
Spinning Raw Text into Lambda Terms with Graph Attention
Konstantinos Kogkalidis♢, Michael Moortgat♢, Richard Moot□

♢ Institute for Language Sciences, Utrecht University | □ LIRMM, Université de Montpellier, CNRS

Introduction

Categorial Grammars & the Holy Trinity :

Logic Computer Science Linguistics

Propositional Constant Base Type Syntactic Category
Inference Rule Term Rewrite Phrase Formation

Axiom Variable Word
Provability Type Inhabitation Grammaticality
Deduction Program Synthesis Parsing

Standard pipeline:
parse surface form =⇒ convert to λ =⇒ downstream task

This work:
parse deep λ form =⇒ downstream task

Type Grammar

A semantics-first, type-driven grammar for the 21st century.
Combines:

i. a linear functional core
ii. a set of residuated modalities

to capture:
i. grammatical function-argument structures

ii. dependency-domain annotations (←− new fancy feature!)

✓ cooler than CCG!
✓ type checks!

Grammatical Types are inductively defined as:
A, B := p # base categories, e.g. NP

| ♢dA # d-marked complements, e.g. ♢suNP

| A⊸B # grammatical functions, e.g. ♢suNP⊸S

| □dA # d-marked adjuncts, e.g. □d(NP⊸NP)

Inference Rules assert grammaticality and provide recipes for com-
positional meaning assembly in the form of λ expressions:

x : A ⊢ x : A
id

(c 7→ A) ∈ L
c : A ⊢ c : A

lex

Γ ⊢ s : A⊸B ∆ ⊢ t : A
Γ,∆ ⊢ s t : B

⊸E
Γ, x : A ⊢ s : B

Γ ⊢ λx.s : A⊸B
⊸I

Γ ⊢ s : □δA

⟨Γ⟩δ ⊢ ▼δs : A
□δE

Γ ⊢ s : A

⟨Γ⟩δ ⊢ △δs : ♢δA
♢δI

Proof Representations

In Natural Deduction:

What
c0 ⊢ ♢whbody(♢predcPRON⊸SVI)⊸WHQ

lex

is
c1 ⊢ ♢predcPRON⊸♢suNP⊸SVI

lex
x ⊢ ♢predcPRON

id

c1, x ⊢ ♢suNP⊸SVI
⊸E

that
c2 ⊢ □det(N⊸NP)

lex

⟨c2⟩det ⊢ N⊸NP
□detE

scary

c3 ⊢ □mod(N⊸N)
lex

⟨c3⟩mod ⊢ N⊸N
□modE

figure

c4 ⊢ N
lex

⟨c3⟩mod, c4 ⊢ N
⊸E

⟨c2⟩det, ⟨c3⟩mod, c4 ⊢ NP
⊸E

⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢suNP
♢suI

c1, x, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ SVI
⊸E

c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢predcPRON⊸SVI
⊸I

⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ ♢whbody(♢predcPRON⊸SVI)
♢whbodyI

c0, ⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ c0 △whbody(λx.c1 x △su(▼det(c2) (▼mod(c3) c4)) : WHQ
⊸E

What is that scary figure

whbody

su

mod

det

a proof-tree
✓ clear computational interpretation
✓ trivial interface to a dependency tree
✓ correct by construction
✗ takes time to build (induction in depth)
✗ odd structure for ML (can’t batch!)

As a Proof Net:

What

⊸♢whbody

⊸♢predc

PRON0 Svi
1

WHQ2

is

⊸♢predc

⊸♢suPRON3

NP4 Svi
5

that

□det⊸

N6 NP7

scary

□mod⊸

N8 N9

figure

N10

a proof-graph
✓ each type decomposed to a bicolor tree
✓ functional relations specified as a bijection
✓ fully parallel, easy to vectorize
✗ computationally intractable (n! combinations)
✗ requires formal verification

✓

✓

6 8
9

10
ΠN :=

System Architecture

spind2λe
spind2λe parses into dependency-decorated λ expressions

A neat packaging of:
1. a graph-based supertagger

i. learns (word 7→ type) mapping as a graph generation task
ii. can correctly produce new types on demand

iii. SOTA across datasets (multi-framework, multi-lingual)
iv. length-parallel, depth-linear decoding (i.e. constant)

2. an OT-based proof search module
i. learns proof search as a node matching task

ii. fully parallel in batch/depth/length
iii. no iteration (unlike shift-reduce)

3. a mini type checker
i. Python DSL to write/manipulate well-typed parses

ii. handles proof net←→ nat. ded. ←→ λ-term conversions
iii. asserts validity of neural output
iv. user-friendly hooks

Experiments

Current implementation trained/evaluated on Æthel (∼70,000
proof-derivations of written Dutch):

parsability coverage
(some proof obtainable) (some proof obtained)

86.83 84.94

types correct accuracy
(correct proof obtainable) (correct proof obtained)

56.88 55.30

• faster & stricter than conventional parsers, just as accurate
• proof search bottlenecked by supertagging

Try It Out/Read More

source code,
installation instructions

& usage examples

arXiv preprint


