Deductive Parsing

with an Unbounded Type Lexicon

K. Kogkalidis, M. Moortgat, R. Moot, G. Tziafas

August 2019
SemSpace 2019

Why Parsing?

Compositionality

Meaning of complex expression derived by constituent expressions and their means of interaction.

Why Parsing?

Compositionality

Meaning of complex expression derived by constituent expressions and their means of interaction.

Syntax

Algebra of sentence structure
Base for linguistically informed compositional semantics

Why Deductive?

Syntax

Why Deductive?

Type-Logical Grammars

Words \rightarrow Logical Formulas

Well-Formedness \equiv Provability

Why Deductive?

Type-Logical Grammars

Words \rightarrow Logical Formulas
Well-Formedness \equiv Provability
Curry-Howard Correspondence
Logical Formulas \leftrightarrow Typed Variables

Computation
Proofs \equiv Functional Programs

Why Deductive?

Type-Logical Grammars

Words \rightarrow Logical Formulas
Well-Formedness \equiv Provability
Curry-Howard Correspondence
Logical Formulas \leftrightarrow Typed Variables
Proofs \equiv Functional Programs
Syntax-Semantics Interface
Syntactic Types \rightarrow Semantic Spaces
Derivations \rightarrow Semantic Programs

Computation

Semantics

A Dependency-Decorated TLG

Lexicon: Words \rightarrow dependency-decorated MILL types (à la ACG)
Constants: $\{$ NP, S, PRON ... \}
Functions: $\left\{\diamond^{\mathrm{su}}{ }_{\mathrm{NP}} \rightarrow \mathrm{s}, \diamond^{\mathrm{su}}{ }_{\mathrm{NP}} \rightarrow\left(\diamond^{\mathrm{obj}}{ }_{\mathrm{NP}} \rightarrow \mathrm{s}\right), \ldots\right\}$

$$
\mathcal{T}:=A\left|\diamond^{d} T_{0}\right| T_{1} \rightarrow T_{2}
$$

A Dependency-Decorated TLG

Lexicon: Words \rightarrow dependency-decorated MILL types (à la ACG)
Constants: $\{$ NP, S, PRON ... \}
Functions: $\left\{\diamond^{\mathrm{su}} \mathrm{NP} \rightarrow \mathrm{s}, \diamond^{\mathrm{su}} \mathrm{NP} \rightarrow\left(\diamond^{\mathrm{obj}}{ }_{\mathrm{NP}} \rightarrow \mathrm{s}\right), \ldots\right\}$

$$
\mathcal{T}:=A\left|\diamond^{d} T_{0}\right| T_{1} \rightarrow T_{2}
$$

Parsing: Proof Search

$$
\frac{\Gamma \vdash s: A \rightarrow B \quad \Delta \vdash t: A}{\Gamma, \Delta \vdash s\langle t\rangle: B} \rightarrow E \quad \frac{\Gamma, x: A \vdash u: B}{\Gamma \vdash \lambda x \cdot u: A \rightarrow B} \rightarrow l
$$

Parsing Framework

Parse State

- A logical judgement (premises \& conclusion)
- Word associations for (some) premise formulas
- A single element stack

Parsing Framework

Parse State

- A logical judgement (premises \& conclusion)
- Word associations for (some) premise formulas
- A single element stack

Framework

Given a parse state
1 Decide between introduction \oplus elimination
2 Perform either
3 Update state(s)
4 Repeat

Ambiguities (the bad kind)

$$
\begin{aligned}
& \mathcal{L}:=\left\{\text { "ducks": NP, "eat" }: \diamond^{\mathrm{su}} \mathrm{NP} \rightarrow\left(\diamond^{\left.\left.\mathrm{obj}_{\mathrm{NP}} \rightarrow \mathrm{~S}\right), " \text { seeds" }: \mathrm{NP}\right\}}\right.\right. \\
& \text { "ducks eat seeds" } \vdash ? \mathrm{~S}
\end{aligned}
$$

Ambiguities (the bad kind)

$$
\begin{aligned}
& \mathcal{L}:=\left\{\text { "ducks": NP, "eat" }: \diamond^{\text {su }} \mathrm{NP} \rightarrow\left(\diamond^{\left.\left.\mathrm{obj}_{\mathrm{NP}} \rightarrow \mathrm{~S}\right), " \text { seeds" }: \mathrm{NP}\right\}}\right.\right. \\
& \text { "ducks eat seeds" } \vdash ? \mathrm{~S}
\end{aligned}
$$

(eat seeds) ducks \checkmark

Ambiguities (the bad kind)

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position information on top of types.

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position information on top of types.

Words (\& Position)
Contextualized embeddings from some LM

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position information on top of types.

Words (\& Position)

Contextualized embeddings from some LM
Types
Type-level recursive GRU

$$
\begin{aligned}
& \lceil A\rceil=\vec{A} \\
& \left\lceil^{d} X \rightarrow Y\right\rceil=G R U(\lceil\vec{d},\lceil X\rceil,\lceil Y\rceil])
\end{aligned}
$$

Elimination \sim ?

Problem

Given a judgement, decide between possible branchings..

Elimination \sim ?

Problem

Given a judgement, decide between possible branchings..
.. given a sequence of word \& type pairs, assign each item a binary label

Elimination \sim Binary Classification

Problem

Given a judgement, decide between possible branchings..
.. given a sequence of word \& type pairs, assign each item a binary label

Binary Sequence classification (Deep bi-GRU)
8) Input: Sequence of word \& type vectors (conc.)
2) Output: Sequence of binary labels

Proof Traversal

Deep bi-GRU

$$
(\overrightarrow{\text { ducks }} ;\lceil\mathrm{NP}\rceil),(\overrightarrow{\text { eat; }}\lceil\lceil\mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~s}\rceil),(\overrightarrow{\text { seeds; }} ;\lceil\mathrm{NP}\rceil) \vdash\lceil\mathrm{s}\rceil
$$

Proof Traversal

$$
\begin{gathered}
\frac{\text { eat } \vdash \mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~s}}{} A x . \quad \overline{\text { seeds } \vdash \mathrm{NP}} \\
\frac{\text { eat, seeds } \vdash \mathrm{NP} \rightarrow \mathrm{~s}}{A x .} \\
\text { ducks, eat, seeds } \vdash \mathrm{S}
\end{gathered} \overline{\text { ducks } \vdash \mathrm{NP}} A x .
$$

Deep bi-GRU

\uparrow

$(\overrightarrow{\text { ducks }} ;\lceil\mathrm{NP}\rceil),(\overrightarrow{\text { eat; }} ;\lceil\mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{s}\rceil),(\overrightarrow{\text { seeds; }}\lceil\lceil\mathrm{NP}\rceil) \vdash\lceil\mathrm{s}\rceil$

Proof Traversal

Proof Traversal

Proof Traversal

Deep bi-GRU

$$
(\overrightarrow{\mathrm{eat}} ;\lceil\mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}\rceil), \quad(\overrightarrow{\text { seeds }} ;\lceil\mathrm{NP}\rceil) \vdash\lceil\mathrm{NP} \rightarrow \mathrm{~S}\rceil
$$

Proof Traversal

$$
\begin{aligned}
& \begin{array}{rll}
\overline{\text { eat } \vdash \mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}} A x . \quad \overline{\text { seeds } \vdash \mathrm{NP}} & A x . \\
\frac{\text { eat, seeds } \vdash \mathrm{NP} \rightarrow \mathrm{~s}}{\rightarrow E} & \\
\text { ducks, eat, seeds } \vdash \mathrm{S} & & \\
\text { ducks } \vdash \mathrm{NP}
\end{array} A x . \\
& \begin{array}{ll}
0 & 1 \\
\uparrow & \uparrow
\end{array} \\
& \text { Deep bi-GRU } \\
& (\overrightarrow{\text { eat }} ;\lceil\mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}\rceil),(\overrightarrow{\text { seeds } ; ~\lceil N P\rceil}) \vdash\lceil\mathrm{NP} \rightarrow \mathrm{~s}\rceil
\end{aligned}
$$

Proof Traversal

$$
\begin{aligned}
& \begin{array}{rll}
\overline{\text { eat } \vdash \mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}} A x . \quad \overline{\text { seeds } \vdash \mathrm{NP}} & A x . \\
\frac{\text { eat, seeds } \vdash \mathrm{NP} \rightarrow \mathrm{~s}}{\rightarrow E} & \\
\text { ducks, eat, seeds } \vdash \mathrm{S} & & \\
\text { ducks } \vdash \mathrm{NP}
\end{array} A x . \\
& \begin{array}{ll}
0 & 1 \\
\uparrow & \uparrow
\end{array} \\
& \text { Deep bi-GRU } \\
& (\overrightarrow{\text { eat }} ;\lceil\mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}\rceil),(\overrightarrow{\text { seeds } ; ~\lceil N P\rceil}) \vdash\lceil\mathrm{NP} \rightarrow \mathrm{~s}\rceil
\end{aligned}
$$

Proof Traversal

$$
\begin{array}{cl}
\overline{\text { eat } \vdash \mathrm{NP} \rightarrow \mathrm{NP} \rightarrow \mathrm{~S}} A x . \quad \overline{\text { seeds } \vdash \mathrm{NP}} & A x . \\
\frac{\text { eat, seeds } \vdash \mathrm{NP} \rightarrow \mathrm{~S}}{\rightarrow E} & \overline{\text { ducks } \vdash \mathrm{NP}} A x . \\
& \text { eat, seeds } \vdash \mathrm{S}
\end{array}
$$

$\left.\begin{array}{ll}\text { Training sample } & : \text { Junction point } \\ \text { Sentence } & : N \text { independent samples }\end{array}\right\}$ Massive Parallelism

..but is it working?

Some Concessions
Up to 2nd order types
No conjunctions
Gold types as input

..but is it working?

Some Concessions

Up to 2nd order types
No conjunctions
Gold types as input
Table with Numbers

Input	Accuracy
Types \& Words \& Goal	$\mathbf{9 7 . 2}$
Types \& Words	95.3
Types only	94.2
Words only	87.7

Conclusion \& Future

Neural TLG Parsing

8) Fast \& Efficient

3 Accurate
2) Formally grounded

8 Ideal for semantic tasks
\# todo
2) End-to-end integration \& evaluation

8 Higher-order structures
8 Other approaches (.. Shift-Reduce, ProofNets?)

Conclusion \& Future

Neural TLG Parsing

8) Fast \& Efficient

3 Accurate
8 Formally grounded
2 Ideal for semantic tasks
\# todo
2) End-to-end integration \& evaluation

2 Higher-order structures
8 Other approaches (.. Shift-Reduce, ProofNets?)
© Thank audience

