Neurosymbolic Proof Search for Linguistics

Konstantinos Kogkalidis Utrecht Institute of Linguistics OTS, Utrecht University

Logic for the AI Spring September 2022, Como

A composition calculus for vector-based semantic modelling with a localization for Dutch

NWO 360-89-070, 2017-2022

The Holy Trinity

Language	Logic	Computation
grammars	substructural logics	λ-calculi
empirical linguistic rules	logical inference rules	computation steps
grammaticality	provability	type inhabitation
sentence	proof	program

Lexicon: a look-up table from words to types and meanings

The type-logical perspective:

- ▶ focus on *surface* syntax
- use LC/NL as core logic (ordered & linear types)
- \Diamond , \Box modalities for structural control
- applicative derivational semantics via proof/term morphisms

The Holy Trinity

Language	Logic	Computation
grammars	substructural logics	λ-calculi
empirical linguistic rules	logical inference rules	computation steps
grammaticality	provability	type inhabitation
sentence	proof	program

Lexicon: a look-up table from words to types and meanings

The **type-logical** perspective:

- ► focus on *surface* syntax
- use LC/NL as core logic (ordered & linear types)
- \diamond , \Box modalities for structural control
- applicative derivational semantics via proof/term morphisms

The Holy Trinity

Language	Logic	Computation
grammars	substructural logics	λ-calculi
empirical linguistic rules	logical inference rules	computation steps
grammaticality	provability	type inhabitation
sentence	proof	program

Lexicon: a look-up table from words to types and meanings

The type-logical perspective:

- ► focus on *surface* syntax
- ▶ use LC/NL as core logic (ordered & linear types)
- \diamond , \Box modalities for structural control
- applicative derivational semantics via proof/term morphisms

Neural 00

The Holy Trinity

Language	Logic	Computation
grammars	substructural logics	λ-calculi
empirical linguistic rules	logical inference rules	computation steps
grammaticality	provability	type inhabitation
sentence	proof	program

Lexicon: a look-up table from words to types and meanings

A heretical perspective:

- ► focus on *deep* (discontinuous) syntax
- ► use ILL as core logic (linear types)
- \diamond , \Box modalities for dependency annotation
- extra semantic dimension: adjunct/complement distinction

 $\mathbb T$ inductively defined as:

 $\mathbb{T} := A \mid T \multimap T \mid \Diamond^d T \qquad A \in \mathbb{A}, T \in \mathbb{T}$

\mathbb{A} – closed set of base types

- $-\circ$ linear function builder
- ♦ reserved for "necessary arguments", i.e. complements
- I reserved for "optional functors", i.e. adjuncts

 $\mathbb T$ inductively defined as:

$$\mathbb{T} := A \mid T \multimap T \mid \diamondsuit^d T \mid \square^d T \qquad A \in \mathbb{A}, T \in \mathbb{T}$$

- \mathbb{A} closed set of base types
- \multimap linear function builder
 - ♦ reserved for "necessary arguments", i.e. complements
 - reserved for "optional functors", i.e. adjuncts

 \mathbb{T} inductively defined as:

$$\mathbb{T} := A \mid T \multimap T \mid \diamondsuit^d T \mid \Box^d T \qquad A \in \mathbb{A}, T \in \mathbb{T}$$

- \mathbb{A} closed set of base types
- \multimap linear function builder
- ◊ reserved for "necessary arguments", i.e. complements
- reserved for "optional functors", i.e. adjuncts

 \mathbb{T} inductively defined as:

$$\mathbb{T} := A \mid T \multimap T \mid \diamondsuit^d T \mid \Box^d T \qquad A \in \mathbb{A}, T \in \mathbb{T}$$

- \mathbb{A} closed set of base types
- \multimap linear function builder
- ◊ reserved for "necessary arguments", i.e. complements
- □ reserved for "optional functors", i.e. adjuncts

Background O	Heresy 0000	Neural 00	TLDR 0
Terms			
$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$ Lex	∏⊢ s	$\frac{:T_1 \multimap T_2 \Delta \vdash t:T_1}{\Gamma, \Delta \vdash st:T_2} \ \multimap E$	
$\frac{\Gamma \vdash t: T}{\langle \Gamma \rangle^d \vdash \vartriangle^d t: \diamondsuit^d T} \diamondsuit^d I$		$\frac{\Gamma \vdash s : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d s : T} \ \Box^d E$	
$\frac{1}{\mathbf{x}: T \vdash \mathbf{x}: T} Ax$		$ \begin{array}{l} \Gamma, x : T_1 \vdash s : T_2 \\ \Gamma \vdash \lambda x.s : T_1 {\longrightarrow} T_2 \end{array} \longrightarrow I $	
$\frac{\langle \Gamma \rangle^d \vdash s : T}{\Gamma \vdash \blacktriangle^d s : \Box^d T} \ \Box^d I$	$\frac{\Gamma[\langle x:T_1\rangle^d]}{\Gamma[\Delta]}$	$ \begin{array}{c c} \vdash \mathbf{t} : T_2 & \Delta \vdash \mathbf{s} : \diamondsuit^d T_1 \\ \hline \vdash \mathbf{t} [\mathbf{x} \mapsto \nabla^d \mathbf{s}] : T_2 \end{array} \diamondsuit^d E $	
$\frac{\langle \Gamma,}{\langle \Gamma,}$	$\langle \mathbf{x} : T_1 \rangle^{\mathbf{X}}, \Delta \rangle^d$ $\Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\mathbf{X}}$	$\frac{-s:T_2}{-s:T_2} \times$	

Background o	Heresy 0●00	Neural 00	TLDR o
Terms			
$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$ Lex	$\Gamma \vdash s$:	$\begin{array}{ccc} T_1 \multimap T_2 & \Delta \vdash t : T_1 \\ \Gamma, \Delta \vdash s t : T_2 \end{array} \ \multimap E$	
$\frac{\Gamma \vdash t: T}{\langle \Gamma \rangle^d \vdash \vartriangle^d t: \diamondsuit^d T} \diamondsuit^d I$		$\frac{\Gamma \vdash s : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d s : T} \ \Box^d E$	
$\frac{1}{x: T \vdash x: T} Ax$	Г Г	$\begin{array}{l} \mathbf{x}:T_1\vdash\mathbf{s}:T_2\\ \vdash\lambda\mathbf{x}.\mathbf{s}:T_1\multimap T_2\end{array} \multimap I$	
$\frac{\langle \Gamma \rangle^d \vdash s : T}{\Gamma \vdash \blacktriangle^d s : \Box^d T} \ \Box^d I$	$\frac{\Gamma[\langle x:T_1\rangle^d]}{\Gamma[\Delta]}$	$\frac{-t: T_2 \qquad \Delta \vdash s: \diamondsuit^d T_1}{-t[x \mapsto \nabla^d s]: T_2} \diamondsuit^d E$	
$\frac{\langle \Gamma,}{\langle \Gamma,}$	$\frac{\langle x: T_1 \rangle^{X}, \Delta \rangle^d}{\Delta \rangle^d, \langle x: T_1 \rangle^{X}} \vdash$	$\frac{s:T_2}{s:T_2} \times$	

Background O	Heresy 0000	Neural 00	TLDR 0
Terms			
$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$ Lex	$\Gamma \vdash s$	$\frac{:T_1 \multimap T_2 \Delta \vdash t:T_1}{\Gamma, \Delta \vdash st:T_2} \multimap E$	
$\frac{\Gamma \vdash t: T}{\langle \Gamma \rangle^d \vdash \vartriangle^d t: \diamondsuit^d T} \diamondsuit^d I$		$\frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d \mathbf{s} : T} \ \Box^d E$	
$\overline{\times: T \vdash \times: T} Ax$		$ \begin{array}{l} \Gamma, x : T_1 \vdash s : T_2 \\ \Gamma \vdash \lambda x.s : T_1 \multimap T_2 \end{array} \multimap I $	
$\frac{\langle \Gamma \rangle^d \vdash s : T}{\Gamma \vdash \blacktriangle^d s : \Box^d T} \ \Box^d I$	$\frac{\Gamma[\langle x:T_1\rangle^d]}{\Gamma[\Delta]}$	$\frac{\vdash \mathbf{t}: T_2 \qquad \Delta \vdash \mathbf{s}: \diamondsuit^d T_1}{] \vdash \mathbf{t}[\mathbf{x} \mapsto \nabla^d \mathbf{s}]: T_2} \diamondsuit^d E$	
$\frac{\langle \Gamma,}{\langle \Gamma,}$	$\frac{\langle \mathbf{x} : T_1 \rangle^{X}, \Delta \rangle^d}{\Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{X}}$	$\frac{\vdash s: T_2}{\vdash s: T_2} \times$	

Background O	Heresy 0000	Neural 00	TLDR 0
Terms			
$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$ Lex	$\frac{\Gamma \vdash s: \mathcal{I}}{\Gamma}$	$\begin{array}{ccc} T_1 \multimap T_2 & \Delta \vdash t : T_1 \\ T_1, \Delta \vdash s t : T_2 \end{array} \multimap E$	
$\frac{\Gamma \vdash t: T}{\langle \Gamma \rangle^d \vdash \vartriangle^d t: \diamondsuit^d T} \diamondsuit^d I$	_ ↓	$\frac{\Gamma \vdash s : \Box^d T}{\Gamma \rangle^d \vdash \mathbf{\nabla}^d s : T} \ \Box^d E$	
$\frac{1}{\mathbf{x}: T \vdash \mathbf{x}: T} Ax$	<u>Г,</u> Г -	$ \begin{array}{l} \mathbf{x}:T_1\vdash\mathbf{s}:T_2\\ \overline{\mathbf{x}}\mathbf{\lambda}\mathbf{x}.\mathbf{s}:T_1{-}{\circ}T_2 \end{array} {-}{\circ}I \end{array} $	
$\frac{\langle \Gamma \rangle^d \vdash s : T}{\Gamma \vdash \blacktriangle^d s : \Box^d T} \ \Box^d I$	$\frac{\Gamma[\langle x:T_1\rangle^d] \vdash}{\Gamma[\Delta] \vdash}$	$\frac{t: T_2 \qquad \Delta \vdash s: \diamondsuit^d T_1}{t[x \mapsto \nabla^d s]: T_2} \diamondsuit^d E$	
$\frac{\langle \Gamma,}{\langle \Gamma,}$	$\langle \mathbf{x} : T_1 \rangle^{\mathbf{X}}, \Delta \rangle^d \vdash \mathbf{y}$ $\Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\mathbf{X}} \vdash \mathbf{y}$	$\frac{s:T_2}{s:T_2} \times$	

Background	Heresy	Neural	TLDR
0	0000	00	0

Example

"Meloni e Salvini in Piazzale Loreto"

$$\frac{c_{5}: \text{Loreto}}{\frac{c_{5} \leftarrow \square^{app}(np \multimap np)}{\langle c_{5} \rangle^{app} \leftarrow np \multimap np}} \square E \xrightarrow{c_{4}: \text{Piazzale}}{c_{4} \leftarrow np} \multimap E$$

$$\frac{c_{3}: \text{in}}{\frac{c_{3}: \langle c_{5} \rangle^{app}, c_{4} \rangle^{obj} \vdash \square^{mod}(np \multimap np)}{\frac{\langle c_{5} \rangle^{app}, c_{4} \rangle^{obj} \vdash \square^{mod}(np \multimap np)}{(\langle c_{5} \rangle^{app}, c_{4} \rangle^{obj} \vdash \square^{mod}(np \multimap np)}} \square E \xrightarrow{c_{1}: e} \xrightarrow{c_{1}: e} \frac{c_{0}: \text{Meloni}}{c_{0} \leftarrow np} \land E}{\frac{c_{1}: e}{c_{1} \leftarrow \Diamond^{crij}np \multimap onp} \xrightarrow{c_{1}: e} (c_{0} \land np)} \xrightarrow{c_{1}: e} (c_{1} \land np)} (c_{1} \land np)} \xrightarrow{c_{1}: e} (c_{1} \land np)} (c_{1} \land np)}$$

 λ read-off:

$$▼mod(in (▼app(Loreto) Piazzale)) (e △cnj(Meloni) △cnj(Salvini))$$

Resource: æthel ~70 000 proofs (in Dutch) see: abs/1912.12635

Towards Wide Coverage

Lexical Types on demand?

Word \mapsto Type is not 1-1 \Longrightarrow how to choose right type? Corpus \subset language \implies new words? Inductive type universe \implies new types?

HERESY

000

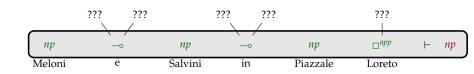
Proof Search?

Non-directional types \implies all permutations must be considered Hypothetical reasoning \implies Prawitz problem

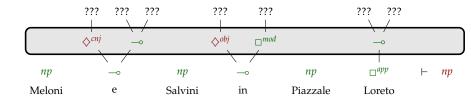
o 0000 ●0 0	Background	Heresy	NEURAL	TLDR
	0	0000	• O	o

???	???	???	???	???	???	\vdash	???
Meloni	e	Salvini	in	Piazzale	Loreto		

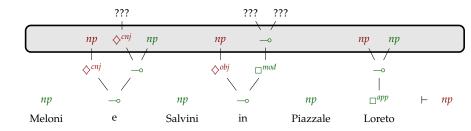
•••	Background	Heresy	NEURAL	TLDR
	o	0000	O	o



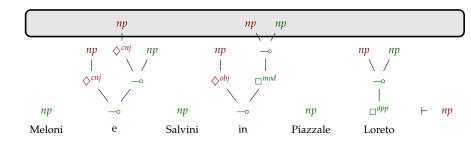
o 0000 ●O 0	Background	Heresy	NEURAL	TLDR
	0	0000	• O	o



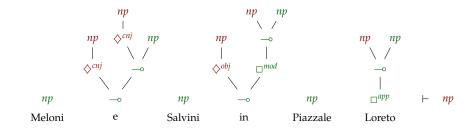
Background	Heresy	NEURAL	TLDR
0	0000	• O	o



0 0000 0 0	Background 0	Heresy 0000		TLDR o
-------------------	-----------------	----------------	--	-----------



Background	Heresy	NEURAL	TLDR
0	0000	• O	o



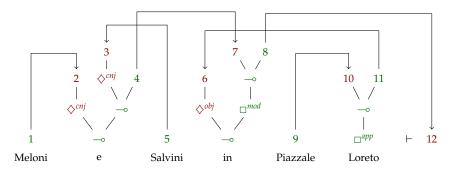
gray box := heterogenous graph convolution kernel see: abs/2203.12235



Proofs as Graphs

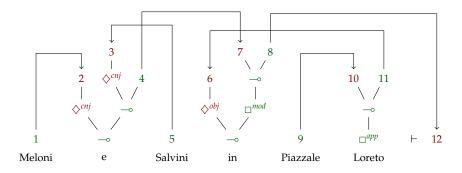
From N.D. to Proof Nets

- ▶ proof structure : tree \rightarrow graph
- ▶ proof construction : depth induction → parallel assignment
- ▶ proof search : backward/forward chaining → factorial combinatorics



Proofs as Neural Graphs

The problem Find bijection $\{p : A^+\} \longleftrightarrow \{n : A^-\} \forall A \in \mathbb{A} \text{ in sentence}$ here $\{1 \mapsto 2, 4 \mapsto 7, 5 \mapsto 3, 8 \mapsto 12, 9 \mapsto 10, 11 \mapsto 6\}$



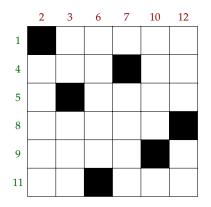
Proofs as Neural Graphs

The problem

Find bijection $\{p : A^+\} \longleftrightarrow \{n : A^-\} \forall A \in \mathbb{A}$ in sentence here $\{1 \mapsto 2, 4 \mapsto 7, 5 \mapsto 3, 8 \mapsto 12, 9 \mapsto 10, 11 \mapsto 6\}$

The solution

compute & normalize $A^+ \times A^-$, train against underlying permutation matrix



see: abs/2009.12702

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- ► a hyper-efficient neurosymbolic parser

- derivational ambiguity?
- neural integration of proof verification?
- neural proof semantics?

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- a hyper-efficient neurosymbolic parser

todo

derivational ambiguity?

- neural integration of proof verification?
- neural proof semantics?
- adaptation to other languages/frameworks?

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- a hyper-efficient neurosymbolic parser

- derivational ambiguity?
- neural integration of proof verification?
- neural proof semantics?
- adaptation to other languages/frameworks?
- thank audience

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- a hyper-efficient neurosymbolic parser

- derivational ambiguity?
- neural integration of proof verification?
- neural proof semantics?
- adaptation to other languages/frameworks?
- thank audience

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- a hyper-efficient neurosymbolic parser

- derivational ambiguity?
- neural integration of proof verification?
- neural proof semantics?
- adaptation to other languages/frameworks?
- thank audience

done

- ► a logic for dependency control
- a corpus of linguistically grounded theorems
- a hyper-efficient neurosymbolic parser

- derivational ambiguity?
- neural integration of proof verification?
- neural proof semantics?
- adaptation to other languages/frameworks?
- thank audience