# 🤟 Sign Language Interpreter A real-time sign language recognition system built with Python, MediaPipe, TensorFlow, and Streamlit. This application can detect and interpret sign language gestures in real-time using computer vision and machine learning. ## 🌟 Features - **Real-time Hand Detection**: Uses MediaPipe for accurate hand landmark detection - **Sign Language Recognition**: Supports 29 gestures including: - Numbers: 1, 2, 4, 5, 6, 7, 8 - Letters: A-X (excluding E) - **Live Webcam Processing**: Real-time gesture recognition through webcam - **Interactive Web Interface**: Built with Streamlit for easy use - **Adjustable Confidence**: Configurable detection confidence threshold - **Optimized Performance**: Fast response with temporal prediction smoothing ## 🚀 Quick Start ### Prerequisites - Python 3.8+ - Webcam - Git ### Installation 1. **Clone the repository** ```bash git clone https://github.com/yourusername/ai-sign-language-interpreter.git cd ai-sign-language-interpreter ``` 2. **Install dependencies** ```bash pip install -r requirements.txt ``` 3. **Run the application** ```bash streamlit run simple_sign_interpreter.py ``` 4. **Open your browser** and navigate to `http://localhost:8501` ## 🎯 Usage 1. **Start the application** using the command above 2. **Allow camera access** when prompted by your browser 3. **Click "START"** to begin webcam capture 4. **Show hand gestures** to the camera 5. **Adjust confidence threshold** using the sidebar slider for better detection 6. **View real-time predictions** in the "Current Sign" panel ## 📁 Project Structure ``` ai-sign-language-interpreter/ ├── simple_sign_interpreter.py # Main Streamlit application ├── sign_utils.py # Core prediction and landmark detection ├── models/ │ ├── sign_model.tflite # Trained TensorFlow Lite model │ └── labels.txt # Class labels for gestures ├── requirements.txt # Python dependencies ├── .gitignore # Git ignore file └── README.md # Project documentation ``` ## 🔧 Technical Details ### Architecture - **Frontend**: Streamlit web interface - **Computer Vision**: MediaPipe for hand landmark detection - **Machine Learning**: TensorFlow Lite for gesture classification - **Real-time Processing**: Optimized prediction pipeline with temporal smoothing ### Model Information - **Input**: 63-dimensional hand landmark features (21 landmarks × 3 coordinates) - **Output**: 29 sign language gesture classes - **Format**: TensorFlow Lite (.tflite) for optimized inference - **Performance**: Real-time processing at 30+ FPS ### Key Components 1. **MediaPipeLandmarksModel**: Handles hand detection and landmark extraction 2. **SignLanguagePredictor**: Manages model inference and prediction smoothing 3. **Streamlit Interface**: Provides user-friendly web interface ## 🎛️ Configuration ### Adjustable Parameters - **Detection Confidence**: Minimum confidence for hand detection (default: 0.5) - **Tracking Confidence**: Minimum confidence for hand tracking (default: 0.5) - **Prediction Threshold**: Minimum confidence for gesture prediction (default: 0.5) - **Buffer Size**: Number of frames for prediction smoothing (default: 8) ## 🤝 Contributing 1. Fork the repository 2. Create a feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ## 📝 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - **MediaPipe** for hand landmark detection - **TensorFlow** for machine learning framework - **Streamlit** for the web interface - **OpenCV** for computer vision utilities ## 📞 Support If you encounter any issues or have questions: 1. Check the [Issues](https://github.com/kris07hna/SIGN-LANG-INTREPRETOR/issues) page 2. Create a new issue with detailed description 3. Include system information and error messages ## 🔮 Future Enhancements - [ ] Support for more sign language gestures - [ ] Multi-hand gesture recognition - [ ] Sign language sentence formation - [ ] Mobile app version - [ ] Real-time translation to multiple languages