[app] segment_duration = 5 # 音频切分处理间隔,单位:分钟,建议值:5-10,如果视频中话语较少可以适当提高 transcribe_parallel_num = 1 # 并发进行转录的数量上限,建议值:1-3,如果使用了本地模型,最好调成1 translate_parallel_num = 3 # 并发进行翻译的数量上限,建议值:3,倍于转录的并发量,如果使用TPM限制严格的API,可以适当调低 transcribe_max_attempts = 3 # 转录最大尝试次数,建议值:3 translate_max_attempts = 5 # 翻译最大尝试次数,建议值:5,如果模型参数量较少或翻译失败率较高可以适当调高 proxy = "" # 网络代理地址,格式如http://127.0.0.1:7890,可不填 [server] host = "127.0.0.1" port = 8888 # 下方的配置不是都要填,请结合文档说明进行配置 [llm] #支持openai,deepseek,通义千问等所有兼容openai请求格式的模型服务 base_url = "" # 自定义base url,可配合转发站密钥使用,留空为openai官方api api_key = "" # API密钥 model = "" # 指定模型名,可通过此字段结合base_url使用外部任何与OpenAI API兼容的大模型服务,留空默认为gpt-4o-mini [transcribe] # 视频转文本支持多种方案,配置时先填provider,再填对应的配置 [transcribe.provider] name = "openai" #语音识别,当前可选值:openai,fasterwhisper,whisperkit,whisper.cpp,aliyun。(fasterwhisper不支持macOS,whisperkit只支持M芯片) [transcribe.openai] base_url = "" api_key = "" model = "whisper-1" [transcribe.fasterwhisper] model = "medium" # fasterwhisper的本地模型可选值:tiny,medium,large-v2。建议medium及以上 [transcribe.whisperkit] model = "large-v2" # whisperkit的本地模型可选值:large-v2 [transcribe.whispercpp] model = "large-v2" # whispercpp的本地模型可选值:large-v2 [transcribe.aliyun] # provider选aliyun这块就都要填 [tts.aliyun.oss] access_key_id = "" access_key_secret = "" bucket = "" [transcribe.aliyun.speech] access_key_id = "" access_key_secret = "" app_key= "" [tts] [tts.provider] name = "aliyun" # 可选值:openai,aliyun [tts.openai] base_url = "" api_key = "" model = "" # gpt-4o-mini-tts, tts-1, tts-1-hd [tts.aliyun] # provider选aliyun这块就都要填 [tts.aliyun.oss] access_key_id = "" access_key_secret = "" bucket = "" [tts.aliyun.speech] access_key_id = "" access_key_secret = "" app_key= ""