
Deductive Parsing

with an Unbounded Type Lexicon

K. Kogkalidis, M. Moortgat, R. Moot, G. Tziafas

August 2019

SemSpace 2019

Why Parsing?

Compositionality

Meaning of complex expression derived by constituent expressions

and their means of interaction.

Syntax

Algebra of sentence structure

Base for linguistically informed compositional semantics

1

Why Parsing?

Compositionality

Meaning of complex expression derived by constituent expressions

and their means of interaction.

Syntax

Algebra of sentence structure

Base for linguistically informed compositional semantics

1

Why Deductive?

Type-Logical Grammars

Words → Logical Formulas

Well-Formedness ≡ Provability

Curry-Howard Correspondence

Logical Formulas ↔ Typed Variables

Proofs ≡ Functional Programs

Syntax-Semantics Interface

Syntactic Types → Semantic Spaces

Derivations → Semantic Programs

Logic

Syntax

Computation

Semantics

TLG

CHC

hom

2

Why Deductive?

Type-Logical Grammars

Words → Logical Formulas

Well-Formedness ≡ Provability

Curry-Howard Correspondence

Logical Formulas ↔ Typed Variables

Proofs ≡ Functional Programs

Syntax-Semantics Interface

Syntactic Types → Semantic Spaces

Derivations → Semantic Programs

LogicSyntax

Computation

Semantics

TLG

CHC

hom

2

Why Deductive?

Type-Logical Grammars

Words → Logical Formulas

Well-Formedness ≡ Provability

Curry-Howard Correspondence

Logical Formulas ↔ Typed Variables

Proofs ≡ Functional Programs

Syntax-Semantics Interface

Syntactic Types → Semantic Spaces

Derivations → Semantic Programs

LogicSyntax

Computation

Semantics

TLG

CHC

hom

2

Why Deductive?

Type-Logical Grammars

Words → Logical Formulas

Well-Formedness ≡ Provability

Curry-Howard Correspondence

Logical Formulas ↔ Typed Variables

Proofs ≡ Functional Programs

Syntax-Semantics Interface

Syntactic Types → Semantic Spaces

Derivations → Semantic Programs

LogicSyntax

Computation

Semantics

TLG

CHC

hom

2

A Dependency-Decorated TLG

Lexicon: Words → dependency-decorated MILL types (à la ACG)

Constants: { np, s, pron . . . }

Functions: { �sunp→ s, �sunp→
(
�objnp→ s

)
, . . . }

T := A | �d T0 | T1 → T2

Parsing: Proof Search

Γ ` s : A→ B ∆ ` t : A
Γ,∆ ` s〈t〉 : B

→ E
Γ, x : A ` u : B

Γ ` λx .u : A→ B
→ I

3

A Dependency-Decorated TLG

Lexicon: Words → dependency-decorated MILL types (à la ACG)

Constants: { np, s, pron . . . }

Functions: { �sunp→ s, �sunp→
(
�objnp→ s

)
, . . . }

T := A | �d T0 | T1 → T2

Parsing: Proof Search

Γ ` s : A→ B ∆ ` t : A
Γ,∆ ` s〈t〉 : B

→ E
Γ, x : A ` u : B

Γ ` λx .u : A→ B
→ I

3

Parsing Framework

Parse State

• A logical judgement (premises & conclusion)

• Word associations for (some) premise formulas

• A single element stack

Framework

Given a parse state

1 Decide between introduction ⊕ elimination

2 Perform either

3 Update state(s)

4 Repeat

4

Parsing Framework

Parse State

• A logical judgement (premises & conclusion)

• Word associations for (some) premise formulas

• A single element stack

Framework

Given a parse state

1 Decide between introduction ⊕ elimination

2 Perform either

3 Update state(s)

4 Repeat

4

Ambiguities (the bad kind)

L := {“ducks”: np, “eat”: �sunp→
(
�objnp→ s

)
, “seeds”: np}

“ducks eat seeds” `? s

s

�objnp→ s

�sunp

np

ducks

�sunp→
(
�objnp→ s

)
eat

�objnp

np

seeds

(eat seeds) ducks X

s

�objnp

np

ducks

�objnp→ s

�sunp→
(
�objnp→ s

)
eat

�sunp

np

seeds

(eat ducks) seeds 7

5

Ambiguities (the bad kind)

L := {“ducks”: np, “eat”: �sunp→
(
�objnp→ s

)
, “seeds”: np}

“ducks eat seeds” `? s

s

�objnp→ s

�sunp

np

ducks

�sunp→
(
�objnp→ s

)
eat

�objnp

np

seeds

(eat seeds) ducks X

s

�objnp

np

ducks

�objnp→ s

�sunp→
(
�objnp→ s

)
eat

�sunp

np

seeds

(eat ducks) seeds 7

5

Ambiguities (the bad kind)

L := {“ducks”: np, “eat”: �sunp→
(
�objnp→ s

)
, “seeds”: np}

“ducks eat seeds” `? s

s

�objnp→ s

�sunp

np

ducks

�sunp→
(
�objnp→ s

)
eat

�objnp

np

seeds

(eat seeds) ducks X

s

�objnp

np

ducks

�objnp→ s

�sunp→
(
�objnp→ s

)
eat

�sunp

np

seeds

(eat ducks) seeds 7

5

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position

information on top of types.

Words (& Position)

Contextualized embeddings from some LM

Types

Type-level recursive GRU

dAe =
−→
A

d�dX → Y e = GRU
([−→

d , dX e, dY e
])

6

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position

information on top of types.

Words (& Position)

Contextualized embeddings from some LM

Types

Type-level recursive GRU

dAe =
−→
A

d�dX → Y e = GRU
([−→

d , dX e, dY e
])

6

Resolving Ambiguities

Key insight

Structure can be disambiguated by utilizing word and position

information on top of types.

Words (& Position)

Contextualized embeddings from some LM

Types

Type-level recursive GRU

dAe =
−→
A

d�dX → Y e = GRU
([−→

d , dX e, dY e
])

6

Elimination ∼ ?

Problem

Given a judgement, decide between possible branchings..

.. given a sequence of word & type pairs, assign each item a

binary label

Binary Sequence classification (Deep bi-GRU)

Input: Sequence of word & type vectors (conc.)

Output: Sequence of binary labels

7

Elimination ∼ ?

Problem

Given a judgement, decide between possible branchings..

.. given a sequence of word & type pairs, assign each item a

binary label

Binary Sequence classification (Deep bi-GRU)

Input: Sequence of word & type vectors (conc.)

Output: Sequence of binary labels

7

Elimination ∼ Binary Classification

Problem

Given a judgement, decide between possible branchings..

.. given a sequence of word & type pairs, assign each item a

binary label

Binary Sequence classification (Deep bi-GRU)

Input: Sequence of word & type vectors (conc.)

Output: Sequence of binary labels

7

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−−−→
ducks; dnpe

)
,
(−→

eat; dnp→ np→ se
)

,
(−−−→

seeds; dnpe
)
` dse

Deep bi-GRU

1 0 0

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−−−→
ducks; dnpe

)
,
(−→

eat; dnp→ np→ se
)

,
(−−−→

seeds; dnpe
)
` dse

Deep bi-GRU

1 0 0

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−−−→
ducks; dnpe

)
,
(−→

eat; dnp→ np→ se
)

,
(−−−→

seeds; dnpe
)
` dse

Deep bi-GRU

1 0 0

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−−−→
ducks; dnpe

)
,
(−→

eat; dnp→ np→ se
)

,
(−−−→

seeds; dnpe
)
` dse

Deep bi-GRU

1 0 0

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−→
eat; dnp→ np→ se

)
,
(−−−→

seeds; dnpe
)
` dnp→ se

Deep bi-GRU

1 0 0

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−→
eat; dnp→ np→ se

)
,
(−−−→

seeds; dnpe
)
` dnp→ se

Deep bi-GRU

1

0 1

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−→
eat; dnp→ np→ se

)
,
(−−−→

seeds; dnpe
)
` dnp→ se

Deep bi-GRU

1

0 1

8

Proof Traversal

eat ` np→ np→ s
Ax .

seeds ` np
Ax .

eat, seeds ` np→ s
→ E

ducks ` np
Ax .

ducks, eat, seeds ` s

(−→
eat; dnp→ np→ se

)
,
(−−−→

seeds; dnpe
)
` dnp→ se

Deep bi-GRU

1

0 1

Training sample : Junction point

Sentence : N independent samples

}
Massive Parallelism

8

..but is it working?

Some Concessions

Up to 2nd order types

No conjunctions

Gold types as input

Table with Numbers

Input Accuracy

Types & Words & Goal 97.2

Types & Words 95.3

Types only 94.2

Words only 87.7

9

..but is it working?

Some Concessions

Up to 2nd order types

No conjunctions

Gold types as input

Table with Numbers

Input Accuracy

Types & Words & Goal 97.2

Types & Words 95.3

Types only 94.2

Words only 87.7

9

Conclusion & Future

Neural TLG Parsing

Fast & Efficient

Accurate

Formally grounded

Ideal for semantic tasks

todo

End-to-end integration & evaluation

Higher-order structures

Other approaches (.. Shift-Reduce, ProofNets?)

Thank audience

10

Conclusion & Future

Neural TLG Parsing

Fast & Efficient

Accurate

Formally grounded

Ideal for semantic tasks

todo

End-to-end integration & evaluation

Higher-order structures

Other approaches (.. Shift-Reduce, ProofNets?)

Thank audience

10

