. Utrecht
University

Introduction

Categorial Grammars & the Holy Trinity :

Logic Computer Science Linguistics

Propositional Constant
Inference Rule
Axiom
Provability
Deduction

Base Type
Term Rewrite
Variable
Type Inhabitation
Program Synthesis

Syntactic Category
Phrase Formation
Word
Grammaticality
Parsing

Standard pipeline:
parse surface form = convert to A = downstream task

This work:
parse deep A form —> downstream task

Type Grammar

A semantics-first, type-driven grammar for the 21st century.
Combines:

i. a linear functional core

ii. a set of residuated modalities
to capture:

i. grammatical function-argument structures

ii. dependency-domain annotations (+— new fancy feature!)

v/ cooler than CCG!
v/ type checks!

Grammatical Types are inductively defined as:

A,B :(=p # base categories, e.g. NP
OgA # d-marked complements, e.g. O NP
A—B # grammatical functions, e.g. ¥, NP—oS
dA # d-marked adjuncts, e.g. Oq(NP—NP)

Inference Rules assert grammaticality and provide recipes for com-
positional meaning assembly in the form of A expressions:

, (c—A)e L
X : A X:Ald cC: Al C:AleX
I'Fs: A—B Al—t:A_OE I'x:AlFs:B o7
I''AFst:B I' - Ax.s : A—B
I'Fs:OsA .
S s E ['Fs: A il

TV F ¥ss: A TV F ngs : OsA

Spinning Raw Text into Lambda Terms with Graph Attention

¢ Institute for Language Sciences, Utrecht University |

Proof Representations

Konstantinos Kogkalidis”, Michael Moortgat”, Richard Moot
LIRMM, Université de Montpellier, CNRS

System Architecture

In Natural Deduction: ind?2
cary spind-)\e . | |
that o B Dmoa(N—N) o figure spind“ e parses into dependency-decorated)\ expressions
Co I Oget (N—NP) OB (c3)MY - N—oN cs N e -
is . . (o) - N—oNp (c3)™ ¢y BN o
1 F O prede PRON—C g NP—SVI X I ¥ predc PRON e (c2)et (c3)™9, ¢y - NP ol A neat packaging Of:
c1,x - $gyNP—oSVI ((c2), (c3) ™9, cq)*" - QNP e 1 h b d t
C1,X,<<C2> ,{c3)™® od ca)™ I SVI > . d grap -pDase Super agger
What o c1, (€)™, (€)™, €4)™ F OpreacPRON—2SVI S 1 i. learns (word — type) mapping as a graph generation task
co F Cwhbody (€ predc PRON—0SVI) —WHQ (c1, ({c2) 9, {c3) ™09, cyp)° >th N b & whbody (P predce PRON—SVT) - ! .o ﬂ d t d d
Co, <C1, <<C2>det7 <C3>m0d,c4> >whb ody | Co Awhbo dy()\x C1 X Agy(Vy () (mo d(c3))) WHQ ° 11. Can COI'I'eC y pI'O UCG HEW ypeS On eman
iii. SOTA across datasets (multi-framework, multi-lingual
&
- iv. length-parallel, depth-linear decoding (i.e. constant)
et
piy Q 2. an OT-based proof search module
What is that scary figure i. learns proot search as a node matching task
ii. fully parallel in batch/depth/length
a proof-tree
. . . iii. no iteration (unlike shift-reduce)
v/ clear computational interpretation
v/ trivial interface to a dependency tree 3. amini type checker
v/ correct by construction i. Python DSL to write/manipulate well-typed parses
X takes time to build (induction in depth) ii. handles proof net +— nat. ded. <— A-term conversions
X odd structure for ML (can’t batch!) iii. asserts validity of neural output
Iv. user-friendly hooks
As a Proof Net:
Experiments
_______________________ Current implementation trained/evaluated on Athel (~70,000
» 1 o 5 proof-derivations of written Dutch):
PRON Svi NP S s
\ / \ / T parsability coverage
e WHQ PRON? e W N RE (some proof obtainable) (some proof obtained)
\ / \ / \ / \ / 86.83 84.94
P ubody —Vprede Haer Smod— N types correct accuracy
What . that scary figure (correct proof obtainable) (correct proof obtained)
56.88 55.30
a proof-graph | | |
v/ each type decomposed to a bicolor tree o faster & stricter than conventional parsers, Just as accurate
v/ functional relations specified as a bijection * proof search bottlenecked by supertagging
v/ tully parallel, easy to vectorize
X computationally intractable (n! combinations)
X requires formal verification Try It Out/Read More
6 8 =
9| , T source code,
I, :— : | installation instructions
10 / & usage examples

arXiv preprint

