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Why Parsing?

Compositionality

Meaning of complex expression derived by constituent expressions

and their means of interaction.

Syntax

Algebra of sentence structure

Base for linguistically informed compositional semantics
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Why Deductive?

Type-Logical Grammars

Words → Logical Formulas

Well-Formedness ≡ Provability

Curry-Howard Correspondence

Logical Formulas ↔ Typed Variables

Proofs ≡ Functional Programs

Syntax-Semantics Interface

Syntactic Types → Semantic Spaces

Derivations → Semantic Programs

Logic

Syntax

Computation

Semantics

TLG

CHC

hom
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A Dependency-Decorated TLG

Lexicon: Words → dependency-decorated MILL types (à la ACG )

Constants: { np, s, pron . . . }

Functions: { �sunp→ s, �sunp→
(
�objnp→ s

)
, . . . }

T := A | �d T0 | T1 → T2

Parsing: Proof Search

Γ ` s : A→ B ∆ ` t : A
Γ,∆ ` s〈t〉 : B

→ E
Γ, x : A ` u : B

Γ ` λx .u : A→ B
→ I
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Parsing Framework

Parse State

• A logical judgement (premises & conclusion)

• Word associations for (some) premise formulas

• A single element stack

Framework

Given a parse state

1 Decide between introduction ⊕ elimination

2 Perform either

3 Update state(s)

4 Repeat
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Ambiguities (the bad kind)

L := {“ducks”: np, “eat”: �sunp→
(
�objnp→ s

)
, “seeds”: np}

“ducks eat seeds” `? s

s

�objnp→ s

�sunp

np

ducks

�sunp→
(
�objnp→ s

)
eat

�objnp

np

seeds

(eat seeds) ducks X

s

�objnp

np

ducks

�objnp→ s

�sunp→
(
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)
eat

�sunp
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seeds
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Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position

information on top of types.

Words (& Position)

Contextualized embeddings from some LM

Types

Type-level recursive GRU

dAe =
−→
A

d�dX → Y e = GRU
([−→

d , dX e, dY e
])
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Elimination ∼ ?

Problem

Given a judgement, decide between possible branchings..

.. given a sequence of word & type pairs, assign each item a

binary label

Binary Sequence classification (Deep bi-GRU)

Input: Sequence of word & type vectors (conc.)

Output: Sequence of binary labels
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Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−−−→
ducks; dnpe

)
,
(−→

eat; dnp→ np→ se
)

,
(−−−→

seeds; dnpe
)
` dse

Deep bi-GRU

1 0 0
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Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
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eat, seeds ` np→ s
→ E

ducks ` np
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ducks, eat, seeds ` s

(−→
eat; dnp→ np→ se

)
,
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)
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Deep bi-GRU

1

0 1

Training sample : Junction point

Sentence : N independent samples

}
Massive Parallelism
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..but is it working?

Some Concessions

Up to 2nd order types

No conjunctions

Gold types as input

Table with Numbers

Input Accuracy

Types & Words & Goal 97.2

Types & Words 95.3

Types only 94.2

Words only 87.7
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Conclusion & Future

Neural TLG Parsing

Fast & Efficient

Accurate

Formally grounded

Ideal for semantic tasks

# todo

End-to-end integration & evaluation

Higher-order structures

Other approaches (.. Shift-Reduce, ProofNets?)

Thank audience
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