# Algebraic Positional Encodings

# TL;DR

*"syntax is an algebra, semantics is an algebra, and meaning is a homomorphism between them"* 

Montague's theory of meaning

We argue that:

• understanding and explicating the formation rules and rewrite properties of **positions** over different **ambient structures** (*syntax*)

• and finding appropriate structure-preserving **interpretations** (*meaning*) is the only way to structure-faithful **positional encodings** (*semantics*).

We call these Algebraic Positional Encodings (APE). APE readily apply to:

- sequences
- trees
- grids
- ...

We show that **sequential APE theoretically subsume RoPE**. Beyond sequences, APE are a **theoretically disciplined and highly general extension of RoPE across multiple dimensions** (both metaphorical and literal).

## Sequences

Let **P** be a *path* (*i.e.*, a relative offset) between two points in a sequence.

P admits a simple inductive definition:

| P := 1                         | # take a step to the right |
|--------------------------------|----------------------------|
| $\mid \mathbb{P} + \mathbb{P}$ | # join two paths together  |
| $ \mathbb{P}^{-1} $            | # flip a path around       |

where + associative and commutative with  $0 := 1 + 1^{-1}$  as its neutral element.

**Remark 1.** The signature coincides with that of the integers,  $\mathbb{P} \equiv \mathbb{Z}$ . **Remark 2.** The signature corresponds to an infinite cyclic group,  $\mathbb{P} \equiv \langle 1 \rangle$ . **Remark 3.** The signature admits a representation in O(n). Consider the interpretation  $[]: \langle 1 \rangle \rightarrow \langle W \rangle$ , such that:

| $\lceil \mathbb{1} \rceil \mapsto W$                                | # W represents a single step                             |
|---------------------------------------------------------------------|----------------------------------------------------------|
| $\lceil p+q \rceil \mapsto \lceil p \rceil \lceil q \rceil$         | # path composition ~> matrix multiplication              |
| $\lceil \mathbf{p}^{-1}  ceil \mapsto \lceil \mathbf{p}  ceil^{-1}$ | # path inversion $\rightsquigarrow$ matrix transposition |
| /                                                                   |                                                          |

**Remark 4.**  $A \rightarrow B = (A \rightarrow 0) + (0 \rightarrow B)$ . Visually:



**Remark 5.** This setup offers an inductive parameterization of sequential PE using just **one trainable primitive** (a single matrix).

Konstantinos Kogkalidis Jean-Philippe Bernardy Vikas Garg

# How-To

Simply substitute dot-product for the tensor contraction:



where:

- $\mathbf{q}, \mathbf{k} \in \mathbb{R}^n$
- $\Phi^{(q,k)} \in \mathbb{R}^{n \times n}$
- $A^{(q,k)} \in O(n)$  the representations of the positions of q and k

**Note:**  $T^{(q \rightarrow k)} = A^{(q)^{+}}A^{(k)}$  the **path** representation from q to k

#### In the sequential setup $RoPE \equiv APE$ , except with a fixed W. Why?

**Hint**:  $W = QRQ^{\top}$  (where  $Q \in O(n)$  and R a block-diagonal rotation).

## Trees

Extend the definition of  $\mathbb{P}$  with **options**, to arrive at a definition of paths  $\mathbb{P}_{\kappa}$  over  $\kappa$ -ary branching trees:

| $P_{\kappa} := 1$              | # take the first branch   |
|--------------------------------|---------------------------|
| 2                              | # take the second branch  |
|                                |                           |
| K                              | # take the κ-th branch    |
| $\mid \mathbb{P} + \mathbb{P}$ | # join two paths together |
| $  \mathbb{P}^{-1}$            | # flip a path around      |

**Remark 5.** This is now a generic group with  $\kappa$  generators. **Remark 6.** Unlike sequences, the structure is not commutative. **Remark 7.** All else remains the same – just extend the interpretation to:  $\langle 1, 2, ..., \kappa \rangle \rightarrow \langle W_1, W_2, ..., W_{\kappa} \rangle$ . Visually:





# Grids

Rather than add options, we can glue two (or more) sequences together by means of the **group direct sum**,  $\oplus$ . Consider the composite group  $\mathbb{P}^2 := \mathbb{P} \oplus \mathbb{P}$ , with the group operation and inversion defined as:

$$(x, y) + (z, w) = (x + z, y + w)$$
  
 $(x, y)^{-1} = (x^{-1}, y^{-1})$ 

**Remark 8.** The structure is commutative once more. **Remark 9.** Elements of  $\mathbb{P}^2$  are still to be interpreted as (orthogonal) matrices, except now block-structured, by virtue of the **matrix direct sum**:

$$\begin{bmatrix} \mathbf{p} \oplus \mathbf{q} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{p} \end{bmatrix} \oplus \begin{bmatrix} \mathbf{q} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{p} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} \mathbf{q} \end{bmatrix} \end{bmatrix}$$

Visually:



**Remark 10.** The same interpretation strategy can be applied to construct **any other composition** of established structures and their representations.

## Results

We get really good results in many different setups (sequence transduction/tree manipulation/image recognition).

Details omitted for suspense (and space economy).

## Learn More

- arxiv.org/abs/2312.16045 prose, tables with numbers, references, etc.
- github.com/konstantinosKokos/APE reference implementation, experiment scripts, practical how-tos, etc.

