Learning Structure-Aware Representations of Dependent Types

Konstantinos Kogkalidis Orestis Melkonian Jean-Philippe Bernardy

Background

Context. Dependent type theories are formal languages used for defining mathematical objects and reasoning about their properties. Dependentlytyped programming languages equate proofs with programs, facilitating theorem proving and formal verification. Here's a tiny program in **Agda**, proving that the addition of naturals is commutative:

open import Relation.Binary.PropositionalEquality using (\equiv \equiv \equiv ; refl; cong; trans)

```
data N: Set where
     zero \tNsuc : \mathbb{N} \to \mathbb{N}\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \text{\ }\\[-1mm] \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \beginzero +n = nsuc m + n = suc (m + n)+-comm : (m n \cdot N) \rightarrow m + n \equiv n + m+-comm zero \qquad zero \qquad = refl
 +-comm zero (\text{succ } n) = \text{cong } \text{succ } (+\text{-comm zero } n)+-comm (suc m) zero = cong suc (+-comm m zero)
+-comm (suc m) (suc n) = cong suc (trans (+-suc m n) (+-comm (suc m) n))
    where +-suc : \forall m \; n \rightarrow m + suc n \equiv suc (m + n)+-suc zero n = refl
                  +-suc (suc m) n = cong suc (+-suc m n)
```
Remark 1. Look at all the colors! **Remark 2.** Is proving $(m + n \equiv n + m)$ any different to $(x + y \equiv y + x)$?

Motivation. If dependently-typed programs are proofs, and representing programs is essential to automating program synthesis, then *representing dependently-typed programs* is key to *automated theorem proving* (ATP).

We use Agda's type-checker to find *all possible holes* in all written proofs. For each hole, we record the *goal type* (the type of the hole) and the *typing context* (all proven premises currently available). Ground truth corresponds to a selection (and arrangement) of the context (how to fill the hole).

Remark 4. Correct **premise selection** goes a long way towards ATP.

Two major issues in the literature:

- **Resource Uniformity.** Many ATP models/resources/interfaces for Coq, Lean. *None for Agda*.
- **No Structural Fidelity.** Most ATP resources/frameworks today treat proofs as glorified text. *Gone are all the colors. Names suddenly matter.*

Contributions (tl;dr)

```
• Machine Learning for Agda.
 We develop a package to faithfully extract the skeleton structure of
 dependently-typed program-proofs from type-checked Agda files. We
 apply the algorithm on Agda's public library ecosystem and release the
 result as a massive, highly elaborated ATP dataset.
```

```
• Representation Learning for Dependent Types.
  Capitalizing on this new resource, we present a representation learning
 model for expressions involving dependent types. Contra prior work,
  the model is structure-faithful, being invariant to \alpha-renaming, superficial
 syntactic sugaring, scope permutation, irrelevant definitions, etc.
```
Dataset

Problem Generation. Left-to-right language modeling assumes proving is a linear process. Truth begs to differ; the statement below is valid syntax:

 $+$ -comm zero (suc n) = $\{!!\}$

Remark 3. Proofs can have *holes*: unfilled parts deferred for later.

We export the extracted problems not *only* as **strings**, but *also* as **structures**. The export preserves and specifies all type information available to the checker, including **references** and **token structure at the subtype level**.

Post-tokenization, this is what the *types* of \mathbb{N} , $+$ and $+$ -comm look like:

Remark 5. Note the AST and referencing structures. $\mathbf{\hat{a}} \cdot \mathbf{\hat{a}} \cdot \mathbf{\hat{a}}$ **Remark 6.** Contrast with the tokenization of GPT-4o below.

 $\boxed{\text{data} \boxed{\text{N} : \text{Set}} \text{{-}newline\text{-}} - + \boxed{\cdot \boxed{\text{N}} \rightarrow \boxed{\text{N}} \text{{-}newline\text{-}} + \text{comm} : \boxed{\left(\boxed{\text{m} \boxed{\text{n}} : \boxed{\text{N}}\right) \rightarrow \boxed{\text{m} + \boxed{\text{n}}} \equiv \boxed{\text{n} + \boxed{\text{m}}} \text{{-}newline\text{-}} }$

Representation Learning

We build representations for lemmas and holes on the basis of their types.

Architecture. We use a fully-attentive bidirectional Transformer encoder, where full attention is restricted to tokens within the same type, augmented with various representational adjustments.

- 1. **Tree PE**. We use positional encodings that employ an inductive parameterization of the group structure of binary branching trees. These relieve the model from having to "parse" the type's symbolic sequentialization.
- 2. **Variable Binding.** We resolve nominal indexing, and represent variable references by the representation of the reference's path relative to the binder.
- 3. **Scope Referencing.** We organize lemmas into a poset according to their dependency levels. We then build representations in dependency-sorted minibatches, and represent lemma references by the representations of their referents. (here: $N < + < +$ -comm)
- 4. **Efficient Attention.** We use linear attention combined with a Taylorapproximation of the exponential map to efficiently avoid the quadratic explosion – without losing expressivity.

Training. We train with infoNCE in a premise selection setup using a subset of Agda's standard library, and evaluate in proximal and distant domains.

Remark 7. Structural adjustments » architectural adjustments.

Learn more

For more details, take a look at:

- agda.readthedocs.io for an intro to Agda
- github.com/omelkonian/agda2train for the proof extraction code
- github.com/konstantinosKokos/quill for the Python interface and neural engine
- arxiv.org/abs/2402.02104 for prose, figures, tables with numbers, etc.

Funded by the European Union