples for the linear regression hypothesis testing are in the "Linear

regression” subfolder, whereas samples related to Box-Jenkins models are in the "LTI systems" subfolder.

4.1 Linear regression

4.1.1 testLinRegMembership.m

Least squares estimates always belong to the SPS confidence set as in their case Zy = 0. This script illustrates this by
calculating the LS estimate and checking its membership.

4.1.2 showConfidenceRegion.m

The structure of the confidence sets corresponding to a given SPS setup and data can be complex. This example defines
a fine grained grid around the LS estimate of a selected two parameter model and evaluates the membership on every
grid point. The sample code demonstrates how to generate and plot confidence regions in two dimensions, the result
is given in Figure[T]

2 01 Strvrresisi i ITiiil

2018

20053

5 1 1 1 1 -
0985 092 0995 1 1005 1.01 1015

Figure 1: The 0.85 confidence region for a two parameter linear regression problem.

4.1.3 testLinRegConfidence.m

This script is written to demonstrate that the SPS method indeed generates confidence regions with the required
confidence level. A high number of membership queries are carried out for the nominal model on different confidence
levels using different random noise values and SPS setups in each query. The membership answers are recorded and
saved to the disk. The second part of the script visualizes the probability with which the nominal model was accepted
to be in the confidence region or not.

After 15000 queries on each confidence level, the results are given in Figure 2]

095 L]

09t &

07 L]

065 : : : : : : ;
065 07 075 08B 0B5 09 085 1

Figure 2: The relative frequency of accepting the nominal model at given confidence levels (red) and the prescribed
values for this (blue).

4.2 LTI systems
4.2.1 testLTIMembership.m

Prediction error estimates always belong to the SPS confidence set as in their case Zy = 0. This script illustrates this
by calculating the PEM estimate and checking its membership. The PEM estimate is calculated using the pem method
in the Matlab System Identification Toolbox.

4.2.2 showConfidenceRegion.m

The structure of the confidence sets corresponding to a given SPS setup and data can be complex. This examples
defines a fine grained grid around the PEM estimate of a selected two parameter model and evaluates the membership
on every grid point. The sample code demonstrates how to generate and plot parts of the confidence regions in two
dimensions, the result is given on Figure[3]

1.028

1.031

1025k

10er

1011

1.008

1
0602 <06 -0.508 -0506 <0584 0502 050 0588 -0526 0584

Figure 3: Part of the 0.85 confidence region for a first order nominal system and output error noise model.

4.2.3 testLTIConfidence.m

This script is written to demonstrate that the SPS method indeed generates confidence regions with the required
confidence level. A high number of membership queries are carried out for the nominal model on different confidence
levels using different random noise values and SPS setups in each query. The membership answers are recorded and
saved to the disk. The second part of the script visualizes the probability with which the nominal model was accepted
to be in the confidence region or not.

After 15000 queries on each confidence level, the results are given in Figure]

0.95-]

09r]

O 65 1 1 1 1 I 1 I
0.65 07 078 08 0Bs 0.9 096 1

Figure 4: The relative frequency of accepting the nominal model at given confidence levels (red) and the prescribed
values for this (blue).

10

S Deployment

SPSToolbox is distributed under the terms of the GNU General Public License. For different licensing options, contact
the developers.

The code is available on GitHub using the following links:
e GitHub repo history: https://github.com/kolixx/SPSToolbox
e link for cloning the repo: \git://github.com/kolixx/SPSToolbox.git

The different releases are contained in the root of the repo as archives containing the date of the release in the file
name.

Add the folder SPSToolbox to the Matlab path collection using the menu "File/Set Path...". Mind that Matlab
should be running with administrative privileges during this operation.

References

[1] B. Cs4ji, M. Campi, and E. Weyer, “Non-asymptotic confidence regions for the least-squares estimate,” in Pro-
ceedings of the 16th IFAC Symposium on System Identification (SYSID 2012), pp. 227-232, 2012.

[2] B.Csdji, M. Campi, and E. Weyer, “Sign-perturbed sums (sps): A method for constructing exact finite-sample con-
fidence regions for general linear systems,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference
on, pp. 7321-7326, 2012.

[3] S. Kolumbén and 1. Vajk, “Exploring confidence sets constructed using sign-perturbed sums,” in Decision and
Control (CDC), 2013 IEEE 52st Annual Conference on, 2013.

[4] L. Ljung, System Identification - Theory for the User, 2nd edition, vol. 2 of PTR Prentice Hall Information and
System Sciences Series. 1999.

11

https://github.com/kolixx/SPSToolbox
git://github.com/kolixx/SPSToolbox.git

	Introduction
	Short description of the theory
	Using the toolbox
	GenerateSPSSetup
	IsModelPartOfSPSConfidenceSet
	IsRegressionParamPartOfSPSConfidenceSet
	CalculateBJGradient
	CalculateBJNoiseRealization
	DetermineRank
	GenerateTestRegion
	SimulateBJSample
	SimulateSystem

	Examples
	Linear regression
	testLinRegMembership.m
	showConfidenceRegion.m
	testLinRegConfidence.m

	LTI systems
	testLTIMembership.m
	showConfidenceRegion.m
	testLTIConfidence.m

	Deployment

