
HARDWARE HACKING
EXPERIMENTS

Extracting Firmware from Embedded Device

Jérémy Brun-Nouvion - 2020
1

The Target

• Device: Netgear N300 Wireless Router

• Model No: WNR2000v4

2

0> TOOLBOX

3

Tools to open devices

4

Multimeter - PicoScope

• Multimeter:

– Very useful feature: Continuity
test with beep (detect GND &
Vcc pins easily)

– Measure Voltage:
• High constant (around 3.3V or

5V) may indicate Vcc

• Voltage fluctuation may indicate
data transmission

• PicoScope =

– USB PC Oscilloscope

– Can be used to find points on
PCB that are emitting data (eg.
Tx pin of UART)

5

Physical connection tools

• Soldering iron

• Pin headers (to solder to
PCB pads)

• Jump wires (m/m, f/m, f/f)

• Chip clips (for 8-pin & 16-
pin Flash/EEPROM)

6

Hardware

• Raspberry Pi

• Bus Pirate (v3.6): Universal
bus interface compatible
with multiple protocols (I²C,
SPI, JTAG, UART…)

• UART to USB adapter

• JTAGulator: Useful to
identify JTAG pins

• Logic Analyzer

7

Softwares

• Terminal emulator: screen/minicom/putty

• PicoScope software https://www.picotech.com/downloads

• Salae Logic Analyzer https://www.saleae.com/downloads/

• OpenOCD (used to interact with device via JTAG) http://openocd.org/

• Flashrom (identify, read, write flash memory chips) https://www.flashrom.org/

• Binwalk (firmware analysis tool) https://github.com/ReFirmLabs/binwalk

8

https://www.picotech.com/downloads
https://www.saleae.com/downloads/
http://openocd.org/
https://www.flashrom.org/
https://github.com/ReFirmLabs/binwalk

1> RECON

9

Manual / Online Public Information

10

• Vendor’s documentation

• Google

• Previous research already available

• Similar products

FCCID Lookup

https://fccid.io/PY312300212

11

https://fccid.io/PY312300212

FCCID Lookup => Internal Photos

https://fccid.io/PY312300212/Internal-Photos/Internal-Photos-1855783

12

https://fccid.io/PY312300212/Internal-Photos/Internal-Photos-1855783

2> INTERNAL INSPECTION

13

Open the Device

• No need to remove metallic EMC
shield for now (we have full
internal photos)

• Here, no trivial indicator of
debug interface is written on PCB
(eg. TX, RX, TDO, TDI, TCK…)

Row of 4 pads

=> Looks like UART

Double row 14 pads => Maybe JTAG debug interface ?
14

Components Identification (1/2)

• Search references/codes on chips/components on:

– https://www.alldatasheet.com/

– https://www.datasheets360.com/

– Google (filetype:pdf)

MXIC MX 25L3208E

32 M-Bit (4MB) CMOS Serial Flash

https://www.alldatasheet.com/datasheet-
pdf/pdf/575458/MCNIX/MX25L3208EM2I12G.html

=> NOR Flash – Non-volatile memory

MP1482DS

2A, 18V Synchronous Rectified Step-Down Converter

https://www.alldatasheet.com/datasheet-pdf/pdf/551573/MPS/MP1482DS.html

=> Related to Power Supply, not interesting for us

15

https://www.alldatasheet.com/
https://www.datasheets360.com/
https://www.alldatasheet.com/datasheet-pdf/pdf/575458/MCNIX/MX25L3208EM2I12G.html
https://www.alldatasheet.com/datasheet-pdf/pdf/551573/MPS/MP1482DS.html

Components Identification (2/2)

ESMT M13S2561616A – 5T

4M x 16 Bit x 4 Banks Double Data Rate SDRAM (32MB)

https://www.alldatasheet.com/datasheet-
pdf/pdf/204934/ESMT/M13S2561616A.html

ATHEROS AR9341-AL3A

Highly-Integrated and Feature-
Rich IEEE 802.11n 2x2 2.4 GHz Premium SoC for Advanced WLAN Platforms

https://www.alldatasheet.com/datasheet-pdf/pdf/1168533/ETC1/AR9341.html

=> Micro-Controller (MCU)

16

https://www.alldatasheet.com/datasheet-pdf/pdf/204934/ESMT/M13S2561616A.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1168533/ETC1/AR9341.html

PCB Overview

17

3> UART

18

UART Pins Identification - Methodology

1. Multimeter in “continuity test”
mode & Device powered OFF

– Black probe on known Ground
(metallic surface)

– Red probe on each pin/pad

 Beep indicates GND

2. Multimeter in Voltmeter (DC) mode
& Device powered ON

– Black probe on known Ground

– Red probe on each pin/pad

– V=3.3V or 5V (constant) => Vcc

– V=High voltage with fluctuation
at boot => Probably Tx

– V=Low voltage => Probably Rx

– V=0V => GND (already found)

Ground
Surface

19

UART Pins Identification - Results

PIN R_GND (dev OFF) V (device ON) Notes

1 ∞ 3,3V Vcc

2 ~80kΩ 1,7-2,5V (fluctuations) Tx

3 ~12kΩ 0-0,004V Rx

4 0Ω (beep) 0V GND

• UART is used for asynchronous communication (i.e. without a clock) => Baud
rate (nb of bits / second) is required

• Common Baud rates: 9600, 38400, 19200, 57600, 115200

• We need to solder Pin headers to be
able to connect using jump wires

– Warning: bad soldering may result in bad
contact or no contact at all !!

20

Baud rate identification with PicoScope

• Overkill here, but PicoScope can be
used to find tricky points on PCB where
there is data emission (eg. Isolated test
points aka “TP”)

• ∆ time for 1-bit ≈ 8,066 µs
=> Baud rate ≈ 1/(8,066 * 10^-6)

≈ 123 977

=> Closest common rate is:

115 200

Connected to
Ground surface

Probe on Tx
candidate

21

Baud rate identification with Logic Analyzer

∆ time for 1-bit ≈ 8,333 µs
=> Baud rate ≈ 1/(8,333 * 10^-6)

≈ 120 048

=> Closest common rate is: 115 200

Tx candidate

Logic Analyzer can then decode data:

UART frame format:

22

Baud rate identification with Bruteforce

2. Run script https://github.com/devttys0/baudrate/blob/master/baudrate.py

Will loop around common baud rates until it receives readable data

1. Connect Serial adapter to
UART

23

https://github.com/devttys0/baudrate/blob/master/baudrate.py

Connection to UART

• screen /dev/ttyUSB0 115200

• Well-known open-source OS for embedded devices (based on Linux) OpenWrt
is used

• UART connection gives a root shell => full access to filesystem 24

4> BOOTLOADER (via UART)

25

Info Gathering using Bootloader (1/2)

• Bootloader in use: U-Boot (very popular for embedded devices)

• Boot logs analysis (record all data sent by Tx & look for interesting stuff)

• Enter in Bootloader menu (press key at boot) and look for available commands

26

Info Gathering using Bootloader (2/2)
• Analysis Results Notes:

27

Dump Firmware via U-Boot
• Command md (memory display) can be used to display memory areas

(including Flash where firmware is stored)

Root filesystem
(squashfs)

• Dump Firmware:

1. Full Flash dump (4MB) can be done with command:
md.b 9F000000 0x400000

2. Record all outputs to file. Wait…

3. Convert full hexdump to binary (https://github.com/gmbnomis/uboot-
mdb-dump)

28

https://github.com/gmbnomis/uboot-mdb-dump

5> JTAG

29

JTAG (IEEE 1149.1)

• One of most widely deployed debug standards
for embedded devices

• Provides direct interface to hardware on PCB,
such as Flash or RAM

• JTAG Pins:

– TDI: Data In

– TDO: Data Out

– TMS: Test Mode Select (used to control
state of TAP controller)

– TCK: Clock (for synchronization)

– TRST: Test Reset (optional because
possible to reset using TMS)

Indicates to TAP
controller which Data
Register will be used

Data Registers

- BYPASS: 1-bit reg. used to
pass data from TDI to TDO
(when IR = BYPASS)

- ID: stores device ID

TAP controller:

- Handles state machine logic
(via TMS value)

- Implements core JTAG
instructions

- Handle Clock

https://www.optiv.com/explore-optiv-
insights/downloads/jtag-interface-
attackers-perspective

30

https://www.optiv.com/explore-optiv-insights/downloads/jtag-interface-attackers-perspective

JTAG Pins Identification – Standards Pinouts

• Some standard pinouts are known: http://www.jtagtest.com/pinouts/

Ground
Surface

…

Good candidate for following reasons:

- Same number of pins

- Same position of GND (continuity test with
multimeter)

- Device architecture is MIPS

• For further tests on this interface, we solder Pin
headers to be able to connect with jump wires

31

http://www.jtagtest.com/pinouts/

JTAG Pins Identification – JTAGulator

1. Connect GND -> GND

2. Connect CH0..CHX -> Pins to test on PCB

3. Connect to JTAGulator (baud rate 115200)

4. Set target voltage (here 3.3V)

5. Run IDCODE scan (fast) to detect:

– TDO

– TCK

– TMS

6. Run BYPASS scan (slow) to detect
remaining TDI pin

Ground
Surface

Author’s demo:
https://www.youtube.com/watch?v=GgMOBhmEJXA

But here: FAIL

No JTAG pins found on this interface !
32

https://www.youtube.com/watch?v=GgMOBhmEJXA

Advanced JTAG Research (1/2)

Ground
Surface

• Finding JTAG may require analyzing
PCB traces:

1. Check Micro-Controller pinouts
from datasheet

2. Identify pins that can be used
for JTAG

3. Follow traces from those pins
(visual inspection + continuity
test with multimeter)

• Here we see that GPIO tagged pins
can be used for JTAG (but also many
other stuff)

33

Advanced JTAG Research (2/2)

Ground
Surface

• Micro-Controller is under EMC shield

• Analysis of PCB traces from GPIO pins:

• Here I could not find JTAG on this
PCB

• Maybe it has been disabled (often
the case in production)

• JTAG can be very tricky to find =>
Example on previous version of
router (WNR2000v1):

https://openwrt.org/toh/netgear/wnr200034

https://openwrt.org/toh/netgear/wnr2000

Testing on Device with known JTAG

Ground
Surface

• For experimentation purpose: Proxmark3’s PCB
has a known JTAG interface

• Let’s find out JTAG pinout as if it was not
available

Testing

35

Dumping Firmware via JTAG (1/3)
1. Based on discovered JTAG pinout, connect Bus Pirate as follows:

2. Identify Micro-Controller on PCB. On Proxmark3 => AT91SAM7S512 (ARM)

Ground
Surface

3. Search for OpenOCD’s configuration for this Micro-
Controller

36

Dumping Firmware via JTAG (2/3)
4. Run OpenOCD with config for Bus Pirate + config for Micro-Controller:

Ground
Surface

5. We need to know which memory region we
want to dump ?
Proxmark3 has no external Flash, and the
firmware is directly stored on MCU (no OS,
no filesystem like on our router)

=> Check MCU datasheet for Memory Mapping

37

Internal Flash mapped at:
0x100000-0x1FFFFF (size=0x100000 bytes)

Dumping Firmware via JTAG (3/3)
6. Connect to localhost:4444 and run dump_imagewith correct offset & size:

Ground
Surface

7. Dump contains firmware’s ARM code. It is possible to open it with IDA:

38

6> SPI FLASH

39

Memory Types

Memory

RAM

Hybrid

ROM

DRAM

SRAM

NVRAM

Flash

EEPROM

EPROM

PROM

Masked

NOR Flash

NAND Flash

eMMC Flash

Volatile
Memory

Non-Volatile
Memory

NVRAM, EEPROM, NOR Flash & NAND Flash often use SPI (or I²C) protocol to
communicate with Micro-Controller

40

SPI (Serial Peripheral Interface) Protocol

• Synchronous (requires clock) serial communication

• Designed for inter-components communication (hi speed)

• 1 Master (Micro-Controller) / Multiple Slaves (eg. Flash)

• SPI Pins:

– MISO: Master In Slave Out (Master <- Slave)

– MOSI: Master Out Slave In (Master -> Slave)

– SCLK: Clock

– CS: Chip Select . Required to select 1 Slave among others for any action.
CS put to 0 when chip selected

• Non-standard Pin names are also used. From Slave point-of-view:

– SDI / DI / DIN / SI: Data In. Connect to MOSI on Master

– SDO / DO / DOUT / SO: Data Out. Connect to MISO on Master

41

Identify SPI Flash

• Refer to Flash datasheet to find SPI compatibility & pinout:

Circle indicates
Pin #1

https://pdf1.alldatasheet.com/datasheet-pdf/view/575458/MCNIX/MX25L3208EM2I12G.html

Serial NOR Flash

42

https://pdf1.alldatasheet.com/datasheet-pdf/view/575458/MCNIX/MX25L3208EM2I12G.html

Check SPI Pins with Logic Analyzer

• Connect to the Flash using a SOIC/SOP 8-Pin chip clip with Logic Analyzer

Red cable corresponds to Pin #1

Data emitted/received

43

CS (Chip Select) drops to 0
when communication begins

Dump SPI Flash – First try… (1/2)

Now we are sure of Flash pinout, let’s try to dump it using Bus Pirate:

1. Connect Bus Pirate as follows:

Bus Pirate = Master

Flash = Slave

44

Dump SPI Flash – First try… (2/2)

2. Check for Flash support in flashrom: https://flashrom.org/Supported_hardware

3. Run flashrom, it should auto-detect the Flash (Warning: device powered OFF):

4. Try to find cause of fail:

– “Sniff” communication with Logic Analyzer

– Also, test with Raspberry Pi as SPI Interface

=> Unfortunately, seems like there are interferences with
other components on the board

FAIL !

45

https://flashrom.org/Supported_hardware

Let’s get serious
46

Removing Flash from PCB

• When everything else has failed => Desolder chip from PCB

• Very invasive, can be very hard to solder it back !! => Possible PCB destruction !

• Recommended tool: Hot air gun

• I don’t have one, let’s do it the dirty way ☺

47

Dump SPI Flash – Second try

1. Connect to Bus Pirate again:

2. Run flashrom again:

3. Dump Flash memory content:

Flash is in the clip

Matching correct Flash

48

7> FIRMWARE ANALYSIS

49

Root Filesystem Extraction

• Automatic Filesystem extraction with binwalk:

Flash Content

Bootloader

Kernel

Root Filesystem
(compressed,

Squashfs)

Config
50

Firmware Analysis

• Static Analysis:

– Explore filesystem: Search for interesting files, configurations… (firmwalker)

– Check various scripts

– Binary analysis (IDA)

• Dynamic Analysis:

– Emulate firmware with firmadyne tool
(https://github.com/firmadyne/firmadyne)
+ QEMU (support for MIPS & ARM)

– Binary exploitation often easier because usually less defense mechanisms
(ASLR, NX…) on embedded devices

https://github.com/firmadyne/firmadyne

At this step, we deal with stuff we
are more familiar with !

