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Plan for today

● 3 microbudget methods for adapting existing pre-trained 
models to your needs: 
○ Transfer learning
○ Distillation
○ Quantization

● Microbudget = small team, a few GPUs, small datasets
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Companion repository
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● A collection of example notebooks for microbudget ML methods
○ 📙 Transfer learning for building a custom Image Classifier
○ 📙 Faster Speech Transcription through Model Distillation
○ 📙 Running a Large Language Model with Different Levels of Quantization

https://github.com/ai-dojo/microbudget

https://github.com/ai-dojo/microbudget


Method 1: Transfer learning
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📙 Example from our companion repo

Oxford 102 Flowers dataset

● ca. 8000 images 

● ca. 500px height

● ca. 400 MB

● 102 classes 12

● Task: Create a 
classifier for 
botanical images

training computer vision 
model from scratch = 

straining our microbudget



📙 Example from our companion repo

ImageNet dataset

● 1.4 million images

● 1000 classes

● > 150 GB
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 reuse an existing image classifier?

e.g. MobileNetV2

● deep CNN (53 layers)

● 3.4 M parameters

● good accuracy on ImageNet



Basic idea idea of transfer learning

Model pre-trained 
for Task A on 
large dataset
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Model specialised 
for Task B

partially retrain on 
(smaller) dataset 

for Task B



📙 Example from our companion repo
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reuse convolutional layers (incl. weights) = 
feature extraction capabilities

adapt & retrain for new task

Image source: A Study 
Review: Semantic 
segmentation with Deep 
Neural Networks



📙 Example from our companion repo
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Transfer learning 
has great library 

support 



📙 Example from our companion repo
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a decent image classifier with minimal engineering & training



Transfer Learning at a glance
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Transfer learning

Model 
capability different task

Model size / 
inference cost same *

Training data 
and cost less *

Development 
effort simple

* compared to original model



Method 2: Distillation
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Basic idea of model / knowledge distillation
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Large pre-trained 
teacher model

Small student 
model

Large model teaches 
small model



Real-world example: Whisper → Distil-Whisper
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“Look, penguins!”

trained on 680,000 hours of audio and transcripts

1.55 Billion parameters (for large model)

OpenAI 
Whisper



Real-world example: Whisper → Distil-Whisper
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OpenAI 
Whisper

HuggingFace 
Distil-Whisper
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Real-world example: Whisper → Distil-Whisper
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OpenAI 
Whisper

HuggingFace 
Distil-Whisper

“Look, penguins!”

Luke

Look



Benefits of distillation

● Less annotated training data needed

● Without distillation, might not be able to train capable 

small model from scratch, even with full dataset → 

-why?-
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Our training regime is quite harsh 
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And punish them if they 
produce soft predictions

We train our models 
with hard labels



Our training regime is quite harsh 
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And punish them if they 
produce soft predictions

We train our models 
with hard labels

Large models 
can learn despite 
this harshness

Small models 
have trouble



Distillation creates a more friendly learning 
environment
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Real-world example: Whisper → Distil-Whisper

Distil-Whisper ends up being

● 6 times faster

● 50% smaller

● within 1% word error rate (WER) of original model

distillation cost? → trained on 14kh of audio instead of 680kh = ca. 

2% of original
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Drop-in 
replacement!*

*for English



📙 Example from our companion repo
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Transcribe with whisper or distil-whisper: see (and hear) for yourself

Medium-size model run on CPU, for 32 librivox audio samples



Distillation at a glance
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Transfer learning Distillation

Model 
capability different task potentially same *

Model size / 
inference cost same * much smaller *

Training data 
and cost less * less *

Development 
effort simple complex

* compared to original model



Method 3: Quantization

TERRA INCOGNITA

33

Quantization

Performance

Resources



34

Basic idea of quantization

Float32 

4x smaller
2-4x fasterInt8 

Do we need full precision weights to represent a model’s knowledge?



How to compress Float32 into Int8?

105 15Original weight distribution
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How to compress Float32 into Int8?

105 15

0-127 127Quantized weight distribution

Original weight distribution



Quantized weight distribution 37

How to compress Float32 into Int8?

105 Original weight distribution 15

0-127 127

Scale factor S

Zero-shift z

 S = (max - min) / 256 

z = round(min * S) + 128 

quantized =  S-1  * (original + -z  )s        
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Post-training quantization of weights

For each layer / channel / etc

1. Analyze weight distribution and calculate S and z

2. Apply quantization formula and store quantized weights

What happens during 
computation?

→ 4 x smaller weights
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Post-training quantization of activations

For each layer / channel / etc

1. Run forward pass with a few samples

2. Analyze activation distribution and calculate S and z

→ 2-4 x faster inference
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Can we go even smaller with quantization?

● yes, 6-bit, 4-bit or even 2-bit quantization are common

● sacrificing capabilities?

○ hard to predict, models vary in their sensitivity
○ capability loss needs to be evaluated experimentally
○ see the model card for recommended variants

→ up to 16x smaller model files potentially significant 
quality loss
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📙 Example from our companion repo

● run “Large” Language 

Model on your local 

machine with Ollama

● get different levels of 

quantization from 🤗 

● test and observe (loss 

of?) capability
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The open LLM ecosystem thrives on 
quantization

● quantization enables

○ medium-sized models on modest hardware (e.g. 15B parameters in 
9 GB of RAM)

○ online distribution

● many models in Ollama catalog are quantized by default



Quantization at a glance

43

Transfer learning Distillation Quantization

Model 
capability different task potentially same * potentially same *

Model size / 
inference cost same * much smaller * much smaller *

Training data 
and cost less * less * much less *

Development 
effort simple complex simple

* compared to original model



Microbudget methods at a glance

44

Transfer learning Distillation Quantization

Model 
capability different task potentially same * potentially same *

Model size / 
inference cost same * much smaller * much smaller *

Training data 
and cost less * less * much less *

Development 
effort simple complex simple

* compared to original modelhttps://github.com/ai-dojo/microbudget

https://github.com/ai-dojo/microbudget


BACKUP
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Forward-pass with a quantized model

Our normal float32 forward pass looks like this:

 y  =  w  ·  x  + b

Let’s plug in our quantization mapping (^ = quantized):

 Sy * ŷ - zy  =  (Sw * ŵ - zy)  · (Sx * x̂  - zx)

Thanks to the rules of matrix multiplication ·, we get:

 ŷ  =  zy  + (  Sw  *  Sx  /  Sy  ) * ( ( ŵ - zy) · (x̂  - zx) )
float32 scalar multiplication int8 matrix multiplication


