
Learning Structure-Aware Representations
of Dependent Types

Konstantinos Kogkalidis
Orestis Melkonian
Jean-Philippe Bernardy

Background
Context. Dependent type theories are formal languages used for defining
mathematical objects and reasoning about their properties. Dependently-
typed programming languages equate proofs with programs, facilitating
theorem proving and formal verification. Here’s a tiny program in Agda,
proving that the addition of naturals is commutative:

open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans)

data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ

+ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)

+-comm : (m n : ℕ) → m + n ≡ n + m
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))

where +-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)

Remark 1. Look at all the colors!
Remark 2. Is proving (m + n ≡ n +m) any different to (x + y ≡ y + x)?

Motivation. If dependently-typed programs are proofs, and representing
programs is essential to automating program synthesis, then representing
dependently-typed programs is key to automated theorem proving (ATP).

Two major issues in the literature:
• Resource Uniformity.
Many ATP models/resources/interfaces for Coq, Lean.
None for Agda.

• No Structural Fidelity.
Most ATP resources/frameworks today treat proofs as glorified text.
Gone are all the colors. Names suddenly matter.

Contributions (tl;dr)
• Machine Learning for Agda.
We develop a package to faithfully extract the skeleton structure of
dependently-typed program-proofs from type-checked Agda files. We
apply the algorithm on Agda’s public library ecosystem and release the
result as a massive, highly elaborated ATP dataset.

• Representation Learning for Dependent Types.
Capitalizing on this new resource, we present a representation learning
model for expressions involving dependent types. Contra prior work,
the model is structure-faithful, being invariant to α-renaming, superficial
syntactic sugaring, scope permutation, irrelevant definitions, etc.

Dataset
Problem Generation. Left-to-right language modeling assumes proving is
a linear process. Truth begs to differ; the statement below is valid syntax:

+-comm zero (suc n) = {!!}

Remark 3. Proofs can have holes: unfilled parts deferred for later.

We use Agda’s type-checker to find all possible holes in all written proofs. For
each hole, we record the goal type (the type of the hole) and the typing context
(all proven premises currently available). Ground truth corresponds to a
selection (and arrangement) of the context (how to fill the hole).

Remark 4. Correct premise selection goes a long way towards ATP.

We export the extracted problems not only as strings, but also as structures.
The export preserves and specifies all type information available to the
checker, including references and token structure at the subtype level.

Post-tokenization, this is what the types of ℕ, + and +-comm look like:

•

Set

ℕ

•

→

→

(ℕ)(ℕ)

(ℕ)

+

•

Π

Π

@

@

(m)@

(n)(+)

@

@

(n)@

(m)(+)

(≡)

(n : Set)

(m : Set)

+-comm

Remark 5. Note the AST and referencing structures.
Remark 6. Contrast with the tokenization of GPT-4o below.

data ℕ : Set <newline> _ + _ : ℕ → ℕ <newline> +- comm : (m n : ℕ) → m + n ≡ n + m <newline>

Representation Learning
We build representations for lemmas and holes on the basis of their types.

Architecture. We use a fully-attentive bidirectional Transformer encoder,
where full attention is restricted to tokens within the same type, augmented
with various representational adjustments.
1. Tree PE. We use positional encodings that employ an inductive parame-

terization of the group structure of binary branching trees. These relieve
the model from having to “parse” the type’s symbolic sequentialization.

2. Variable Binding. We resolve nominal indexing, and represent variable
references by the representation of the reference’s path relative to the
binder.

3. Scope Referencing. We organize lemmas into a poset according to their
dependency levels. We then build representations in dependency-sorted
minibatches, and represent lemma references by the representations of
their referents. (here: ℕ < + < +-comm)

4. Efficient Attention. We use linear attention combined with a Taylor-
approximation of the exponential map to efficiently avoid the quadratic
explosion – without losing expressivity.

Training. We train with infoNCE in a premise selection setup using a subset
of Agda’s standard library, and evaluate in proximal and distant domains.

Average and R-Precision
Model stdlib:id stdlib:ood Unimath TypeTopo
Quill 50.2 / 40.3 38.7 / 31.1 27.0 / 17.4 22.5 / 15.4
- (4) 47.0 / 36.2 37.1 / 29.2 26.8 / 17.0 21.4 / 14.4
- (1) 44.5 / 34.1 30.7 / 24.0 24.8 / 15.5 18.8 / 12.3
- (2) 35.8 / 25.9 25.5 / 19.1 19.7 / 11.6 17.7 / 11.0
Transformer 10.9 / 3.7 8.5 / 4.5 9.4 / 3.9 5.8 / 0.9

Remark 7. Structural adjustments » architectural adjustments.

Learn more
For more details, take a look at:
• agda.readthedocs.io
for an intro to Agda

• github.com/omelkonian/agda2train
for the proof extraction code

• github.com/konstantinosKokos/quill
for the Python interface and neural engine

• arxiv.org/abs/2402.02104
for prose, figures, tables with numbers, etc.

https://agda.readthedocs.io
https://github.com/omelkonian/agda2train
https://github.com/konstantinosKokos/quill
https://arxiv.org/abs/2402.02104

