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Preface

This text is intended for a first course in ordinary differential equations, typically

taken at the sophomore or junior level by science and engineering majors. Many calculus

students are introduced to differential equations and separation of variables, so Chapter

1 begins assuming that material has been seen before. (If it has not, or if students need a

review, they should work through Chapter 1 and Appendix A pretty much simultaneously.)

Paging through the book will reveal that some of the Exercises are embedded within

the reading, and others are at the end of each chapter. Don’t skip any Exercise that is

embedded in the reading! They form an integral part of the text, and the insights gained

from working these Exercises is often necessary to completely appreciate what follows

them. Instructors may choose to cover some of the Exercises in lecture, but students

should make sure they can recreate the solutions on their own. The last several Additional

Exercises at the ends of the chapters tend to be more challenging, and it is up to an

instructor to decide which problems are appropriate for his or her students.

I intend for students to actually read this text. With the internet providing nearly

limitless access to information, it no longer seems necessary to me for a textbook to be

a complete reference source. Therefore, I have tried to emphasize clarity rather than

completeness. There are only a few footnotes and no marginal notes to break up the flow

of reading.

Chapters 1-4 and 7-9 are pretty much fundamental for this kind of course. Chapter

5 on Taylor methods can be done at any time after Chapter 4, and nothing else in the

text assumes it. Chapters 10-11-12 can also be covered immediately after Chapter 4 if

the instructor wants to get to Laplace transforms early. Great practical utility of Laplace

transforms is found with discontinuous driving functions, which are discussed in Chapter

11. I therefore believe that, if you’re going to do Chapter 10, you really should do Chapter

11, also. Chapter 12 assumes Chapter 10. Chapters 13-14 can be covered any time after

Chapter 4, and doing so before covering Chapter 7 would provide an alternative route to

v



vi PREFACE

deriving the general solutions to second order constant coefficient equations (instead of

using reduction of order).

Chapter 6, on existence and uniqueness, it very much subject to an instructor’s taste.

Some might want to go through a detailed proof of the results. At the other extreme, one

might just cite the theorem and then look at an example of what can happen when the

hypotheses are not met. My personal preference is somewhere in between: I like students

to learn how to calculate Picard iterates and to get a sense of how they might converge to

a solution by carefully working through an easy example; then I wave my hands a bit in

describing how to generalize from the example to a real proof. There’s a lot of flexibility

here.

The appendices contain important information, but some of it is likely already known

by students (in particular, the material on matrices and separation of variables might be

review). It is probably a good idea to spend a day on Appendix B (complex numbers) before

starting either Chapter 7, 10 or 13, (whichever is done first). If you cover reduction of order

in Appendix C, you have choices: you can do it before Chapter 7, so that it is an available

tool which can be used to find a general solution when the characteristic equation has a

repeated root; alternatively, you can introduce the necessary idea in the process of finding

general solutions in Chapter 7 and then, at a later time, generalize that trick into a larger

technique.

My sincere thanks go to my students who have taken this course as I piloted these

materials. Many students contributed suggestions and improvements. In particular, I

would like to thank a few who have given me substantial feedback: Brianna Kuypers,

Gail Scott, Chris Nason, Ryan Smoots, and Kelly Sindelar. I am also indebted to my

colleagues Adrienne Palmer and Sarah Massengill.



Part 1

First Order Equations





CHAPTER 1

The Nature of Differential Equations

Prototype Question: A large tank contains 100 gallons

of pure water. Brine solution that contains 50 grams of

salt per gallon of water is added to the tank at a rate of 3

gallons per minute. The liquid in the tank is thoroughly

mixed, and it drains from the tank at 3 gallons per minute

as well. How long will it take until there is one kilogram

of salt in the tank? And how much salt will there be in

the tank in the long term?

The problem above describes a quantity (the mass of salt in a tank) which is changing

over time. The description tells us how that rate of change depends on other factors. Salt

is added to the tank as part of a brine solution. Simultaneously, salt leaves the tank as

part of the liquid that drains. We can use the language of calculus (in particular, derivative

notation) to describe this rate of change precisely.

Suppose we let g(t) represent the number of grams of salt in the tank after t minutes

have elapsed. If we can find an explicit formula for g(t) then we should be able to answer

the questions posed above. As a first step to coming up with such a formula for g(t), we’re

going to write down a formula that describes its derivative.

The net rate of change of g at any instant is

dg

dt
= (rate in)− (rate out) ,

where “rate in” describes how fast salt is entering the tank and “rate out” describes how

fast salt is leaving it. The rate at which salt is entering the tank is determined by multi-

plying the rate at which brine solution enters the tank by the concentration of salt in the

brine:

rate in =
50 grams
1 gallon

× 3 gallons
1 minute

= 150
grams
minute

.

3



4 1. THE NATURE OF DIFFERENTIAL EQUATIONS

Similarly, we can find the rate out by multiplying the rate at which liquid is leaving the

tank by the concentration of salt in that liquid. But the concentration of salt already in the

tank is changing – it depends on how much salt is in the tank at that instant. The volume

of liquid in the tank remains constant at 100 gallons, and the mass of salt is represented

by the function g. Therefore we can write

rate out =
g grams

100 gallons
× 3 gallons

1 minute
=

3g

100

grams
minute

.

Therefore the instantaneous rate of change over time for the function g is described by the

equation
dg

dt
= 150− 3g

100

grams
minute

.

This equation is a precise mathematical description of how the mass of salt in the tank

is changing over time. There is one other fact given in the problem statement that is

necessary to find a solution to this question: because the tank begins with only pure water,

the initial mass of salt in the tank is zero grams, so that

g(0) = 0.

These two facts – the equation describing the rate of change and the initial value of the

function – will allow us to find a formula for g(t).

The technique we will employ to find a formula for g(t) is called separation of variables.

It is usually taught in a second course on calculus, and a reader who wishes to review this

technique will find it in Appendix A.

Beginning with the equation dg
dt = 150 − 3g

100 , we first rewrite the right side as a single

quotient,
dg

dt
=

15000 − 3g

100
,

and then we formally separate the variables g and t as follows:

dg

15000 − 3g
=

dt

100
.

The previous step doesn’t make sense all by itself – it is a notational shorthand – until we

anti-differentiate both sides: ∫
dg

15000 − 3g
=

∫
dt

100
.

Completing the integration gives us

−1

3
ln |15000 − 3g| = t

100
+ C.
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Using the fact that g(0) = 0 (that is to say, g = 0 when t = 0) to solve for the unknown

constant of integration gives us

−1

3
ln |15000| = C,

and solving for g in terms of t yields

g = 5000 − 5000e−3t/100 .

EXERCISE 1: Fill in the missing details in the calculation above to solve for g.

Here’s a graph of the solution we calculated above:

We can see that the solution appears to attain the value of g = 1000 grams (1 kilogram)

sometime between t = 7 and t = 8 seconds. We can calculate the exact value using this

formula:

1000 = 5000 − 5000e−3t/100

and solving for t algebraically gives us:

t =
−100

3
ln

(
4

5

)
≈ 7.4 minutes.

The other issue we want to address is the long-term behavior of the function g: what

happens to the value of g(t) as t continues to increase? A graph of the solution over a

longer time interval illustrates this behavior:
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Long-term behavior in this case (we’ll define it more generally later in the chapter)

really means “what happens in the limit as t → ∞”, so we calculate:

lim
t→∞ g(t) = lim

t→∞ 5000 − 5000e−3t/100 = 5000 grams.

That is to say, as time passes the mass of salt in the tank will get closer and closer to 5

kilograms. �
We were able to find a precise solution for the problem above because we were able

to write down the function g that satisfies the equation dg
dt = 150 − 3g

100 and the condition

g(0) = 0. Equations like this one which describe the rate of change of a function are called

differential equations.

A differential equation is an equation involving an unknown function and its deriva-

tives. Here are a few examples:

• du
dt = 3u+ 2t, where u(t) is the unknown function

• dy
dx = y2, where y(x) is the unknown function

• ∂f
∂x = 2 + ∂f

∂y , where f(x, y) is the unknown function

• ∂2f
∂x2 + ∂2f

∂y2
= ∂f

∂t , where f(x, y, t) is the unknown function.

The first two examples above are ordinary differential equations because the un-

known functions are functions of just one variable, hence the derivatives are ordinary

derivatives as studied in single variable calculus; this is in contrast to the last two ex-

amples where the unknown is a function of two or more variables so that the derivatives

are partial derivatives, as studied in multivariable calculus. These last two are examples

of partial differential equations. Generally speaking, the study of partial differential
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equations requires more mathematical background and is usually reserved for a second

course on differential equations. The abbreviation ODE is used to mean either an ordi-

nary differential equation or equations (it can be either singular or plural, depending on

context). The abbreviation PDE is used similarly for a partial differential equation or

equations.

EXERCISE 2: Classify each of the following as either an ODE or a PDE.

(1)
(

dy
dx

)2
= y2 + d2y

dx2

(2) ux = uy

For the remainder of this text, we will only concern ourselves with ordinary differential

equations.

A solution of an ODE is a function, say y(x), such that y and its derivatives satisfy

the differential equation for all x ∈ I, where I is an interval in R. In particular, y(x)

must be defined at every point x ∈ I for us to say that it is a solution on I. We call x

the independent variable, and the symbol representing the function, y, is called the

dependent variable.

EXAMPLE 1: Consider the function y = 1
2−x . This function is a solution of the differential

equation y′ = y2 on the interval I = (−∞, 2) because

y′ =
d

dx

[
(2− x)−1

]
= −(2− x)−2(−1) =

(
1

2− x

)2

= y2.

It is also a solution on the interval I = (2,∞), but notice that because of the discontinuity

of y(x) at x = 2, this function is not a solution in the interval I = R. The following graph

shows the function y = 1
2−x , which has two components separated by the discontinuity

at x = 2. Either component can be considered a solution of the differential equation,

but not both together, because we only consider a function to be a solution if it is defined

throughout an entire connected interval.
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�
An initial-value problem (or IVP) is an ordinary differential equation together with

an initial condition of the form y(x0) = y0, where x0 and y0 are given. The value of y0 is

called the initial value. Here’s an example:

dy

dx
= 2y + x2, y(0) = 1.

A solution of an initial value problem is a solution of the differential equation defined

on an interval I in R that contains x0 and such that the initial condition y(x0) = y0 holds

true. The largest interval I containing x0 for which the function y is defined is called the

domain of definition (or the interval of definition) for the solution of the IVP.

Once we know the domain of definition for a solution, we can discuss the solution’s

long-term behavior: if a solution y(t) has as its domain of definition an interval (a, b),

then the long-term behavior of y is limt→b y(t). It is often (but not always) the case that

b = ∞.

EXERCISE 3: Consider the initial value problem

dy

dt
= y2, y(0) = 1.

Prove that the functions y1(t) =
1

1−t and y2(t) =
1

2−t both satisfy the differential equation, but that

only one of these also satisfies the initial condition. Which one is it, and what is its domain of

definition?
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The prototype problem that began this chapter allowed us to illustrate how one can

sometimes find a solution to an initial value problem using separation of variables. Here

is another example with a different application.

EXAMPLE 2: The population of a colony of bacteria grows in such a way that its instan-

taneous rate of change is proportional to the size of the population at that time. This is

because bacteria have a predictable life cycle, and at any given moment in a large popula-

tion of bacteria, a certain fraction are ready to reproduce. If there are 4 million bacteria to

start with, and after 20 hours there are 4.2 million, find a function that predicts the size

of the bacteria population after t hours.

Solution: The assumption that the instantaneous growth rate is proportional to the size

of the population can be stated in terms of a derivative:

dP

dt
= kP,

where P (t) is the size of the population (let’s use units of millions of bacteria) at time t (in

hours). The symbol k here represents a constant of proportionality. We will need to find

the appropriate value of k as part of our solution. Separating variables gives us
∫

dP

P
=

∫
k dt,

and anti-differentiating produces the equation

ln |P | = kt+ C.

(Two anti-derivatives of the same function must differ by a constant, hence the presence

of the C in this equation.) We can exponentiate both sides to obtain

|P | = ekt+C ,

and we can remove the absolute value notation if we introduce a plus/minus symbol on

the other side:

P = ±ekt+C .

Now because P = P (t) is a function, it must have just one output for each input, and

therefore we cannot leave the ± symbol in place.1 We will need to make a choice whether

P = ekt+C or P = −ekt+C . Because P represents population and is thus a positive quantity,

1We could imagine needing to make a different choice of ± at each point in the domain for t, however

because solutions must be continuous functions, the choice will need to be the same for all t in the domain.
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and the expression ekt+C is necessarily positive, we can conclude that the former expres-

sion is appropriate. Thus

P = ekt+C = eCekt.

We have rewritten the equation in this form to point out that we don’t really need to solve

for C, just for eC : insert the initial condition that P = 4 when t = 0 to obtain

4 = eCe0 = eC ,

and now we have

P = 4ekt.

Now we are in a position to determine the appropriate value of k using the initial condition

P (20) = 4.2:

4.2 = 4ek(20)

implies that

k =
ln(1.05)

20
.

Therefore

P = 4eln(1.05)t/20,

and this can be written in a variety of ways, but the simplest form is probably

P = 4(1.05)t/20 .

That is to say, after t hours there will be P (t) = 4(1.05)t/20 million bacteria. �
In the preceding example, the unknown function was P (t), and it was determined by

two facts:

• it satisfied the differential equation dP
dt = kP and

• it satisfied the initial condition P (0) = 4.

These two conditions constituted the initial value problem. Before we used the initial

condition P (0) = 4, we had come up with a formula that could be written as P = Aekt.

Any value we choose for A would give us a solution of the differential equation, and any

initial value could be satisfied by selecting an appropriate value for A (for example, to

satisfy y(0) = y0, use A = y0 in this formula). Because we can satisfy any initial condition

by choosing an appropriate value for the parameter A, the formula y = Aekt is called a

general solution for the differential equation.
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EXAMPLE 3: Find a general solution of y′ = xy2, and then solve the initial value problem

with y(0) = 0 and then with y(0) = 4.

Solution: We start with separation of variables:
∫

dy

y2
=

∫
xdx.

Integrating gives us

−1

y
=

x2

2
+ C.

Isolating y gives us

y =
−1

x2

2 + C
.

This is a cumbersome way to write the solution, so let’s replace the symbol C with D =

−2C so that we can write

y =
2

D − x2
.

Observe that this formula can be used to satisfy any initial condition for y(x0) except

y(x0) = 0. The constant function y(x) = 0, however, gives us a solution of the differential

equation with zero as an initial value. Therefore, the general solution can be expressed as

y =

⎧⎪⎨
⎪⎩
0 if y(x0) = 0

2(D − x2)−1 otherwise
.

Consequently, the solution of the initial value problem y′ = xy2, y(0) = 0 is the constant

function y(x) = 0. The solution of the initial value problem y′ = xy2, y(0) = 4 can be found

by using the general formula and solving for D:

4 = 2(D − (0)2)−1 =⇒ D =
1

2
,

so y(x) = 2
1
2
−x2 . �

EXERCISE 4: Solve the initial value problem dy
dx = x(y2 + 1), y(0) = 1. What is the domain of

definition for the solution?

EXERCISE 5: Use separation of variables to find a function that satisfies the differential equation
dy
dx = xexy and the initial condition y(0) = 1.
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EXERCISE 6: Find a function x(t) that satisfies the differential equation dx
dt = x2 − 1 and the

initial condition x(0) = 0.

The last few examples and exercises above all contain first-order differential equa-

tions, because the first derivative is the highest order of derivative that appears in the

equation. In general, we call a differential equation nth order if the nth derivative is the

highest order derivative in the equation. With this terminology, the equation

d3y

dx3
+

(
dy

dx

)4

= 7

is 3rd order.

EXERCISE 7: Classify the order of each of the following differential equations:

(1) dy
dt =

(
d2y
dt2

)
+ y3

(2) du
dv +

(
du
dv

)3
= u− v4

(3) d4y
dx4 = (x+ y)2

Look back at Example 1.2 again, where we examined the differential equation dP
dt =

kP . The solution we obtained using the initial condition was a function P (t), but it in-

cluded an unknown constant, k. We really don’t want to think of k as a variable because

it was determined by the physical facts of the situation. In particular, it was determined

by the growth rate of this particular kind of bacteria. A different species of bacteria might

have a different reproductive rate and therefore its population growth would be modeled

using a different value for k.

To make this kind of distinction clear, we use the term parameter to describe an

unknown constant in a differential equation. This terminology distinguishes it from the

independent variables – the differential equation contains derivatives with respect to an

independent variable, but not with respect to a parameter.

With ordinary differential equations, we can use various notations to indicate the

derivatives, and we usually draw conclusions from context about what symbol represents

the independent variable. For example, the differential equation

y′ = 3yx4

indicates the presence of 2 variables, x and y, and since we have a derivative of y present,

x must be the independent variable. Therefore the unknown here is the function y(x) (and
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y is the dependent variable). On the other hand, the equation

y′ = 3y

shows us only one variable, y, which is clearly a dependent variable because the term y′

appears in the equation. Since no independent variable is named, we are usually free to

choose whatever we like. We might decide to write the function y in terms of a variable

x, in which case separation of variables would give us solutions of the form y(x) = Ae3x.

But we could just as easily decide to call the independent variable something else, say t,

in which case the solutions would have the form y(t) = Ae3t. If we knew from context that

this differential equation describes a quantity changing over time, that would be a strong

reason to choose t as the independent variable.

Another way to express a derivative is with ‘dot notation’, as in the following ODE:

ẏ = 3 + t

The dot indicates a first derivative with respect to time. This is always the convention

with dot notation: the independent variable must represent time. Otherwise, we should

use prime notation like y′ or Leibniz notation like dy
dx .

Dot notation can be extended to higher derivatives. The equation

ÿ + 3ẏ + 2y = 0

involves both first and second derivatives of y with respect to time.

The equation y′ = 2kx has both x and k on the right side, either of which could be the

independent variable. However, they cannot both be independent variables, otherwise y

would be a function of two variables, and the notation y′ indicates an ordinary derivative,

so y can only be a function of one variable. Therefore at least one of x and k must be a

parameter. It would be reasonable to assume that x is the variable because we so often

use it as such. However, if the equation were written as y′ = kl, nothing would be so

clear: k could be the independent variable, or l could be the independent variable, or both

k and l could be constants while the independent variable is something else entirely. It is

therefore a good idea, whenever an equation involves a parameter to state clearly which

is which. Alternatively, one can make the independent variable visible in the derivative:

the notation dy
dl = kl would make it clear that l is the independent variable, and therefore

k must be a parameter. The equation y′(l) = kl would provide the same information.
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Note also that the notation ẏ = tm shows that t is the variable because dot notation

always means derivative with respect to time, so m must be a parameter. (That is, unless

the author had made a truly bizarre choice of having m represent time and t represent

something else – don’t ever do that!)

EXAMPLE 4: Solve dy
dx = n, y(1) = 4.

Solution: The independent variable is x, and therefore the right side of the ODE is

just a constant. We can thus find the general solution by anti-differentiation:

y = nx+C.

The initial condition implies C = 4− n, so

y = nx+ 4− n.

�

EXERCISE 8: Find a solution of the ODE ẏ = ky subject to the initial condition y(0) = y0. Here, k

and y0 are both unknown constants.

Parameters can arise in two different ways: they can be part of the differential equa-

tion, in which case each value of the parameter actually corresponds to a different ODE;

or parameters can show up as part of the problem solving process, such as the constant

of integration does when we use separation of variables, in which case each value of the

parameter gives a different solution of the same ODE.

For example, the general solution of ẏ = yt is y = Aet
2/2. Each value for the parameter

A singles out a particular solution of the ODE. The set of functions {y = Aet
2/2;A ∈ R} is

called a one-parameter family of solutions to the ODE because each and every choice

of value for the parameter A gives a solution of the same ODE:

y = Aet
2/2

=⇒ ẏ = Aet
2/2 d

dt

[
t2

2

]

= Aet
2/2t

= yt

=⇒ ẏ = yt
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First-order equations usually have a one-parameter family of solutions, but higher order

equations typically need more than that.

EXERCISE 9: Verify that every member of the one-parameter family {y = Ae−x + 2x− 2;A ∈ R}
is a solution of the ODE y′ = 2x− y.

EXERCISE 10: Prove that the members of the two-parameter family of functions {y = Aet +

Be2t;A,B ∈ R} all solve the second-order ODE ÿ − 3ẏ + 2y = 0. (You do not need to prove that

every solution of this ODE is a member of this two-parameter family – that will be taken up in a

later chapter – you are just being asked to verify that every member of the family is a solution of the

ODE.)

EXERCISE 11: Show that all members of the family {y = A cos(t) + B sin(t);A,B ∈ R} are solu-

tions of the ODE ÿ + y = 0.

There is one subtle point of language here about which we have ought to be clear.

We have consistently referred to the solution of an IVP, rather than saying a solution.

This suggests that an IVP has one, and only one, solution. Indeed, such a condition is

an important prerequisite for using these methods to solve problems. For instance, if an

IVP for population growth had two different solutions, we might find one of them but

not realize that nature would actually behave according to the predictions of the other.

Fortunately, this is usually not the case. For most ODE of interest, solutions to initial

value problems are unique, as stated in the following theorem (which we will studied in

Chapter 6):

Suppose that f(x, y) and fy(x, y) are defined and continuous on

an open set containing (x0, y0). Then there is an open interval I

containing x0 such that the initial value problem

dy

dx
= f(x, y), y(x0) = y0

has a unique solution y(x) defined on I.

There are other versions of theorems on existence and uniqueness, but this version is

enough to get us started.
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Additional Exercises

Solve each of the following initial-value

problems, and determine when the value of

the solution will be equal to the given value

of a.

12 y′ = 4 + y2, y(0) = 1, a = 2

13 y′ = xy2, y(0) = 2, a = 5

14 y′ = y−1
x2−1

, y(0) = 0, a = 1

15 4ẋ = x, x(1) = 2, a = 4

16 u̇+ 2u = 1, u(1) = 0, a = −1

17 ẏ = e2t+y , y(0) = 0, a = e

18 dy
dx = xy

ex , y(1) = −2, a = −1

19 du
dv = u2 − 3u+ 2, u(0) = 1, a = 3

Find the interval of definition for the so-

lution of each of the following initial value

problems.

20 y′ = y2, y(0) = 1

21 y′ = y2, y(1) = 2

22 y′ = y2, y(0) = 0

23 y′ = 3
√
y, y(0) = 1

Solve each of the following initial-value

problems, and determine the long-term be-

havior limt→∞ y(t).

24 ẏ = 2y, y(0) = 3

25 ẏ = −2y, y(0) = 3

26 ẏ = 2− 3y, y(0) = 0

27 ẏ = 2− 3y, y(0) = 1

28 ẏ = 2 + 3y, y(0) = 0

29 ẏ = 2 + 3y, y(0) = −1

30 ẏ = 2xy, y(0) = 1

31 ẏ = t
y , y(0) = 1

32 Envision a population of, say, bacteria

in a lab experiment. If the organisms have

a predictable, periodic life cycle of reproduc-

tion and death, then we can model the rate

at which the size of this population grows

with the simple differential equation

Ṗ = kP,

where P (t) the the number of bacteria after

t units of time. The parameter k is called

the relative growth rate of the popula-

tion. It is the ratio of the instantaneous rate

of growth of a population to the size of the

population: k = Ṗ
P . In a simple model of

population growth, it is reasonable to expect

that this ratio will be constant, for if you

double the number of bacteria in the popula-

tion, you will expect to double the number of

bacteria which are also reproducing at that

instant.
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Suppose that P (0) = P0 is a positive

number. Find the solution of this differen-

tial equation and initial condition. (Your an-

swer will depend on the independent vari-

able t as wells as the parameters k and P0.)

33 A differential equation of the form ẏ =

ky, as in the previous exercise, can be used

to model other phenomena besides popula-

tion growth. For example, the balance of a

savings account that earns compound inter-

est might be this kind differential equation.

In such a context, the relative growth rate k

is often called a continuous growth rate.

Suppose that a savings account begins

with a positive balance B0 and earns an an-

nual interest rate r compounded n times

per year. (For example, if the annual in-

terest rate is 6% compounded monthly, then

r = 0.06 and n = 12.) Then the balance af-

ter t years will be B0

(
1 + r

n

)nt. Prove that

as n → ∞, the balance converges to the

solution of the initial value problem Ḃ =

rB, B(0) = B0.

34 A retirement account begins with a bal-

ance of $500,000 and earns 3% annual inter-

est. Meanwhile, withdraws of $40,000 are

made each year. Assume that the interest

is compounded continuously and the with-

draws are made continuously throughout

the year. Then the balance will satisfy the

differential equation Ḃ = 0.03B−40000. Ex-

plain this model this using a ‘rate-in-minus-

rate-out’ approach. Then find the solution

using the initial value B(0) = 500, 000, and

determine how long the account will last be-

fore the balance reaches zero.

35 A radioactive element (for example, plu-

tonium) decays into lighter elements over

time at a rate that is proportional to the

mass of the radioactive element present.

Express this as a differential equation for

the mass m of the element present after

t units of time, using k as your constant

of proportionality. Then prove that the

amount of time it takes for the mass to de-

cay in half depends only on k – not on the

initial mass! (This period of time is called

the half-life of the element.)

36 A tank contains 100 liters of fresh wa-

ter. Water containing s grams of salt per

liter enters the tank at a rate of 5 liters per

minute, and the well-mixed solution leaves

the tank at the same rate. Suppose that af-

ter 10 minutes, the concentration of salt in

the tank is 3 grams per liter. Find s.

37 If an object sits in surroundings that are

a constant temperature, then Newton’s Law

of Cooling tells us that the rate of change of

the object’s temperature is proportional to

the difference in temperature between the

object and its surroundings:

dT

dt
= k(T −A).
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Here, T (t) is the object’s temperature, A is

the ambient temperature of the object’s sur-

roundings, and k is a constant of proportion-

ality. (This constant depends on the mate-

rial of the object and its surroundings, as

well as which units of time are used.)

(a) Find a general solution of the dif-

ferential equation above. (You answer will

contain three parameters: A, k, and C,

where C arises from the process of anti-

differentiation.)

(b) A hot turkey comes out of the oven

and has an initial temperature of 170 de-

grees Fahrenheit. The turkey sits in a room

whose temperature is 65 degree Fahrenheit.

After 10 minutes, the turkey’s temperature

is 168 degrees. How much longer will it

take until the turkey’s temperature is 140

degrees Fahrenheit?

38 The exponential model of population,

Ṗ = kP , growth asserts that a popula-

tion will grow at a rate that is proportional

to its size. However, populations (whether

they be people, rabbits or bacteria) usually

cannot grow indefinitely because they need

resources from the environment to thrive.

When the population gets too large, the

resources of the environment will not be

enough to support rapid growth. One math-

ematical model of population growth that

takes this into account is the so-called lo-

gistic growth model:

Ṗ =
k

M
P (M − P ).

The constant M in this differential equa-

tion represents a carrying capacity – as

the size of the population P approaches the

carrying capacity M , the rate of growth will

slow down because the factor (M − P ) will

be small. Notice that when the population

P is small, the right side of the differential

equation is approximately equal to kP , the

same as the exponential growth model.

(a) Find a general solution of the logis-

tic growth model. (Hint: When you isolate P

algebraically, you will need to do some sim-

plification that employs either rules of expo-

nents or rules of logarithms.)

(b) Imagine a population of bacteria

that would, in the absence of resource limi-

tations, double in size every two days. Find

the value of the parameter k that models

this population growth in the exponential

growth model Ṗ = kP .

(c) Using the same value of k you found

in part (b), solve the logistic growth model

assuming that the initial population is P =

1 million, and the carrying capacity of the

environment is 20 million.

(d) How long does it take for the popula-

tion in part (c) to reach 99% of the carrying

capacity?

39 Certain chemical reactions can be mod-

eled by the differential equation

ẋ = k(a− x)(b− x),
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where a, b and k are positive constants and

x(t) is the mass of a compound produced by

the reaction during the time interval [0, t].

Find a formula for x(t) given that k = 0.01,

a = 2, b = 4 and x(0) = 1. What is the long-

term behavior of x(t)?

40 As an object falls, it encounters two

forces: gravity and air resistance. If we as-

sume that the force of the air resistance is

proportional to the object’s speed, then the

velocity of the falling object would be mod-

eled by

v̇ = g − kv.

Here, a positive velocity indicates down-

ward motion, g is the acceleration due to

gravity, and k > 0 is a constant of pro-

portionality. Find a solution of this differ-

ential equation subject to the parameters

g = 9.8 and k = 0.04 and the initial condi-

tion v(0) = 0. (The units of distance here are

meters, time is measured in seconds, the ac-

celeration due to gravity has units of meters
second2

,

so the constant k must then have units of
1

second .)

41 Modify the differential equation in the

previous problem to represent the assump-

tion that the force of air resistance is pro-

portional to the square of the speed of the

falling object. Then find a solution using the

same parameters and initial conditions.

42 A find a function y(x) that is continuous

on all of R and that satisfies⎧⎪⎨
⎪⎩
y′ = yg(x)

y(0) = 1

where

g(x) =

⎧⎪⎨
⎪⎩
1 for x ≤ 1

x forx > 1
.

(Hint: Start by solving the differential equa-

tion on the interval x ≤ 1. Then use that

function’s value when x = 1 as an initial

condition to find a solution on the interval

x ≥ 1. Use piecewise notation to ‘glue’ these

solutions together.)

43 Consider a liquid draining from a hole

in the side (or bottom) of a cylindrical

tank. Torricelli’s Law states that the ve-

locity of water exiting through the hole

h

is proportional to

the square root of

the depth of the

water in the tank

above the hole. Let’s

write v(t) for the ve-

locity (in m
s ) of the

water at time t seconds, and let’s let h(t) rep-

resent the depth (in m) of water above the

hole. Then we have

v = c
√
h.

If we now let the volume of water in the tank

above the hole be written as V (t), we have

V = Ah, where A is the cross-sectional area
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of the tank, and

dV

dt
= A

dh

dt
.

But dV
dt = kv, where k is the area of the hole,

because the change in volume is just due to

water flowing out of the hole. This gives us

A
dh

dt
=

dV

dt
= kv = kc

√
h.

Introducing a new constant C, we can write

dh

dt
= C

√
h.

Use this formula to determine how long

it will take a full cylindrical tank to com-

pletely drain through a hole in the bottom

if the tank is 0.25m tall and the water level

decreases by 0.05m in the first minute.



Focus on Modeling: Air Resistance
FOCUS ON MODELING

Air Resistance
A typical example of a physical process we can model with first-order differential

equations is that of a falling body. For example, one might consider a skydiver in free

fall after jumping out of an airplane, or particle of dust or pollen falling through the

air. In order to keep things simple, we will assume that the motion occurs in only one

dimension, the vertical one.

However, it turns out that these two falling objects – the skydiver and the dust

particle – require different mathematical models in order to accurately describe their

motions, and the nature of the difference will probably surprise you.

Let’s begin with the skydiver. Let v(t) denote the velocity of the skydiver at time t.

If the skydiver has mass m, then Newton’s second law tells us that the acceleration of

the skydiver, v̇, satisfies mv̇ = F , where F is the sum of the forces acting on the object.

One of those forces is gravity, which has a magnitude of |Fgravity | = mg. (Here, g is the

acceleration of an object close to the Earth’s surface due to gravity.)

The other force we wish to take into account in this model is air resistance, or in-

ertial drag. Drag is actually a very complicated phenomenon, but we can try to build

a reasonable model by thinking about how the air interacts with the falling skydiver.

As he falls through the air, he impacts molecules of air, and the total force of these im-

pacts will depend on their relative speed (which is the same as his own speed relative

to the ground) and the frequency of these impacts, which is also proportional to the

speed. Therefore the total force of these impacts with air molecules is proportional to

the square of the velocity: |Finertial−drag| = cv2. (Note that we assumed here that the

skydiver remains in the same physical orientation during most of his fall (perhaps in

the spread eagle, belly-towards-the-ground position; if that is not the case, then his

orientation will also play a role in determining the frequency of impact with molecules

of air.)

This force acts in the upward direction, because it is acting in the opposite direction

of the skydiver’s fall. The force due to gravity acts downward. If we choose coordinates

so that a falling object has positive velocity, then Newton’s second law gives us

mv̇ = Fgravity + Finertial−drag = mg − cv2.



Dividing through by m and introducing k = c
m gives us

v̇ = g − kv2.

This should match the mathematical model developed in Problem 1.5. However, this

model is incomplete! There is also a friction-like force, called viscous drag, which

impedes the motion of an object moving through a fluid (like air or water) by acting on

the object laterally as it moves though the fluid. You can experience this force by trying

to drag a long piece of paper through a swimming pool edge-on; even though there is

a very small cross-sectional area where the paper’s edge impacts water molecules, the

sides of the paper experience viscous drag as the water moves laterally across them.

Like friction, this viscous force is proportional to the speed of the object:

|Fviscous−drag| = b|v|, where b is a positive constant. This force always acts in the op-

posite direction of the object’s motion, so we can write it is Fviscous−drag = −bv (in our

chosen coordinates, v will be positive). The coefficient b depends on the viscosity of the

fluid through which the object moves. If we were to use this type of drag in our model

instead of inertial drag, we would obtain an ODE of the form

v̇ = g − bv.

One might try to combine both of these drag effects into a single differential equation,

but that isn’t always necessary. It turns out that when objects move very fast, or when

the viscosity of the fluid through which they move is comparatively small, then the

inertial drag is the dominant effect and viscous drag can often be ignored. On the other

hand, when the velocity is very low, or when the viscosity of the fluid is comparatively

high, then viscous drag is dominant and inertial drag may be ignored.

For a skydiver, the large velocities at hand can be accurately modeled by the inertial-

drag equation above, wherein air resistance is proportional to the square of the veloc-

ity. For the relatively low terminal velocities of dust particles, viscous drag remain the

dominant force and better predictions are made by the viscous-drag equation in which

air-resistance varies in proportion to the velocity.

To learn more about these different models, read [1].

A detailed treatment of these ideas belong to a course in fluid mechanics and derives

from a system of partial differential equations known as the ‘Navier-Stokes equations’.

This is far beyond the scope of this text. In fact, we still don’t have a complete under-

standing of the solutions of Navier-Stokes equations: even though these equations

were introduced nearly two centuries ago, many open questions remain.



CHAPTER 2

Graphical Methods

Prototype Question: Certain chemical reactions can be

modeled by the differential equation

ẋ = k(a− x)(b− x),

where a, b and k are positive constants and x(t) is the

total mass of a compound produced by the reaction during

the time interval [0, t]. Assume that that k = 0.01, a = 2,

b = 4 and x(0) = 1. What is the long-term behavior of

x(t)?

The initial value problem in the question above can be solved analytically, which

means that it is possible to find an explicit formula for the solution (see Problem 1.3).

However, the algebra involved is somewhat complicated, and once you have a solution

written down, there is still some work in determining the limit. The point of this chapter

is to introduce techniques that make it possible to answer some questions about the qual-

itative behavior of solutions without the necessity of finding an explicit formula for the

solution. This is especially useful when it is difficult or impossible to find such a formula.

Let’s begin our discussion by considering a simpler example, such as the ODE y′ =
1
10y. We can separate variables and show that the general solution of this equation is

y = Aex/10, for A ∈ R. Here’s a graph of several of the solution curves to this equation, for

various values of A.

23
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Of course, there are infinitely many such curves – one for each value of the parameter

A – including A = 0, as the constant function y = 0 is also a solution of the differen-

tial equation. Whenever a constant function solves an ODE, we call it an equilibrium

solution.

Now let’s sketch small segments of tangent lines to each of these curves on the same

coordinate plane:

And then let’s remove the graphs of the solution curves, leaving just the little line

segments:
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Notice how this graph carries with it all the necessary information for us to visualize

the solution curves. This kind of graph is called a slope field (or direction field), and

using it we could sketch a solution curve by following the little line segments. For example,

if we want to see what the solution looks like which satisfies the condition y(0) = 2, we can

start at the point (0, 2) and draw a curve that remains tangent to each little line segment

it touches:

A big reason why a slope field is a useful tool is that we don’t need to know the solutions

of the ODE in order to draw it! All we need is a first order ODE written in the form
dy
dx = f(x, y). Then we can evaluate the right side at a bunch of points (x, y) and use those

values as the slopes when we draw the little segments of tangent lines.
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We can also see some qualitative information about the solutions from the slope field,

even without a formula for the solution. For example, we can see in the slope field above

that the solutions will either be positive and increasing or negative and decreasing. Fur-

thermore, for any solution y(x) of dy
dx = y

10 , we can see that limx→−∞ y(x) = 0, because the

solutions will approach the x-axis asymptotically as x → −∞. The positive solutions will

satisfy limx→∞ y(x) = ∞, and the negative solutions will satisfy limx→∞ y(x) = −∞.

EXAMPLE 1: Consider the ODE y′ = 3y + x. The following plot is a computer-generated

slope field for this differential equation.

(This graph was generated using the dfieldplot command on Maple. This particular

software program draws little vectors instead of line segments, but that won’t bother us.)

If a solution y(x) of this ODE satisfies the condition y(0) = 1, then its graph passes

through the point (0, 1), and therefore the slope of that curve at that point will be 3 because

the differential equation y′ = 3y+x tells us that y′ = 3(1)+(0) = 3. Therefore the direction

field shows a tiny vector of slope 3 at the point (0, 1). The software does the same thing at

a bunch of other points, and the result is a slope field.

In Chapter 4, we will discuss an analytic technique for solving the initial-value prob-

lem y′ = 3x + y, y(0) = 1 to get the function y = −1
9 − x

3 + 10
9 e

3x, and the following plot

shows the graph of this function superimposed on the slope field.
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As you can see, the solution curves in such as way as to follow the slopes of the little

vectors tangentially. Knowing this, we can actually sketch the solution curve without

having an explicit formula for the solution. All we have to do is sketch a curve by following

the direction of the little vectors or line segments.

For example, we could see from the slope field above that if a solution passes through

the point (0, 1), then y will be increasing near x = 0. So we draw a little upward curve

from there until we get near another direction vector, which tells us in which direction to

draw the next segment. We can also trace the direction field going to the left from (0, 1)

Doing this, we can draw a complete curve a little bit at a time, and we’ll get (roughly) the

same picture as above.

Next, imagine a solution of the initial-value problem y′ = 3y + x, y(0) = −1 is graphed

on top of the same slope field. Then the solution y will be decreasing as x increases. The

plot below shows a curve that passes through (0,−1) and whose tangent lines at each point

are parallel to the slope field at each point. The curve represents a solution of the initial

value problem.



28 2. GRAPHICAL METHODS

EXERCISE 1: Use the computer-generated slope field below for y′ = 3y + x to sketch a solution

curve that passes through the point (0, 0). (The result will be a sketch of the solution to the initial-

value problem y′ = 3y + x, y(0) = 0.)

Slope fields also provide us with some general intuition regarding the behavior of solu-

tions. In particular, they tell us that two solutions curves for an ODE dy
dx = f(x, y) cannot

cross one another transversely (i.e. at an angle). That’s because, if they did, there would

be two different slopes at the points where they cross (imagine the two little tangent vec-

tors crossing), but there can only be one slope because the function f(x, y) gives us a single

output for each input.
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The easiest slope fields to plot, if we need to do so by hand, are the ones where the

right side of the differential equation depends on only the dependent variable (so that
dy
dx = f(y)), because all the direction vectors along a horizontal line have the same slope,

as illustrated in the following example.

EXAMPLE 2: Let us manually sketch a slope field for the ODE dy
dx = 1 − y. We start by

evaluating the right side of the differential equation at several points along the y-axis:

(x, y) y′ = 1− y

(0, 3) −2

(0, 2) −1

(0, 1) 0

(0, 0) 1

(0,−1) 2

Let’s now plot small line segments (there’s no need for arrowheads) with these slopes

at the indicated points on an xy-plane:

y

x

1

2

3

0

-1

1 2 3

We can fill in more of this slope field without computing the values of y′ at any more

points because the structure of the differential equation shows that the slope does not

depend on x, only on y, and thus the slopes will be the same when we shift our attention

left or right. Thus we can just copy horizontal translations of the line segments we have

already drawn:
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y

x

1

2

3

0

-1

1 2 3

Finally, with a slope field in hand, we can try to analyze the behavior of solutions. For

example, if we wanted to know the long-term behavior of a solution to the IVP y′ = 1 − y,

y(1) = 2, we can sketch a curve that passes through the point (1, 2) and that remains

tangent to the slope field at each point:
y

x

1

2

3

0

-1

1 2 3

Based on this, we would guess that the solution of this IVP has the long-term behavior

limx→∞ y(x) = 1. �
Differential equations like this last one have a special name: we say that an ODE of

the form y′ = f(y) is autonomous (that is to say, the function f on the right side of the
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equation only depends on the dependent variable, y, not the independent variable x). In

addition to it being easier to plot a slope field for autonomous ODE, they are always sep-

arable (thus autonomous ODE are prime candidates for separation of variables, provided

it is feasible to calculate all the anti-derivatives involved).

Incidentally, equations of the form y′ = g(x) (where the right side depends only on the

independent variable, x) also have slope fields which are easy to plot, since the direction

vectors along any vertical line have the same slope; however, these equations are not of

as much interest to us in this course since they were studied extensively in calculus – a

solution of y′ = g(x) is just an anti-derivative of the function g.

The last example illustrated how slope fields can be generated by hand, but it is usually

much more efficient to use a computer program to generate them. The reader should try

to generate one or two slope fields by hand for the sake of experience, but after that it will

be a more efficient use of time to employ a computer.

EXERCISE 2: Generate a slope field for y′ = y(y − 2). Then sketch several solution curves on the

plot, one for each of the following initial conditions: y(0) = −1, y(0) = 0, y(0) = 1, and y(0) = 2. In

each case, use the behavior you see on the slope field to predict the value of limx→∞ y(x).

EXERCISE 3: Use a slope field to predict the behavior of limx→∞ y(x), where y is a solution of

y′ = y + 4. Explain how this limit depends on the initial value y(0).

EXERCISE 4: Use a slope field to predict the behavior of limx→∞ y(t) where y is a solution of

ẏ = y − t, y(0) = 0.

EXERCISE 5: Use a slope field to predict the behavior of solutions to y′ = y2. Then confirm your

prediction by finding a formula for the solution of the initial value problem y′ = y2, y(0) = y0.

Slope fields can give us enormous insight into the behavior of solutions without having

to explicitly solve the differential equation first. In fact, they can give us one very general

insight that applies to all solutions of ordinary differential equations: two solutions of the

same ODE y = f(x, y) cannot have graphs that cross one another at a non-zero angle. To

see this, suppose that there were two solutions that did cross, as shown in the figure below:
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y (x)y (x)

y (x)y (x)

1

2 This can’t 
happen!

At the point of intersection, these two graphs have different slopes: but that cannot

be, because the differential equation determines the slope based on the coordinates of the

point – the slope would need to be the same for both solutions at that point (if the point is

(x0, y0), then the slope would be f(x0, y0)).

On the other hand, it is still possible for solutions to cross, as long as they are tangent

to one another at the point of intersection:

y (x)y (x)
y (x)y (x)

1
2

But intersections are some-
times possible if the curves 
are tangent there.

It is sometimes possible to also rule out such intersections, but to do so, we need to

know a more about the function f(x, y). For more about this topic, see Chapter 6.

PHASE LINES

Next, we turn our attention to another graphical approach for understanding solutions

of differential equations that is specifically applicable to autonomous equations.

EXAMPLE 3: Suppose the velocity v(t) (in meters per second) of a falling object that en-

counters air resistance is modeled by the differential equation

v̇ = 9.8−Kv

where K > 0 is a constant. The assumption here is that air resistance is a force that is

proportional to the speed of the object, and so the constant of proportionality K depends

on both the speed and the mass of the falling object; the quantity 9.8 accounts for the
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acceleration due to gravity, and by selecting a positive acceleration here, we have implicitly

selected the convention that positive velocities correspond to downward motion.

Let us graph v̇ as a function of v as expressed by the equation v̇ = 9.8 −Kv:

v

v

9.8

9.8
K

v=9.8-Kv

The line intersects the v-axis at v = 9.8
K . According to this graph, whenever the velocity

is less than 9.8
K , v̇ will be positive, and therefore the object will continue to increase its ve-

locity. Similarly, if the velocity v were to start out greater than 9.8
K , then v̇ will be negative,

and therefore the velocity will decrease. In both cases, the velocity will tend toward the

value v = 9.8
K

m
s . And if the initial velocity is exactly 9.8

K
m
s , then v̇ = 0, so the velocity will

remain constant. We use arrows on a number line to illustrate the behavior of the solution

as follows:

v
9.8
K

This figure is called the phase line for the differential equation: it indicates the equi-

librium (i.e. constant) solutions of the differential equation with dots (in this case, v = 9.8
K

is the only equilibrium solution), and arrows indicate the behavior of solutions with other

initial conditions (right-pointing arrows indicate that a solution is increasing while left-

pointing arrows indicate that a solution is decreasing). In this example, if a solution starts

out with a value that is greater than 9.8
K , then the left-pointing arrows indicates that the
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velocity will decrease and approach 9.8
K . (The reader can verify this by calculating the

explicit solutions of the ODE.)

In this context of a falling object, the constant solution is called the terminal velocity

of the falling object – it is the limiting value of the velocity as t increases:

lim
t→∞ v(t) =

9.8

K

m

s
.

�
To draw a phase line for an autonomous ODE y′ = f(y), we usually start by graphing

the relationship described by this equation on a y-y’-coordinate plane. For example, if the

ODE is y′ = y3 − y, the graph would look like this:

y’

y

Each y-intercept of this graph corresponds to a value of y for which y′ = 0, and this

means that a constant function with this y-value will be a solution to the IVP. These are

the equilibrium solutions, and we highlight these values on the y-axis by drawing circles

there:

y’

y
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These circles divide the y-axis into several intervals, and in each interval we draw

arrows to indicate whether solutions that start with y-values in those intervals will be

increasing or decreasing. If the graph of y′ against y is above the y-axis for an interval,

then y′ is positive, thus y is increasing, and we denote this with right-pointing arrows. On

the other hand, if the graph is below the y-axis, then y′ is negative, so y is decreasing,

and we indicate that behavior using left-pointing arrows. Also, to avoid any confusion, we

should remove any arrowheads on the coordinate axes at this time.

y’

y

Now we can remove the y′-axis and the graph of the relationship between y and y′, and

we indicate the y-values along the phase line where we have drawn circles for equilibrium

solutions:

y
0 1-1

Finally, it is convention to add detail to the circles that indicate equilibrium solutions.

An equilibrium solution is called stable if solutions to the ODE with nearby initial values

tend towards that equilibrium value, as is the case for the equilibrium solution y = 0 of

y′ = y3 − y. We indicate this by shading in the circle. An equilibrium solution is called

unstable if solutions that start with nearby initial values tend away from the equilibrium

value, as is the case here for y = −1 and y = 1; these are indicated by leaving the circles

hollow:

y
0 1-1

This is a complete phase line for the ODE y′ = y3 − y. It tells us that:

(1) The constant functions y = −1, y = 0 and y = 1 are all equilibrium solutions.
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(2) If y(0) < −1, then y will be a decreasing function of t, and it will decrease toward

−∞
(3) If −1 < y(0) < 0 then y will be an increasing function of t, and limt→∞ y(t) = 0

(4) If 0 < y(0) < 1 then y will be a decreasing function of t, and limt→∞ y(t) = 0

(5) If y(t) > 1, then y will be an increasing function of t, and it will increase toward

∞.

That’s a lot of qualitative information, and we didn’t need to calculate an explicit gen-

eral solution of the ODE in order to obtain it!

EXERCISE 6: Create a slope field and sketch some solution curves for y′ = y3 − y to confirm the

conclusions above.

It is also possible for an equilibrium solution to be half-stable, meaning that nearby

solutions tend toward the equilibrium value on one side but away on the other. This is

usually indicated on the phase line by drawing a half-shaded circle. The icon would be

used for an equilibrium value for which solutions that begin with slightly greater initial

values tend toward the equilibrium value but solutions that begin with slightly lesser

initial values tend away from it. The reverse situation would be indicated by .

EXERCISE 7: Interpret the following phase line:

2 4 6
y

EXERCISE 8: A tank contains a changing mixture of pure water and brine (salt water solution).

The differential equation that models the quantity of salt in the tank after t minutes have passed

is

Ṡ = 8− 4S

25

grams
min

where S(t) is measured in grams. Use a phase line analysis to determine the long-term behavior,

limt→∞ S(t). (Note: Because S represents mass, which cannot be negative, it makes sense in this

context to restrict our attention to a positive S-axis for the phase line.)

Let’s finish this chapter by answering the prototype question that began it. Consider

the differential equation ẋ = k(a−x)(b−x) where a, b and k are positive constants. Assume

that a is less than b, just so that we can draw a graph (if b is less than a, then the graph
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will be the same but with the labels switched). Then the graph of the relationship between

ẋ and x which we obtain is:

x’

x
a b

This leads to the phase line

x
a b

In the prototype question, we had a = 2 and b = 4, giving us

x
2 4

We also have x(0) = 1, which means the x-value begins to the left of the stable equilib-

rium shown on the phase line. Therefore, a solution of the differential equation with the

initial condition x(0) = 1 will increase and have the property that limt→∞ x(t) = 2.

A reader who takes the time to compare this analysis with the work necessary to find

an explicit solution of the IVP and then compute the limit will certainly come to appreciate

the usefulness of this graphical approach.
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Additional Exercises

Sketch a slope field for the following differ-

ential equations on the domain −5 ≤ x ≤ 5

and −5 ≤ y ≤ 5.

9 y′ = 2− y

10 y′ = y + 3

11 y′ = x− y

12 y′ = 2x+ 4y

13 y′ = y(y − 3)

14 y′ = y2(y + 2)

Write down a differential equation that is

(approximately) consistent with the follow-

ing slope fields.

15

16

Use the phase lines below to determine the

long term behavior of y(t) for the initial con-

ditions (a) y0 = −1, (b) y0 = 1 and (c) y0 = 3.

17

0

18

-1 1

19

-2 0

Sketch a phase line for each of the following

differential equations.

20 ẏ = y(2− y)

21 ẏ = y2 + 1

22 ẏ = y2(y + 2)

23 ẏ = 4y4 − y2

Sketch a phase line that is consistent with

the following slope fields.

24
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25

26 Consider a falling body that experiences

inertial drag and whose velocity (in meters

per second) is modeled by the ODE v̇ =

9.8 − Kv2. Draw a phase line for v ≥ 0.

Use the phase line analysis to determine the

equilibrium solution of the ODE. If the ob-

ject’s terminal velocity is measured as v =

9.4× 101m
s , what is the value of the parame-

ter K? Round your answer to two significant

figures, and include units.

27 Use a phase-line analysis to determine

the long-term behavior of solutions to the

differential equation

ẏ = sin(y).

How does the behavior depend on the initial

value y(0)? Give a complete answer for any

possible initial value.

28 Perform a phase-line analysis for the lo-

gistic growth model,

Ṗ =
k

M
P (M − P ).

The parameters k and M are positive con-

stants.

29 Find a differential equation ẏ = f(y)

which is consistent with the phase line

shown below (there is more than one correct

answer):

y
0 1

30 Find a differential equation ẏ = f(y)

which is consistent with the phase line

shown below (there is more than one correct

answer):

y
2 4

31 This problem illustrates a weakness

of relying on graphical approaches alone –

namely, that we may not be able to deter-

mine the domains of unbounded solutions

without using an analytical method. Sup-

pose that u(t) is the solution of u̇ = |u|,
u(0) = 1, and suppose that v(t) is the so-

lution of v̇ = v2, v(0) = 1. Illustrate that the

differential equations for u and v give iden-

tical phase lines and similar slope fields.

In particular, notice that the solutions of

both initial value problems will be increas-

ing functions of t that approach ∞. Then

solve the initial value problems analytically

to prove that the intervals of definition for

these two solutions are not the same. Thus

while it makes sense to discuss limt→∞ u(t),

it does not make sense to discuss the same

limit of v(t). What limit for v(t) should be

considered instead as the long-term behav-

ior? (Hint: Since the solution u is a positive
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function, you can drop the absolute value

sign when you use separation of variables

to solve for u(t). Verify directly that the for-

mula you end up with for u is indeed a solu-

tion of the initial value problem.)

32 The command dfieldplot can be

used to generate a slope field using the com-

puter algebra software Maple. First, call

up the necessary subroutines by executing

the command with(DEtools). Here’s the

command to generate the slope field in Ex-

ample 2.1:

dfieldplot(y’(x)=3y(x)+x, y(x),

x=-3..3, y=-3..3)
Modify this command to generate a slope

field for y′ = sin(y) on the domain 0 ≤ x ≤ 6,

−4 ≤ y ≤ 4. Use the resulting graph to

describe the long-term behavior of a solu-

tion satisfying the initial condition y(0) = 1.

Compare with your answer to Exercise 27.



CHAPTER 3

Numerical Methods

Prototype Question: Consider an object whose shape

changes as it falls against air resistance (for example, a

raindrop). The changing shape means the drag coefficient

will change as well. Assume we can model this behavior

with the differential equation

v̇ = g − k(v)v2,

where k(v) denotes the drag coefficient as a function of the

object’s instantaneous velocity. For a falling object with a

drag coefficient k(v) = ev, find the velocity 3 seconds after

it begins to fall from rest.

The prototype question asks us find the value of v(3) for the solution of the initial-value

problem v̇ = 9.8 − evv2, v(0) = 0. Although this looks like a number of problems we have

solved already, it is different in that we cannot find an explicit solution to this differential

equation. The reader can attempt to use separation of variables to find a solution but will

get stuck at the step of calculating
∫

1
9.8−evv2 dv.

We will not discuss any method in this textbook for finding an explicit general solution

of v̇ = 9.8 − evv2. (In fact, the author is unaware of any technique that could accomplish

this.) We could do a graphical analysis of this ODE to try to discern the long-term behavior,

but those methods are not terribly useful for estimating the value at a specific input.

Instead, we will explore a method for finding approximate values of solutions to ODE

even when it is not possible to find formulas for solutions analytically. That is to say, we

will find an approximate value of v(3), even though we will not be able to find an explicit

formula for v(t).

The discussion below will illustrate the basic idea of our approach, and the example

afterward will demonstrate the fully developed idea with a more efficient organization of

the calculations.

41
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Consider the initial value problem
⎧⎨
⎩
y′ = y2 − x

y(0) = 1
.

Suppose we want to know the value of y(1), but we are unable to calculate an exact solution

for the ODE. We can find an approximate solution as follows.

If y(x) is the solution, then the initial condition implies that y(0) = 1, and if we insert

x = 0 and y = 1 into the differential equation, we see that y′(0) = (y(0))2−(0) = (1)2−0 = 1.

Therefore the tangent-line approximation to y(x) at the point (0, 1) is

y(x) ≈ x+ 1.

(This is the line through (0, 1) with slope y′(0) = 1.)

EXERCISE 1: Suppose that y(t) satisfies the initial value problem y′ = y3 +3x, y(1) = 2. Without

solving the differential equation, find y′(1), and find the equation of the tangent line to the graph

of y(x) at the point (1, 2).

We can use the tangent line approximation y(x) ≈ x+1 to calculate that y(1) ≈ 2. This

picture illustrates the solution curve and the tangent line we just calculated:

EXERCISE 2: Suppose that y(t) satisfies the initial value problem y′ = y3 + 3x, y(1) = 2. Use the

tangent line approximation to estimate the value of y(1.5).
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The idea was that, because we know the slope of the solution curve at the initial point

(0, 1), we can use that to project what happens as x increases. However, it is not hard to

see that the linear approximation is only good for small values of x – the actual solution

curve grows quickly as x increases, and the difference between the curve and the tangent

line will only worsen away from the initial point. The tangent line approximation will only

give a good approximation if Δx is small.

We can work around that limitation by using the tangent line approximation for a

small interval, say, for 0 ≤ x ≤ 0.5, and then creating another tangent line approximation

at the new point where we find ourselves. According to the first tangent line approxima-

tion, when x = 0.5, we get y ≈ 1.5; inserting this into the differential equation gives us

y′ ≈ (1.5)2−(0.5) = 1.75. This becomes the slope for the second tangent line approximation,

the segment from x = 0.5 to x = 1:

Note that our second tangent line is not tangent to the actual solution satisfying y(0) =

1, rather it is tangent to another solution of the differential equation, say y2(x), which

satisfies y2(0.5) = 1.5. But if (0.5, 1.5) is sufficiently close to the first solution curve we

drew, then it should give us a good approximation for y(1) anyway. Based on this, we

calculate that y(1) ≈ 1.5 + 0.5((1.5)2 − 0.5)) = 2.375.

Now our approach for finding an approximate solution has taken shape: by using a

finer subdivision of intervals, we can obtain a better approximation for the value of y(1).

The following graph shows how dividing the interval [0, 1] into 4 subintervals gives an

even better approximation:
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And here we use 10 subintervals:

Intuitively, we expect that as we increase the number of subintervals, the piecewise-

defined function will bear an ever increasing resemblance to the actual solution curve.

Indeed, it is possible to make a rigorous statement out of this (using limits) and to prove

it for functions that satisfy the hypotheses of the Existence and Uniqueness Theorem.

We don’t need the graphs in order to apply this method. All we need to do is to keep

track of what happens to the y-value each time we increment the x-value. We start by fix-

ing a value of Δx, which is called the step size. Let (x0, y0) represent the initial condition.

Let mi represent the slope of a tangent line approximation to a solution curve at (xi, yi),
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which we find by plugging (xi, yi) into the differential equation. Then let xi+1 = xi + Δx,

and yi+1 = yi +miΔx. We can keep track of all this information in a table. Here’s such a

table for the ODE y′ = y2 − x with the initial condition (0, 1) and step size Δx = 0.1:

xi yi mi = y2i − xi yi+1 = yi +miΔx

0 1 1 1.1

0.1 1.1 1.11 1.211

0.2 1.211 1.2665 1.3377

0.3 1.3377 1.4893 1.4866

0.4 1.4866 1.8099 1.6676

0.5 1.6676 2.2808 1.8957

0.6 1.8957 2.9935 2.1950

0.7 2.1950 4.1180 2.6068

0.8 2.6068 5.9955 3.2064

0.9 3.2064 9.3808 4.144

Notice that the entry for yi+1 is also the entry for yi in the next row, because it repre-

sents the y-value that goes with the next x-value. The very last entry in the table is the

y-value that goes with x = 1. Based on this information, we estimate that y(1) ≈ 4.144. �
The approach described here is known as Euler’s method. It is not a highly efficient

algorithm, but it is the basic foundation upon which methods in the numerical analysis of

differential equations are built.

Our final estimate in the last example was an underestimate. We could have im-

proved it by reapplying the algorithm with a smaller step size Δx. For example, using

Δx = 0.01 leads to the approximation y(1) ≈ 7.8. Using Δx = 0.001 gives us y(1) ≈ 9.16.

Using Δx = 0.0001 gives us y(1) ≈ 9.35, which is the same value (to two decimal places)

which we get when we use Δx = 0.000001. The spreadsheet used to obtain this last re-

sult had 1 million lines of calculations. Clearly there is a trade-off between accuracy and

how computationally-intensive the method will be to implement as one considers various

choices of Δx. There are variations on this method which will converge faster, meaning

they give similar accuracy with a larger increment Δx, and they can therefore be calcu-

lated more quickly. The computational cost of a numerical method is an important area

of study in applied mathematics. Many other algorithms have been discovered which are

more efficient than Euler’s method, even if they are just refinements of the same idea.
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Several refinements are discussed in the problem set for this chapter. Learning Euler’s

method is preparation to begin our study of the more advanced techniques.

Before proceeding to another example, we should take a moment to notice that there

is another, more symbolic way of understanding Euler’s method. If y satisfies the IVP

y′ = f(x, y) and y(x0) = y0, then integrating both sides of the differential equation from x0

to x1 = x0 +Δx gives us

y(x1)− y(x0) =

∫ x1

x0

f(x, y(x)) dx,

or

y(x1) = y0 +

∫ x1

x0

f(x, y(x)) dx.

If Δx is small and f is continuous, then the integrand is approximately constant on the

domain of integration, which has length Δx, and therefore

y(x1) ≈ y0 + f(x0, y0)Δx.

Similarly,

yi+1 ≈ yi + f(xi, yi)Δx,

and this is exactly the recursion we used to find approximate values of y.

EXAMPLE 1: Use Euler’s method with a step size of Δt = 0.25 to estimate y(1), where y is

the solution of the IVP ẏ = sin(y), y(0) = 2. Maintain 6 decimal places of accuracy at each

step of the calculation, and report the final answer rounded to 2 decimal places.

Solution: We construct a table of values for ti = 0 + 0.25(i − 1) and the corresponding

values of yi, mi and yi+1:

ti yi mi = sin(yi) yi+1 = yi +miΔt

0 2 0.909297 2.227324

0.25 2.227324 0.792116 2.425353

0.5 2.425353 0.656553 2.589492

0.75 2.589492 0.524477 2.720611

Therefore y(1) ≈ 2.72. �

EXERCISE 3: Use Euler’s method with a step size of Δx = 0.5 to estimate y(1.5), where y satisfies

y′ = y2, y(0) = 2. Do all the calculations by hand. Draw a slope field to try to predict whether your

approximate answer is an overestimate or an underestimate of the true solution value.
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EXERCISE 4: Use Euler’s method with a step size of Δx = 0.25 to estimate y(1), where y satisfies

y′ = x2 + y2 and y(0) = 0. Use a slope field to try to determine whether your solution is an

overestimate or an underestimate of the true solution value.

RUNGE-KUTTA

A very popular numerical method for finding approximate values of solutions to initial

value problems is the Runge-Kutta method described below. The formula for computing

the values of yi appears to be much more complicated that the formula for Euler’s method.

However, in exchange for this complexity, we obtain an algorithm that is much more effi-

cient in that it gives better approximations with fewer arithmetic computations.

Let’s begin by looking at the formula itself.

The Runge-Kutta Method

For an initial value problem y′ = f(x, y), y(x0) = y0 and a step-

size Δx > 0, define xn = x0 + nΔx and

yn+1 = yn +Δx

(
kn1 + 2kn2 + 2kn3 + kn4

6

)

where

kn1 = f(xn, yn)

kn2 = f

(
xn +

1

2
Δx, yn +

1

2
Δxkn1

)

kn3 = f

(
xn +

1

2
Δx, yn +

1

2
Δxkn2

)

kn4 = f

(
xn +Δx, yn +

1

2
Δxkn3

)

This formula can be thought of as an attempt to improve on estimating the value of∫ xn+Δx
xn

f(x, y(x)) dx. Euler’s Method approximates this integral using the left endpoint

approximation, since f(xn, yn) is just the value of the integrand at the left endpoint. As

you can find in the problem set for this chapter, there is a refinement of this idea (called

the improved Euler formula) that attempts to use a Trapezoid Rule approximation to

estimate the integral; but since we don’t know the value of f(x, y(x)) at the right endpoint,

we approximate it first using Euler’s Method, then plug that approximation back in to

estimate the integral. Recall then the the trapezoid rule basically averages the values at

the left and right endpoints of the interval (and multiplies this average by the length of
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the interval) to approximate the integral. So the improved Euler formula gives us

yn+1 = yn +Δx

(
f(xn, yn) + f(xn +Δx, yn +Δxf(xn, yn)

2

)
.

The Runge-Kutta method is in turn a refinement of this idea. It uses a weighted average

of the value of f(x, y) approximated at several points throughout the interval. Notice that

if f(x, y) didn’t depend on y, then the weighted average in the Runge-Kutta formula would

simplify to
Δx

6

(
f(xn) + 4f

(
xn +

1

2
Δx

)
+ f(xn +Δx)

)
,

which is precisely Simpson’s Rule for approximating the integral.

EXAMPLE 2: Use the Runge-Kutta method to find an approximate value of y(0.4) for the

solution of y′ = 2y−x, y(0) = 0 using two subintervals. Carry 5 decimal places throughout

the calculations. Round the final answer to three decimal places.

Solution: Dividing the interval [0, 0.4] into two subintervals gives us a step size of

Δx = 0.2. We begin with x0 = 0 and y0 = 0. Using f(x, y) = 2y − x gives us

k01 = f(0, 0) = 0

k02 = f(0 +
1

2
(0.2), 0 +

1

2
(0.2)(0)) = −0.1

k03 = f(0 +
1

2
(0.2), 0 +

1

2
(0.2)(−0.1)) = −0.12

k04 = f(0 + 0.2, 0 + (0.2)(−0.12)) = −0.248

Thus

y1 = 0 + (0.2)

(
(0) + 2(−0.1) + 2(−0.12) + (−0.248)

6

)
= −0.02293

Repeating this process gives us

k11 = f(0.2,−0.02293) = −0.24586

k12 = f(0.2 +
1

2
(0.2),−0.02293 +

1

2
(0.2)(−0.24586)) = −0.34760

k13 = f(0.2 +
1

2
(0.2),−0.02293 +

1

2
(0.2)(−0.34760)) = −0.41538

k14 = f(0.2 + 0.2,−0.02293 + (0.2)(−0.41538)) = −0.61201

and

y2 = −0.02293 + (0.2)

(
(−0.24586) + 2(−0.34760) + 2(−0.41538) + (−0.61201)

6

)
= −0.10239.

That is, y(0.4) ≈ −0.10239. �
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EXERCISE 5: Redo Example 3.2 using just a single subinterval.

The approximate solution found in Example 3.2 is within 3.8% of the correct value of

y(0.4). To obtain similar accuracy, Newton’s method would require at least 44 subintervals!

As a rough estimate of the computational cost of these algorithms, observe that 44 steps

in Newton’s method would require 44 evaluations of f(x, y), whereas the Runge-Kutta

calculation required only 8 (plus 2 more calculations to obtain the weighted average). The

difference in computational cost can grow quickly as the length of the interval increases,

especially when f(x, y) is nonlinear. Thus the Runge-Kutta method can obtain similar

results more efficiently than Newton’s method, or, it can be used to obtain more accurate

results for the same computational investment.

This kind of computational efficiency is especially important in applications that must

compute solutions in “real time”, such as in graphics-intensive video games and automated

piloting systems. Much work is invested in industry to develop and implement efficient

algorithms, as that is often less expensive than attempting to construct computers that

would need to be orders of magnitude faster to implement the less efficient algorithms.
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Additional Exercises

Use Euler’s method to find an approximate

value of y(0.2) using a step size of (a) Δx =

0.1, and (b) Δx = 0.05 (or Δt when appropri-

ate). (c) Then solve the initial value prob-

lem using separation of variables and find

the exact value of y(0.2). Compare your re-

sults.

6 y′ = xy, y(0) = 1

7 y′ = x
y , y(0) = 2

8 ẏ = ty + t, y(0) = 0

9 4ẏ + et+y = 0, y(0) = 0

Use Euler’s method to find an approximate

value of y(0.4) using a step size of (a) Δx =

0.4, (b) Δx = 0.2 and (c) Δx = 0.1.

10 y′ = 2−√
y, y(0) = 0

11 y′ = x+ y, y(0) = 0

12 2y′ = x+ y, y(0) = 1

13 y′ = xy + y3, y(0) = 1

Use the Runge-Kutta method to find an ap-

proximate value of y(0.2) using a step size of

Δx = 0.1.

14 y′ = x+ y, y(0) = 0

15 y′ = y2, y(0) = 1

16 Set up a calculation on a spreadsheet,

or write a short computer program in a

high-level language (such as C++, Java or

Python) to approximate y(2) where y′ =

sin(y)+x and y(0) = 1, using Euler’s method

with a step size of 0.001.

17 Consider the following initial value

problem: y′ = y, y(0) = y0. (a) Use Eu-

ler’s method to find an approximate value

for y(x) by dividing the interval [0, x] into N

subintervals of equal width. (That is to say,

you will use Δx = x
N ). (Hint: First prove

that yi = y0(1 + Δx)i.) (b) Take a limit of

the result in (a) as N → ∞ to get the exact

value of y(x).

18 It was noted in the text that Euler’s

method can be thought of as calculating

yi+1 = yi +

∫ xi+1

xi

f(x, y(x)) dx

by approximating the integrand f(x, y(x))

with its value at the left endpoint:

yi+1 ≈ yi + f(xi, yi)Δx.

We can usually get a better approximation

for the integral, however, if we approximate

the integrand by the average of its values at

the left and right endpoints:

yi+1 ≈ yi +
f(xi, yi) + f(xi+1, yi+1)

2
Δx.

This is equivalent to using the Trapezoid

Rule to approximate the integral, as illus-

trated at below.
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xi xi+1

y'=f(x ,y(x))

The difficulty with using this directly

is that we would need to already have the

value of yi+1 to evaluate the quotient in the

last term. However, we can approximate

the y-value at the right endpoint by using

the value that Euler’s method would give us,

namely yi + f(xi, yi)Δx:

yi+1 ≈ yi

+
f(xi, yi) + f(xi+1, yi + f(xi, yi)Δx)

2
Δx.

This formula is known as the improved

Euler formula, as it usually produces

better accuracy then the regular Euler’s

method when using the same step size.

Use the improved Euler formula to ap-

proximate y(1) for the function satisfying

y′ = y2, y(0) = 1 using a step size of 0.25.

Also calculate the approximate value ob-

tained by the regular Euler’s method, and

find the exact value by solving the IVP with

separation of variables. Compare the re-

sults.

19 Find a formula for approximating

yi+1 = yi +
∫ xi+1

xi
f(x, y(x)) dx by approxi-

mating the integral with the Midpoint Rule

from calculus, using the tangent line ap-

proximation at the left endpoint to obtain

an approximate value of y at the interval’s

midpoint (illustrated in the figure below).

(This is called the modified Euler for-

mula.) Use it to estimate y(0.5) for the func-

tion y′ = √
y+x and y(0) = 1 with a step size

Δx = 0.25.

xi xi+1

y'=f(x ,y(x))

tangent line at xi

midpoint of interval

20 Answer the prototype question from the

beginning of the chapter. Experiment with

step sizes until you are satisfied with the

results. Feel free to use Euler’s method,

Runge-Kutta or either of the modifications

of that method described in the previous

problems. Implement your calculations by

using a spreadsheet or by writing a simple

computer program in a high-level language.
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21 This question illustrates the idea of

sensitive dependence on initial condi-

tions. Consider the initial-value problem

y′ = sin(y), y(0) = π. (a) Use a numerical

method (or a numerical ‘solver’ on a com-

puter) to estimate the value of y(1) using the

initial value y(0) = 3.1416. (b) Redo part (a)

with the initial value y(0) = 3.14159. (c) Ex-

plain the discrepancy between the results in

(a) and (b). Use a slope field or a phase line

analysis to illustrate. (d) What is the ac-

tual value of y(1) when the initial condition

is exactly y(0) = π?



CHAPTER 4

First Order Linear Equations

Prototype Question: A large tank begins with 100 liters

of pure water. A brine solution containing 30 grams of salt

per liter is pumped into the tank at a rate of 3 liters per

minute. The solution in the tank is thoroughly mixed, and

it drains at a rate of 1 liter per minute. How much salt

will be in the tank after 22 minutes?

At first glance, this problem seems quite similar to a mixing problem we were able to

solve earlier using separation of variables. Indeed, the appropriate differential equation

can be obtained using the same rate-in-minus-rate-out approach that we have already

studied. But the key difference here is that the volume of liquid in the tank is not constant.

Because it is draining slower than liquid is being pumped into the tank, the volume after

t minutes will be 100 + 2t L. Letting y(t) denote the number of grams of salt in the tank

after t minutes have passed, we can write the concentration of salt in the tank at time t

as y
100+2t grams per liter. This gives us

dy

dt
= (rate in) - (rate out)

=

(
30

1

g
L

)(
3

1

L
min

)
−
(

y

100 + 2t

g
L

)(
1

1

L
min

)

=

(
90− y

100 + 2t

)
g

min
.

Thus answering the prototype question above requires us to find y(22) where y(t) is the

solution of the IVP

dy

dt
= 90− y

100 + 2t
, y(0) = 0.

This ODE is not separable! Try as you might, you will not be able to algebraically rewrite

the differential equation in the form dy
dt = F (y)G(t), it just can’t be done. However, this

differential equation does have a particularly simple structure: it can be written in the

53



54 4. FIRST ORDER LINEAR EQUATIONS

form dy
dt + p(t)y = g(t), and these are exactly the kinds of differential equations we will

learn how to solve in this chapter.

We say an ordinary differential equation of order 1 is linear if it can be written in the

form:

(1) a(t)y′(t) + b(t)y(t) = f(t)

If a(t) �= 0 on the domain of interest, then dividing by this quantity allows us to rewrite

the equation in the standard form:

dy

dt
+ p(t)y = q(t).

In this chapter, we will explore a technique for analytically solving these differential equa-

tions and other equations that can be converted to this form by a change of variable.

EXAMPLE 1: Solve the initial value problem dy
dx = 3− 4y, y(0) = 1.

First, let us rewrite the differential equation in the form:

dy

dx
+ 4y = 3.

Next, mutiply both sides of the equation by e4x to obtain

e4x
dy

dx
+ 4e4xy = 3e4x.

The point of this last step is that the left side of the equation is now the derivative of e4xy:

d

dx

[
e4xy

]
= 3e4x.

If we anti-differentiate both sides with respect to x, we obtain

e4xy =

∫
3e4x dx =

3

4
e4x + C.

Isolating y gives us

y =
3

4
+ Ce−4x.

The initial condition y(0) = 1 implies that C = 1
4 . Therefore the solution of the IVP is

y =
3

4
+

1

4
e−4x.

�
Multiplying by the expression e4x is what allowed us to recognize the left side of the

equation as a derivative (which would have come from using the product rule), and that

was what allowed us to simplify when we integrated both sides of the equation. For that
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reason, an expression fulfilling this purpose is referred to as an integrating factor. The

basic idea behind our approach to solving first-order linear equations is to multiply both

sides of the equation by an integrating factor that will allow us to “reverse the product

rule” on the left side.

Any first-order linear differential equation written in standard form,

(2)
dy

dx
+ p(x)y = q(x),

is a candidate for this method of integrating factors. Once an equation is written in

this form, we multiply both sides by the integrating factor e
∫
p(x)dx:

e
∫
p(x)dx dy

dx
+ p(x)e

∫
p(x)dxy = q(x)e

∫
p(x)dx.

Now we can reverse the product rule to recognize the left side as a derivative:

d

dx

[
e
∫
p(x)dxy

]
= q(x)e

∫
p(x)dx.

Anti-differentiate both sides to get

e
∫
p(x)dxy =

∫
q(x)e

∫
p(x)dx dx,

and then isolate y:

y = e−
∫
p(x)dx

∫
q(x)e

∫
p(x)dx dx.

The reader should not try to memorize this formula. Instead, think of this as a general

process that can be applied to solve the differential equation.

Solving First-Order Linear ODE

(1) Write the first-order linear equation in standard form

(2) Multiply by an appropriate integrating factor of the form

e
∫
p(x)dx

(3) Reverse the product rule to rewrite the left side as a de-

rivative

(4) Anti-differentiate both sides

(5) Isolate y

Note that, in practice, any anti-derivative of p(x) will suffice when you construct an

integrating factor, so we may ignore the constant of integration when we find e
∫
p(x)dx.

EXAMPLE 2: Solve the IVP ẏ = y
t + 2, y(1) = 2 on the domain t > 0.
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We begin by rewriting the ODE in the form

ẏ − 1

t
y = 2,

and then we multiply both sides by the integrating factor e
∫ − 1

t
dt = e− ln |t| = 1

|t| =
1
t (since

t > 0 by hypothesis) to get
1

t

dy

dt
− 1

t2
y =

2

t
.

Now the left side is a derivative of 1
t y:

d

dt

[
1

t
y

]
=

2

t
.

Integrating yields
1

t
y = 2 ln t+ C

(where we have again used the fact that t > 0), hence

y = 2t ln t+ Ct.

The initial condition y(1) = 2 implies C = 2, so we have

y = 2t ln t+ 2t.

�

EXERCISE 1: Solve the initial-value problem y′ = y + ex, y(0) = 3.

EXERCISE 2: Solve the initial-value problem ẏ = ty + t, y(0) = 1.

EXERCISE 3: Solve the initial-value problem x2y′ + y = 1, y(1) = 2. (Hint: Start by writing the

first-order linear differential equation in standard form.)

Let’s return now to the differential equation which was motivated by our prototype

question.

EXAMPLE 3: Find y(22), where dy
dt = 90− y

100+2t and y(0) = 0.

Write the equation in the form

dy

dt
+

1

100 + 2t
y = 90.
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Use the integrating factor e
∫

1
100+2t

dt = e
1
2
ln |100+2t| =

√
100 + 2t to obtain

√
100 + 2t

dy

dt
+

1√
100 + 2t

y = 90
√
100 + 2t.

(We assumed that 100+2t was positive so that we could avoid writing absolute value signs,

but that is acceptable since we only need a solution on the interval 0 ≤ t ≤ 22.) Therefore

d

dt

[√
100 + 2ty

]
= 90

√
100 + 2t,

and integrating gives us
√
100 + 2ty = 30(100 + 2t)

3
2 + C.

Consequently,

y = 30(100 + 2t) +
C√

100 + 2t
.

The initial condition y(0) = 0 implies that C = −30000, so we have

y = 30(100 + 2t)− 30000√
100 + 2t

,

and from this we can calculate

y(22) = 30(100 + 2(22)) − 30000√
100 + 2(22)

= 1820.

�
In the context of the prototype question for this chapter, this calculation reveals that

there will 1820 g of salt in the tank after 22 minutes.

The next example will illustrate how we can sometimes solve a non-linear differential

equation by converting it into a related linear equation.

EXAMPLE 4: Find a solution of the initial value problem ẏ = y
t + y2, y(1) = 1

2 .

This differential equation is not separable, and it is not linear because of the presence

of the term y2. However, we can find a related linear differential equation in the following

way. Letting u = 1
y , we can write the differential equation in terms of this new variable:

u̇ = − 1

y2
ẏ (by the chain rule)

= − 1

y2

(y
t
+ y2

)
(by the differential equation y must satisfy)

= − 1

ty
− 1

= −u

t
− 1 (since u = y−1).
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Now we have a differential equation that u must satisfy: u̇ = −u
t − 1. If we can solve this

differential equation to find u, then we can take the reciprocal of that solution to find a

formula for y. Rewrite this as

u̇+
1

t
u = −1.

Multiply both sides by the integrating factor e
∫

1
t
dt = eln |t| = |t| = t. (Since the initial

condition corresponds to t = 1, it will be enough if we find a solution whose interval of

definition is only defined on a set of positive numbers containing 1, so we can simplify our

calculations by assuming that t > 0.) This will give us

tu̇+ u = −t.

Reversing the product rule on the left side gives us

d

dt
[tu] = −t.

Integrate both sides with respect to t:

tu =

∫
−t dt = − t2

2
+ C.

Isolate u:

u = − t

2
+

C

t

Because u(1) = 1
y(1) = 1

1/2 = 2, we obtain C = 5
2 . This gives us the formula u = − t

2 + 5
2t ,

and taking the reciprocal (because y = u−1) yields

y =
1

− t
2 +

5
2t

,

or

y =
2t

5− t2
.

�
Observe that the interval of definition for this solution is (−√

5,
√
5), even though we

imagined that we’d be satisfied with t > 0 to simplify our calculations. Sometimes you get

more than you ask for.

The process above can be modified for any differential equation of the form

dy

dx
= p(x)y + q(x)yN ,

where N is a positive integer. These are called Bernoulli equations. For any such

equation, the substitution u = y1−N leads to the differential equation

du

dx
= (1−N)p(x)u+ (1−N)q(x),
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which is a candidate for the method of integrating factors. Again, the reader should not

think of this as a formula to memorize but as a general procedure.

Solving Bernoulli Equations

For an ODE of the form dy
dx = p(x)y + q(x)yN ,

(1) Let u = y1−N ; use the chain rule and the differential

equation for y to find a differential equation for u

(2) Solve for u (be sure to modify the initial condition for y

appropriately)

(3) Use the solution for u to obtain a formula for y

EXERCISE 4: Solve the Bernoulli equation dy
dx = y + y5 subject to the initial condition y(1) = 3.

EXERCISE 5: Solve the Bernoulli equation ẏ = 2y + ty2 subject to the initial condition y(0) = 1.
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Additional Exercises

Use the method of integrating factors to find

the general solution of each of the following

differential equations.

6 y′ = 3y + 2x

7 y′ = 2xy + x3

8 ẏ = t− ty

9 4ẏ + y = e2t

10 dx
dt = −x

t + sin(t) on (0,∞)

Use the method of integrating factors to find

the solution of each of the following initial

value problems.

11 ẏ = −y + t2, y(0) = 0

12 u̇ = 2tu, y(0) = 1

13 ẋ+ x
t =

√
1 + t2, x(1) = 1

Find the solution of each of the following ini-

tial value problems, and use it to determine

the long-term behavior as t → ∞.

14 ẏ = t+ y, y(0) = 1

15 ẏ = t+ y, y(0) = −1

16 t2u̇+ u = t−1, y(1) = 1

Solve each of the following initial value

problems for Bernoulli equations by first

making a substitution to convert it into a

linear differential equation.

17 y′ = y + 3y2, y(0) = 1

18 ẋ = 4x+ x3, x(1) = 1
2

19 u′ = xu+ xu2, u(1) = 1

20 ẏ = y + 2ty2, y(2) = 2

21 Find the general solution of the differ-

ential equation aẏ+ by = c, for any constant

coefficients a, b, c, with a �= 0. (Hint: You

should consider the cases b = 0 and b �= 0

separately.)

22 A large tank begins with 50 gallons of

water into which is dissolved 10 grams of

salt. Salt water solution with a concentra-

tion of 5 grams of salt per gallon is added to

the tank at a rate of 4 gallons per minute.

Meanwhile, the solution in the tank is thor-

oughly mixed and drains at a rate of 2 gal-

lons per minute. How long will it take until

there are 1000 grams of salt in the tank?

How much liquid will be in the tank at that

instant?

23 The population of Freedonia reproduces

at a rate of 3% per year and dies at a rate of

1% per year. Also, 100,000 immigrate into

Freedonia and 40,000 emigrate out each

year. Model this population over time using

a differential equation. Then use an initial

population size of P (0) = 4 million to find an

explicit formula for the population P (t) us-

ing (a) separation of variables, and (b) the

method of integrating factors. Verify that

both methods produce the same final result.
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24 Your retirement account begins with

half a million dollars. It earns 0.25% inter-

est per month (compounded continuously).

You withdrawal $4,000 per month (with-

drawn continuously). Model the balance of

the retirement account using a differential

equation. Then determine how long the sav-

ings will last before you empty the account

entirely.

25 The Springfield P.P. company dumps

toxic waste in a lake in the nearby town of

Shelbyville. The rate at which radioactive

material is dumped increases linearly over

time and is given by r(t) = 100 + 2t grams

per year, where t is the number of years af-

ter 1987. The radioactive material decays

continuously at a rate of 0.7877% per year.

How much radioactive material will there

be in the lake by the end of 2020?

26 A large object begins to sink in a

deep lake of water. The vertical velocity

v, measured in meters per second, satisfies

(roughly) a differential equation of the form

v̇ = 9.8 −Kv,

where K > 0 is a constant. If the object is

falling at 0.2m
s after 10 seconds, determine

how fast it will be falling after 60 seconds.

(This ODE can be solved using separation of

variables, but the method of integrating fac-

tors should be easier.)

27 A large object begins to sink in a lake

that is 100 meters deep. The vertical veloc-

ity v, measured in meters per second, satis-

fies

v̇ = 9.8−Kv,

where K > 0 is a constant. If the object

falls 0.2 meters in the first 5 seconds, esti-

mate when the object will hit the bottom of

the lake. (You will encounter an algebraic

equation that cannot be solved analytically.

Solve it approximately, using a graph or ta-

ble of values on a calculator or computer, but

keep as many decimal places of accuracy as

you can until the end of the problem-solving

process.)

28 The figure below depicts a schematic

diagram of a simple electrical circuit con-

taining a resistor, a capacitor and a voltage

source, wired in series.

V

R

C

The charge q on the capacitor changes

over time, and it can be modeled by the dif-

ferential equation

R
dq

dt
+

1

C
q = V,

where R is the resistance in Ohms, C is the

capacitance in Farads and V is the voltage

in Volts; time t is measured in seconds, and
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the charge q is measured in Coulombs. As-

sume that R, C and V are all positive con-

stants, and find a forumla for q(t) using the

initial condition q(0) = 0. What is the long-

term behavior of the solution?

29 Solve the logistic differential equation

Ṗ = k
MP (M−P ) by treating it as a Bernoulli

equation and making a substitution.

30 The idea of substitution has applica-

tion beyond Bernoulli equations. For ex-

ample, any differential equation of the form

y′ = f(ax + by + c) can be transformed into

a separable differential equation by means

of the substitution u = ax+ by + c. Use this

idea to solve the initial-value problem:

y′ = (x+ 2y)2, y(0) = 1.

31 Solve the initial-value problem y′ =

sin2(x− y), y(0) = 1.

32 Consider the second-order initial value

problem y′′ + 3y′ = x. Make the substitu-

tion u = y′ to create a first-order differential

equation for u(x), find its general solution,

and then integrate that solution to find a

general solution for y(x). Then find a par-

ticular solution that satisfies the initial con-

ditions y(0) = 2, y′(0) = 4.

33 When we start with a first-order lin-

ear equation in the general form a(t)y′(t) +

b(t)y = f(t), we must divide through by

a(t) to put it into standard form, and this

can cause problems if a(t) = 0. Values of t

where a(t) = 0 are called singular points

of the ODE, and dividing by a(t) can cause

the function p(t) in the standard-form equa-

tion dy
dt + p(t)y = q(t) to have discontinuities

at these singular points, which can be prob-

lematic. For example, it may not be possi-

ble to solve an arbitrary IVP with an ini-

tial condition at the singular point. To illus-

trate this, prove that if y satisfies the ODE

ty′ + y = 2t on a domain of definition that

includes the singular point t = 0, then the

only value that y(0) can take is 0. (There-

fore, ty′ + y = 2t cannot be solved for arbi-

trary initial conditions on y(0).)



CHAPTER 5

Taylor Solutions

Prototype Question: Consider an object whose shape

changes as it falls against air resistance (for example, a

raindrop). The changing shape means the drag coefficient

will change as well. We can model this behavior with the

differential equation

v̇ = g − k(v)v2,

where k(v) denotes the drag coefficient as a function of the

object’s instantaneous velocity. For a falling object with a

drag coefficient k(v) = ev, find an approximate formula

for the velocity t seconds after it begins to fall from rest.

This prototype question is very similar to the one we had to begin Chapter 3 on numer-

ical methods, except that it doesn’t specify a particular instant in time. Instead, we are to

come up with a formula the velocity at a arbitrary time t. We will not be able to solve the

problem analytically, so we won’t be able to find a formula for the exact velocity. Instead,

our goal is to find a formula that gives the approximate velocity, at least for a small period

of time. This may sound rather similar to a topic in calculus – Taylor approximations and

Taylor series. In fact, that’s exactly the set of tools we are going to use.

A function f is called analytic at x0 if it can be written as a power series (or a Taylor

series),

f(x) =

∞∑
n=0

an(x− x0)
n,

for x in an open interval containing x0. (Recall that the convention with power series is

to treat (x − x0)
0 as the constant 1, so the first term of the power series is just a0.) For

example, the function f(x) = 1
1−x is analytic at 0 because

1

1− x
=

∞∑
n=0

xn for all x ∈ (−1, 1).

63
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(The reader should recall from calculus that this is the geometric series formula.) Simi-

larly, the exponential function exp(x) = ex is analytic at 0 because

exp(x) =

∞∑
n=0

1

n!
xn for all x ∈ R.

Representing a function as a power series gives us another method for finding solutions to

differential equations.

EXAMPLE 1: Solve the initial-value problem y′ − y = x, y(0) = 4 using power series.

Suppose there is a solution that is analytic near 0 (the x-value of the initial condition).

Let us write the solution as y =
∑∞

n=0 anx
n. Then y′ =

∑∞
n=0 nanx

n−1. Insert these into

the differential equation to get
∞∑
n=0

nanx
n−1 −

∞∑
n=0

anx
n = x.

Without the sigma notation, we can write this as

(0 + 1a1 + 2a2x+ 3a3x
2 + · · · )− (a0 + a1x+ a2x

2 + a3x
3 + · · · ) = x.

Rearranging to combine like terms yields

(a1 − a0) + (2a2 − a1)x+ (3a3 − a2)x
2 + (4a4 − a3)x

3 + · · · = x.

Equating coefficients gives us the following system of equations:

a1 − a0 = 0

2a2 − a1 = 1

3a3 − a2 = 0

4a4 − a3 = 0
...

.

The initial condition tells us that y(0) = 4, and if we insert this into the power series

representation for y we get

4 =

∞∑
n=0

an(0)
n = a0.

So a0 = 4, and the first equation above tells us that a1 − a0 = 0, so a1 = 4 also. The second

equation tells us that 2a2 − a1 = 1, so a2 = a1+1
2 = 5

2 . The third equation tells us that

a3 = 1
3a2 = 5

3·2 , the next equation tells us that a4 = 1
4a3 = 5

4·3·2 , and so on. That is to say,

for n ≥ 2,

an =
5

n(n− 1) · · · (2) =
5

n!
.
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So we have

y = 4 + 4x+
5

2
x2 +

5

6
x3 + · · · = 4 + 4x+

∞∑
n=2

5xn

n!
.

�

EXERCISE 1: Use the Ratio test to verify that the power series y = 4 + 4x+
∑∞

n=2
5xn

n! converges

for x ∈ (−1, 1). Then verify that this function is a solution by inserting it into the differential

equation.

EXERCISE 2: Solve the initial-value problem in the previous example using the method of in-

tegrating factors. Then find a power series representation for your solution. Verify that it is the

same as the solution found above.

The process above relies on the assumption that there is an analytic solution of the

given initial value problem. If not, then this process will not find a solution, or it may

produce nonsense. However, it is often a reasonable assumption, since so many of the

elementary functions we meet in mathematics are in fact analytic.

EXAMPLE 2: Consider the initial value problem y′ + xy = 0, y(0) = 1. Suppose there is

a solution that is analytic near 0 (the x-value of the initial condition). Let us write the

solution as y =
∑∞

n=0 anx
n. Then y′ =

∑∞
n=0 nanx

n−1. Inserting these representations into

the differential equation gives us

∞∑
n=0

nanx
n−1 + x

∞∑
n=0

anx
n = 0,

or
∞∑
n=0

nanx
n−1 = −

∞∑
n=0

anx
n+1.

If we write this without the sigma notation, we get

0 + a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · · = −a0x− a1x
2 − a2x

3 − a3x
4 − · · · .
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Equating coefficients of powers of x gives us the following system of equations:

a1 = 0

2a2 = −a0

3a3 = −a1

4a4 = −a2
...

.

The first equation tells us a1 = 0, and the third equation tells us that a3 = 0 also. Further-

more, we can see from the pattern of the equations that an = 0 whenever n is odd. One

way to express this is by writing a2n+1 = 0 for n = 0, 1, 2, , , , .

Next, we turn to the even-index coefficients. The second equation tells us that a2 =

−1
2a0. The fourth equation gives us a4 = −1

4a2, which combined with the previous formula

results in a4 =
1
8a0. Again, we see a pattern in the equations for the coefficients a2n:

a2n = − 1

2n
a2(n−1)

=

(
− 1

2n

)(
− 1

2(n− 1)

)
a2(n−2)

= · · ·

=

(
− 1

2n

)(
− 1

2(n− 1)

)
· · ·
(
−1

2

)
a0

=
(−1)n

2nn!
a0.

That is to say, all the even-index coefficients can be written in terms of a0. Notice that

we have not yet used the initial condition y(0) = 1. If we insert this into the power series

representation for y, we get

1 =

∞∑
n=0

an(0)
n = a0.

If we insert this value into the previous formula, we obtain

a2n =
(−1)n

2nn!
.

Hence

y =

∞∑
n=0

(−1)n

2nn!
x2n.

(Notice that our power series omits odd-index powers of x; that is because we already

identified that all the odd-index coefficients are zero.) This formula for y gives us a solution

of the initial value problem. �
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EXERCISE 3: Use the Ratio Test to prove that the series above converges for all x ∈ R. Then

verify that the given function really is a solution by inserting it into the differential equation.

EXERCISE 4: Use power series to solve the initial-value problem y′ − xy = 0, y(0) = 1. Compare

your result with the solution you obtain by separation of variables or the method of integrating

factors. Are they the same?

It can be difficult to come up with a nice formula for the coefficients an, and without

such a formula, it is usually not feasible to write out a full series representation for a

function. However, often we don’t need the whole infinite series but will be satisfied with

the first few terms as an approximation. One way of expressing a function this way is to

use “little-oh” notation: we write f(x) = o(g(x)) as x → a whenever

lim
x→a

f(x)

g(x)
= 0.

This is read out loud as follows: “f(x) is little-oh of g(x) as x approaches a”.

For example, if f(x) = x3, then f(x) = o(x2) as a → 0 because

lim
x→0

f(x)

x
= lim

x→0

x3

x2
= 0.

Similarly, f(x) = o(x) as x → 0; however, f(x) �= o(x3) as x → 0.

We then extend this notation by writing f(x) = h(x) + o(g(x)) as x → a if

lim
x→a

f(x)− h(x)

g(x)
= 0.

(This is the same as saying that f(x)− h(x) = o(g(x)) as x → a.)

For example, sin(x) = x+o(x2) as x → 0 because L’Hospital’s Rule allows us to calculate

lim
x→0

sin(x)− x

x2
= lim

x→0

cos(x)− 1

2x

= lim
x→0

− sin(x)

2

= 0.

The purpose of little-oh notation is that it allows us to say things like “sin(x) ≈ x for

small x” more precisely by saying just how good the approximation is.

Here’s the connection with power series: Let N be a positive integer, and suppose

f(x) =
∑∞

n=0 an(x− x0)
n; then

f(x) =

N∑
n=0

an(x− x0)
n + o((x− x0)

N ) as x → x0.
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That is to say, we can replace the infinite sum by a finite sum if we append the little-oh

notation. In this setting, the little-oh notation represents the error when you drop the

suppressed terms of the series, and it expresses the degree of the error. If the error is

o((x − x0)
N ), that means the missing terms are of degree greater than N (thus they are

very small if x is close to x0). The explicit part of the series,
∑N

n=0 an(x−x0)
n, is called the

N th degree Taylor polynomial of f or the N th degree Taylor approximation of f .

EXERCISE 5: Use the power series representation for ex at 0 to show that e(x
2) = 1+x2+ 1

2x
4+o(x5)

as x → 0.

EXERCISE 6: Prove that, if k > l, then xk = o(xl) as x → 0.

The next example shows this notation in action.

EXAMPLE 3: Let’s find a 2nd degree Taylor approximation for the solution of yy′ = x, y(0) =

2. Write y(x) = a0+a1x+a2x
2+a3x

3+o(x3) as x → 0. Then y′(x) = a1+2a2x+3a3x
2+o(x2)

as x → 0. Inserting these into the differential equation gives us

(a0 + a1x+ a2x
2 + a3x

3 + o(x3))(a1 + 2a2x+ 3a3x
2 + o(x2)) = x.

Let’s distribute, but every time we run into a power of x with exponent 3 or greater, we

will just ‘consume’ it in the notation o(x2):

a0a1 + 2a0a2x+ 3a0a3x
2 + a21x+ 2a1a2x

2 + a2a1x
2 + o(x2) = x.

Combining like terms results in

(a0a1) + (2a0a2 + a21)x+ (3a0a3 + 3a1a2)x
2 + o(x2) = x+ o(x2).

Equating coefficients gives us

a0a1 = 0

2a0a2 + a21 = 1

3a0a3 + 3a1a2 = 0

.

The suppressed equations correspond to powers of x that are greater than 2, but since

we’re seeking a 2nd degree Taylor approximation, we don’t need to worry about those. If

we needed a 3rd degree Taylor approximation, we would need to go a step further with our

equations, and we would need to only suppress terms of degree x4 and higher.
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The initial condition y(0) = 2 tells us that a0 = 2. Inserting this into the first equation

above tells us a1 = 0. Then the second equation simplifies to 4a2 = 1, so a2 = 1
4 . That’s all

we need! The last equation would tell us what a3 is, but we don’t need it, since we’re only

seeking a 2nd degree Taylor approximation.

Using these coefficients, we have

y = 2 +
1

4
x2 + o(x2) as x → 0.

�
Note that we didn’t write “as x → 0” in every single line of the calculation above. That

is acceptable, provided that we make it explicit earlier in the argument and in our final

solution.

EXERCISE 7: Find a 3rd degree Taylor approximation for the solution of yy′ = x, y(0) = 3.

EXERCISE 8: Find a 2nd degree Taylor approximation for the solution of (y′)2 = y, y(0) = 1.

(Hint: There are actually two solutions, because you’ll have some flexibility in choosing one of the

coefficients.)
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Additional Exercises

Use power series to solve the following ini-

tial value problems.

9 y′ = 3y, y(0) = 2

10 y′ = xy, y(0) = −1

11 y′′ = y, y(0) = 4, y′(0) = 0

12 y′′ = xy, y(0) = 1, y′(0) = 0

13 (x+1)y′′+y′−xy = 0, y(0) = 0, y′(0) = 2

14 (x2 + 1)y′′ = xy, y(0) = 1, y′(0) = 2

Find Taylor approximations of degree n for

the following initial value problems.

15 y′ = y2 − x, y(0) = 1, n = 3

16 y′ = y2 + x2, y(0) = −1, n = 3

17 y′′ = y2, y(0) = 1, y′(0) = 0, n = 4

18 y′′ + sin(x)y = 0, y(0) = 0, y′(0) = 1, n =

4 (Hint: Write sin(x) as a power series.)

19 Try to find a 2nd order Taylor approxi-

mation for the solution of (y′)2 = xy, y(0) =

1. You will encounter a contradiction as you

try to calculate the values of the coefficients

in the power series. What does this contra-

diction tell you?

20 Find an alternative approach to the ini-

tial value problem in Exercise 8 that does

not use Taylor series or Taylor approxima-

tions. Explain how that approach also gives

you two different solutions of the initial

value problem.

21 Suppose that f(x) = o(xk) as x → 0 and

h(x) = o(xl) as x → 0, where k, l > 0. (a)

Prove that (fh)(x) = o(xk+l) as x → 0. (b)

Prove that f(x)+h(x) = o(xmin(k,l)) as x → 0.

22 Solve the prototype question for this

chapter using a 2nd order Taylor approxi-

mation. (Hint: You’ll also want to express

the exponential function in the form ex =

1 + x+ 1
2x

2 + o(x2) as x → 0.)

23 The computer software MAPLE can be

used to find Taylor solutions for differential

equations. For example, to compute an ap-

proximate solution to ay′(x) + by(x) = g(x)

with the initial condition y(0) = c, type

dsolve({ay’(x)+by(x)=g(x),y(0)=c},

y(x),series)

and press Enter. Use this command to find

a Taylor approximation for the solution of

y′ + y2 = 1, y(0) = 0. (Note: MAPLE reports

the answer using “big-oh” notation instead

of “little-oh” notation. Big-oh notation indi-

cates the smallest degree of the suppressed

terms. So, for example we could write ex =

1 + x + 1
2x

2 + o(x2) as x → 0, or we could

instead write ex = 1 + x + 1
2x

2 + O(x3) as

x → 0.)

24 Use MAPLE to find a Taylor approxi-

mation for the solution of the second order
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equation y′′ + sin(y) = 0 with the initial con-

ditions y(0) = 0.1, y′(0) = 0. (This differen-

tial equation is related to the motion of an

ideal pendulum. See the Focus on Model-

ing section that follows this chapter to learn

how.)



Focus on Modeling: Pendulums
FOCUS ON MODELING

Pendulums
Attach a mass to the end of a stiff rod that is allowed to swing from a fixed point, and

you have a pendulum. Historically, pendulums have been used as accurate timekeep-

ing pieces and accelerometers. Let’s analyze the behavior of a pendulum by finding

a differential equation governing the rate of change of the angle θ between the rod

and the vertical. In our model, we will use a massless rod of length L, with a mass m

attached to the end.

Fg

Ft

Fr

Fg

θθ

The only external force acting on our pendulum is gravity, denoted by �Fg, which

points downward with magnitude mg. Let us decompose this vector into a sum of two

vectors: one that is parallel to the rod, �Fr (r for ‘radial’); then the other vector, which

we denote by �Ft, must be tangential to the path of the swinging mass. For a given

value of θ, this decomposition is unique. Trigonometric considerations tell us that

|�Fr| = |�Fg| cos(θ) and |�Ft| = |�Fg| sin(θ)|.

The tangential force �Ft causes an acceleration of the mass along the circular path cen-

tered at the pendulum’s fixed point. We know from precalculus that the linear velocity

of the mass is equal to the radius of the circle multiplied by the angular velocity, i.e.,

Lθ̇. Differentiating this expression gives us the acceleration, Lθ̈. Newton’s second law

then tells us that the tangential force equal the mass times the acceleration:

mLθ̈ = −mg sin(θ).
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Notice the negative sign on the right side of the equation: it is there because the

direction of the acceleration will be opposite the direction of the displacement from

θ = 0, since gravity will work to bring the mass back toward that position. Dividing

through by m and rearranging terms gives us the differential equation

θ̈ +
g

L
sin(θ) = 0.

There were three important assumptions made in deriving this model:

(1) the rod remains taught and straight;

(2) the pendulum moves in only two dimensions; and

(3) the motion is not subject to resistance or friction.

Even with these simplifications, the resulting differential equation is not simple to

solve. It can be analyzed using numerical or Taylor methods. But in order to obtain

analytic solutions, we usually make one more assumption: the angle θ remains small.

The point of this assumption is that, when θ is small, sin(θ) ≈ θ (provided θ is measured

in radians) which can be seen by neglecting the non-linear terms in the power series

representation of sine: sin(θ) =
∑∞

n=0
(−1)nθ(2n+1)

(2n+1)! = θ − θ3

3! +
θ5

5! − · · · . Replacing sin(θ)

with θ gives us the simpler, approximate differential equation:

θ̈ +
g

L
θ = 0.

This second-order linear differential equation can be solved analytically using the

methods we will discuss in Chapter 7.





CHAPTER 6

Existence and Uniqueness

Prototype Question: If we can’t find an explicit formula

for a solution to an initial value problem, how do we know

there is a solution at all?

We investigated the behavior of solutions to various ODE using graphical methods

in Chapter 2, and we found approximate values of solutions using numerical method in

Chapter 3. The whole time, we assumed that there were solutions to the given equations,

even when we admitted that we wouldn’t be able to produce formulas for said solutions.

But that assumption really requires proof if we are going to trust any of the conclusions

we draw from graphical and numerical methods. If the assumption is flawed, then those

conclusions will be meaningless.

The next theorem is the main result of this chapter.

Existence and Uniqueness Theorem (Autonomous)

Suppose that f(y) and f ′(y) are defined and continuous on an

open interval containing y0. Then there is an open interval I

containing x0 such that the initial value problem

dy

dx
= f(y), y(x0) = y0

has a unique solution y(x) defined on I.

When we say that a solution to an initial-value problem is unique on an interval I,

we mean that if y and z are both functions that satisfy the initial-value problem on I, then

y(t) = z(t) for all t ∈ I. As the reader will find in the problems at the end of this chapter,

uniqueness isn’t always guaranteed. But it is guaranteed (at least near x0) when f and f ′

are both continuous.

75
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As we discuss the proof of this theorem, we will use a simple example to illustrate how

the proof works. We will consider initial-value problem⎧⎪⎨
⎪⎩

dy
dx = 3y

y(0) = 2
(†)

The problem in (†) is easy to solve using techniques already discussed, but this will work

well to illustrate the relevant ideas.

PICARD ITERATES AND UNIFORM NORMS

A central idea in both the uniqueness and existence arguments is a procedure called

Picard iteration. Suppose that y is a function defined on an interval I. A Picard iterate

of y is another function, ỹ, defined according to the following formula:

ỹ(x) = y0 +

∫ x

x0

f(y(s)) ds

Here, x0, y0 and f are given – they correspond to the data for a given initial-value problem.

EXERCISE 1: Suppose that x0 = 0, y0 = 2, f(y) = y2 and y(x) = x. Prove that ỹ(x) = 2 + x3

3 .

EXERCISE 2: Let x0 = 0, y0 = 0 and f(y) = ey. Find the Picard iterate of the function y(x) = 2x.

EXERCISE 3: Prove that y(x) solves the initial value problem

dy

dx
= f(y), y(0) = y0

if and only if y = ỹ. (Hint: Recall the Fundamental Theorem of Calculus.)

The last exercise reveals the relationship between Picard iteration and initial-value

problems. It allows us to recast the differential equation as an integral equation: finding

a solution y(x) of the equation

y(x) = y0 +

∫ x

x0

f(y(s)) ds

is equivalent to finding a solution of the initial-value problem dy
dx = f(y), y(x0) = y0.

We need to define one more item of notation before we can proceed. For a bounded

function f defined on an interval I, define

‖ f ‖I= min {a; |f(x)| ≤ a for all x ∈ I} .
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This quantity is called the uniform norm of f on I, or just the norm of f for short. Notice

that if |f | attains a maximum value on I, then ‖ f ‖I= maxx∈I |f(x)|.

EXERCISE 4: Let f(x) = x2 − x on the interval I = [0, 1]. Show that ‖ f ‖I= 1
4 .

EXERCISE 5: Let f(x) = e(−x2) and let I = [−1, 1]. Find ‖ f ‖I and ‖ f ′ ‖I .

EXERCISE 6: Prove that if ‖ f − g ‖I= 0, then f(x) = g(x) for all x ∈ I.

The last exercise shows us how we can use the uniform norm to identify when two

functions are equal on a domain I: they are equal if the uniform norm of their difference

is zero.

UNIQUENESS

Let’s look at our example problem (†). Suppose that y(x) and z(x) are two bounded

functions that both satisfy (†) on some interval I centered around x0 = 0, say I = (−k, k).

Then y = ỹ, and z = z̃. Consequently,

|ỹ(x)− z̃(x)| =
∣∣∣∣y0 +

∫ x

x0

f(y(s)) ds − y0 −
∫ x

x0

f(z(s)) ds

∣∣∣∣
=

∣∣∣∣
∫ x

x0

f(y(s))− f(z(s)) ds

∣∣∣∣ .
Using the fact that f(y) = 3y, we can rewrite this as

|ỹ(x)− z̃(x)| =
∣∣∣∣
∫ x

x0

3y(s)− 3z(s) ds

∣∣∣∣ .

We can also use the general fact about definite integrals that
∣∣∣∫ ba g(t) dt

∣∣∣ ≤ ∫ ba |g(t)|dt (pro-

vided a ≤ b) to obtain for x ≥ x0

|ỹ(x)− z̃(x)| ≤
∫ x

x0

3|y(s)− z(s)| ds ≤ 3

∫ x

x0

‖ y − z ‖I ds = 3 ‖ y − z ‖I |x− x0|.

Similarly, if x ≤ x0, we get

|ỹ(x)− z̃(x)| ≤
∫ x0

x
3|y(s)− z(s)| ds ≤ 3

∫ x0

x
‖ y − z ‖I ds = 3 ‖ y − z ‖I |x− x0|.

Either way, we see that |ỹ(x) − z̃(x)| ≤ 3 ‖ y − z ‖I |x − x0|. Now let’s focus our attention

on intervals of the form I = (−k, k), where 0 < k < 3. We then have

|ỹ(x)− z̃(x)| ≤ 3k ‖ y − z ‖I for all x ∈ I,
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and therefore

(3) ‖ ỹ − z̃ ‖I≤ 3k ‖ y − z ‖I .

But since y = ỹ and z = z̃, that means

‖ y − z ‖I≤ 3k ‖ y − z ‖I ,

and because 3k < 1, if ‖ y − z ‖I �= 0, this is a contradiction! To see why, just divide both

sides by ‖ y − z ‖I to get 1 ≤ 3k, which implies 1 < 1, which is utter nonsense. What does

this contradiction tell us? It says that ‖ y − z ‖I= 0 on I = (−k, k) for any positive k < 1
3 .

That is to say, y(x) = z(x) on I, and therefore there is only one solution of (†) in I. This

is exactly what we mean by ‘uniqueness’ on I. (Notice that we have said nothing about

whether y and z are equal outside of I.)

Incidentally, because k can be any positive number less than 1
3 , we can really conclude

that y = z on the interval
(−1

3 ,
1
3

)
, because these functions could only fail to be equal on

this interval by failing to be equal on some smaller interval.

The calculations above can be generalized to prove the following important result:

Uniqueness Theorem with Lipschitz Condition

Suppose that f and f ′ are defined and continuous on R. Also

suppose that |f ′| ≤ K on R. Then if y1 and y2 are both functions

that satisfy the initial-value problem

dy

dx
= f(y), y(x0) = y0

on the interval I = (x0 − 1
K , x0 +

1
K ), it must be true that y1(x) =

y2(x) for all x ∈ I.

The statement that |f ′| ≤ K implies |f(y2) − f(y1)| ≤ K|y2 − y1| (by the Mean Value

Theorem), and this inequality is known as a Lipschitz condition on f , which explains

the name of the boxed result above.

This result supposes that f and f ′ are continuous on all of R. In fact, that is not

necessary. It is enough to assume that f and f ′ are continuous on some open interval

containing y0. However, under that weakened hypothesis, we can no longer guarantee the

uniqueness on the entire interval
(
x0 − 1

K , x0 +
1
K

)
. Instead, we can just say that there is

some open interval I containing x0 on which solutions must be unique. To say how large

such an interval is requires delicate analysis which is outside the scope of this text.
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EXERCISE 7: What is the largest interval on which the Uniqueness Theorem with Lipschitz

Condition guarantees uniqueness of the solution to the initial value problem y′ = sin(2y), y(0) = 1?

The next example illustrates how uniqueness might fail if the condition that f ′ exists

and is continuous on an open interval containing y0 is not met.

EXAMPLE 1: Consider the initial value problem y′ = 3y
2
3 , y(0) = 0. The constant function

y(x) = 0 for all x is a solution of this problem, but it is not the only one. Consider, for

example, the function defined by

y1(x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 1

(x− 1)3 if x > 1

.

Observe that y′1(x) = 0 if x < 1 and y′1(x) = 3(x − 1)2 if x > 1. Because y1 is stitched

together from two elementary functions using a piecewise definition, we need to find y′1(1)

using the limit definition of derivative:

lim
h→0−

y1(1 + h)− y1(1)

h
= lim

h→0−

0− 0

h
= 0,

and

lim
h→0+

y1(1 + h)− y1(1)

h
= lim

h→0+

(1 + h− 1)3 − 0

h
= lim

h→0+

h3

h
= lim

h→0+
h2 = 0.

Since the one-sided limits are equal, we have y′1(1) = limh→0
y1(1+h)−y1(1)

h = 0. Combining

these derivative facts gives us

y′1(x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 1

3(x− 1)2 if x > 1
.

Observe also that

3y
2
3
1 (x) =

⎧⎪⎨
⎪⎩
3(0)

2
3 if x ≤ 1

3((x− 1)3)
2
3 if x > 1

=

⎧⎪⎨
⎪⎩
0 if x ≤ 1

3(x− 1)2 if x > 1
,

so y′1(x) = 3y
2
3
1 (x) for all x. Since y1(0) = 0, we see that y1 also satisfies this initial value

problem.

In fact. there are infinitely many solutions of this initial value problem: for any pa-

rameter a ≥ 0, the function

ya =

⎧⎪⎨
⎪⎩
0 if x ≤ a

(x− a)3 if x > a
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will satisfy the differential equation and the initial condition. (If a < 0, only the differen-

tial equation is satisfied.)

Why does the uniqueness argument not apply to this problem? If we think of the

differential equation in the form y′ = f(y), then the right side is f(y) = 3y
2
3 . This function

f(y) is defined for all y ∈ R. However, f ′(y) does not exist at the initial value y0 = 0, and

therefore there is no open interval containing y0 = 0 on which we can say that f and f ′ are

both defined and continuous throughout. �

EXERCISE 8: Use the limit definition of derivative to verify that, for f(y) = 3y
2
3 , the derivative

f ′(0) does not exist.

Uniqueness results are of practical interest because many problems in industry are too

complicated to admit analytic techniques for their solution, and numerical methods must

be relied upon to find approximate solutions. In such circumstances, it is important to

know that the solution one has approximated is the only solution to the problem at hand.

EXISTENCE

How do we know that there is a solution to a given initial-value problem at all? Let’s

again look at our model problem (†). Consider the initial-value y0 as a constant function:

in this case, y0(x) = 2 for all x. Define a sequence of functions yj according to the recursion

formula yj = ỹj−1 for all integers j ≥ 1.

For example,

y1(x) = y0 +

∫ x

x0

f(y0(s)) ds

= 2 +

∫ x

0
3(2) ds

= 2 + 6x

and

y2(x) = y0 +

∫ x

x0

f(y1(s)) ds

= 2 +

∫ x

0
3(2 + 6s) ds

= 2 + 6x+ 9x2.

EXERCISE 9: Verify that y3(x) = 2 + 6x+ 9x2 + 9x3 and y4(x) = 2 + 6x+ 9x2 + 9x3 + 27
4 x

4.
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This sequence of functions is converging to a limit! Observe that

yn(x) = 2
n∑

j=0

(3x)j

j!
,

so that

lim
n→∞ yn(x) = 2

∞∑
j=0

(3x)j

j!
= 2e3x.

Notice that this limit function, y(x) = 2e3x, is a solution of (†)! We have constructed a

solution of the initial-value problem by generating a sequence of Picard iterates. Each

function in the sequence turns out to be a kind of approximate solution. The limit of the

sequence is an exact solution.

We can verify that this will work for a more general initial value problem by looking at

the differences between consecutive terms. If we revisit our uniqueness argument leading

to the inequality (3) and replace y with yj−1 and z with yj−2, we get

‖ yj − yj−1 ‖I≤ 3k ‖ yj−1 − yj−2 ‖I ,

and iterating this inequality j − 1 times leads to

‖ yj − yj−1 ‖I≤ (3k)j−1 ‖ y1 − y0 ‖I .

When we assume that 3k < 1, this tells us that the sequence of yj ’s is contracting – the

difference between consecutive terms decreases geometrically, and that’s enough to guar-

antee that the sequence converges for every x in I. Here’s why:

lim
n→∞ yn(x) = lim

n→∞ yn(x)− yn−1(x) + yn−1(x)− yn−2(x) + · · · − y1(x) + y1(x)− y0(x) + y0(x)

= lim
n→∞ y0 +

n∑
j=1

(yj(x)− yj−1(x))

= y0 +
∞∑
j=1

(yj(x)− yj−1(x)) ,

and the infinite series at the end converges absolutely because (using the Comparison Test

twice)
∞∑
j=1

|yj(x)− yj−1(x)| ≤
∞∑
j=1

‖ yj − yj−1 ‖I

≤
∞∑
j=1

(3k)j−1 ‖ y1 − y0 ‖I ,

where the sum in the very last line is a convergent geometric series.
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That is to say, there is a function defined by the formula y(x) = limn→∞ yn(x) for all

x ∈ I. The definition of the sequence of functions gives us

yn(x) = y0 +

∫ x

x0

f(yn−1(s)) ds,

and taking limits on both sides as n → ∞ gives us

y(x) = y0 + lim
n→∞

∫ x

x0

f(yn−1(s)) ds.

If it is permissible1 to exchange the order of the limit and the integral, we get

y(x) = y0 +

∫ x

x0

lim
n→∞ f(yn−1(s)) ds

= y0 +

∫ x

x0

f
(
lim
n→∞ yn−1(s)

)
ds

= y0 +

∫ x

x0

f(y(s)) ds.

That is to say, y = ỹ, so y is a solution of y′ = f(y), y(x0) = y0 on I. We have argued the

following existence result:

Existence Theorem with Lipschitz Condition

Suppose that f and f ′ are continuous on R, and that |f ′| ≤ K on

R. Then there is a function y(x) defined on I =
(
x0 − 1

K , x0 +
1
K

)
such that y(x0) = y0 and dy

dx = f(y).

As with our earlier uniqueness result, it is possible to loosen the hypotheses. As long

as f and f ′ are continuous on some open interval containing y0, then there is some open

interval I containing x0 on which a solution of y′ = f(y), y(x0) = y0 is guaranteed to exist.

Making these adjustments to the proofs in this chapter gives us the general Existence and

Uniqueness Theorem stated at the beginning of this chapter.

Exercise 24 explores an example of an initial value problem for which these conditions

are not met and for which one can prove that solutions do not exist at all.

NON-AUTONOMOUS EQUATIONS

1It is not permissible! However, a result from advanced calculus called the Arzela-Ascoli Theorem tells us

that it is possible to exchange the order of the limit and the integral if we switch to an appropriate subsequence

of the yj ’s; the subsequence has the same limit y(x), so we end up with the same result. See [3].
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All of the arguments above can be modified to deal with initial-value problems of the

form ⎧⎪⎨
⎪⎩
y′ = f(x, y)

y(x0) = y0

.

In that setting, the appropriate version of the Picard iterate is

ỹ = y0 +

∫ x

x0

f(s, y(s)) ds.

So, for example, given the initial-value problem⎧⎪⎨
⎪⎩
y′ = yx

y(0) = 4
,

the first Picard iterate would be

y1(x) = 4 +

∫ x

0
4s ds = 4 + 2x2.

EXERCISE 10: Find the Picard iterates y2 and y3 for y′ = yx, y(0) = 4.

The determining factors for existence and uniqueness are how the function f(x, y) de-

pends on y. The reader will see this by comparing the Existence and Uniqueness Theorem

with the following. Note that an open rectangle in R
2 is a Cartesian product of open

intervals in R:

R = (a, b) × (c, d) means R =
{
(x, y) ∈ R

2; a < x < b and c < y < d
}
.

Existence and Uniqueness for Non-autonomous ODE

Suppose that f(x, y) and fy(x, y) are defined and continuous on

an open rectangle R containing (x0, y0). Then there is an open

interval I containing x0 such that the initial-value problem

dy

dx
= f(x, y), y(x0) = y0

has a unique solution y(x) defined on I.

VECTOR-VALUED FUNCTIONS

The arguments presented in this chapter can further be modified to prove existence

and uniqueness for differential equations involving vector-valued functions. Vectors turn

out to be a very useful language for working with systems of differential equations, as

we’ll see in Chapter 13.
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Let us denote vectors in R
n by capital letters, such as X and Y . It will be most con-

venient later if we think of these as column vectors and denote the components of these

vectors by the corresponding lower-case letters with subscripts. For example, Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

If f : Rn → R
n is a vector-valued function, then the derivative of f is a matrix Df

whose components represent all the partial derivatives of all the components of f :

for f(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1(Y )

f2(Y )
...

fn(Y )

⎤
⎥⎥⎥⎥⎥⎥⎦
, the derivative is Df =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂yn

...
...

...
...

∂fn
∂y1

∂fn
∂y2

· · · ∂fn
∂yn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

For example, consider the function f defined on R
2 by

f

⎛
⎝y1

y2

⎞
⎠ =

⎡
⎣3y1 + 2y2

4y1 − y22

⎤
⎦ .

The derivative is

Df

⎛
⎝y1

y2

⎞
⎠ =

⎡
⎣3 2

4 −2y2

⎤
⎦ .

Such functions are said to be continuous if all their component functions are continuous.

EXERCISE 11: Find the derivative of the function f : R3 → R
3 defined by

f

⎛
⎜⎜⎜⎝
y1

y2

y3

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣
y1 + y23

y2 − y3

y1y2y3

⎤
⎥⎥⎥⎦ .

We will use vector-valued functions to represent systems of ordinary differential equa-

tions in Chapter 13, and here is the statement of these ideas which we will need in that

context.
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Existence and Uniqueness for Systems

Suppose that f and Df are defined and continuous on an open

set R ⊂ R
n containing Y0. Then there is an open interval I con-

taining x0 such that the initial-value problem

dY

dx
= f(Y ), Y (x0) = Y0

has a unique solution on the interval I.

Here’s a sample application of this theorem.

EXAMPLE 2: Consider the following initial-value problem for a vector-valued function

Y (x) =

⎡
⎣y1(x)
y2(x)

⎤
⎦:

⎡
⎣dy1

dx

dy2
dx

⎤
⎦ =

⎡
⎣−4y2(x)

y1(x)

⎤
⎦ ,

⎡
⎣y1(0)
y2(0)

⎤
⎦ =

⎡
⎣1
0

⎤
⎦ .

The function f in this case is

f

⎛
⎝y1

y2

⎞
⎠ =

⎡
⎣−4y2

y1

⎤
⎦ ,

and the derivative of this function is

Df =

⎡
⎣0 −4

1 0

⎤
⎦ .

The matrix function Df is constant, so it is clearly continuous, as is f . Therefore, according

to this Existence and Uniqueness Theorem for systems, there must be an interval in R

containing 0 on which there is a unique solution of this differential equation. (Indeed,

the solution turns out to be Y (x) =

⎡
⎣ cos(2x)

1
2 sin(2x)

⎤
⎦ . We will explore methods for finding such

explicit solutions in Chapter 13.)
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Additional Exercises

Find the Picard iterates y1 = ỹ0 and y2 = ỹ1

for each of the following initial value prob-

lems.

12 y′ = 2y + x, y(0) = −2, y0 = −2

13 y′ = y2 − x, y(0) = 1, y0 = 1

Calculate ‖ f ‖I for the function f on the

given interval I.

14 f(x) = x3 − x, I = [0, 1]

15 f(x) = x4 − x, I = [0, 2]

For each of the initial value problems be-

low, find the interval on which solutions are

guaranteed to be unique according to the

Uniqueness Theorem with Lipschitz Condi-

tion.

16 y′ = cos(3y), y(0) = 2

17 y′ = tan−1(y), y(1) = 0

18 y′ = 1
1+y2

, y(0) = 0

19 y′ = y tan−1(y)− 1
2 ln
(
1 + y2

)
, y(0) = 1

20 Find the solution of the initial value

problem y′ = y + x, y(0) = 1 using the

method of integrating factors. Then verify

directly that the solution satisfies ỹ = y by

calculating ỹ.

21 The constant function y = 0 is a solution

of the initial value problem

y′ =
√
y, y(0) = 0

for x ≥ 0. However, it is not the only so-

lution. Use separation of variables to find

another solution of this initial value prob-

lem, y0 = 1
4x

2. This will show that solutions

of this initial value problem are not unique.

Why does this example not contradict the

Existence and Uniqueness Theorem?

22 Verify that the functions

ya(x) =

⎧⎪⎨
⎪⎩
0 for x ≤ a

1
4 (x− a)2 for x > a

.

for a > 0 each satisfy the initial value prob-

lem

y′ =
√
y, y(0) = 0

for all x ∈ R. (Hint: When you calculate the

derivative of y to verify that it satisfies the

differential equation, you can use derivative

shortcuts to find y′(x) when x < a and when

x > a, but you need to use the limit definition

of derivative at x = a, similar to the calcula-

tion in Example 1.)

23 Using the same differential equation

and initial condition as in Exercise 22

above, what solution does the sequence of

Picard iterates converge to, starting with

y0 = 0?

24 Suppose p(x) and q(x) are continuous

functions on the interval I containing x0.

Use the method of integrating factors to

prove that any initial value problem of the
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form

dy

dx
+ p(x)y = q(x), y(x0) = y0

has a solution on I. Then explain how the

calculations in that method also guarantee

that this solution is unique.

25 Prove that the initial value problem

xy′ + y = 1, y(0) = 4

does not have a solution on any open in-

terval containing x0 = 0. Why does this

example not contradict the Existence and

Uniqueness Theorem? For what initial con-

ditions (x0, y0) do solutions exist?





Part 2

Second Order Equations





CHAPTER 7

Constant-Coefficient Equations

Prototype Question: Consider a mass attached to one

end of a spring whose other end is mounted in place, and

imagine that this whole system is submerged in a viscous

medium that resists a moving mass. The mass is 0.1 kg,

the spring constant is 2N
m, and the resistance imparted

by the viscous fluid is proportional to the velocity of the

mass, with a constant of proportionality of 0.4N·s
m . If we

stretch the spring, so that the end holding the mass is

displaced from its rest position, and then let go, we can

model the displacement y(t) of the free end with the equa-

tion

0.1ÿ + 0.4ẏ + 2y = 0.

If the initial displacement is y(0) = 0.05 m, and the initial

velocity is ẏ(0) = 0 m
s , determine how long it will take

before the spring’s free end first returns to its natural rest

position. Also, how fast will the mass be moving at that

instant?

y(t)Rest Position

We would next like to write down solutions for second-order constant coefficient

linear ODE. These have the form:

ay′′ + by′ + cy = f(x).

91
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Here, the coefficients a, b and c are constant, and we assume that a �= 0 so that the equation

will indeed be second order. We will first focus on homogeneous equations which are

those that have f(x) = 0 for all x:

ay′′ + by′ + cy = 0.

(Note that this is the form of the differential equation in the prototype question; we will

return to that in the problem set.) Let us seek some inspiration for solving this type of

ODE by first reviewing the similar problem for first-order equations.

The general solution of the first order homogeneous constant-coefficient linear equa-

tion

ay′ + by = 0, a �= 0.

is

y = Ce−bt/a,

which can be verified by the method of integrating factors. If b = 0, then the solution is

just a constant function y = C. Notice that if y = Aert satisfies the ODE ay′ + by = 0, then

the constant r satisfies the algebraic equation ar + b = 0. This will serve as our starting

point for trying to understand second order equations.

EXERCISE 1: Prove that if y = Aerx (with A �= 0) satisfies the differential equation ay′′+by′+cy =

0, then r is a solution of the algebraic equation ar2 + br + c = 0.

The algebraic equation ar2 + br + c = 0 is called the characteristic equation for the

ODE ay′′+ by′+ cy = 0. The previous exercise indicates that there is a connection between

the solutions of the ODE and the solutions of the corresponding characteristic equation.

The following exercise completes the description of that connection.

EXERCISE 2: Prove that if r is a root of ar2 + br + c = 0, then for any constant coefficient A, the

function y = Aert satisfies the differential equation ay′′ + by′ + cy = 0. (Note that r might equal

zero.)

EXERCISE 3: Prove that if y1 and y2 are both solutions of the differential equation ay′′+by′+cy =

0, then so is (y1 + y2).
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The results of the previous three exercises demonstrate that the following is true: If r1

and r2 are roots of the characteristic equation ar2 + br + c = 0, then functions of the form

y = Aer1t +Ber2t satisfy the ODE ay′′ + by′ + c = 0.

We can actually say even more than this: if r1 and r2 are distinct (meaning that r1 �=
r2), then all solutions of the differential equation ay′′ + by′ + c = 0 can be written in the

form y = Aer1t + Ber2t for some appropriate choice of coefficients A and B! One way to

prove this claim is to observe that, by choosing A and B appropriately, we can satisfy

any initial conditions for y(t0) and y′(t0), and then we appeal to a version of the existence

and uniqueness theorem to show that there is only one function that satisfies the solution

and these initial values, so any solution must therefore agree with one obtained this way.

Another proof which doesn’t require as much knowledge of ODE theory is explored in the

problem set at the end of this chapter.

This is an appropriate moment to introduce some terminology. If y1, ..., yk are functions

on a domain I, then a linear combination of these functions is any function of the form

c1y1 + · · · ckyk, where c1, · · · , ck are constants. If the only linear combination of y1, · · · , yk
that gives us the constant function 0 is the linear combination where c1 = · · · = ck = 0,

then we say the set {y1, · · · , yk} is linearly independent on I. And if every solution

of a given differential equation on I can be written as a linear combination of a linearly

independent set of solutions {y1, · · · , yk}, then we call that set a fundamental set of

solutions for the differential equation on I.

According to this terminology, if r1 and r2 are distinct roots of the characteristic equa-

tions for ay′′ + by′ + cy = 0, then {er1t, er2t} is a fundamental set of solutions on R.

Whenever we have a fundamental set of solutions, the general solution of the differen-

tial equation can be written as linear combination of its members.

Second Order Equations with Distinct Roots

If the characteristic equation for

ay′′ + by′ + cy = 0

has two distinct roots r1 and r2, then the formula

y = Aer1t +Ber2t

provides us with the general solution on R of this differential

equation.
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We still need to investigate what to do if the characteristic equation has a repeated

root (that is to say, if it is equivalent to the equation a(r− r1)
2 = 0). But first let us explore

a few examples involving non-repeated roots.

EXAMPLE 1: Find the solution of the initial value problem y′′ + 5y′ + 6 = 0, y(0) = 0,

y′(0) = 2.

First we identify the characteristic equation for this ODE: r2 +5r+6 = 0. Solving this

algebraic equation gives us the roots r1 = −2 and r2 = −3. Therefore, the general solution

of the ODE is

y = Ae−2x +Be−3x.

If we substitute in the given initial conditions, we obtain the system of equations:
⎧⎪⎨
⎪⎩
0 = A+B

2 = −2A− 3B

Solving this system of equations lead to the values A = 2, B = −2. Consequently, the

solution of this initial value problem is

y = 2e−2t − 2e−3t.

�

EXERCISE 4: Solve the following initial value problems:

• y′′ − y′ − 6y = 0, y(0) = 2, y′(0) = 0

• 2y′′ − 5y′ + 2y = 0, y(0) = 1, y′(0) = 2

The process identified above even works when the solutions of the characteristic equa-

tion are complex numbers, though in that case it is often more convenient to write the

solutions in a different form.

Recall that if a complex number is written in the form α+ iβ, where α and β are real,

then eα+iβ = eα(cos(β) + i sin(β)) (this is called Euler’s Formula, and it can be found in

Appendix 2). Also, if the characteristic equation has real coefficients but complex roots,

then the roots must be complex conjugates of one another. Therefore the general solution

has the form:
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y = Ae(α+iβ)x +Be(α−iβ)x

= Aeαx(cos(βx) + i sin(βx)) +Beαx(cos(−βx) + i sin(−βx)

= Aeαx(cos(βx) + i sin(βx)) +Beαx(cos(−βx)− i sin(−βx)

= (A+B)eαx cos(βx) + (A−B)ieαx sin(βx)

If we introduce new coefficients C and D satisfying C = A+B and D = (A−B)i, then

we obtain the form

y = Ceαx cos(βx) +Deαx sin(βx).

That is to say, if {e(α+βi)t, e(α−βi)t} is a fundamental set of solutions for ay′′+by′+cy = 0,

then so is {eαt cos(βt), eαt sin(βt)} (and vice versa).

This allows us to write the general solutions without introducing complex numbers

into the solutions:

Second Order Equations with Complex Roots

If the characteristic equation ar2 + br + c = 0 has complex roots

of the form r1 = α+ iβ and r2 = α− iβ, then the general solution

on R of the ODE ay′′ + by′ + cy = 0 can be written in the form

y = Ceαx cos(βx) +Deαx sin(βx).

EXAMPLE 2: Solve the initial value problem y′′ + 4y = 0, y(0) = 1, y′(0) = 4.

The characteristic equation is r2 + 4 = 0, which has complex roots r1 = 0 + 2i and

r2 = 0− 2i. Thus the general solution is

y(x) = Ce0x cos(2x) +De0x sin(2x) = C cos(2x) +D sin(2x).

Inserting the initial condition y(0) = 1 gives us the equation 1 = C. The derivative of

y(x) is y′(x) = −2C sin(2x) + 2D cos(2x), and inserting the initial condition y′(0) = 2 yields

4 = 2D, so that D = 2. Therefore the solution of the initial value problem is

y(x) = cos(2x) + 2 sin(2x).

�
The previous example illustrated the following useful observation: the roots of r2 +

A2 = 0 are r = ±Ai, and therefore the solutions of y′′ + A2y = 0 are of the form y =
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c1 cos(Ax) + c2 sin(Ax). That is to say, if the roots of the characteristic equation are purely

imaginary, then the general solution does not require any exponential factors.

EXERCISE 5: Solve the following initial value problems.

• y′′ + 2y′ + 2y = 0, y(0) = 1, y′(0) = 0

• y′′ + 25y = 0, y(0) = 2, y′(0) = 5

• 8ÿ + 4ẏ + y = 0, y(0) = 2, ẏ(0) = 0

Finally, we need to determine how to find a general solution to ay′′ + by′ + cy = 0

when the characteristic equation yields only one root, r1. That is to say, sometimes the

characteristic equation might be factored as a(r − r1)
2, in which case we call r1 a double

root of the equation. (It is also sometimes called a “root of multiplicity two”.)

In this case, we know that the expression er1x gives one solution of the ODE which is

never zero. We will use a technique called ‘reduction of order’ to find the general solution

from this one known solution. Readers who are interested in learning more about this

technique will find it in the appendix.

Suppose that y is any solution of the ODE, and let u = y
er1x , so that y = uer1x. The

product rule gives us y′(x) = u′er1x + r1ue
r1x and y′′(x) = u′′er1x + 2r1u

′er1x + r21ue
r1x. Now

we can substitute uer1x for y(x) in the differential equation:

0 = ay′′ + by′ + cy

= a(u′′er1x + 2r1u
′er1x + r21ue

r1x)

+ b(u′er1x + r1ue
r1x) + c(uer1x)

= au′′er1x + (2ar1 + b)u′er1x + (ar21 + br1 + c)uer1x

= au′′er1x.

In the last line we used the facts that ar21+ br1+ c = 0, which is true since r1 is a root of

the characteristic equation, and we used 2ar1 + b = 0, which follows because r1 is a double

root of the characteristic equation:

ar2 + br + c = a(r − r1)
2,

and expanding the right side yields

ar2 + br + c = ar2 − 2ar1r + ar21;
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so that equating coefficients gives us

b = −2ar1 and c = ar21.

Now we have the differential equation au′′er1x = 0, or just u′′ = 0, and therefore u(x) =

Ax+B for some constants A and B. Consequently, y = (Ax+B)er1x, and this is the general

solution when the characteristic equation has a double root.

Second Order Equations with Repeated Roots

If the characteristic equation ar2 + br + c = 0 has a double root

r1, then the general solution on R of the ODE ay′′ + by′ + cy = 0

can be written in the form

y = Axer1x +Ber1x.

This result can also be stated as follows: if r is a double root of the characteristic

equation for ay′′ + by′ + cy = 0, then {erx, xerx} is a fundamental set of solutions for this

differential equation.

EXAMPLE 3: Find the general solution of the ODE ÿ + 4ẏ + 4y = 0.

The characteristic equation is r2+4r+4 = 0, or (r+2)2 = 0, so r = −2 is a double root.

Therefore the general solution of this ODE is

y(t) = Ate−2t +Be−2t.

�

EXERCISE 6: Solve the following initial value problems.

• y′′ − 2y′ + y = 0, y(0) = 1, y′(0) = 4

• 3ÿ + 18ẏ + 27y = 0, y(0) = 2, ẏ(0) = 3.

EXERCISE 7: Solve the following initial value problems.

• y′′ + 9y = 0, y(0) = 2, y′(0) = −2

• d2y
dv2 + y = 0, y(0) = 0, y′(0) = 3

• ẅ − 3ẇ − 4w = 0, w(1) = 0, w′(1) = 2

• 4y′′ − 4y′ + y = 0, y(0) = 0, y′(0) = 0

• v̈ − 4v̇ + 4v = 0, v(0) = 1, v̇(0) = 2

• y′′ + 4y′ + 5y = 0, y(0) = 0, y′(0) = 3
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HIGHER ORDER EQUATIONS

Higher-order constant coefficient linear ordinary differential equations can be treated

similarly.

EXAMPLE 4: Consider the initial-value problem
...
y − ẏ = 0, y(0) = 1, ẏ(0) = 4, ÿ(0) = 0.

The characteristic equation is r3−r = 0, which has roots r = 0, 1,−1. Therefore the general

solution of the ODE is

y(t) = A+Bet +Ce−t.

(The first term on the right side is the same as Ae0t.) Its derivatives are ẏ(0) = Bet −Ce−t

and ÿ(t) = Bet + Ce−t. Inserting the initial conditions gives us the equations
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A+B + C = 1

B − C = 4

B + C = 0

.

The solution of this system of equations is A = 1, B = 2, C = −2, so the solution of the

initial value problem is

y(t) = 1 + 2et − 2e−t.

�
For a root r of a polynomial anxn+an−1x

n−1+· · · a1x+a0, we say that r has multiplicity

m if (x− r)m is a factor. For example, the polynomial x3 − x2 can be factored as x2(x− 1),

from which we see that it has roots x = 0 and x = 1; the root x = 0 has multiplicity 2, and

the root x− 1 has multiplicity 1.

EXERCISE 8: Find the roots and the multiplicities of the following polynomials.

(1) x4 − x2

(2) x3 + 3x2 + 3x+ 1

(3) x5 − 3x4 + 3x3 − x2

In order to describe complicated or abstract products, it is useful to use Π notation,

which is similar to the Σ notation used for sums:

ΠK
k=1ak = a1a2a3 · · · aK .
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Repeated Roots of Multiplicity Three or More

If the characteristic equation for a constant coefficient linear ho-

mogeneous ordinary differential equation is

aΠK
k=1(r − rk)

mk ,

(that is to say, if the roots are r1, r2, ..., rK with corresponding

multiplicities m1,m2, ...mK ), then the general solution on R of

the ODE is

y =
K∑
k=1

mk∑
l=1

xl−1e(rkx).

EXAMPLE 5: If the characteristic equation for a constant coefficient homogeneous ODE

is r2(r − 3)2(r + 1)3, then the general solution is

y = A0 +A1t+B0e
3t +B1te

3t +B2t
2e3t +C0e

−t + C1te
−t.

�

EXERCISE 9: Find a general solution for the differential equation y′′′ + 3y′′ + 3y′ + y = 0.

EXERCISE 10: Solve the initial value problem y(4) − 5y(2) + 4y = 0, y(0) = 4, y′(0) = 4, y′′(0) =

10, y(3)(0) = 16.

HYPERBOLIC TRIGONOMETRIC FUNCTIONS

When the characteristic equation for a second-order ODE has roots r = ±a, the general

solution has the form y = Aeax + Be−ax. It is often useful to write these solutions in a

slightly different way using the following notation.

Hyperbolic Trigonometric Functions

The hyperbolic sine function is

sinh(x) =
ex − e−x

2
,

and the hyperbolic cosine function is

cosh(x) =
ex + e−x

2
.
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EXERCISE 11: Prove that d
dx [sinh(x)] = cosh(x) and d

dx [cosh(x)] = sinh(x). Also verify that

sinh(0) = 0 and cosh(0) = 1.

Here’s how these can be used profitably to express solutions of ODE. If the character-

istic equation has roots r = ±a, then the general solution is

y = Aeax +Be−ax

=
A+B

2
eax +

A−B

2
eax +

A+B

2
e−ax − A−B

2
e−ax

= (A+B)

(
eax + e−ax

2

)
+ (A−B)

(
eax − e−ax

2

)

= C cosh(ax) +D sinh(ax) (with C = A+B and D = A−B).

That is, we can write the general solution as y = C cosh(ax) + D sinh(ax). Furthermore,

according to the content of the next exercise, this form of writing the solution makes it

particularly easy to write down the solution of initial value problems when the initial

conditions are given at x = 0.

EXERCISE 12: For the function y = C cosh(ax) +D sinh(ax), verify that y(0) = C and y′(0) = aD.

These facts can save us the trouble of having to solve a system of linear equations to

find the right coefficients from the initial conditions.

EXAMPLE 6: Solve the initial value problem ÿ − 5y = 0, y(0) = 3, ẏ(0) = 2.

The characteristic equation is r2 − 5 = 0, which has roots r = ±√
5. The general

solution of this equation can be written in the form y = C cosh
(√

5t
)
+ D sinh

(√
5t
)
. The

initial conditions tell us that C = 3 and D = 2√
5
. Therefore

y = 3cosh
(√

5t
)
+

2√
5
sinh

(√
5t
)
.

�

EXERCISE 13: Use hyperbolic trigonometric functions to solve the following initial value prob-

lems:

• y′′ − 2y = 0, y(0) = 2, y′(0) = 2

• y′′ − 4y = 0, y(0) = 0, y′(0) = 8

• y′′ − 3y = 0, y(0) = 1, y′(0) = 2
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BOUNDARY VALUE PROBLEMS

In each the examples done so far, we found a general solution and then used a given

value of the solution and its derivative at some point to specify a unique solution. Because

there are two unknown parameters in the general solutions, we needed two such pieces of

information to specify their values. However, there are other ways to specify the values

of the parameters by giving other information. For example, we could specify the value of

the solution at two different points (instead of the solution and its derivative at a single

point), as the following example illustrates. Such descriptions are called boundary value

problems.

EXAMPLE 7: Solve the following boundary-value problem y′′ − y = 0, y(0) = 1, y(1) = e.

The characteristic equation is r2 − 1 = 0, and this has roots r = ±1. So the general

solutions is

y = Aex +Be−x.

The condition y(0) = 1 implies 1 = A+B, and the condition y(1) = e implies e = Ae− Be.

The solution of this pair of equations for A and B is A = 1, B = 0. Thus the solution of

this boundary value problem is y = ex.

EXERCISE 14: Solve the following boundary value problems:

• ÿ + 4ẏ + 4y = 0, y(0) = 3, y(1) = 5

• 4ÿ + y = 0, y(0) = 1, y(π) = 0

In contrast to initial value problems, boundary value problems don’t always have solu-

tions, and when they do, they may not be unique. This is explored in exercises 7.55-7.56.
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Additional Exercises

Find the root(s) of the characteristic equa-

tion for each of the following differential

equations. Simplify your answers, and iden-

tify any repeated roots as such. (You may

need to rewrite the differential equation in

standard form before you begin.)

15 y′′ − 6y′ + 8y = 0

16 2y′′ + 6y′ − 8u = 0

17 3y′′ + 8y′ + 5y = 0

18 4θ′′ + 2θ = 0

19 ẍ− ẋ+ x = 0

20 ÿ = 4y

21 4v̈ = v̇

22 d2y
dx2 + 25y = 10dy

dx

Find a general solution for each of the fol-

lowing differential equations.

23 y′′ + 3y′ + 2y = 0

24 y′′ − 6y′ + 9y = 0

25 w′′ − 2w′ + 5y = 0

26 4ü+ 4u̇ = 3

27 θ̈ + 16θ = 0

28 2x′′ + 10x = 6x′

29 2v̈ + 4v̇ + 2v = 0

30 d2x
dt2

= 9x

Find the solution of each of the following ini-

tial value problems.

31 y′′ + 12y′ + 36y = 0, y(0) = 0, y′(0) = 2

32 ẍ− 3ẋ− 4x = 0, x(0) = 1, x′(0) = 2

33 w′′ = w, w(0) = −2, w′(0) = 1

34 ÿ − 4ẏ = −4y, y(0) = 1, y′(0) = −1

35 d2v
dz2

+ 8v = 4dv
dz , v(0) = 1, dv

dz (0) = 0

36 ω′′ + 4ω′ + 8ω = 0, ω(0) = 2, ω′(0) = 0

37 20z̈ + 5z = 0, z(0) = 1, ż(0) = −1

38 y′′ = −3y′, y(0) = 1, y′(0) = 1

Find a differential equation whose gen-

eral solution is the two-parameter family of

functions given.

39 y = c1e
2x + c2e

−5x

40 u = c1e
−x + c2xe

−x

41 θ = A cos(2t) +B sin(2t)

42 y = c1e
3t cos(t) + c2e

3t sin(t)

43 w = A sinh(2t) +B cosh(2t)

44 x = At+B

Solve the following boundary value prob-

lems.

45 y′′ − y = 0, y(0) = 1, y(1) = 2

46 y′′ + y′ − 2y = 0, y(0) = 0, y(1) = 1

47 y′′ + 4y = 0, y(0) = 1, y(π/2) = 2

48 ÿ − 4ẏ + 4y = 0, y(0) = 1, y(1) = 3e

49 Suppose y(t) is the solution of the ini-

tial value problem ÿ + 4ẏ + 4y = 0, y(0) = 2,
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ẏ(0) = 1. Find the absolute maximum value

of y on the interval [0,∞).

50 Solve the Prototype Question from the

beginning of this chapter.

51 Find a value of α so that the solution of

the initial value problem y′′ + y′ − 2y = 0,

y(0) = α, y′(0) = 2 satisfies limt→∞ y(t) = 0.

52 Let y(t) be the solution of the initial

value problem ÿ + 2ẏ + γy = 0, y(0) =

1, ẏ(0) = 0, where γ is a real constant. Find

limt→∞ y(t). Does the answer depend on the

value of γ? (Hint: You will need to separate

the solution of this initial value problem into

several cases, depending on the value of γ,

and then find the limit for each one.)

53 In this problem, you will verify that our

formula for the case when the characteris-

tic equation has two distinct coefficients is

in fact the general solution – that is to say ,

that any solution of the ODE can be written

in this form.

Suppose that ay′′ + by′ + cy = 0 has

a characteristic equation ar2 + br + c with

two distinct roots, r1 and r2 (which implies

a �= 0). (a) Verify directly that y1 = er1x

is a solution of the ODE. (b) Let y be an

arbitrary solution of the ODE, and write

y(x) = u(x)er1x. Use reduction-of-order to

prove that u′′ +
(
2r1 +

b
a

)
u′ = 0. (Review

Appendix C if needed.) (c) Use the substi-

tution v = u′ and the method of integrat-

ing factors to deduce that the general solu-

tion for u is u(x) = Ce−(2r1+b/a)x + D. (d)

Conclude that y = Ce−(r1+b/a)x +Der1x. (e)

Because r1 and r2 are both solutions of the

characteristic equation, it must be true that

ar2 + br + c = a(r − r1)(r − r2). Equate coef-

ficients here to prove that r2 = −(r1 + b/a).

(f) Conclude that y(x) = Cer2x +Der1x.

54 The motion of an ideal pendulum is

governed by the differential equation θ̈ +

g
L sin(θ) = 0, where θ is the angle that the

pendulum arm makes with the vertical, L is

the length of the (massless) pendulum arm

and g is the acceleration due to gravity act-

ing on a mass at the end of the rod. If the

angle θ is measured in radians and is suffi-

ciently small, then sin(θ) ≈ θ, so the motion

of the pendulum can be approximately mod-

eled by the differential equation θ̈ + g
Lθ =

0. Use this equation to find the (approxi-

mate) period of a pendulum with arm length

L meters near the Earth’s surface with a

small initial displacement θ0 > 0 an ini-

tial velocity of θ̇ = 0. (Notice that the pe-

riod does not depend on the initial displace-

ment! It will also not depend on a suffi-

ciently small initial velocity.)

55 Not every boundary-value problem has

a solution. Verify that there is no solution

to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ + y = 0

y(0) = 4

y(π) = 0

.
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56 Some boundary-value problems have

solutions, but the solutions are not unique.

Verify that there are infinitely many solu-

tions to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ + y = 0

y(0) = 0

y(π) = 0

.

57 Find all solutions of the boundary value

problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ + 4y = 0

ẏ(0) = 0

ẏ(π) = 0

.

58 Find all real values of λ such that the

boundary value problem
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ + λy = 0

y(0) = 0

y(1) = 0

has infinitely many solutions. What are the

solutions? (This is an example of an eigen-

value problem.)

59 Use power series for ex, sin(x) and cos(x)

to prove that cos(ix) = cosh(x) and sin(ix) =

i sinh(x), where i is a complex number satis-

fying i2 = −1.

60 Prove that {erx, e−rx} is a funda-

mental set of solutions if and only if

{cosh(rx), sinh(rx)} is a fundamental set of

solutions for the same differential equation.
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FOCUS ON MODELING

Spring-Mass Systems
Second-order ODE arise when we model the behavior of a mass attached to a freely-

moving end of an ideal spring, possibly subject to a damping effect (imagine the spring

and mass are submerged in molasses). Understanding this model is a first step toward

being able to analyze more complicated systems of physical oscillators.

Let us begin with a figure illustrating our physical system:

The free end of the spring is allowed to move, and we need to impose coordinates

on the figure to measure this motion. There are many ways we could choose to do

this. The natural point to choose as an origin is the rest position of the free end of

the spring – that is to say, the point where the free end sits when the spring is not

in a state of internal tension. From this point, we can measure the displacement of

the free end of the spring, and we shall adopt the convention that a stretched spring

corresponds to a positive displacement, while a compressed spring corresponds to a

negative displacement.

y(t)Rest Position

To model the physical behavior of this system, our starting point is Newton’s second

law, F = ma (force equals mass times acceleration). If we let y(t) denote the displace-

ment of the free end of the spring from its rest position as a function of time, then the

acceleration is given by ÿ. There will also be at least two forces acting on the mass.

One is the spring’s restoring force, which Hooke’s Law tells us we can model by as-

suming it is proportional to the displacement from rest position: Fs = −ky. (Here, the

spring constant k is positive, and the direction of the spring’s restoring force is in the

direction opposite the displacement.) We will model the damping force by assuming it

is proportional to the velocity of the mass (like viscous drag) and in the opposite direc-

tion: Fd = −Cẏ. Let us denote any other external driving force by Fe, and suppose this

driving force is described by a (possibly constant) function of time, Fe = f(t).



With these conventions we have:

ma = Fs + Fd + Fe

or

mÿ = −ky − Cẏ + f(t),

which we rearrange as

mÿ + Cẏ + ky = f(t).

We now see that this is a second order constant coefficient linear ODE, so we can study

the behavior of this system using the mathematical techniques now available to us.

A standard choice of units for force would be Newtons, and a standard choice for

measuring displacement y would be meters. Thus the spring constant could have units

of N
m , indicating that the magnitude of the spring’s restoring force is k Newtons for each

meter the spring is displaced from rest position. If these units are used, then the last

term on the left side of our ODE will have units of Newtons, which is consistent with

the kind of units we would see on the right side of the equation for an external driving

force Fe. To maintain consistency with the other terms on the left side of the equation,

we should select mass m to be measured in kilograms, and time should be measured

in seconds; that way the units of mÿ will be kg·m
s2 , which are the same as Newtons.

Similarly, the units of the damping coefficient will have to be N ·s
m .

EXAMPLE: Consider a mass of 3 kg attached to the end of a spring with spring

constant 9N
m . If there is no damping or outside driving force, and the mass is initially

stretched 0.05 m from its rest position then released, determine how long it will take

before the spring first returns to its rest position. What will the velocity be at that

instant?

With the parameters m = 3, C = 0 and k = 9, and the driving force f(t) = 0, we are

faced with the differential equation

3ÿ + 9y = 0

and the initial conditions y(0) = 0.05 and ẏ(0) = 0. The solution of this IVP is

y(t) = 0.05 cos(3t).

The free end of the spring will be at the rest position when y(t) = 0, which will occurs

when 3t = π
2 + nπ, or t = (2n+1)π

6 . The smallest positive solution will be t = π
6 ≈ 0.524 s.

At that instant, the velocity will be ẏ
(
π
6

)
= −0.15 sin

(
π
2

)
= −0.15m

s . �





CHAPTER 8

Non-homogeneous Equations

Prototype Question: A simple electrical circuit compo-

nent contains a 2 ohm resistor, a 3 henry inductor and a

4 farad capacitor connected in series. If there is an os-

cillating voltage source connected that supplies 12 sin(4t)

volts at time t, then the charge on the capacitor q(t) can

be modeled by the differential equation

3q̈ + 2q̇ +
1

4
q = 12 sin(4t).

Here, q is measured in amperes, and time is measured in

seconds. The current initially satisfies q(0) = 0 and q̇(0) =

0. Graph the current q(t) on the time interval 0 ≤ t ≤ π

seconds.

Now that we can solve ODE of the form

aÿ + bẏ + cy = 0,

we would like to be able to solve the non-homogeneous equations:

aÿ + bẏ + cy = f(t).

It is possible to write down general representation formulas for any continuous driving

function f(t), but we will mostly be interested in the special cases when f(t) is a polyno-

mial, exponential or trigonometric function.

We will develop the idea of our technique in the following example. Later examples

will illustrate the streamlined version of this process.

EXAMPLE 1: Consider the differential equation

y′′ + 2y′ + y = x2.

109
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We would like to find a general solution of this differential equation. We will start by

trying to find one solution.

What kinds of functions might satisfy the equation? The driving function is a power

function, and in order that a function, its derivative and second derivative might simplify

on the left side of the ODE to just x2, it would be a reasonable guess that some polynomial

function might work as y(x). We will therefore try to find a function of the form yp =

Ax2 + Bx + C that satisfies the ODE. (We call the function yp because it is a particular

solution of the nonhomogeneous diferential equation, not a general solution.) Notice that

we don’t want to try a polynomial of degree 3 or higher because there would be no way for

the higher degree terms to cancel out and leave just x2. Substitute this into the ODE to

obtain

x2 = y′′p + 2y′p + yp

= (2A) + 2(2Ax+B) + (Ax2 +Bx+ C)

= Ax2 + (4A+B)x+ (2A+ 2B + C)

Equating the polynomial coefficients on both sides of the equation gives

A = 1, 4A+B = 0, 2A+ 2B + C = 0.

Consequently A = 1, B = −4 and C = 6. This gives us the function

yp(x) = x2 − 4x+ 6

as one solution of the ODE.

Next, suppose that y(x) is any solution of the equation, and define yh = y−yp. Inserting

this into the differential equation, we see that

x2 = y′′ + 2y′ + y

= (yh + yp)
′′ + 2(yh + yp)

′ + (yh + yp)

= y′′h + 2y′h + yh + y′′p + 2y′p + yp

= y′′h + 2y′h + yh + x2

Subtracting x2 from both sides, we see that

0 = y′′h + 2y′h + yh,
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and we know how to find the general solution of this equation:

yh(x) = Ae−x +Bxe−x.

(There was a bit of foresight here in calling the difference y − yp by the name yh, as the

above calculation shows that yh is a solution of the corresponding homogeneous differ-

ential equation that has the same coefficients as our nonhomogeneous equation does.)

Consequently,

y(x) = yp(x) + yh(x) = x2 − 4x+ 6 +Ae−x +Bxe−x.

All solutions of the ODE can be written in this form, so this is the general solution of the

differential equation. �
In the previous example, we took advantage of the following important idea:

Second Order Non-homogeneous Equations

If yp satisfies the non-homogeneous ordinary differential equa-

tion

ay′′ + by′ + cy = f(x)

and if yh is the general solution of the corresponding homoge-

neous equation

ay′′ + by′ + cy = 0,

then y = yp + yh is the general solution of the non-homogeneous

ODE.

Based on this fact, we can try to find general solutions of non-homogeneous equations

by finding just one solution (which we call a particular solution) and then adding to it

the general solution of the related homogeneous equation.

Our method for finding a particular solution was to guess a form of a particular so-

lution (such as the polynomial Ax2 + Bx + C we tried in the first example), and then by

substituting it into the ODE we find the appropriate values for the unknown coefficients.

This approach is called the method of undetermined coefficients.

It is usually a good idea to solve the related homogeneous equation first, because the

form of that general solution might affect our guess for a particular solution of the non-

homogeneous ODE, as we’ll see in Example 4.

EXAMPLE 2: Solve the initial-value problem y′′ + y′ − 6y = 3x+ 4, y(0) = 1, y′(0) = 0.
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The related homogeneous equation y′′+ y′− 6y = 0 has characteristic equation r2+ r−
6 = 0, and the roots of this are r = −3, 2. Thus the homogeneous equation has the general

solution yh = Ae−3x +Be2x. We guess that there might be a particular solution of the non-

homogeneous equation of the form yp = Cx+D. Inserting this into the non-homogeneous

equation yields

3x+ 4 = (0) + (C)− 6(Cx+D) = −6Cx+ (C − 6D).

Equating coefficients tells us C = −1
2 and then D = −3

4 . This gives us yp = −1
2x − 3

4 , and

adding this to the general solution of the related homogeneous equation yields the general

solution of the non-homogeneous equation:

y = −1

2
x− 3

4
+Ae−3x +Be2x.

The initial conditions allow us to solve for A and B:

y(0) = 1 =⇒ −3

4
+A+B = 1

y′(0) = 0 =⇒ −1

2
− 3A+ 2B = 0

The solution of this system of algebraic equations is A = 3
5 and B = 23

20 . This gives us the

solution of the IVP:

y = −1

2
x− 3

4
+

3

5
e−3x +

23

20
e2x.

�
WARNING: Don’t try to find coefficients for the homogeneous equation that satisfy the

initial conditions – wait until you add in the particular solution for the non-homogeneous

equation. Doing otherwise will usually produce the wrong answer because it will not take

into account the initial values of the particular solution.

EXERCISE 1: Solve the initial value problem y′′ − 5y′ + 6y = x, y(0) = 0, y′(0) = 0.

The previous exercise asks for a solution satisfying the initial conditions y(0) = 0 and

y′(0) = 0. We often refer to such initial values as rest initial conditions, particularly

when the differential equation is describing physical behavior, such as that of a spring-

and-mass system.

EXAMPLE 3: Find the general solution of y′′ + 2y′ + y = e2x.

The characteristic equation is r2 + 2r + 1 = 0, which has a repeated root r = −1. Thus

the general solution of the related homogeneous equation is yh = Ae−x + Bxe−x. Next



8. NON-HOMOGENEOUS EQUATIONS 113

we guess that a particular solution of the non-homogeneous equation will have the form

yp = Ce2x:

e2x = (4Ce2x) + 2(2Ce2x) + (Ce2x) = 9Ce2x,

so that C = 1
9 . Therefore the general solution of the non-homogeneous equation is

y =
1

9
e2x +Ae−x +Bxe−x.

�

EXERCISE 2: Solve the initial value problem ÿ− y = e2t, y(0) = 1, ẏ(0) = 1. (Hint: Guess that this

ODE has a particular solution of the form yp = Ce2t. Convince yourself that this is a reasonable

thing to guess.)

EXERCISE 3: Try to find a particular solution to y′′ + 6y′ = x of the form yp = Cx + D. End up

proving that no such solution exists.

The last exercise shows us how we might need to be more clever when guessing the

form of our particular solution. If any term in the driving function is a solution of the

related homogeneous equation, we will need to modify the form of our guess. For the

differential equation in the last exercise, the correct form of the guess is actually a degree-

two polynomial.

EXAMPLE 4: Consider the ODE y′′ + 6y′ = x. Let us seek a solution of the form yp =

Cx2 +Dx. Inserting this into the differential equation produces

x = (2C) + 6(2Cx+D) = 12Cx+ (2C + 6D).

Equating coefficients gives us C = 1
12 and then D = − 1

36 . Now we see that the function

yp =
1
12x

2 − 1
36x is a solution. �

The general principle we follow is this: if the driving term of the non-homogeneous

equation is a polynomial (or a monomial) of degree N , then our guess for the form of a

particular solution is

yp = xSq(x),

where q(x) is a polynomial of degree N , and where S ≥ 0 is the smallest non-negative

integer such that no term in the polynomial xSq(x) is a solution of the related homogeneous

equation.
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This is why it is a good practice to find the general solution of the related homogeneous

equation first, so that we can compare our guess for a particular solution of the non-

homogeneous equation with solutions of the related homogeneous equation.

EXERCISE 4: Find the general solution of y′′ + 2y′ = x2.

EXAMPLE 5: Find the general solution of y′′ + 2y′ + y = e−x.

The general solution of the related homogeneous equation is yh = Ae−x+Bxe−x. There-

fore no multiple of e−x can be a solution of the non-homogeneous equations. Neither can

any multiple of xe−x. However, we can find a solution by looking for a multiple of x2e−x.

Let yp = Cx2e−x. Then y′p = C(2x − x2)e−x and y′′p = C(2 − 4x + x2)e−x. Insert these into

the ODE:

e−x =
(
C(2− 4x+ x2)e−x

)
+ 2
(
C(2x− x2)e−x

)
+
(
Cx2e−x

)

= 2Ce−x

Thus C = 1
2 . So yp =

1
2x

2e−x is a particular solution, and therefore the general solution is

y =
1

2
x2e−x +Ae−x +Bxe−x.

�
As in Example 3, when we recognized that the natural guess would be a solution of

the homogeneous equation, we modified it by multiplying by the smallest (integer) power

of x such that the product would not be a homogeneous solution. This same approach

can applied when the driving terms is a sine or cosine function. In general, if the driving

term is sin(mx) or cos(mx), our guess will be a function of the form yp = A sin(mx) +

B cos(mx), unless we need to multiply by a power of x to ensure that no term in our guess

is a homogeneous solution.

EXAMPLE 6: Find a general solution of y′′ − y = sin(2x).

The characteristic equation is r2− 1 = 0, which has solutions r = ±1; thus the solution

of the homogeneous equation is yh = Aex + Be−x. Next we guess that a solution of the

non-homogeneous equation might have the form yp = C sin(2x) +D cos(2x). Inserting this
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into the ODE yields

sin(2x) = (−4C sin(2x)− 4D cos(2x)) − (C sin(2x) +D cos(2x))

= −5C sin(2x)− 5D cos(2x).

Equating coefficients gives us C = −1
5 and D = 0, so yp = −1

5 sin(2x). The general solution

is thus

y = −1

5
sin(2x) +Aex +Be−x.

�

EXAMPLE 7: Find a general solution of y′′ + y = sin(2x).

The characteristic equation is r2 + 1 = 0, which has solutions r = ±i. We thus write

the general solution of the homogeneous equation as yh = A sin(x) + B cos(x). Suppose a

particular solution is yp = C sin(2x) +D cos(2x). Then

sin(2x) = (−4C sin(2x)− 4D cos(2x)) + (C sin(2x) +D cos(2x))

= −3C sin(2x)− 3D cos(2x).

So C = −1
3 and D = 0. Thus yp = −1

3 sin(2x) and

y = −1

3
sin(2x) +A sin(x) +B cos(x).

�

EXAMPLE 8: Find a general solution of y′′ + y = sin(x).

As in the previous example, yh = A sin(x) + B cos(x). But because the driving func-

tion sin(x) is a solution of the homogeneous equation, we use the guess yp = Cx sin(x) +

Dx cos(x):

sin(x) = (2C cos(x)− Cx sin(x)− 2D sin(x)−D sin(x))

+ (Cx sin(x) +Dx cos(x))

= 2C cos(x)− 2D sin(x).

Therefore C = 0 and D = −1
2 , yp = −1

2x cos(x) and

y = −1

2
x cos(x) +A sin(x) +B cos(x).

�
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The following table summarizes some of the most common forms of guesses for partic-

ular solutions when we employ this technique.

Standard Guesses for the Method of Undetermined Coefficients

For ay′′ + by′ + cy = f(x), we guess that a particular solution has the form yp(x) as

follows:

f(x) yp(x)

Anx
n + · · ·+A1x+A0 Bnx

n + · · · +B1x+B0

eAx BeAx

xneAx (Bnx
n + · · · +B1x+B0) e

Ax

A1 cos(αx+ β) +A2 sin(αx+ β) B1 cos(αx+ β) +B2 sin(αx+ β)

A1x
n cos(αx+ β) (Bnx

n + · · · +B1x+B0) (cos(αx+ β))

+A2x
n sin(αx+ β) + (Cnx

n + · · ·+ C1x+ C0) (sin(αx+ β))

A1e
Ax cos(αx+ β) +A2e

Ax sin(αx+ β) B1e
Ax (cos(αx+ β)) +B2e

Ax (sin(αx+ β))

A1x
neAx cos(αx+ β) eAx (Bnx

n + · · ·+B1x+B0) (cos(αx+ β))

+A2x
neAx sin(αx+ β) +eAx (Cnx

n + · · ·+ C1x+ C0) (sin(αx+ β))

Whenever necessary, multiply the recommended guess for yp(x) by xs, where s is the

smallest positive integer such that the guess does not contain terms that satisfy the

related homogeneous equation ay′′ + by′ + cy = 0.

EXERCISE 5: Use the method of undetermined coefficients to find one solution for each of the

following differential equations.

(a) y′′ − 3y′ + 4y = x2 + 1

(b) ÿ + 2ẏ + y = sin(2t)

(c) y′′ + 9y = cos(x)

(d) y′′ + 9y = cos(3x)

(e) v′′ + v′ = sin(x)

(f) v′′ + v′ = x2

(g) ẅ − ẇ − 3w = et

(h) y′′ − 5y′ + 6y = e2x

(i) ÿ − 4ẏ + 4y = 2e2t

(j) ÿ − 4ẏ + 4y = 2xe2t

(k) ÿ − 2ẏ + y = t2 + et

(l) ẍ+ 9x = sin(t) + sin(2t) + sin(3t)
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EXERCISE 6: Solve the following initial value problems.

(a) y′′ − y = sin(x), y(0) = 1, y′(0) = 0

(b) y′′ − y = ex, y(0) = 1, y′(0) = 0

(c) ü+ 3u̇+ 2u = 2et, u(0) = 0, u̇(0) = 0

(d) ü− 3u̇+ 2u = 2et, u(0) = 0, u̇(0) = 0

(e) v′′ + 4v = cos(x), v(0) = 0, v′(0) = 0

(f) v′′ + 4v = cos(2x), v(0) = 0, v′(0) = 0

(g) ẍ+ x = et + cos(t), x(0) = 0, ẋ(0) = 0
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Additional Exercises

Use the method of undetermined coeffi-

cients to find a particular solution of the dif-

ferential equation.

7 y′′ − 5y′ + 6y = x2 + 2x+ 3

8 2y′′ + 6y′ − 8y = 2 sin(x)

9 3y′′ + 8y′ + 5y = e−x

10 θ̈ + 4θ = cos(2t)

11 ẍ− ẋ+ x = 2e2t

12 ÿ = 9y + e3t

13 v̈ = v̇ + 2t

14 d2y
dx2 + 25y = 10dy

dx + e4t − e5t

Find a general solution for each of the fol-

lowing differential equations.

15 y′′ − 3y′ + 2y = sin(2x)

16 y′′ − 6y′ + 9y = ex + e3x

17 w′′ − 2w′ + 5y = t2 − 4

18 4ü+ 4u̇ = 3 + t+ e−t

19 θ̈ + 4θ = sin(t) + cos(2t)

20 2x′′ + 10x = 6x′ − 2t− 1

21 2v̈ + 4v̇ + 2v = 4e−t

22 d2x
dt2

= 4x+ cos(2t)

Find the solution of each of the following ini-

tial value problems.

23 y′′ + 12y′ + 36y = t, y(0) = 0, y′(0) = 0

24 ẍ− 3ẋ− 4x = e−t, x(0) = 1, x′(0) = 0

25 w′′ = w + 2 sin(x), w(0) = 0, w′(0) = 1

26 ÿ − 6ẏ = e3t − 9y, y(0) = 1, y′(0) = 0

27 d2v
dz2

+ 8v = 4dv
dz + e2t, v(0) = 0, v′(0) = 0

28 ω′′+2ω′+8ω = 2cos(x), ω(0) = 1, ω′(0) =

0

29 4z̈ + z = et + 4, z(0) = 1, ż(0) = −1

30 y′′ = x+e3x+e−3x−3y′, y(0) = 0, y′(0) =

0

31 Solve the initial value problem de-

scribed in the prototype question at the be-

ginning of this chapter. Then graph the

function on the time interval 0 ≤ t ≤ π.

32 Consider the differential equation

2q̈ + q̇ +
1

8
q = f(t),

where f is the function

f(t) =

⎧⎪⎨
⎪⎩
0 if t < 1

12 if t > 1
.

This models a circuit with a 2 ohm resistor,

a 1 henry inductor and an 8 farad capacitor

connected to a voltage source which is only

‘switched on’ starting at time t = 1. (The

circuit remains closed the whole time, but

the voltage source is not constant.) Find a

formula for a continuous function q defined

on (−∞,∞) that satisfies this equation sub-

ject to the initial conditions q(0) = 1 and

q̇(0) = 0. (Note that we don’t care what the

derivatives of q do when t = 1, since f isn’t

defined at that instant.) Your answer will be
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a piecewise defined function. You’ll need to

solve this problem in two stages. First, solve

the initial value problem with the equation

2q̈ + q̇ + 1
8q = 0 to get a solution on the in-

terval t ≤ 1. Then, use the values of q(1)

and q̇(1) determined by this function as ini-

tial conditions on the interval t ≥ 1, where

the differential equation is 2q̈ + q̇ + 1
8q = 12.

Summarize the results in a single, piecewise

formula.

33 Solve the following non-homogeneous

boundary-value problem by first finding a

general solution of the non-homogeneous

differential equation:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ+ x = t2

x(0) = 1

x(π) = 0

.

34 The function y(t) = t + e−2t + 2te−2t

is a solution of an initial-value problem for

a second-order, non-homogeneous, constant-

coefficient linear differential equation, with

all non-zero coefficients. Find it.

35 Suppose that yp is a solution of a(x)y′′ +

b(x)y′+c(x)y = f(x) on an interval (x1, x2) ⊂
R. Show that any other solution y of this

same differential equation on this interval

can be written as y = yp + yh, where yh is

some solution of the corresponding homoge-

neous differential equation a(x)y′′ + b(x)y′+

c(x)y = 0, provided that solutions exist for

all initial conditions. (This extends the the-

ory developed in this chapter to second-order

ODE with non-constant coefficient functions

a(x), b(x) and c(x).)





CHAPTER 9

Vibrations

Prototype Question: How do the mass, restoring force

and damping coefficient determine the long-term behav-

ior of a spring-mass system? How do the ratings of the

resistor, inductor and capacitor in a RLC electrical circuit

determine its long-term behavior?

In this chapter we study in depth a classic application of second-order constant coef-

ficient systems: simple harmonic oscillators. This class of mathematical objects includes

both the spring-mass systems and the RLC electrical circuits which have already been

introduced.

We will usually not show all the steps involved in solving each initial value problem in

this chapter. The reader is strongly encouraged to keep a pencil and paper handy in order

to fill in all the missing steps. For particularly ugly calculations, the reader may do well

to use a computer algebra system.

The model we use for a spring-mass system is the ODE

mÿ + γẏ + ky = f(t),

where y is the position (or displacement) of the mass at the end of the spring from its

natural position. Compare this with the model for the current i in a circuit with a resistor,

inductor and capacitor in series, together with a voltage source v(t):

Rï+ Li̇+
1

C
i = v(t).

The obvious similarity between these mathematical models becomes even more pronounced

when we observe that, for both systems, all of the coefficients must be positive numbers.

Our goal in this chapter is to explore the various possible behaviors of solutions to

these equations. Because most readers will likely find the physical model of the spring-

mass system offers more intuition than the electrical circuits, we will emphasize that point

121
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of view in our discussion, but it is worth remembering that our analysis can be applied to

any constant-coefficient second order ODE with positive coefficients.

DAMPED VIBRATIONS

Before reading further in this chapter, it is probably a good idea to review the section

“Focus on Modeling: Spring-Mass Systems” that follows Chapter 7.

EXERCISE 1: A mass m kg is attached to the free end of a spring with spring constant kN
m , and

the system is subject to a damping coefficient γNs
m . The spring is stretched 0.5 meters from its

natural length and released. Using the model mÿ+γẏ+ky = 0, determine how long it will take for

the spring to first return to its natural length for each of the following sets of conditions. (There

are no outside forces, such as gravity, acting on the mass.)

(a) m = 3, γ = 0, k = 15

(b) m = 3, γ = 6, k = 30

(c) m = 3, γ = 9, k = 6

(d) m = 3, γ = 6, k = 3

The following graphs illustrate the various solutions y(t) from the previous example

and the previous exercise.



9. VIBRATIONS 123

The captions for these graphs also include terminology which we will explain now. The

term in the first graph, no damping, means the damping coefficient (that is to say, the

coefficient in front of ẏ, which represents resistance to the spring’s motion) is equal to

zero. Notice that the mass oscillates infinitely many times, always returning to the same

maximum displacement as on the previous cycle.

The term describing the second graph, underdamping, indicates that even though

the magnitude of the oscillations decreases, the damping coefficient is too small (relative

to the other parameters) to stop the solution from oscillating forever – regardless of the

initial conditions. That is to say, no matter how small the initial displacement, or whether

there is any initial velocity imparted, the solution will always oscillate through the rest

position infinitely many times. This is because the general solution has the form y =

Ae−t cos(3t) + Be−t sin(3t), and any initial condition (other than the trivial one y(0) =

ẏ(0) = 0) will result in infinitely many such oscillations.

This stands in stark contrast to the third situation, which is described as overdamp-

ing. In this setting, the damping coefficient is so large that no initial displacement or

velocity can cause more than one oscillation! We can see this by analyzing the form of

the general solution: y(t) = Ae−t + Be−2t. If we factor out e−2t, we can write this as

y(t) = e−2t(Aet + B), which will only be zero when t = ln
(−B

A

)
. Depending on the choice

of initial conditions, this value of t may or may not exist (depending on whether −B
A is

positive or not), and even if it does exist, ln
(−B

A

)
may not be positive, in which case that

t value would not be relevant to our model of the situation (since we typically assume the

motion “starts” at t = 0).

The last graph looks very similar to the naked eye, but we have given it a different

name: critical damping. That is because this is the borderline case – if the damping

coefficient is reduced by any positive amount whatsoever, no matter how small, the sit-

uation will switch to underdamping, while if the damping coefficient is increased by any

small amount whatsoever, the system will experience overdamping. Also, the form of the

general solution is slightly different, as the double root of the characteristic equation pro-

duces y(t) = Ae−t +Bte−t. For this kind of function, the equation y(t) = 0 definitely has a

solution – when t = −A
B – though this may still be a negative value and thus irrelevant to

the model.

These differences in behavior depend on the general solution of the equation mÿ +

γẏ + ky = 0, which in turn is determined by the characteristic equation. We can therefore
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use the characteristic equation to classify the type of damping in any setup. To obtain

infinitely many oscillations, our general solution must contain sinusoidal functions, and

those occur when the characteristic equation has complex roots with non-zero imaginary

parts; there will be no sinusoidal behavior if the roots are real. The borderline situation

of critical damping is precisely the case of a double root. If we solve the characteristic

equation using the quadratic formula,

r =
−γ ±

√
γ2 − 4mk

2m
,

then we can detect the types of solutions by looking directly at the discriminant (the ex-

pression inside the square root), as there will be real roots when the discriminant is posi-

tive (or zero) and complex roots when the discriminant is negative. A zero discriminant is

the borderline case.

Classifying Simple Harmonic Oscillators

An oscillating system modeled by the ODE

aÿ + bẏ + cy = f(t)

with a, c > 0 and b ≥ 0 exhibits:

No damping if b = 0

Underdamping if b2 − 4ac < 0

Critical Damping if b2 − 4ac = 0

Overdamping if b2 − 4ac > 0

In the case of a spring-mass system modeled by the equation mÿ + γẏ + ky = f(t), the

quantity b2 − 4ac described in the classification above becomes γ2 − 4mk.

EXERCISE 2: Classify the type of damping for each of the following spring-mass situations.

(1) m = 2, γ = 12, k = 16

(2) m = 2, γ = 12, k = 18

(3) m = 3, γ = 12, k = 18

(4) m = 2, γ = 8, k = 16

EXERCISE 3: Suppose a mass of 4 kg is attached to the free end of a spring whose spring constant

is k = 10N
m . Find the exact value of the damping coefficient γ that will result in critical damping.
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FORCED VIBRATIONS

Next we turn our attention to what happens when we introduce an external driving

force to the oscillating system.

EXAMPLE 1: A mass of 2 kg is hung from a spring whose constant is

34N
m . The other end of the spring is anchored to the ceiling. The system

is subject to viscous damping with coefficient γ = 4N ·s
m . Gravity acts on

the mass and, if not for the spring holding it, would accelerate the mass

at 9.8m
s2 . The mass is pushed up so that the spring is compressed 0.03

meters from its natural length. Then the mass is released. Determine

the long-term behavior of the position of the mass (i.e., if the position

over time is y(t), find limt→∞ y(t)).

The external driving force due to gravity acts downward on the mass, so its effect is to

lengthen the spring. The magnitude of this force is Fe = mg = (2 kg)
(
9.8m

s2

)
= 19.6 N . Our

initial value problem is thus:

2ÿ + 4ẏ + 34y = 19.6, y(0) = −0.03, ẏ(0) = 0.

(Note that since we are treating the downward force of gravity as being in the positive

direction, the initial displacement of the compressed spring must therefore be negative.)

The solution of this IVP is

y(t) =
49

85
− 1031

1700
e−t cos(4t)− 1031

6800
e−t sin(4t).

From this, we see that

lim
t→∞ y(t) =

49

85
.

That is to say, in the long term the mass settles toward a position that is 49
85 ≈ 0.58m below

the spring’s natural rest position. �
The position that the mass (i.e. the free end of the spring) tends toward in the previous

example is called the equilibrium position because that is the position where the force

due to gravity and the internal restoring force of the spring are in equilibrium with one

another – the downward force due to gravity is equal in magnitude to the upward force of

the spring. The reader should verify that the constant function y(t) = 49
85 is an equilibrium

solution of the differential equation in that example.
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EXERCISE 4: The equilibrium position of a hanging spring-mass system is 0.12 meters below the

spring’s natural rest position when a mass of 4 kg is attached to the spring. Determine the spring

constant.

EXAMPLE 2: The spring-mass system in Example 1 begins at rest in the equilibrium

position, where spring and gravitational forces are balanced. An earthquake then begins

to shake the building up and down, imparting a force on the system that is transferred to

the mass. If this force is modeled by the function f(t) = 0.2 sin(0.4t) N , find formula for

y(t), and graph the solution over the time interval 0 ≤ t ≤ 300.

From what we obtained in Example 1, we see that we need to solve the initial value

problem

2ÿ + 4ẏ + 34y = 19.6 + 0.2 sin(0.4t), y(0) =
49

85
, ẏ(0) = 0

The solution of this is

y(t) =
49

85
− 50

177641
cos(0.04t)+

2105

355282
sin(0.04t)+

181891

15099485
e−t cos(4t)+

73053

30198970
e−t sin(4t).

This is a graph of the solution:

�
Notice that in each of the examples we’ve explored so far in this chapter, we have

encountered solutions of the form

y(t) = yS(t) + yT (t),

where yS is periodic and yT (t) → 0 as t → ∞. Thus the long-term behavior of y matches

whatever the long-term behavior is of yS , while yT becomes negligible. (We can see this

in the previous example, where the graph shows a function whose behavior appears to

approach a simple sinusoidal oscillation after the first few seconds pass.) For this reason,
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the term yT is called a transient solution of the IVP, while yS is called the steady-state

solution, or the steady-state response. For example, the solution of the IVP

ÿ + 2ẏ + y = cos(t), y(0) = 0, y′(0) = 0

is the function y(t) = 1
2 sin(t)− 1

2 te
−t. The transient solution is yT = −1

2te
−t, and the steady-

state solution is yS = 1
2 sin(t). The following graph of y and yS indicates the increasing

similarity between these function as t increases.

EXERCISE 5: Suppose that a mass of 6 kg is attached to the free end of a spring whose spring

constant is 12N
m , and the mass when moving experiences viscous damping with a coefficient of 6Ns

m .

The spring is stretched 0.05 meters from its rest position and released. The system also experiences

forced vibrations of 0.5 cos(2t) N . Find the steady-state and transient solutions for this system.

PHASE-AMPLITUDE FORM

Pick any real values of a, b (not both 0) and any positive

value of ω, and then graph y = a cos(ωt) + b sin(ωt). What

you see will look just like a sinusoidal function, possibly

with a horizontal shift. That is to say, it seems like we

ought to be able to write the function in the form y =

A cos(ωt − δ) for some coefficients A and δ. The graph at

right shows one example, but the reader should verify this

by trying a few of his or her own values for a and b.
In fact, we can do exactly that. Recall the difference-of-angles formula for the cosine

function:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β).
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If we apply this identity with α = ωt and β = δ, we obtain

cos(ωt− δ) = cos(ωt) cos(δ) + sin(ωt) sin(δ).

Trying to obtain values of A and δ such that A cos(ωt − δ) = a cos(ωt) + b sin(ωt) amounts

to finding values such that

A (cos(ωt) cos(δ) + sin(ωt) sin(δ)) = a cos(ωt) + b sin(ωt).

Equating coefficients of cos(ωt) and sin(ωt) gives us

(4) A cos(δ) = a and A sin(δ) = b.

Squaring each side of each of these equations and adding them gives us

A2 cos2(δ) +A2 sin2(δ) = a2 + b2,

and therefore A2 = a2 + b2. Let’s take A =
√
a2 + b2. Now if a = 0, then A = |b|, so we

can satisfy the system of equations (4) above by taking either δ = π
2 (if b > 0) or δ = 3π

2 (if

b < 0). On the other hand, if a is not zero, then we can divide the second equation in (4) by

the first equation to obtain

tan(δ) =
b

a
,

and we now see that we can satisfy the system (4) by taking either δ = arctan
(
b
a

)
(if a > 0)

or δ = π + arctan
(
b
a

)
(if a < 0). If we wish to ensure that δ is positive, then we can use

δ = 2π + arctan
(
b
a

)
when a > 0 and b < 0.

The algebraic manipulations we’ve been performing here have really just been an effort

to find a polar-coordinate representation of the point with Cartesian coordinates (a, b).

The apparent complexity occurs only because the range of the inverse tangent function

is
(−π

2 ,
π
2

)
, so that it always wants to produce an angle pointing into the first or fourth

quadrant, and the addition of π in certain instances is necessary to correct for this, as

illustrated in the following figures.



9. VIBRATIONS 129

δ=arctan(b/a)

A

a

b

δ=π+arctan(b/a)A

a

b

arctan(b/a)

EXERCISE 6: Find values of A and δ such that A cos(3t− δ) = 4 cos(3t) + 5 sin(3t).

We can also use these observations to write solutions y = aeαt cos(ωt) + beαt sin(ωt) in

the phase-amplitude form y = Aeαt cos(ωt− δ). The dimensionless parameter δ is called

the phase of the oscillations; if α = 0 (meaning the solution does not decay, which occurs

when there is no damping), then the coefficient A is the amplitude of the oscillations.

EXAMPLE 3: Suppose a mass of 0.01kg is attached to the free end of a spring whose spring

constant is 2N
m , and there is viscous damping described by the coefficient γ = 0.2N ·s

m . The

mass is stretched 0.01m from the natural position and released. Write a formula for the

displacement of the mass from the natural position in the phase-amplitude form.

The initial value problem we need to solve here is

0.01ÿ + 0.2ẏ + 2y = 0, y(0) = 0.01, ẏ(0) = 0.

Using the standard approach, we obtain the solution

y(t) = 0.01e−10t cos(10t) + 0.01e−10t sin(10t).

Factor out the exponential e−10t to obtain

y(t) = e−10t (0.01 cos(10t) + 0.01 sin(10t)) .

Let A =
√

(0.01)2 + (0.01)2 =
√
0.0002 and δ = arctan

(
0.01
0.01

)
= arctan(1) = π

4 . Now we can

write

y(t) =
√
0.0002e−10t cos

(
10t− π

4

)
.
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EXERCISE 7: Rework Example 9.3 assuming that the spring is initially compressed (instead of

being stretched).

EXERCISE 8: Rework Example 9.3 assuming that, in addition to being stretched 0.01m, the mass

is also given an initial velocity of 1m
s in the direction of further stretching the spring.

EXAMPLE 4: A simple electrical circuit contains a 0.2 henry inductor and a 0.05 farad

capacitor connected in series. The charge on the capacitor at time t = 0 is 2.5 coulombs,

and the initial current in the circuit is I(0) = Q̇(0) = 0.2 amperes. Determine the first

time t when the charge Q(t) will reach 1.5 coulombs.

Solution: Since the reciprocal of the capacitance is 1
C = 1

0.005 = 200, the charge Q

satisfies the initial value problem

0.2Q̈+ 20Q = 0, Q(0) = 2.5, Q̇(0) = 0.

The solution is given by

Q(t) = 2.5 cos(10t) + 0.02 sin(10t).

Writing this in phase-amplitude form, we obtain

Q(t) =
√
6.2504 cos

(
10t− tan−1(0.008)

)
.

This form makes it easier to isolate t when we solve the equation Q(t) = 1.5:
√
6.2504 cos

(
10t− tan−1(0.008)

)
= 1.5,

so

t =
1

10

(
cos−1

(
1.5√
6.2504

)
+ kπ + tan−1(0.008)

)

Plugging in a few consecutive values for k, we can see that the smallest positive solution

occurs when k = 0, and in that case

1

10

(
cos−1

(
1.5√
6.2504

)
+ tan−1(0.008)

)
≈ 0.092 s.

�

RESONANCE

It may seem obvious to some that modifying the amplitude F0 of a driving function

F0 cos(ωt) can have a direct effect on the amplitude of the steady-state response. What

is likely less obvious is that modifying the frequency ω of the driving function can also
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affect the amplitude of the response, often in very dramatic ways. We will explore this

phenomenon through two examples before stating the general results. We will begin with

the simplified example of an undamped oscillator.

EXAMPLE 5: Suppose a spring-mass system is modeled by the initial value problem

ÿ + y = cos(ωt), y(0) = 0, ẏ(0) = 0.

Explore the consequences of various values of the driving frequency ω > 0 on the solutions

of this initial value problem.

The characteristic equation is r2+1 = 0, which has roots r = ±i. Therefore the solution

of the related homogeneous equation is

yh(t) = A cos(t) +B sin(t).

We will need to be careful when we guess the form of a particular solution to non-homogeneous

equation, because the form of our guess depends upon the value of ω.

First, if ω �= 1, then we guess yp(t) = C sin(ωt) +D cos(ωt), and the method of undeter-

mined coefficients leads us to the solution

yp(t) =
1

1− ω2
cos (ωt) .

Therefore the general solution of the non-homogeneous problem is

y(t) =
1

1− ω2
cos (ωt) +A sin(t) +B cos(t),

and the initial conditions y(0) = ẏ(0) = 0 imply A = 0 and B = − 1
1−ω2 . Consequently we

have

y(t) =
1

1− ω2
cos (ωt) +− 1

1− ω2
cos(t).

Notice that the amplitude coefficients here all become larger as ω gets closer to 1.

The following three graphs show the solutions corresponding to the driving frequencies

ω = 0.5, 0.9 and 0.98:
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Notice how the magnitude of the vibrations have changed even though the amplitude

of the driving function has not changed, only its frequency has been adjusted.

To complete this analysis, observe that if we start out with ω = 1, then the ini-

tial guess for a particular solution of the non-homogeneous equation will have the form

yp(t) = Ct cos(t) +Dt sin(t), and the reader should verify that this together with the initial

conditions eventually leads us to the complete solution

y(t) =
1

2
t sin(t).

In this case, as time progresses, the magnitude of the oscillations increases without bound:

�
The phenomenon explored in the last example is called resonance. The idea is that

the spring-mass system (or other oscillator) has a natural frequency (or resonant fre-

quency) at which it wants to oscillate, namely, the frequency1 of the solutions to the

corresponding homogeneous differential equation. If the driving force oscillates at close

to this frequency, the resulting oscillations in the system will be larger in amplitude than

they would be if the frequencies were not close (assuming the amplitude of the driving

force is not changed). If the driving force is applied to an undamped oscillator at exactly

the resonant frequency, then the oscillations will grow in magnitude instead of tending to

a steady-state (i.e. periodic) behavior. In Example 9.4, we observed resonance when the

1Here, we are calling ω the ‘frequency’, but a more precise name would be ‘angular frequency’. Calling it

that would distinguish it from the so-called ‘temporal frequency’ f that is a measurement of oscillations per

second. The relationship between angular frequency and temporal frequency is ω = 2πf .
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frequency was ω = 1, which corresponded to a driving function of cos(t). When there is no

damping in a spring-mass system, the resonant frequency is ω0 defined by ω2
0 = k

m .

EXERCISE 9: Find the resonant frequency of a spring-mass system with mass 2 kg, a spring

constant of 1
2
N
m and no damping.

The example above used to illustrate this behavior assumed a damping coefficient of

γ = 0 to make this phenomenon stand out dramatically. If γ > 0, then the homogeneous

solutions will include decaying exponential factors so that they will, over time, tend to

0. However, if γ is very small, then resonance behavior can can still be observed. When

damping is present, we won’t observe vibrations growing unbounded as t → 0 – that can

only happen in the undamped setting. Instead, the resonant frequency for a damped

system is the frequency at which the steady-state response has the greatest amplitude. If

the damping coefficient is small, then the amplitude of vibrations forced at the resonant

frequency can be quite large.

Resonant Frequency

For a driven oscillating system mÿ + γẏ + ky = F0 cos(ωt), the

resonant frequency ωmax is given by

ω2
max =

k

m
− γ2

2m2
.

The derivation of this formula is outlined in the problem set at the end of this chapter.

The following graph illustrates the resonance phenomenon for a driven, damped oscillator

modeled by the differential equation ÿ + 4ẏ + 44y = cos(ωt); the graph illustrates the

amplitude of the steady-state response to this equation as a function of ω. (A formula

for the amplitude of the steady-state response is also covered in the problem set at this

chapter’s end.)
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Notice that the amplitude of the steady-state response peaks when the frequency of

the driving function is ω = 6, which is exactly the value predicted for the resonant fre-

quency. The possibility of a large amplitude in the steady state response becomes even

more dramatic if we use a small coefficient of viscous resistance (say, γ = 0.04):

In this case, the resonant frequency is
√

k
m − γ2

2m2 =
√

(1)(44) − (0.04)2

2(1)2
≈ 6.633.

EXERCISE 10: Find the resonant frequency of a spring-mass system with mass 2 kg, a spring

constant of 200N
m and viscous damping whose coefficient is 24Ns

m .

Resonance phenomena must be taken seriously in the design of building structures

which could shake themselves apart if they were to resonate at the same frequency as,
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say, an earthquake. Engineers can also take advantage of resonance to build devices that

amplify the driving oscillations, such as seismographs and electronic signal amplifiers.
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Additional Exercises

Classify the type of damping for each the

following combination of mass m kg, vis-

cous damping coefficient γNs
m and spring

constant kN
m .

11 m = 4, γ = 4, k = 2

12 m = 4, γ = 4, k = 1

13 m = 2, γ = 4, k = 2

14 m = 3, γ = 5, k = 2

15 m = 2, γ = 0, k = 10

16 m = 4, γ = 1, k = 0.1

Determine the resonant frequency for a

spring-mass system with the following com-

bination of mass m kg, viscous damping co-

efficient γNs
m and spring constant kN

m .

17 m = 0.5, γ = 4, k = 10

18 m = 4, γ = 3, k = 20

19 m = 3, γ = 0, k = 120

20 m = 0.2, γ = 20, k = 90

Find the steady state solution yS for the

given initial value problem.

21 2ÿ + 8y = cos(t), y(0) = 0, ẏ(0) = 0

22 3ÿ + y = sin(2t), y(0) = 1, ẏ = 0

Express the solution of the given initial

value problem in phase-amplitude form.

23 ÿ + y = 0, y(0) = 8, ẏ(0) = 6

24 ÿ + 4y = 0, y(0) = 1, doty(0) = −4

25 ÿ + 2ẏ + 5y = 0, y(0) = 0, ẏ(0) = 1

26 ÿ + 4ẏ + 5y = 0, y(0) = 1, ẏ = 0

27 Prove that, if there is no external

driving force and any damping at all (i.e.

b > 0) for a spring-mass system, then

limt→∞ y(t) = 0.

28 Prove that, if there is no damping and

no external driving force, a spring mass sys-

tem will oscillate with period 2π
ω0

, where ω2
0 =

k
m .

29 Consider a critically damped spring-

mass system subject to the following param-

eters: m = 2, b = 8, k = 8. If the initial

displacement is y(0) = 1 and the initial ve-

locity is ẏ = v0, find a condition on v0 that

determines whether or not the spring will

ever pass through its natural length during

the time interval t > 0.

30 Repeat the previous problem for the

overdamped spring-mass system: m =

2, b = 10, k = 8.

31 This problem outlines a derivation of

the resonant frequency in the simplified case

of no damping. Consider an undamped

spring-mass system with forced vibrations

described by the differential equation mÿ +

ky = F0 cos(ωt) (where F0 > 0 is the ampli-

tude of the driving vibrations). (a) Verify

that the solutions of this differential equa-

tion are unbounded when ω2 = k
m . (b) Find
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a formula for the amplitude of the steady-

state solution as a function of F0 and ω,

when ω2 �= k
m . (c) Verify that the ampli-

tude of the solutions in part (b) approach ∞
as ω → k

m .

32 This problem outlines the derivation of

the resonant frequency for a damped oscilla-

tor. Consider a damped spring-mass system

with forced vibrations described by the dif-

ferential equation mÿ + γẏ + ky = F0 cos(ωt)

(where F0 > 0 is the amplitude of the

driving vibrations). (a) Verify, using the

method of undetermined coefficients, that

the steady-state solution is yS = A cos(ωt) +

B sin(ωt), where A = F0(k−mω2)
(k−mω2)2+ω2γ2 and

B = F0ωγ
(k−mω2)2+ω2γ2 . (b) Verify that the

amplitude of the steady-state solution is

F0/

√
(k −mω2)2 + γ2ω2. (c) Regard the am-

plitude from part (b) as a function of ω.

Use differential calculus to verify that this

function has a maximum value when ω2 =

k
m − γ2

2m2 .

33 You wish to build a damped oscilla-

tor that whose resonant frequency will be

ωmax = 5.00. You also want the amplitude

of the steady state response at the resonant

frequency to be twice as large as the ampli-

tude of the driving vibrations. Your oscil-

lator will sit in a medium that exerts vis-

cous damping given by the coefficient γ =

0.300Ns
m . Determine the appropriate mass

m and spring constant k to use in the oscil-

lator’s construction. Report your answers to

three significant figures. (Note: There will

be two solutions. Refer to Problem 9.6 for

the necessary formulas.)
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Laplace Transforms





CHAPTER 10

Laplace Transforms

Prototype Question: A simple electrical circuit compo-

nent contains a 2 ohm resistor, a 3 henry inductor and a

4 farad capacitor connected in series. If there is a voltage

source connected that supplies f(t) volts at time t, where

f(t) =

⎧⎪⎨
⎪⎩
2 if π ≤ t ≤ 2π

0 otherwise

then the charge q(t) on the capacitor can be modeled by

the differential equation

3q̈ + 2q̇ +
1

4
q = f(t).

Here, q is measured in coulombs, and time is measured in

seconds. The current initially satisfies q(0) = 0 and q̇(0) =

0. Graph the current q(t) on the time interval 0 ≤ t ≤ 4π

seconds.

In this chapter we will introduce the idea of a transform method. The basic idea is

this: we begin with an initial value problem for a differential equation, and we transform

this equation into an algebraic equation; once we solve for the unknown in the algebraic

equation, we then transform back to find a corresponding solution of the IVP.

We will see how this transform can be used to solve second order constant coefficient

ODE. We already know how to solve some of these equations using the method of unde-

termined coefficients, so one might wonder at first why we need a new method. The point

is that our new approach will make it much easier to solve problems with discontinuous

driving functions (such as we see in the prototype question above). In fact, this is the

preferred method in many electrical engineering problems where discontinuous driving

functions are extremely common.

141
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The tool we will use for this is the Laplace Transform of a function, defined by

L[f ] =

∫ ∞

0
f(t)e−st dt.

Here, f is a function defined on [0,∞) and L[f ] is a function of s defined for whatever

values of s lead to a convergent integral.

EXAMPLE 1: The Laplace Transform of et is

L[et] =

∫ ∞

0
ete−st dt

= lim
T→∞

∫ T

0
e(1−s)t dt

= lim
T→∞

e(1−s)t

1− s

∣∣∣∣∣
T

0

= lim
T→∞

e(1−s)T

1− s
− 1

1− s

=
1

s− 1
for s > 1.

�

EXERCISE 1: Calculate the Laplace Transform of the functions t2, sin(t) and eat (where a is a

constant).

EXERCISE 2: Prove that the Laplace Transform is linear: for any functions f and g and for any

constant coefficients a and b, L[af + bg] = aL[f ] + bL[g]. (Equality only needs to hold on the set of

s-values for which L[f ] and L[g] are both defined.)

It is typical to denote a transform of a function with a capital letter. For example,

when it is useful to display the variable, we will often denote the Laplace Transform of a

function f(t) by F (s); otherwise we will write it as L[f ]. We usually do not care what the

exact domain is for F (s) – it will be enough to know that there is some interval for s on

which the integral defining the transform converges. The next theorem provides such a

guarantee.
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Existence of the Laplace Transform

Suppose there exists M ≥ 0 and any real number N such that

|f(t)| ≤ MeNt for all t ≥ 0. Then the integral defining the Laplace

Transform converges for all s > N .

A function that satisfies the hypothesis of this theorem is said to be of exponential

order, because it does not grow any faster than exponential functions can grow.

PROOF. Observe that for s > N we have
∫ ∞

0
|f(t)e−st| dt =

∫ ∞

0
|f(t)|e−st dt

≤
∫ ∞

0
MeNte−st dt

=

∫ ∞

0
Me(N−s)t dt

=
M

s−N

< ∞.

This proves that the integral defining L[f ] converges absolutely for all s > N . �

Next, we introduce the key fact which allows us to use Laplace Transforms for solving

initial value problems. There is a close relationship between the Laplace transform of a

function and that of its derivative: If L[f ] exists on some s-interval (a,∞), where f is a

differentiable function, and if limt→∞ f(t)e−st = 0 for s > a, then L[f ′] also exists for s > a,

and L[f ′] = sL[f ]− f(0).

Notice that any function of exponential order satisfies both hypotheses of this theorem.

We call this a reduction formula for the Laplace Transform because it allows us to “reduce”

L[f ′] to an expression involving L[f ]. The following box highlights this result.

Reduction Formula: Laplace Transform of a Derivative

L[f ′] = sL[f ]− f(0)
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PROOF. We use integration by parts, integrating f ′(t) and differentiating e−st:

L[f ′] =
∫ ∞

0
f ′(t)e−st dt

= lim
T→∞

∫ T

0
f ′(t)e−st dt

= lim
T→∞

[
e−stf(t)−

∫
−se−stf(t) dt

]T
0

= lim
T→∞

e−sTf(T )− e0tf(0) + s

∫ T

0
f(t)e−st dt

= −f(0) + s

∫ ∞

0
f(t)e−st dt

= −f(0) + sL[f ].

�
In practice, when faced with an unknown function we will always assume that it is of

exponential order and therefore satisfies hypotheses of these two theorems. Of course, in

theory such an assumption could lead to erroneous results, but in practical applications

this rarely happens. And because the process we illustrate in the next few examples

furnishes us with a concrete function, we can always check it to make sure it satisfies the

differential equation at hand.

To make use of the Laplace Transform to solve an initial value problem, we need to

make use of one more fact which we will not prove: If f and g are continuous functions on

[0,∞) and L[f ] = L[g], then f = g on [0,∞). Thus the Laplace Transform is invertible. We

denote the Inverse Laplace Transform by L−1. Because L is linear, so is L−1:

L−1[aF (s) + bG(s)] = aL−1[F (s)] + bL−1[G(s)]

EXAMPLE 2: Since L[e2t] = 1
s−2 , it follows that L−1

[
1

s−2

]
= e2t. �

EXERCISE 3: Find L−1
[

1
s3

]
. (Hint: Refer to Exercise 1.)

We now have enough machinery to use the Laplace Transform for solving an initial

value problem.

EXAMPLE 3: Solve y′ + 2y = 0, y(0) = 3 using Laplace Transforms.
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Solution: Suppose y is a solution of y′ + 2y = 0, y(0) = 3 on the domain [0,∞). We

take the Laplace Transform of both sides of the ODE:

L[y′ + 2y] = L[0].

Then we use the facts that L is linear and L[0] = 0:

L[y′] + 2L[y] = 0.

Next we apply the formula for the Laplace Transform of a derivative:

sL[y]− y(0) + 2L[y] = 0.

Insert the initial condition y(0) = 3 and collect like terms:

(s+ 2)L[y]− 3 = 0.

Isolate L[y]:

L[y] =
3

s+ 2
.

Finally, isolate y by taking the inverse Laplace Transform of both sides:

y = L−1

[
3

s+ 2

]

= 3L−1

[
1

s− (−2)

]

= 3e−2t.

This is the solution of the initial value problem above. �
Clearly it will be useful to have a list of functions and their corresponding Laplace

Transforms. Here is a short list of such correspondences.
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Brief Table of Laplace Transforms
f(t) F (s)

tn n!
sn+1

eat 1
s−a

sin(kt) k
s2+k2

cos(kt) s
s2+k2

sinh(kt) k
s2−k2

cosh(kt) s
s2−k2

eat sin(bt) b
(s−a)2+b2

eat cos(bt) s−a
(s−a)2+b2

tneat n!
(s−a)n+1

EXERCISE 4: Use Laplace Transforms to solve the initial value problem y′ + 4y = 6, y(0) = 2.

Higher-order ODE can be solved in the same way. When we transform y′′, we just use

the reduction formula twice:

L[y′′] = sL[y′]− y′(0) = s(sL[y]− y(0)) − y′(0) = s2L[y]− sy(0)− y′(0).

The reader may choose to memorize this formula as well, or just to use the first-order

formula repeatedly when required.

EXAMPLE 4: Solve the IVP y′′ + 9y = 2, y(0) = 1, y′(0) = 0.

Solution: Transform both sides of the equation, rewrite all the Laplace Transforms

in terms of L[y], and then isolate L[y]:
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L[y′′ + 9y] = L[2]

L[y′′] + 9L[y] =
2

s

sL[y′]− y′(0) + 9L[y] =
2

s

s(sL[y]− y(0)) − y′(0) + 9L[y] =
2

s

(s2 + 9)L[y]− s− 0 =
2

s

(s2 + 9)L[y] = s+
2

s

L[y] =
s

s2 + 9
+

2

s(s2 + 9)

Use a partial fractions decomposition to rewrite the right side of the equation:

L[y] =
s

s2 + 9
+

(2/9)

s
+

(−2/9)s

s2 + 9

=
(7/9)s

s2 + 9
+

(2/9)

s

Then isolate y using the inverse transform:

y = L−1

[
(7/9)s

s2 + 9
+

(2/9)

s

]

=
7

9
L−1

[
s

s2 + 9

]
+

2

9
L−1

[
1

s

]

=
7

9
cos(3t) +

2

9

�

EXAMPLE 5: Solve the IVP y′′ + 4y′ + 13y = 0, y(0) = 1, y′(0) = 1.

Solution: Transform both sides of the equation, rewrite all the Laplace Transforms

in terms of L[y], and then isolate L[y]:
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L[y′′ + 4y′ + 13y] = L[0]

sL[y′]− y′(0) + 4(sL[y]− y(0)) + 13L[y] = 0

s(sL[y]− y(0)) − y′(0) + 4(sL[y]− y(0)) + 13L[y] = 0

(s2 + 4s + 13)L[y]− sy(0)− y′(0)− 4y(0) = 0

(s2 + 4s + 13)L[y]− s− 5 = 0

L[y] =
s+ 5

s2 + 4s+ 13

The denominator does not factor over the real numbers, so we don’t want to try to

use a partial fraction decomposition. Instead, will will use the algebraic technique of

completing the square to rewrite the expression. Completing the square on a quadratic

expression such as x2+ bx+d means rewriting it in the form (x+h)2+d. In this case, that

would be

s2 + 4s+ 13 = s2 + 4s+ 4 + 9 = (s + 2)2 + 9.

So now we have

L[y] =
s+ 5

(s+ 2)2 + 9
,

which doesn’t exactly match any of the forms in our table; however, we can split up the

numerator to obtain two fractions whose forms do match entries in our table:

L[y] =
s+ 2

(s+ 2)2 + 9
+

3

(s+ 2)2 + 9
.

Consequently,

y = e(−2t) cos(3t) + e(−2t) sin(3t).

�

EXERCISE 5: Use Laplace Transforms to solve the following initial value problems:

(a) y′′ + 25y = t, y(0) = 0, y′(0) = 3.

(b) y′′ + 4y′ = 6, y(0) = 0, y′(0) = 1.

(c) y′′ − 6y′ + 8y = 6, y(0) = 2, y′(0) = 0.

(d) y′′ + 5y′ + 4y = sin(t), y(0) = 0, y′(0) = 0.

(e) y′′ + 4y′ + 8y = 0, y(0) = 1, y′(0) = 0.

(f) y′′ − 4y = t, y(0) = 0, y′(0) = 2.
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We end this chapter with one more useful fact about Laplace Transforms which will

allow use to easily compute many of them:

Derivative of a Laplace Transform

L[tf(t)] = −F ′(s), where F (s) = L[f(t)]

This equality assumes that all of the necessary integrals are convergent. The following

calculation contains the essence of the proof.

F ′(s) =
d

ds

[∫ ∞

0
f(t)e−st dt

]

=

∫ ∞

0

∂

∂s

[
f(t)e−st

]
dt

=

∫ ∞

0
f(t)(−te−st) dt

= −
∫ ∞

0
(tf(t))e−st dt

= −L[tf(t)].

To call this a proof, we would need to justify the act of “differentiating under the integral

sign”, for it is not always true that d
dy

∫ b
a f(x, y) dx =

∫ b
a fy(x, y) dy. However, if f is of

exponential order, then it is possible to justify this step by using a powerful theorem from

the subject of Real Analysis called the Lebesgue Dominated Convergence Theorem (see

reference [2] in the bibliography). However, the details of this are outside the scope of this

course.

Let’s use this result to calculate some Laplace Transforms of functions.

EXAMPLE 6: The Laplace Transform of eat is F (s) = 1
s−a ; therefore

L[teat] = − d

ds

[
1

s− a

]

=
1

(s− a)2
.

�

EXERCISE 6: Find the Laplace Transforms of t sin(bt) and t cos(bt).

EXERCISE 7: Find the Laplace Transform of tket, where k is a positive integer.
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Additional Exercises

Use the definition of the Laplace Transform

to calculate the following.

8 L[e3t]

9 L[4t]

10 L[6t2]

11 L[cosh(t)]

12 L[tet]

13 L[t2et]

Use the brief table of Laplace Transforms to

find the following.

14 L[e−10t]

15 L[t2 − t3]

16 L[sin(4t)]

17 L[3 sinh(2t)]

18 L[te−t]

19 L[4e−3t cos(2t)]

Find the Inverse Laplace Transform

L−1[F (s)] for the given function F (s).

20 F (s) = 1
s4

21 F (s) = 1
4s

22 F (s) = s
s2+4

23 F (s) = s+2
s2+9

24 F (s) = 1
s2+2s+1

25 F (s) = 1
s2+4s+20

Solve the initial value problem using that

Laplace Transform.

26 ẏ + y = 0, y(0) = 3

27 2ẏ − y = 1, y(0) = 0

28 3ÿ + ẏ = 2, y(0) = 1, doty(0) = 1

29 ÿ + y = sin
(√

2t
)
, y(0) = 4, ẏ(0) = 0

30 Prove the formula L [tn] = n!
sn+1 three

different ways: (a) directly from the defini-

tion of Laplace Transform, (b) by using the

reduction formula for the Laplace Trans-

form of a derivative, and (c) by taking ad-

vantage of the formula for the derivative of

a Laplace Transform.

31 Prove the following Laplace Transform

formulas: (a) L[eat] = 1
s−a , (b) L[sinh(kt)] =

k
s2−k2

, (c) L[cosh(kt)] = s
s2−k2

. (Hint: Use

part (a) to help with parts (b) and (c).)

32 (a) Prove L[sin(kt)] = k
s2+k2 using the

definition of the Laplace Transform. (b)

Prove L[cos(kt)] = s
s2+k2

by taking advan-

tage of the result in part (a) and the reduc-

tion formula for the Laplace Transform of a

derivative. (Hint: For part (a), you’ll need to

use a “double integration by parts”.)

33 Suppose f and g are continuous func-

tions on [0,∞) with L[f ] = F (s), and L[g] =

F (s − a) (that is to say, the Laplace Trans-

form of g is a translation of the Laplace

Transform of f ). Prove that g(t) = eatf(t).
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34 Prove the following Laplace Transform

formulas by taking advantage of the result

of Problem 2 above: , (a) L[eat sin(bt)] =

b
(s−a)2+b2

, (b) L[eat cos(bt)] = (s−a)
(s−a)2+b2

, (c)

L[tneat] = n!
(s−a)n+1 .

35 Another useful transform in the study

of differential equations is the Fourier

Transform which can be defined for a func-

tion f(t) by the formula

F [f ] =

∫ ∞

−∞
f(t)e−2πiξt dt.

(Here, the transform is a function of

ξ.) Verify the following reduction formula

for differentiable functions f that satisfy

limt→±∞ f(t) = 0:

F [f ′] = 2πiξF [f ].

36 Prove that f(t) = e(t
2) is not of exponen-

tial order.

37 If L[f(t)] = F (s), it can be proved

(but you are not being asked to prove)

that L
[
f(t)
t

]
=
∫∞
s F (σ) dσ, provided that

limt→0+
f(t)
t exists and is finite. Verify that

this condition holds for sin(t)
t , and then use

this formula to find L
[
sin(t)

t

]
.

38 The Gamma function Γ(x) is defined for

x > 0 by

Γ(x) =

∫ ∞

0
e−ttx−1 dt.

Verify that Γ(1) = 1. Use integration by

parts to verify that Γ(x + 1) = xΓ(x). What

other mathematical operation do these two

properties remind you of?1

39 Use the definition of the Laplace Trans-

form and integrate by substitution to prove

L [ta] =
Γ(a+ 1)

sa+1

for all a > 0.

1These properties should remind you of the factorial. In fact, it turns out that if n is a non-negative

integer then n! = Γ(n+ 1).





CHAPTER 11

Discontinuous Driving Functions

Prototype Question: Model the effect on a spring-mass

system when the mass is hit with a hammer.

In this chapter we explore the type of initial value problems for which Laplace Trans-

forms are our best-suited tool: non-homogeneous equations with discontinuous driving

functions.

UNIT STEP FUNCTIONS AND CHARACTERISTIC FUNCTIONS

The unit step function is defined by

U(t) =
⎧⎨
⎩
0 for t < 0

1 for t > 0
.

Notice that we do not bother defining U(0). That is because there is no natural way to

define it that will be of practical value. Furthermore, we will mainly use these step func-

tions inside integrands, and the value of a function at one point will not affect the definite

integral.

We also define Ua as a translation of the unit step function a units to the right (if a < 0,

the translation would actually be to the left):

Ua(t) =

⎧⎨
⎩
0 for t < a

1 for t > a
.

EXERCISE 1: Prove that L[Ua] =

⎧⎨
⎩

1
s for a ≤ 0

e−as

s for a > 0
.

Unit step functions can be used to describe driving functions which are “switched on” at

a certain moment in time. For example, a differential equation of the form aÿ + bẏ + cy =

E(t) can be used to model the current in a simple electrical circuit, where E(t) is the

driving term corresponding to an external voltage source. If a 12-volt source is “turned

153



154 11. DISCONTINUOUS DRIVING FUNCTIONS

on” at time t = 2 seconds, then we could model this with a driving term E(t) = 12U2(t),

which is illustrated in the following figure.

12

2

12U (t)2

EXERCISE 2: Sketch the graphs of (a) f(t) = 2U1(t), (b) g(t) = 1+2U1(t) and (c) h(t) = 3− 2U1(t).

Expanding on the example of a voltage source described above, we could also imagine

that the voltage source is “turned off ’ at, say, t = 8 seconds, as shown here:

12

2

12U (t)-12U (t)2 8

8

The function E(t) shown in the last figure can be represented as a difference of step func-

tions by writing E(t) = 12U2(t) − 12U8(t). We can think of the first term, 12U2(t), as

“stepping up” by 12 units at t = 2, and the second term, −12U8(t), as “stepping back down”

at t = 8.

More generally, we can represent any function of the form

f(t) =

⎧⎪⎨
⎪⎩
c if a < t < b

0 otherwise



11. DISCONTINUOUS DRIVING FUNCTIONS 155

as a difference of step functions: f(t) = c Ua − c Ub. It is often useful to think of this as

a basic building block for other functions, so we give it a name and its own notation: the

function Ua,b(t) defined by

Ua,b(t) = Ua(t)− Ub(t) =

⎧⎪⎨
⎪⎩
1 if a < t < b

0 otherwise

is called the characteristic function (or the indicator function) of the interval (a, b).

Although we will use this notation at times to help us come up with a formula for a func-

tion, we will always choose to write our final answers in terms of step functions instead of

characteristic functions.

EXERCISE 3: Find a formula in terms of step functions for the function shown in the figure

below. (Hint: Begin by thinking of this as a sum of two characteristic functions. Then write the

characteristic functions in terms of step functions and simplify.)

1

2

4

EXERCISE 4: Find a formula in terms of step functions for the function shown in the figure below.

4

1

2

3 4
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When we multiply a function f(t) by a unit step function Ua(t), the resulting product

gives us the same output as f when t > a, and the output is 0 when t < a. For example,

here’s a sketch of the graph of g(t) = t2U0(t):

t  U  (t)2
0

EXERCISE 5: Sketch the graphs of (a) f(t) = tU3(t) and (b) f(t) = (t− 3)U3(t).

EXAMPLE 1: Sketch a graph of the function

f(t) =

⎧⎪⎨
⎪⎩
1− (t− 2)2 if 1 < t < 3

0 otherwise
,

and write a formula for f(t) in terms of step functions.

The graph of f is shown in the figure at right. This

function can be thought of as a product with the charac-

teristic function on the interval (1, 3):

f(t) = (1− (t− 2)2)U1,3(t)

= (1− (t− 2)2) (U1(t)− U3(t)) .

1

1 2 3

�

EXERCISE 6: Find formulas in terms of step functions for the functions whose graphs are shown

in the following figures.
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(a)

1

1

2

32
(b)

1

1

2

2

STEP FUNCTIONS AND TRANSLATIONS OF FUNCTIONS

Unit step functions are particularly useful when we try to work with Laplace Trans-

forms of functions which have been translated. Observe that, for a function f(t), the

Laplace Transform of f(t− a) is not necessarily very simple, as this calculation shows:

L[f(t− a)] =

∫ ∞

0
f(t− a)e−st dt

=

∫ ∞

−a
f(u)e−s(u+a) du (u = t− a, du = dt)

=

∫ 0

−a
f(u)e−s(u+a) du+

∫ ∞

0
f(u)e−sue−as du

=

∫ 0

−a
f(u)e−s(u+a) du+ e−asL[f(t)].

If the first integral in the last line is complicated, this may not be very useful. On

the other hand, if the first integral in the last line were just zero, it wouldn’t be very

complicated at all! So to make sure that it is zero, when we translate a function a units,

as in f(t − a), we will also multiply it by Ua (this is equivalent to imagining that f(t) = 0

for t < 0 before it is translated):
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L[f(t− a)Ua(t)] =

∫ ∞

0
f(t− a)Ua(t)e

−st dt

=

∫ a

0
f(t− a) · 0 · e−st dt+

∫ ∞

a
f(t− a) · 1 · e−st dt

=

∫ ∞

a
f(t− a)e−st dt

=

∫ ∞

0
f(u)e−s(u+a) dt (u = t− a, du = dt)

= e−as

∫ ∞

0
f(u)e−su du

= e−asL[f(t)].

The calculation above says that L[Uaf(t−a)] = e−asL[f(t)]; however, this formula seems

to be difficult for many students to remember and use correctly in this form. To simplify

it, let’s introduce a shift-and-cutoff operator, Sa, which acts on functions as follows: if

f is a function defined on R, then Sa(f) is another function defined on R according to the

rule

Sa(f)(t) =

⎧⎪⎨
⎪⎩
f(t− a) if t > a

0 if t < a
.

The effect of the operator Sa is to shift the graph a units to the right and then “cutoff” the

function by setting it equal to zero for all t < a.

Thus, Sa(f)(t) is also equal to Ua(t)f(t − a), which means that the rule we calculated

above can be expressed as follows:

Laplace Transform of a Shifted-and-Cutoff Function

L[Sa(f)] = e−asL[f ].

EXAMPLE 2: The Laplace Transform of f(t) = (t− 3)2U3(t) is

L[(t− 3)2U3(t)] = L[S3

(
t2
)
]

= e−3sL[t2]

= e−3s 2

s3
.

�
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EXERCISE 7: Find the Laplace Transform of the function in the figure below by expressing it as

Sa(f) where f(t) = t (that is, express it as a shift-and-cutoff of the linear function f(t) = t) for some

appropriate value of a.

1

1

t

f(t)

The corresponding rule for the Inverse Laplace Transform can be stated as follows:

If L−1[F (s)] = f(t), then L−1[e−asF (s)] = f(t − a)Ua(t). In terms of the shift-and-cutoff

operator, we write the rule as follows:

Inverse Laplace Transform of e−asF (s)

L−1[e−asF (s)] = Sa

(
L−1[F (s)]

)
= Sa(f),wheref = L−1[F ]

EXAMPLE 3: The Inverse Laplace Transform of F (s) = e−2s

s−4 is e4(t−2)U2(t). We obtain this

by recognizing that the Inverse Laplace Transform of 1
s−4 is e4t, which we then translate

to the right by two units and multiply by the step function U2:

L−1

[
e−2s 1

s− 4

]
= S2

(
L−1

[
1

s− 4

])

= S2

(
e4t
)

= e4(t−2)U2(t).

�

EXERCISE 8: Find the Inverse Laplace Transform of F (s) = e−4s

s3 .

We are now ready to use these step functions as driving functions in differential equa-

tions.
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EXAMPLE 4: Solve the differential equation ẏ − y =

⎧⎪⎨
⎪⎩
0 if t < 1

2 if t > 1

subject to the initial

condition y(0) = 0.

Solution: First, we rewrite the driving function as 2U1(t). Then we transform the

differential equation:

L[ẏ − y] = L[2U1(t)]

L[ẏ]− L[y] = 2
e−s

s

sL[y]− y(0)− L[y] = 2
e−s

s

where we used the reduction formula for L[ẏ] in the last line. Now plug in the initial

condition y(0) = 0, collect like terms and isolate L[y]:

(s− 1)L[y] = 2
e−s

s

so

L[y] = 2e−s

(
1

s(s− 1)

)
.

We can use partial fractions to rewrite the expression in parentheses on the right:

L[y] = 2e−s

(
1

s− 1
− 1

s

)
.

Therefore

y = 2S1

(
L−1

[
1

s− 1
− 1

s

])

= 2S1

(
et − 1

)

= 2
(
et−1 − 1

)U1(t).

It is often more useful (and more pleasant) to express the result in piecewise notation,

without the step function:

y =

⎧⎪⎨
⎪⎩
0 if t < 1

2(e(t−1) − 1) if t > 1
.

�

EXAMPLE 5: Solve the initial value problem ẏ + y =

⎧⎪⎨
⎪⎩
0 if t < 5

2(t− 5) if t > 5
, y(0) = 0.



11. DISCONTINUOUS DRIVING FUNCTIONS 161

Solution: The driving function can be written as f(t) = 2(t − 5)U5(t), or f(t) = S5(2t),

so we have

ẏ + y = S5(2t).

Taking Laplace Transforms of both sides gives us

L[ẏ] + L[y] = L[S5(2t)],

or

sL[y]− y(0) + L[y] = e−5sL[2t],

and thus

(s+ 1)L[y] = e−5s 2

s2
.

Isolating L[y] gives us

L[y] = e−5s 2

s2(s+ 1)
.

A partial fraction decomposition for 2
s2(s+1) = As+B

s2 + C
s+1 gives us the coefficients A =

−2, B = 2, C = 2, so we have

L[y] = e−5s

(−2s+ 2

s2
+

2

s+ 1

)
.

Splitting up the first fraction inside parentheses on the right side and simplifying yields

L[y] = e−5s

(−2

s
+

2

s2
+

2

s+ 1

)
.

Taking the Inverse Laplace Transform now gives us

y = S5

(−2 + 2t+ 2e−t
)
.

In piecewise notation, this is

y =

⎧⎪⎨
⎪⎩
0 if t < 5

−2 + 2(t− 5) + 2e−(t−5) if t > 5

.

�

EXERCISE 9: Solve the following initial value problems using Laplace Transforms:

(a) ẏ + 2y =

⎧⎪⎨
⎪⎩
0 if t < 1

9 if t > 1

, y(0) = 0

(b) ẏ − y =

⎧⎪⎨
⎪⎩
0 if t < 1

(t− 1)2 if t > 1

, y(0) = 0.
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In typical applications, Laplace Transforms are frequently used to solve second-order

problems. The process is generally the same.

EXAMPLE 6: Solve the initial value problem ÿ − y = f(t), y(0) = 0, ẏ(0) = 1, where the

driving function is

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t < 2

1 for 2 < t < 5

0 for t > 5

.

Solution: We rewrite the driving function as f(t) = U2 − U5. Then we transform the

differential equation:

L[ÿ − y] = L[U2 − U5]

L[ÿ]− L[y] = L[U2]− L[U5]

sL[ẏ]− ẏ(0) − L[y] =
e−2s

s
− e−5s

s

s(sL[y]− y(0)) − ẏ(0) − L[y] =
e−2s

s
− e−5s

s
.

Then insert the initial conditions and solve for L[y]:

s(sL[y]− 0)− 1− L[y] =
e−2s

s
− e−5s

s

(s2 − 1)L[y] = 1 +
e−2s

s
− e−5s

s

L[y] =
1

s2 − 1
+ (e−2s − e−5s)

(
1

s(s2 − 1)

)
.

We will need two partial-fractions decompositions:

1

s2 − 1
=

(1/2)

s− 1
− (1/2)

(s+ 1)

and
1

s(s2 − 1)
= −1

s
+

(1/2)

s− 1
+

(1/2)

s+ 1
.

Insert these into the formula for L[y] to obtain

L[y] =
(1/2)

s− 1
− (1/2)

(s + 1)
+ (e−2s − e−5s)

(
−1

s
+

(1/2)

s− 1
+

(1/2)

s+ 1

)

=
(1/2)

s− 1
− (1/2)

(s + 1)
+ e−2s

(
−1

s
+

(1/2)

s− 1
+

(1/2)

s+ 1

)

− e−5s

(
−1

s
+

(1/2)

s− 1
+

(1/2)

s+ 1

)
.
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Consequently,

y(t) =
1

2
et − 1

2
e−t + S2

(
−1 +

1

2
et +

1

2
e−t

)
− S5

(
−1 +

1

2
et +

1

2
e−t

)

=
1

2
et − 1

2
e−t +

(
−1 +

1

2
e(t−2) +

1

2
e−(t−2)

)
U2(t)−

(
−1 +

1

2
e(t−5) +

1

2
e−(t−5)

)
U5(t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2e

t − 1
2e

−t for t < 2

1
2e

t − 1
2e

−t − 1 + 1
2e

(t−2) + 1
2e

−(t−2) for 2 < t < 5

1
2e

t − 1
2e

−t + 1
2e

(t−2) + 1
2e

−(t−2) − 1
2e

(t−5) − 1
2e

−(t−5) for t > 5

.

�

EXERCISE 10: Solve the following initial value problems using Laplace Transforms:

(a) ÿ + 4y =

⎧⎪⎨
⎪⎩
0 if t < π

1 if t > π

, y(0) = 0, ẏ(0) = 0

(b) ÿ + 4y =

⎧⎪⎨
⎪⎩
1 if t < π

0 if t > π

, y(0) = 0, ẏ(0) = 0

(c) ÿ + y =

⎧⎪⎨
⎪⎩
0 if t < 2

3(t− 2) if t > 2

, y(0) = 0, ẏ(0) = 0.

DELTA (IMPULSE) FUNCTIONS

Step functions can be used to describe driving functions that ‘start’ or ‘stop’ at definite

instants in time, such as when a switch is closed for a certain time interval allowing an

external voltage source to drive the circuit. But we also sometimes want to model very

short bursts of driving activity, such as a near-instantaneous jolt, and it turns out that the

best means for this is with a so-called delta function.

The delta function with pole at a is denoted by δa(x) and is defined by the following

property:

∫
I
f(x)δa(x) dx =

⎧⎪⎨
⎪⎩
f(a) if a ∈ I

0 if a /∈ I

for all continuous functions f and for all intervals I ⊂ R. We will sometimes write δ in

place of δ0. Then we can also interpret δa(x) as δ(x − a).
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An immediate consequence of this definition, if we use the constant function f(x) = 1,

is that ∫ ∞

−∞
δ(x) dx = 1,

however, on any interval I that does not contain 0,

∫
I
δ(x) dx = 0.

Thinking in terms of areas under the graph of δ, it should not take the reader long

to realize that this is impossible – that there is no function which can have both of these

properties. Indeed, δa is actually a distribution (also called a generalized function). In

contrast to functions which have a defined value at each point of their domains, often

distributions can only be thought of as having average values over intervals.

Distributions are often studied in detail in an advanced course on Functional Analysis.

Once defined, distributions can be multiplied by smooth functions, and the results can be

integrated on intervals, but defining distributions carefully and illustrating just how all

of this works in detail is well beyond the scope of this textbook. At this level, all we will

need are the two properties described above and their consequences.

To illustrate the utility of this object as a driving function, let’s consider the differential

equation ÿ = δ2(t), with the initial conditions y(0) = 0 and ẏ(0) = 0. Because this is a

fairly uncomplicated differential equation, we can solve it just by integrating. Integrate

both sides over the interval (0, t) (let’s use s as the variable of integration) to get

∫ t

0
ÿ(s) ds =

∫ t

0
δ2(s) ds.

The left side is just ẏ(t)− ẏ(0), and the initial condition ẏ(0) = 0 allows us to just write the

left side as ẏ(t), so we have ẏ(t) =
∫ t
0 δ2(s) ds.

The right side of the equation is now either equal to 1 (if the domain of integration

includes 2) or 0 (if it does not). The domain of integration includes 2 if t > 2, so we can

actually write the right side as U2(t). Therefore

ẏ(t) = U2(t).

Let’s integrate one more time to finish up:

∫ t

0
ẏ(s) dt =

∫ t

0
U2(s) ds,
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and the left side will simplify to just y(t) (since y(0) = 0); the right side will simplify to 0 if

t < 2, and if t > 2 then the right side will be
∫ t

0
U2(s) ds =

∫ 2

0
U2(s) ds+

∫ t

2
U2(s) ds = 0 +

∫ t

2
1 ds = (t− 2).

Therefore we have

y(t) = (t− 2)U2(t) =

⎧⎪⎨
⎪⎩
0 if t < 2

(t− 2) if t > 2
.

This example illustrates how a delta function for a driving term provides an instanta-

neous change to the first derivative of the solution. (Notice how ẏ above changes from 0 to

1 exactly at t = 2.) One way to visualize this is with a spring-mass system, and to think

of the driving function provided by δa as representing the hitting of the mass with a ham-

mer at time t = a, imparting a sudden change in the mass’ momentum. In the language

of physics, we would say that, as a driving function, δa imparts one unit of impulse to

the system (in physics, impulse is a constant force multiplied by time, or a non-constant

force integrated over an interval of time). Because of this physical interpretation, δ is also

called an impulse function.

A unit of impulse could be imparted by a constant force over a given time interval. For

example, the driving function U1 − U2 will impart one unit of impulse (such as 1 N · s),

over the time interval 1 < t < 2. Over a smaller period of time, the same impulse could

be delivered by a greater-magnitude force, such as that modeled by 2 (U1 − U1.5), and so

on. The point of the delta function is that it models the transfer of impulse as happening

instantaneously.

EXAMPLE 7: Consider a horizontal spring-mass system with m = 2 kg, b = 4N ·s
m and

k = 202N
m . At time t = 3, an impulse of 5N · s is delivered in a nearly-instantaneous

collision with the mass, in the direction of compressing the spring. We could model this

situation over a very short period of time with step functions (say, with a 0.001-second

collision):

2ÿ + 4ẏ + 202y = −5000 (U3 − U3.001) ;

or we could imagine that the transfer of impulse happens instantaneously and model it

with a delta function:

2ÿ + 4ẏ + 202y = −5δ3(t).

�
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Laplace transforms turn out to be a great tool for solving ordinary differential equa-

tions involving impulse functions. The key fact is:

Laplace Transform of a Delta Function

L[δa] = e−sa for a > 0.

EXERCISE 11: Verify the formula L[δa] = e−as for a > 0 using the defining properties of δa.

EXAMPLE 8: Solve the differential equation 2ÿ + 8y = 5δ4(t) together with the initial

conditions y(0) = 0.5, ẏ(0) = 0 using the Laplace Transform.

Solution: Take the Laplace Transform of both sides to get

L[2ÿ + 8y] = L[5δ4(t)]

which simplifies to

2s2L[y]− 2sy(0)− 2ẏ(0) + 8L[y] = 5e−4s.

Inserting the initial conditions and isolating L[y] gives us

L[y] = 2.5
e−4s

s2 + 4
+ 0.5

s

s2 + 4
.

Take the Inverse Laplace Transform of both sides to obtain

y = 1.25U4(t) sin(2(t − 4)) + 0.5 cos(2t).

We can write this without step-function notation as

y =

⎧⎪⎨
⎪⎩
0.5 cos(2t) if t < 4

0.5 cos(t) + 1.25 sin(2(t − 4)) if t > 4
.

�

EXERCISE 12: Solve the following initial value problems:

(a) d2y
dx2 + 9y = 3δ2(x), y(0) = 0, y′(0) = 0.

(b) y′′ + 4y′ + 4y = −δ3(x), y(0) = 1, y′(0) = 1.

(c) ÿ + ẏ − 2y = −δ1(t), y(0) = 1, ẏ(0) = 1.
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Additional Exercises

Write the function in piecewise notation.

Simplify if possible.

13 3U2(t)− U4(t)

14 t+ (1− t)U1(t)

15 2− 2tU1(t)

16 Uπ(t) sin(2t)

17 S1

(
e2t
)

18 S3 (cos(4t))

Write the given function in terms of step

functions.

19 f(t) =

⎧⎪⎨
⎪⎩
0 if t < 2

3 if t > 2

20 g(t) =

⎧⎪⎨
⎪⎩
3 if 2 < t < 4

0 otherwise

21 h(t) =

⎧⎪⎨
⎪⎩
2t if t < 4

8 if t > 4

22 v(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t < 1

t− 1 if 1 < t < 2

1 if t > 2

Solve the initial value problem using the

Laplace transform.

23 ÿ + y =

⎧⎪⎨
⎪⎩
0 if t < 3

12 if t > 3

, y(0) = 0, ẏ(0) = 0

24 ÿ − y =

⎧⎪⎨
⎪⎩
0 if t < 1

2 if t > 1

, y(0) = 0, ẏ(0) = 1

25 ÿ + 4y =

⎧⎪⎨
⎪⎩
5 if t < π

0 if t > π

, y(0) = 0, ẏ(0) = 0

26 ÿ − 9y =

⎧⎪⎨
⎪⎩
1 if 1 < t < 2

0 otherwise
, y(0) =

0, ẏ(0) = 1

27 ẏ − 2y = δ3(t), y(0) = 0

28 ẏ + 3y = δ1(t), y(0) = 1

29 ÿ + ẏ = δ4(t), y(0) = 1

30 ÿ + y = δ2π(t), y(0) = 0, ẏ(0) = 2

31 ÿ + 4ẏ + 5y = δ1(t), y(0) = 0, ẏ(0) = 0

32 ÿ + 3ẏ + 2y = δ2(t), y(0) = 1, ẏ(0) = 0

33 Find a formula in terms of step func-

tions for the periodic “sawtooth” function

shown in the graph below. (Hint: Your for-

mula should involve an infinite sum; write

it using
∑

notation.)

1 2 3

1

34 A mass of 3 kg is attached to the end of

a spring with spring constant k = 48N
m , and

there is no damping. The mass is initially

at rest with no outside forces acting on the

spring-mass system (including no gravity).
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At time t = 4 a hammer strikes the mass

with 1N · s of impulse in the direction which

stretches the spring. Model this as a differ-

ential equation with a delta function, solve

it, and graph the resulting solution.

35 The delta function δa(t) can be thought

of in some sense as a limit of the func-

tions 1
h (Ua(t)− Ua+h(t)) as h ↘ 0. Illus-

trate this by (a) finding a function y which

solves ÿ = 1
h (Ua(t)− Ua+h(t)) and writing it

in piecewise notation, (b) taking the limit of

the result of part (a) as h ↘ 0, and (c) com-

paring the result of (b) with the solution of

ÿ = δa(t).

36 The problem above suggests that the

delta function δa can be thought of as a de-

rivative of a unit step function Ua. Make

this explicit by calculating the value of

∫ t
−∞ δa(x) dx for t �= a and explaining how

the results suggests a relationship between

δa and Ua.

37 Find the Fourier Transform of the

translated delta function, F [δa(t)]. (Refer to

the definition of the Fourier Transform given

in Problem 10.4, and use the defining prop-

erties of the delta function.)

38 Express the function f(t) =
√
t2+t
2t in

terms of unit step functions. (Hint: you can

guess the answer by graphing f(t) first; once

you know what the answer should be, ex-

plain how to see this result from the formula

itself.) This question illustrates the fact that

we don’t really need to resort to piecewise

notation to define step functions – that just

happens to be an easier way to do it.



CHAPTER 12

Representation Formulas and Convolutions

Prototype Question: Find a formula for the solution of

ÿ − 4y = f(t), y(0) = 0), ẏ(0) = 0 which can be evaluated

to any desired accuracy for any given function f(t).

In this section, we will write down several integral formulas for solutions of ODE.

These formulas are especially useful when it is difficult or impossible to write down closed

form anti-derivatives.

Let us begin by considering the general first-order linear equation in standard form:

dy

dx
+ p(x)y = q(x).

Suppose we seek a solution that satisfies the initial condition y(x0) = y0. On a domain I

containing x0 and where p(x) and q(x) are continuous, we would normally introduce any

integrating factor of the form exp
(∫

p(x)dx
)
. However, let us now specify a particular anti-

derivative as the argument of the exponential function (by taking advantage of the Fun-

damental Theorem of Calculus): we will use the integrating factor μ(x) = exp
(∫ x

x0
p(s)ds

)
.

d

dx

[
exp

(∫ x

x0

p(s)ds

)
y

]
= q(x) exp

(∫ x

x0

p(s)ds

)
.

And again, when we anti-differentiate both sides of this equation, we will use a particular

anti-derivative on the right side:

exp

(∫ x

x0

p(s)ds

)
y = C +

∫ x

x0

q(t) exp

(∫ t

x0

p(s)ds

)
dt.

(Note the presence of the constant of integration C on the right side; also, we changed

the variable from x to t on the right side before integrating to avoid conflict with the x

that appears in the upper limit of integration.) If we insert the initial condition at this

point, notice that both definite integrals will be zero (since the upper and lower limits of

integration will be identical), and we can see that y0 = C, so now we have

exp

(∫ x

x0

p(s)ds

)
y = y0 +

∫ x

x0

q(t) exp

(∫ t

x0

p(s)ds

)
dt.

169
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Isolating y yields

Representation Formula for First-Order Linear Initial

Value Problems

If p(x) and q(x) are continuous on an open interval I containing

x0, then the unique solution of y′ + p(x)y = q(x) on I is given by

y = exp

(
−
∫ x

x0

p(s)ds

)(
y0 +

∫ x

x0

q(t) exp

(∫ t

x0

p(s)ds

)
dt

)
.

This is a representation formula that can be used for any first-order linear IVP in stan-

dard form. The integrals are guaranteed to be defined on any domain where p and q are

both continuous. Even when we cannot write down an anti-derivative for the functions

p and q, we can often still write down approximate values of y(x) by using a numerical

method to approximate the integrals (such as the Trapezoid Rule, Simpson’s Rule or an-

other algorithm run by a calculator or computer).

EXAMPLE 1: Suppose y satisfies the initial value problem y′+2xy = 1, y(0) = 2. Find the

approximate value of y(1).

In theory the method of integrating factors will apply here, but we will run into some

difficulty if we try to actually calculate the exact solution because we will end up trying

to anti-differentiate e(x
2), and there is no closed-form anti-derivative for this function.

However, we can apply the representation formula above (which is really just the method

of integrating factors anyway) with p(x) = 2x and q(x) = 1 to get

y(x) = exp

(
−
∫ x

0
2s ds

)(
2 +

∫ x

0
1 exp

(∫ t

0
2s ds

)
dt

)

= e−(x2)

(
2 +

∫ x

0
e(t

2) dt

)

In particular,

y(1) = e−1

(
2 +

∫ 1

0
e(t

2) dt

)
.

The integral on the right side can be calculated to any desired accuracy. Simpson’s Rule

with n = 10 subdivisions gives us
∫ 1
0 e(t

2)dt ≈ 1.46268. Therefore y(1) ≈ 1.27385. (Care-

ful use of the error estimate for Simpson’s rule and careful rounding would allow us to

conclude that the accuracy of this answer is better than 10−4.) �
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EXERCISE 1: Use the above representation formula to write down a solution to y′ + xy = 1,

y(0) = 1. Then give an approximate value of y(2) by using a numerical method or computer to

evaluate the definite integrals involved.

Another representation formula can be obtained using the method of Laplace Trans-

forms. The key idea necessary is an operation on functions which is called convolution, so

we must take a brief excursion to define this operation and examine some of its properties.

In pre-calculus we learn about several operations that combine functions. The first few

operations we explore are based on arithmetic: addition, subtraction, multiplication and

division of functions. Then we introduce a new operation that is different from what one

has studied before: composition of functions. Now will explore yet another way of combin-

ing functions which is of particular interest when working with Laplace Transforms. This

operation is defined in terms of definite integrals.

The convolution of two integrable functions f and g defined on [0,∞) is written as

f ∗ g and is defined by the formula

f ∗ g(t) =
∫ t

0
f(τ)g(t− τ) dτ.

EXAMPLE 2: Let f(t) = t and g(t) = et. Compute f ∗ g.

f ∗ g(t) =
∫ t

0
f(τ)g(t− τ) dτ

=

∫ t

0
τet−τ dτ

= et
∫ t

0
τe−τ dτ

= et
(
−τe−τ +

∫
e−τ dτ

)∣∣∣∣
t

0

= et
(−τe−τ − e−τ

)∣∣t
0

= et(−te−t − e−t + 0 + 1)

= −t− 1 + et.

�
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The first fact we will prove about convolution is that it is commutative: f ∗ g = g ∗ f .

Indeed,

f ∗ g =

∫ τ=t

τ=0
f(τ)g(t− τ) dτ

= −
∫ u=0

u=t
f(t− u)g(u) du (substituting u = t− τ )

=

∫ u=t

u=0
g(u)f(t− u) du

= g ∗ f.

Therefore we need not specify the order of the two functions in a convolution.

EXERCISE 2: Prove (by giving a counterexample) that the composition of functions f ◦ g, defined

by (f ◦ g)(x) = f(g(x)), is not a commutative operation.

EXERCISE 3: Find the convolution of the functions t and t2.

Next, we examine what happens when we take the Laplace Transform of a convolution.

L[f ∗ g] =
∫ ∞

0
f ∗ g(t)e−st dt

= lim
T→∞

∫ T

0

∫ t

0
f(τ)g(t− τ)e−st dτ dt

= lim
T→∞

∫ T

0

∫ T

τ
f(τ)g(t− τ)e−st dt dτ (∗)

= lim
T→∞

∫ T

0

∫ T−τ

0
f(τ)g(u)e−s(u+τ) du dτ

=

∫ ∞

0

∫ ∞

0
f(τ)g(u)e−sτ e−su du dτ

=

(∫ ∞

0
f(τ)e−sτ dτ

)(∫ ∞

0
g(u)e−su du

)

= (L[f ])(L[g]).

In the line marked (*) we changed the order of integration, and the following figure illus-

trates how we obtained the new limits of integration:
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t

τ

τ=t
Τ

Τ

What this result shows is that the Laplace Transform of a convolution of two functions is

just the product of their Laplace Transforms. This fact is valuable to us because it helps

us to find more inverse transforms.

Laplace Transform of a Convolution

L[f ∗ g] = L[f ]L[g].

Equivalently,

L−1[F (s)G(s)] = L−1[F (s)] ∗ L−1[G(s)].

EXAMPLE 3: The inverse Laplace Transform of 1
(s−a)2 is teat since

L−1

[
1

s− a

1

s− a

]
= L−1

[
1

s− a

]
∗ L−1

[
1

s− a

]

= eat ∗ eat

=

∫ t

0
eaτ ea(t−τ) dτ

=

∫ t

0
eat dτ

= τeat
∣∣t
0

= teat.

�

EXERCISE 4: Use the result of Example 3 above to solve the IVP y′′ + 10y′ + 25y = 0, y(0) =

1, y′(0) = 2 via Laplace Transforms.
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EXERCISE 5: Find L−1
[

1
s(s−1)

]
two ways: (a) using convolutions and (b) using partial fractions.

Now we have the necessary tool to develop more representation formulas.

EXAMPLE 4: Find a formula for the solution of the initial value problem ẏ + 2y = f(t),

y(0) = 0.

Taking the Laplace Transform of each side of the differential equation produces

L[ẏ + 2y] = L[f ],

so that

sL[y]− y(0) + 2L[y] = L[f ],

and using the initial condition then isolating L[y] yields

L[y] = L[f ]
1

s− 1
.

If we know what L[f ] is, we might be able to evaluate this by hand, but only if we are able

to look up the necessary inverse transforms in a table. However, that is not necessary,

because we come to this battle armed with convolutions! Recall that L[f ∗ g] = L[f ]L[g],

and inverting that rule here with g = L−1
[

1
s−1

]
= et gives us

y = f(t) ∗ et,

or

y =

∫ t

0
f(τ)et−τ dτ.

�
This formula can be applied even if we do not know the Laplace Transform of f . For

example, if f(t) = tan(t), and we want to know y(0.5), then

y(0.5) =

∫ 0.5

0
tan(τ)e0.5−τ dτ = 0.155.

This approach gives us a numerical approximation, just like a technique such as Euler’s

Method would. The advantage here is that we can obtain any desired accuracy provided

we know how to approximate the necessary integral within the prescribed level of error.

EXERCISE 6: Use Laplace Transforms and convolution to find an integral representation formula

for y(t) where y satisfies the initial value problem ẏ + 4y = sec(t), y(0) = 0, and use it to find an

approximate value of y(0.2).
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EXERCISE 7: Use Laplace Transforms and convolution to find an integral representation formula

for y(t) where y satisfies the initial value problem ÿ + 4y = tan(t), y(0) = 0, ẏ(0) = 0, and use it to

find an approximate value of y(0.3).

EXERCISE 8: Use Laplace Transforms and convolution to find an integral representation formula

for y(t) where y satisfies the initial value problem ÿ − 4ẏ + 3y = e(t
2), y(0) = 1, ẏ(0) = 0, and use it

to find an approximate value of y(0.2).
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Additional Exercises

Write down an integral representation for-

mula for the solution of the given initial

value problem. The use a graphing calcula-

tor or computer to evaluate the formula and

approximate the value of y(x1).

9 y′ + x2y = 1, y(0) = 0, x1 = 2

10 y′ + sin(x)y = x, y(0) = 0, x1 = 1

11 y′ + y
x = e(x

4), y(0) = 1, x1 = 2

12 y′ − xy = x2, y(0) = 2, x1 = 1

Calculate the given convolution of functions.

13 t2 ∗ t2

14 et ∗ e2t

15 et ∗ sin(t)
16 cos(t) ∗ cos(t)

Use convolution to calculate the given in-

verse Laplace transform.

17 L−1
[

1
(s−1)(s+1)

]

18 L−1
[

1
s(s+2)

]

19 L−1
[

1
s(s2+1)

]

20 L−1
[

1
s2(s2+1)

]

Use convolution to find an integral repre-

sentation formula for the solution of the

given initial value problem.

21 ÿ = e(t
2), y(0) = 0, ẏ(0) = 0

22 ÿ + y = tan(t), y(0) = 0, ẏ(0) = 0

23 ÿ − y = cos(t3), y(0) = 0, ẏ(0) = 0

24 ÿ − 3ẏ + 2y = sin(t2), y(0) = 0, ẏ(0) = 0

25 Use the method of integrating factors

to find an integral representation formula

for the solution of the following initial value

problem with b �= 0, and simplify your an-

swer as much as possible:

ẏ + by = f(t), y(0) = y0.

26 Use Laplace Transforms to find an inte-

gral representation formula for the solution

of the following initial value problem with

b �= 0:

ẏ + by = f(t), y(0) = y0.

27 Use Laplace Transforms to find an inte-

gral representation formula for the solution

of the following initial value problem with

b �= 0:

ÿ + 2bẏ + b2y = f(t), y(0) = y0, ẏ(0) = v0.

28 Use an integral representation formula

to solve ÿ − y = f(t) with the initial con-

ditions y(0) = 0 and ẏ(0) = 0. Then let

f(t) = ln(t − 1), and estimate the value of

y(1) by evaluating the necessary definite in-

tegrals using Simpson’s Rule. Give an an-

swer with an error less than 10−5.
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CHAPTER 13

Systems of Differential Equations

Prototype Question: Model the size of two interacting

populations – a predator species and its prey.

Up to this point, we have considered ODE in which there is one dependent variable,

such as y in the equation ẏ = f(t, y). We will now turn our attention to systems of

ordinary differential equations in which there are two or more dependent variables

(the unknown functions for which we hope to solve). Here’s one example of such a system:
⎧⎪⎨
⎪⎩
ẋ = 2x− 3y

ẏ = x− y

,

where x(t) and y(t)are both unknown functions of the independent variable t. This is a

system of two ordinary differential equations, and the system is coupled because we can’t

just solve for one variable and then the other – solving the differential equation for x(t)

would require us to know what y(t) is, and solving the differential equation for y(t) would

require us to know what x(t) is. It seems that, if we are going to be able to find solutions,

we will have to find a way to solve for both x and y at the same time. Indeed, there is

a way to do exactly that for this and many other problems. But let’s begin by discussing

some graphical and numerical methods for understanding systems before we try to solve

any of them analytically.

In this chapter, we will deal exclusively with first-order systems of ODE, meaning

the differential equations involve only first derivatives of the dependent variables. For a

system with two unknown functions, the system is in standard form if it is written as:
⎧⎪⎨
⎪⎩
ẋ = f(x, y, t)

ẏ = g(x, y, t)
.

Although we will emphasize systems of two equations, much of what we do will also apply

to systems of three or more equations in the same number of unknowns. The standard

179
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form for a system of n equations in n dependent variables is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = f1(y1, y2, ..., yn, t)

ẏ2 = f2(y1, y2, ..., yn, t)

...

ẏn = fn(y1, y2, ..., yn, t)

.

Fortunately, we will be able to develop the central ideas of this topic by sticking mostly

to systems of two equations in two unknowns. Furthermore, we will also be able to fo-

cus on autonomous systems in which the independent variable does not appear in the

differential equations:

(5)

⎧⎪⎨
⎪⎩
ẋ = f(x, y)

ẏ = g(x, y)

.

(As we will see later, restricting our attention to autonomous systems actually does not

require us to give anything up. It turns out that every system of ODE is equivalent to an

autonomous system!)

A solution to the ODE system in equation 5 above would be a pair of functions

x(t), y(t), and we can think of these functions as parameterizing a curve in R
2. In that

case, the tangent vector to the curve at the point (x(t), y(t)) for any fixed value of t would

be the vector (ẋ(t), ẏ(t)). (Note: It will not be necessary for us to use different notations to

distinguish between points and vectors. In fact, it would be cumbersome for us to try to

do so, as we will tend to think of these as two different points of view for the same objects.

Every vector in R
n corresponds to a point in R

n in an obvious way, and vice versa.)

(x(t),y(t))

(x(t),y(t)). .

It turns out that we don’t need the solutions in order to plot these tangent vectors,

because the differential equation itself tells us everything we need.
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EXAMPLE 1: Consider the following system of ordinary differential equations:
⎧⎪⎨
⎪⎩
ẋ = 2x+ 3y

ẏ = x− y

.

If a solution to this system is a curve in R
2 passing through the point (x, y), then the

tangent vector at that point is (2x+ 3y, x− y). At the point (2, 0), this would be the vector

(4, 2). At the point (2, 1), this would be the vector (7, 1). Doing this for a lattice of points in

the xy-plane and graphing the resulting vectors gives us a picture like the following:

This picture is a slope field (or direction field) for the ODE system. It shows us the

paths that solution curves follow. For example, if x(t), y(t) is a pair of functions satisfying

the ODE system and the initial condition x(0) = 2, y(0) = 0, then the curve parameterized

by (x(t), y(t)) should pass through the point (2, 0) and remain tangent to the direction

vectors; the graph below shows such a solution sketched on top of the direction field:
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We will refer to the graph of (x(t), y(t)) as a solution curve or a solution trajectory.

EXAMPLE 2: Imagine a population of rabbits which, unchecked, would grow exponen-

tially, but whose growth is controlled by a predator species - foxes. Let’s write down a

system of differential equations that will model the population growth of each of these

interacting species.

We’ll use our “rate-in minus rate-out” approach to come up with appropriate models,

and we’ll need to make some assumptions about how those rates are affected. Let R

denote the size of the rabbit population and F the size of the fox population. We’ve already

assumed that the rabbit population would grow exponentially if there were no foxes, so the

“rate-in” component for Ṙ should be aR, where a is some positive constant. The “rate-out”

should depend on how fast rabbits are being killed by foxes. Let’s assume that this rate is

jointly proportional to both population sizes, so an increase in either the number of rabbits

or the number of foxes should result in more rabbit-fox contacts and, consequently, more

rabbit deaths. Thus the “rate-out’ component could be modeled by the term bRF , where b

is another positive constant. This gives us

Ṙ = aR− bRF

for the rabbit population. As for the foxes, let’s assume that the growth of the fox popula-

tion is proportional to the number of rabbit-fox contacts again (imagining that the growth

of the fox population depends on the amount of food it obtains), so the “rate-in” would be

cRF . Further, because foxes will tend to die off at a rate proportional to the size of the

population, the “rate-out” will be dF . Again, c and d are positive constants. Therefore

Ḟ = cRF − dF

for the fox population.

Here’s a slope field for the above system of equations using the values a = 2, b = 1, c =

1, d = 0.5.
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�

EXERCISE 1: On top of the slope field above, sketch a solution curve. Describe the physical

interpretations of the curve you see – what does it means in terms of the population sizes of the

two species? (Hint for sketching: Every trajectory for this system should be a closed loop.)

Next, let’s turn our attention to numerical methods. For a system written in standard

form, it turns out that we can apply a version of Euler’s method to find approximate values

of solutions. Recall that for Euler’s Method, we considered a differential equation of the

form y′ = f(t, y) with an initial condition y(t0) = y0. We selected a step size, h, we let

tj = t0+ jh, and then used the recursive formula yj+1 = yj + f(tj, yj)h to obtain a sequence

of y-values.

Almost exactly the same process can be used for a system. Let h > 0 be a fixed step

size and let tj = t0 + hj as before. For an initial-value problem such as

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(t, x, y)

ẏ = g(t, x, y)

x(t0) = x0

y(t0) = y0

we will use two recursive formulas:

xj+1 = xj + hf(tj, xj , yj) and yj+1 = yj + hg(tj , xj , yj).
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EXAMPLE 3: Consider the initial-value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x+ y

ẏ = y − x

x(0) = 1

y(0) = 0

Let’s approximate the value of (x(1), y(1)) using Euler’s Method with a step size of h = 0.5.

We’ll organize our calculations in a table to make them easier to follow:

tj xj yj xj+1 = xj + (xj + yj)(0.5) yj+1 = yj + (yj − xj)(0.5)

0 1 0 1.5 -0.5

0.5 1.5 -0.5 2 -1.5

This tells us that x(1) ≈ 2 and y(1) ≈ −1.5. �

EXERCISE 2: Redo Example 13.3 above with a step size of h = 0.25.

EXERCISE 3: Use Euler’s Method with a step size of h = 0.5 to find approximate values of x(2)

and y(2) where x and y satisfy
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x+ y

ẏ = −xy

x(1) = 3

y(1) = 2

.

The following is an extremely important fact about systems of ODE: any nth-order

ODE written in standard form

y(n) = f(t, y, y′, y′′, ..., y(n−1)
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can be written as an equivalent system of n first-order equations by making the substitu-

tions uj = y(j−1): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′1 = u2

u′2 = u3

...

u′n−1 = un

u′n = f(t, u1, u2, ..., un)

.

EXAMPLE 4: Consider the second-order initial-value problem

y′′ = y2 + y′, y(0) = 1, y′(0) = 0.

Suppose we wish to know the (approximate) value of y(0.75). This is not a linear system,

so we cannot solve it analytically using methods previously discussed. But we can convert

it to a first-order system and then apply Euler’s Method. Let uj = y(j−1). Then we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′1 = u2

u′2 = u21 + u2

u1(0) = 1

u2(0) = 0

.

We apply Euler’s method with a step size of h = 0.25:

tj (u1)j (u2)j (u1)j+1 = (u1)j + (u2)j(0.25) (u2)j+1 = (u2)j + ((u1)
2
j + (u2)j)(0.25)

0 1 0 1 0.25

0.25 1 0.25 1.0625 0.5625

0.5 1.0625 0.5625 1.22 0.9853515625

The last line tells us that u1(0.75) ≈ 1.22, and therefore y(0.75) ≈ 1.22. �

EXERCISE 4: Consider the second-order initial-value problem y′′ = y2, y(0) = 1, y′(0) = 0.

Convert this to an equivalent first-order system, and then use Euler’s Method with a step size of

h = 0.5 to approximate the value of y(1).

Another application of the same idea is to change a non-autonomous ODE into an

autonomous system. We say that a system such as in line (6) is autonomous if the right
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side functions do not depend explicitly on the independent variable, in which case the

system of ODE can be written as

⎧⎪⎨
⎪⎩
ẋ = f(x, y)

ẏ = g(x, y)

.

Otherwise, if f and or g depends on t, then the system is non-autonomous, as in

⎧⎪⎨
⎪⎩
ẋ = f(t, x, y)

ẏ = g(t, x, y)
.

Let’s introduce another independent variable, say τ , which satisfies the differential equa-

tion τ̇ = 1 and the initial condition τ(t0) = t0. The solution of this simple initial-value

problem is τ = t. Let’s now augment our non-autonomous system by adding this differen-

tial equation:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = f(t, x, y)

ẏ = g(t, x, y)

τ̇ = 1

,

and then let’s replace every occurrence of t with τ on the right sides:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = f(τ, x, y)

ẏ = g(τ, x, y)

τ̇ = 1

.

This is an autonomous system of three ordinary differential equations - the independent

variable, t, does not appear anywhere on the right sides of the equations.

EXAMPLE 5: Consider the non-autonomous initial-value problem

du

dv
= u+ v, u(0) = 1.

Here, v is the independent variable. Let’s introduce a new variable, w, which satisfies

w = v and therefore dw
dv = 1. Replacing the occurrence of v on the right side of our original

ODE with w, we obtain the following autonomous initial-value problem for a system of
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two unknowns functions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dv = u+ w

dw
dv = 1

u(0) = 1

w(0) = 0

.

�
To end this chapter, let’s address existence and uniqueness for systems. To do so, it will

be useful to introduce more efficient notation. Let Y =

⎡
⎣x(t)
y(t)

⎤
⎦ be a vector-valued function

of t, so that Y ′ =

⎡
⎣x′(t)
y′(t)

⎤
⎦, and let F be a vector-valued function with a vector-valued input:

F

⎛
⎝
⎡
⎣x
y

⎤
⎦
⎞
⎠ =

⎡
⎣f(x, y)
g(x, y)

⎤
⎦ .

With this notation, a system such as

⎧⎪⎨
⎪⎩
x′ = f(x, y)

y′ = g(x, y)

can be written as

Y ′ = F (Y ),

and we see that adopting vector notation allows us to write the system in a form that

closely parallels the form for a single ordinary differential equation. If we further define

Y0 =

⎡
⎣x0
y0

⎤
⎦, then the initial conditions x(t0) = x0, y(t0) = y0 can be written as

Y (t0) = Y0.

Similar constructions can be made for systems of 3 or more differential equations.

An existence and uniqueness theorem can now be stated succinctly:
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Existence and Uniqueness for Systems

Suppose that F (Y ) and F ′(Y ) are defined and continuous on an

open set containing Y0. Then there is an open interval I contain-

ing t0 such that the initial value problem

Y ′ = F (Y ), Y (t0) = Y0

has a unique solution Y (t) defined on I.

Because F is a vector-valued function of several variables, the notation F ′ actually

represents a matrix of partial derivatives:

F ′

⎛
⎝
⎡
⎣x
y

⎤
⎦
⎞
⎠ =

⎡
⎣fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

⎤
⎦ .

EXERCISE 5: Suppose that F

⎛
⎝
⎡
⎣x
y

⎤
⎦
⎞
⎠ =

⎡
⎣ xy

x2 + y2

⎤
⎦. Write down F ′.
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Additional Exercises

Use Euler’s method with a step size of Δt =

0.5 to approximate the value of (x(1), y(1)),

where (x(t), y(t)) satisfies the given initial

value problem.

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x+ y

ẏ = x− 2y

x(0) = 1

y(0) = 0

7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = xy

ẏ = y − x

x(0) = 2

y(0) = 1

8 The dfieldplot command in Maple

can be used to generate a slope field for a

system of two autonomous first-order differ-

ential equations. Load the package for this

algorithm into Maple by executing the com-

mand with(DEtools). The command to

generate the plot in Example 13.1 is:

dfieldplot([x’(t)=2x(t)+3y(t),

y’(t)=x(t)-y(t)],

[x(t),y(t)],t=0..1,

x=-5..5,y=-5..5)

(Note that Maple requires a range for the

independent variable t to be specified, even

though it has no effect on the graph. There-

fore, the range specified here is really arbi-

trary.) Modify this command to generate a

direction field for the system ẋ = −y, ẏ = x

on the domain −2 ≤ x ≤ 2, −2 ≤ y ≤ 2, and

discuss the behavior of a trajectory satisfy-

ing the initial condition x(0) = 0, y(0) = 1.

9 Consider the second-order initial-value

problem

ÿ + y = 1, y(0) = 1, ẏ(0) = 0.

Convert this into an equivalent first-order

system by introducing u = ẏ. Then use a

slope-field to analyze the qualitative behav-

ior of the solution y(t). Compare this with

the analytic solution which can be found ex-

plicitly using techniques from earlier chap-

ters.

10 Convert the non-autonomous initial-

value problem y′ = x − y2, y(0) = 0 into an

autonomous system in two unknown func-

tions. Generate a slope field to analyze the

behavior of the solution y(x).

11 Consider the system ẋ = −y, ẏ = x

on the region −2 ≤ x ≤ 2 and −2 ≤
y ≤ 2. A slope field for this system (see

Problem 1 above) suggests that the trajec-

tories appear to be circles centered at the

origin. Prove this as follows. (a) Intro-

duce two new variables, r =
√

x2 + y2 and
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θ = tan−1
( y
x

)
. (These are just polar coordi-

nates!) Differentiate these formulas to ver-

ify that ṙ = xẋ+yẏ√
x2+y2

and θ̇ = xẏ−yẋ
x2+y2

. (b) Re-

place ẋ with −y and replace ẏ with x to sim-

plify these equations for ṙ and θ̇ as much as

possible. (c) Convert the initial conditions

x(0) = x0, y(0) = y0 to corresponding ini-

tial conditions for r and θ (in terms of x0

and y0). Then solve the differential equa-

tions for r and θ subject to those initial con-

ditions. (d) Use the formulas you find for

r(t) and θ(t) to write down formulas for x(t)

and y(t). Verify directly that these functions

satisfy the given system of differential equa-

tions. What shapes do these functions pa-

rametrize in R
2? (Keep in mind that x0 and

y0 are constants.)

12 Here is an alternative approach to solv-

ing the differential equations in the pre-

vious problem. Thanks to the particular

structure of the system in Exercise 11, we

can convert it into a single, second-order

ODE. Differentiating ẋ = −y gives us ẍ =

−ẏ, and then substituting ẏ = x gives us

ẍ = −x, or ẍ + x = 0. Solve this second-

order equation subject to the initial condi-

tions x(0) = x0 and ẋ(0) = −y0. Then use

the result to find a formula for y(t). Com-

pare with the conclusions in Exercise 11.

13 Let R(t) represent Romeo’s affection

for Juliet at time t, and let J(t) repre-

sent Juliet’s affection for Romeo at time t.

Positive values of R and J represent love,

and negative values represent hate. (Let’s

call the units of these quantities ‘cupids’.)

Juliet becomes more attracted to Romeo

when he doesn’t like her, and she becomes

more repulsed by him when he does like her.

Romeo, on the other hand, becomes more at-

tracted to Juliet when she is attracted to

him. Therefore their feelings for one an-

other are modeled by the system of equa-

tions:

Ṙ = aJ

J̇ = −bR,

where a and b are positive constants. Deter-

mine the behavior of R and J over time. Will

Romeo and Juliet find happiness together?

Explain. Draw some trajectories on direc-

tion fields to illustrate.

14 Juliet, from the previous question, un-

dergoes a sudden change in personality and

ends up more like Romeo – when he is at-

tracted to her, she grows more attracted to

him, and when he is repulsed by her, she

grows more repulsed by him. Write down a

system of equations to model this new be-

havior and analyze it. What happens to

their long-term attraction for each other?

What does it depend upon?

15 Consider two interconnected tanks used

to mix saltwater. Both tanks begin with 100

liters of pure water. A mixture of 50 grams

of salt per liter of water is pumped into the

first tank at a rate of 10 liters per minute.
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Also, liquid from the second tank is pumped

into the first tank at a rate of 5 liters per

minute. Liquid in the first tank is thor-

oughly mixed and pumped into the second

tank at a rate of 15 liters per minute. Liquid

in the second tank is kept thoroughly mixed

and drains out 10 liters per minute. (There-

fore, the total volume of liquid in both tanks

remains constant.) Set up an initial-value

problem for two functions which described

the rate of change of the masses of salt in

each tank over time.

10 L/min

5 L/min

15 L/min

10 L/min





CHAPTER 14

Systems of Two Linear Equations

Prototype Question: Find an explicit solution of the fol-

lowing initial-value problem::⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −x+ 5y

ẏ = 5x− y

x(0) = 2

y(0) = 4

.

In this chapter we will study systems of the form

(7)

⎧⎪⎨
⎪⎩
ẋ = ax+ by

ẏ = cx+ dy
,

where a, b, c and d are constants. These are linear, constant coefficient, homoge-

neous systems of two ordinary differential equations. If we add a driving term to the right

side of one of the equations (e.g. ẋ = ax+ by + f(t)), we would have a non-homogeneous

system.

We will focus now on finding explicit solutions for homogeneous systems, and to do so

we will rely on some basic techniques from linear algebra. Readers may wish to examine

Appendix D before reading this chapter.

Let’s look at a slope field for the system in our prototype question:

193
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This graph was drawn with all vectors having the same length, so that it would be easier

to see their directions. Notice how there appear to be some straight-line trajectories – two

pointing directly toward the origin, and two pointing directly away.

Let’s assume for the moment that this interpretation of the graph is correct and see if

we can use that to discover what explicit solutions of the ODE system might look like. If

a trajectory of (7) follows a straight line through the origin, then the x and y coordinates

must satisfy an equation for such a line: αx+ βy = 0 for some constants α, β ∈ R, not both

equal to zero. If β �= 0, then we can write y = −α
βx and insert this into the first equation of

(7) to get ẋ =
(
a− bα

β

)
x, any solution of which is some exponential function, x(t) = C1e

λt,

and inserting this into the relationship y = −α
βx gives us another exponential function,

y(t) = C2e
λt. (If instead we assumed that α �= 0, we would end up with the same result.)

This reasoning leads us to the following important conclusion:

Straight Line Solutions of Linear Systems

Any trajectory (x(t), y(t)) that satisfies⎧⎪⎨
⎪⎩
ẋ = ax+ by

ẏ = cx+ dy

and that follows a straight line through the origin can be written

in the form ⎡
⎣x(t)
y(t)

⎤
⎦ = eλt

⎡
⎣C1

C2

⎤
⎦

for some constants λ, C1, C2.
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Before we use this fact, notice first that the system of equations can be written as a

single matrix equation: ⎡
⎣ẋ
ẏ

⎤
⎦ =

⎡
⎣ax+ by

cx+ dy

⎤
⎦ .

Furthermore we can write the right side of this equation as a product of matrices:
⎡
⎣ẋ
ẏ

⎤
⎦ =

⎡
⎣a b

c d

⎤
⎦
⎡
⎣x
y

⎤
⎦ .

If we now write X =

⎡
⎣x
y

⎤
⎦ and A =

⎡
⎣a b

c d

⎤
⎦, it follows that Ẋ =

⎡
⎣ẋ
ẏ

⎤
⎦, and the matrix

equation above can be expressed as

Ẋ = AX.

In this form, the vector-valued function X(t) is the unknown, and A is a constant coeffi-

cient matrix.

In this form, our lemma tells us that any straight-line solution can be written in the

form

X(t) = eλt

⎡
⎣C1

C2

⎤
⎦ .

EXAMPLE 1: Consider the system in our prototype question,

(8)

⎧⎪⎨
⎪⎩
ẋ = −x+ 5y

ẏ = 5x− y
.

Using matrix notation, we can write this as

(9) Ẋ =

⎡
⎣−1 5

5 −1

⎤
⎦X.

The lemma tells us that any straight-line solution must be of the form X = eλt

⎡
⎣C1

C2

⎤
⎦, and

therefore Ẋ = λeλt

⎡
⎣C1

C2

⎤
⎦. Inserting these into (9) gives us

λeλt

⎡
⎣C1

C2

⎤
⎦ = eλt

⎡
⎣−1 5

5 −1

⎤
⎦
⎡
⎣C1

C2

⎤
⎦ .
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Divide both sides by the non-zero scalar function eλt to obtain

λ

⎡
⎣C1

C2

⎤
⎦ =

⎡
⎣−1 5

5 −1

⎤
⎦
⎡
⎣C1

C2

⎤
⎦ .

This is precisely the statement that λ is an eigenvalue of

⎡
⎣−1 5

5 −1

⎤
⎦ and that

⎡
⎣C1

C2

⎤
⎦ is a

corresponding eigenvector. The eigenvalues of

⎡
⎣−1 5

5 −1

⎤
⎦ are λ1 = 4 and λ2 = −6. Eigen-

vectors corresponding to λ1 are nonzero multiples of

⎡
⎣1
1

⎤
⎦, and eigenvectors corresponding

to λ2 are nonzero multiples of

⎡
⎣ 1

−1

⎤
⎦. In the first case, we get

X(t) = Ce4t

⎡
⎣1
1

⎤
⎦ ,

and in the second case,

X(t) = Ce−6t

⎡
⎣ 1

−1

⎤
⎦ .

That is to say, straight-line solutions of this system of ordinary differential equations have

one of two possible forms:⎧⎪⎨
⎪⎩
x(t) = Ce4t

y(t) = Ce−6t
or

⎧⎪⎨
⎪⎩
x(t) = Ce4t

y(t) = −Ce−6t
.

(In each case, the value of C is the same in both lines.) �

EXERCISE 1: For the system of equations in line (8): (a) find a straight-line solution satisfying

x(0) = 2, y(0) = 2; (b) find a straight-line solution satisfying x(0) = 3, y(0) = −3; is there a

straight-line solution satisfying x(0) = 2, y(0) = 4? Explain.

EXERCISE 2: Fill in the details of finding the eigenvalues and eigenvectors in the previous ex-

ample. (There is a review of the relevant linear algebra in the appendix.)

The reasoning in the last example can be applied to any constant-coefficient, linear, ho-

mogeneous system. Remarkably, knowing how to find straight-line solutions will actually

help us to find all solutions, thanks to the fact that our systems are linear. The following
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exercises will provide us with the main ingredients we need for constructing more general

solutions.

EXERCISE 3: Suppose X(t) = eλtξ, where λ is an eigenvalue of A and ξ is an associated eigenvec-

tor. Prove that X(t) satisfies Ẋ = AX .

EXERCISE 4: Suppose that X1(t) and X2(t) both satisfy the system of differential equations

represented by Ẋ = AX . Prove that for any constant scalar coefficients c1 and c2 the function

X = c1X1 + c2X2 is also a solution.

It is proven in linear algebra that if a 2×2 matrix A has two distinct eigenvalues λ1 and

λ2 (the word ‘distinct’ meaning that λ1 �= λ2), then any eigenvectors ξ1 and ξ2 associated

to λ1 and λ2 must be linearly independent. According to the two previous exercises, the

function

X(t) = c1e
λ1tξ1 + c2e

λ2tξ2

is a solution of Ẋ = AX. Notice that X(0) = c1ξ1 + c2ξ2, and because the eigenvectors are

linearly independent, it follows that any initial value of X(0) can be satisfied by an appro-

priate choice of c1 and c2. The existence and uniqueness theorem tells us that solutions of

a linear system are unique for t close to t0 (actually, it turns out that they are unique for

all t ∈ R). We can now state the following formula for finding general solutions of matrix

differential equations.

Solutions of Homogeneous Linear Systems with Distinct

Eigenvalues

Suppose that A is a 2× 2 matrix with distinct eigenvalues λ1 and

λ2, and suppose that ξ1 and ξ2 are corresponding eigenvectors.

Then the general solution of Ẋ = AX is given by

X(t) = c1e
λ1tξ1 + c2e

λ2tξ2.

We will also give a complete description of the general solution when the coefficient

matrix A has only one eigenvalue. However, we will postpone that until we explore a few

examples of this first result.
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EXAMPLE 2: Consider the initial-value problem in the prototype question for this chap-

ter. The general solution of this system is obtained from linear combinations of the

straight-line solutions:

X(t) = c1e
4t

⎡
⎣1
1

⎤
⎦+ c2e

−6t

⎡
⎣ 1

−1

⎤
⎦ ,

or ⎧⎪⎨
⎪⎩
x(t) = c1e

4t + c2e
−6t

y(t) = c1e
4t − c2e

−6t
.

Inserting t = 0 and the initial conditions for x and y gives us

2 = c1 + c2 and 4 = c1 − c2.

Thus the solution of this algebraic system of equations is c1 = 3, c2 = −1. Therefore
⎧⎪⎨
⎪⎩
x(t) = 3e4t − e−6t

y(t) = 3e4t + e6t
.

�

EXAMPLE 3: Solve the initial-value problem:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = x+ y

ẏ = 3x− y

x(0) = 1

y(0) = 2

If we write this as a matrix differential equation Ẋ = AX, the coefficient matrix is

A =

⎡
⎣1 1

3 −1

⎤
⎦. The eigenvalues of A are λ1 = 2 and λ2 = −2. An eigenvector corresponding

to λ1 = 2 is ξ1 =

⎡
⎣1
1

⎤
⎦, and an eigenvector corresponding to λ2 = −2 is ξ2 =

⎡
⎣ 1

−3

⎤
⎦. Therefore

the general solution is given by

X(t) = c1e
2t

⎡
⎣1
1

⎤
⎦+ c2e

−2t

⎡
⎣ 1

−3

⎤
⎦ .
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Combining the right side into a single vector and writing the matrix X in terms of its

component functions yields
⎡
⎣x(t)
y(t)

⎤
⎦ =

⎡
⎣ c1e

2t + c2e
−2t

c1e
2t − 3c2e

−2t

⎤
⎦ .

This gives us general solutions for the scalar functions: x(t) = c1e
2t + c2e

−2t and y(t) =

c1e
2t − 3c2e

−2t. Inserting the initial conditions x(0) = 1 and y(0) = 2 gives us a system of

equations we can use to solve for the coefficients c1 and c2:
⎧⎨
⎩

1 = c1 + c2

2 = c1 − 3c2
=⇒ c1 =

5

4
and c2 = −1

4
.

Now we have

x(t) =
5

4
e2t − 1

4
e−2t and y(t) =

5

4
e2t +

3

4
e−2t.

�

EXERCISE 5: Verify directly that the functions x and y found in the previous example satisfy the

system of differential equations there.

EXERCISE 6: Solve the initial-value problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x+ y

ẏ = 4x+ 3y

x(0) = 0

y(0) = 4

EXAMPLE 4: Consider the initial-value problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x− 2y

ẏ = x

x(0) = 0

y(0) = 1
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Written as Ẋ = AX, the coefficient matrix will be A =

⎡
⎣2 −2

1 0

⎤
⎦. The characteristic

equation is λ2 − 2λ+2 = 0, and this has complex roots: λ1 = 1+ i and λ2 = 1− i. Inserting

the first eigenvalue into the equation (A− λI)ξ1 = 0 gives us

⎡
⎣2− (1 + i) −2

1 −(1 + i)

⎤
⎦
⎡
⎣a
b

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ ,

where ξ1 =

⎡
⎣a
b

⎤
⎦. Hence

⎡
⎣1− i −2

1 −1− i

⎤
⎦
⎡
⎣a
b

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ .

The first row of this matrix equation is equivalent to the scalar equation

(1− i)a− 2b = 0,

from which we can conclude b = (1−i)a
2 . A simple choice for the eigenvector would be

ξ1 =

⎡
⎣ 1

1+i
2

⎤
⎦. A similar analysis will lead us to the eigenvector ξ2 =

⎡
⎣ 1

−i−1
2

⎤
⎦ corresponding

to λ2 = 1− i. Now we can write the general solution as

X(t) = c1e
(1+i)t

⎡
⎣ 1

i−1
2

⎤
⎦+ c2e

(1−i)t

⎡
⎣ 1

−i−1
2

⎤
⎦ .

We write the matrix in component form to obtain

x(t) = c1e
(1+i)t + c2e

(1−i)t

y(t) = c1
(i− 1)

2
e(1+i)t + c2

−i− 1

2
e(1−i)t.

The initial conditions imply

0 = c1 + c2

1 = c1
(i− 1)

2
+ c2

(−i− 1)

2
,
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which has solutions c1 = −i and c2 = i. We insert these values and use Euler’s identity to

simplify the formulas for x(t) and y(t):

x(t) = −ie(1+i)t + ie(1−i)t

= −iet (cos(t) + i sin(t)) + iet (cos(t)− i sin(t))

= 2et sin(t)

and

y(t) = −i
i− 1

2
e(1+i)t + i

−i− 1

2
e(1−i)t

=
1 + i

2
et (cos(t) + i sin(t)) +

1− i

2
et (cos(t)− i sin(t))

= et cos(t)− et sin(t).

�
The solution in the previous example seems to ‘spiral outward’ from the origin as t

increases. A direction field for this system will help us to visualize why:

EXERCISE 7: Solve the initial value problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = y

ẏ = −x

x(0) = 1

y(0) = 2

We need to explore what to do if there is only one eigenvalue for the coefficient matrix

A. There are really two cases here: either it is possible to find two linearly independent
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eigenvectors for the same eigenvalue λ, or it is not. The first case turns out to be unin-

teresting, because if a 2 × 2 matrix A has two linearly independent eigenvectors for the

eigenvalue λ, then A is a multiple of the identity matrix A = λI. The reason this is

uninteresting is that it implies that the corresponding system of differential equations is⎧⎨
⎩
ẋ = λx

ẏ = λy
,

and this system is uncoupled, meaning that the equations for x and y can each be solved

separately. Nothing besides separation of variables or the method of integrating factors

is necessary for each equation. Thus we will focus our attention on the case when all the

eigenvectors for A are scalar multiples of a single eigenvector ξ.

To this end, we introduce another idea from linear algebra. If λ is an eigenvalue for

A and ξ is an associated eigenvector, then a generalized eigenvector η is a vector that

satisfies the matrix equation

(A− λI)η = ξ.

(Note the similarity of this with the matrix equation that defines an eigenvector, (A −
λI)ξ = 0.)

EXAMPLE 5: Let A =

⎡
⎣1 1

0 1

⎤
⎦. The characteristic equation is (λ − 1)2 = 0, so the only

eigenvalue is λ = 1. A corresponding eigenvector is ξ =

⎡
⎣1
0

⎤
⎦. We want to find a generalized

eigenvector η, so we need to solve the matrix equation (A− I)η = ξ:
⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣k
l

⎤
⎦ =

⎡
⎣1
0

⎤
⎦ .

The first row of this matrix equation implies l = 1; meanwhile k can be anything. There-

fore, any generalized eigenvector can be written as

⎡
⎣k
1

⎤
⎦, and a simple choice would be

η =

⎡
⎣0
1

⎤
⎦. �

EXERCISE 8: The matrix A =

⎡
⎣ 1 1

−4 5

⎤
⎦ has only one eigenvalue, λ = 3, and ξ =

⎡
⎣1
2

⎤
⎦ is a corre-

sponding eigenvector. Verify these statements, and then find a generalized eigenvector.
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With generalized eigenvectors at our disposal, we can now state the necessary formula

for a general solution.

Solutions of Homogeneous Linear Systems with Repeated

Eigenvalues

Suppose that A is a 2×2 matrix with only one eigenvalue, λ. Sup-

pose also that A is not a scalar multiple of the identity matrix.

Let ξ be an eigenvector of A and let η be a generalized eigenvec-

tor. Then the general solution of Ẋ = AX is

X(t) = c1e
λtξ + c2

(
teλtξ + eλtη

)
.

We already know that the function X1(t) = eλtξ satisfies the differential equation, and

we know that linear combinations of solutions are solutions, so we need to prove that the

function X2(t) = teλtξ + eλtη is a solution of Ẋ = AX. Observe that

Ẋ2 = eλtξ + λteλtξ + eλtη

by the product rule, and then

AX2 = A
(
teλtξ + eλtη

)

= teλtAξ + eλtAη

= teλtλξ + eλt (ξ + λη)

= Ẋ2,

as desired. In the second to last line above, we used the facts that eigenvectors satisfy

Aξ = λξ and that generalized eigenvectors satisfy Aη = λη + ξ. That last fact also implies

that η cannot be an eigenvector, since ξ �= 0, and consequently η is not a scalar multiple of

ξ. Therefore the collection {ξ, η} is linearly independent. That tells us that an appropriate

selection of c1 and c2 in the general formula will allow us to satisfy any initial condition

for X(0).

EXAMPLE 6: Consider the initial value problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x+ 3y

ẏ = −3x+ 8y

x(0) = 1

y(0) = 0
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The characteristic equation is (λ− 5)2 = 0, so λ = 5 is the only eigenvalue. An eigenvector

to go with this eigenvalue is ξ =

⎡
⎣1
1

⎤
⎦. The coefficient matrix is not a mulitple of the

identity matrix, so we next seek a generalized eigenvector η satisfying (A− 5I)η = ξ:⎡
⎣−3 3

−3 3

⎤
⎦
⎡
⎣a
b

⎤
⎦ =

⎡
⎣1
1

⎤
⎦ ,

which implies −3a+ 3b = 1, and we can select the solution a = 1, b = 4
3 , so that η =

⎡
⎣1

4
3

⎤
⎦.

Now we can write down the general solution of the matrix differential equation,

X(t) = c1e
5t

⎡
⎣1
1

⎤
⎦+ c2

⎛
⎝te5t

⎡
⎣1
1

⎤
⎦+ e5t

⎡
⎣1

4
3

⎤
⎦
⎞
⎠ .

The component functions are therefore

x(t) = (c1 + c2)e
5t + c2te

5t

y(t) = (c1 +
4

3
c2)e

5t + c1te
5t

Inserting the initial conditions gives us

1 = c1 + c2

0 = c1 +
4

3
c2,

and this algebraic system has solutions c1 = 4, c2 = −3. Therefore the solutions we need

are

x(t) = e5t − 3te5t

y(t) = 4te5t

�

EXERCISE 9: Solve the initial value problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x+ 4y

ẏ = −x+ 6y

x(0) = 0

y(0) = 2
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Additional Exercises

Find all straight-line solutions of the given

system of differential equations.

10

⎧⎪⎨
⎪⎩
ẋ = 2x+ 4y

ẏ = 8x+ 6y

11

⎧⎪⎨
⎪⎩
ẋ = x+ 2y

ẏ = 3x+ 2y

Find the general solution of the system of

differential equations.

12

⎧⎪⎨
⎪⎩
ẋ = 3x+ y

ẏ = 2x+ y

13

⎧⎪⎨
⎪⎩
ẋ = 2x+ 3y

ẏ = 2x+ y

14

⎧⎪⎨
⎪⎩
ẋ = −y

ẏ = x

15

⎧⎪⎨
⎪⎩
ẋ = x+ y

ẏ = −x+ y

16

⎧⎪⎨
⎪⎩
ẋ = 4x− y

ẏ = 8x− 2y

17

⎧⎪⎨
⎪⎩
ẋ = −9x+ 2y

ẏ = −18x+ 3y

Solve the initial value problem.

18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = 6x+ 2y

ẏ = 4x+ 2y

x(0) = 1

y(0) = 2

19

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = 2x+ 3y

ẏ = 2x+ y

x(0) = 0

y(0) = 1

20

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = y

ẏ = −x

x(0) = 3

y(0) = 4

21

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x+ y

ẏ = −x+ y

x(0) = 1

y(0) = −1

22

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = 4x− y

ẏ = 8x− 2y

x(0) = 1

y(0) = 2

23

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −9x+ 2y

ẏ = −18x+ 3y

x(0) = 0

y(0) = 1
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24 Consider the second order equation ü+

2u̇ − 3u = 0. If we introduce a function v

satisfying u̇ = v, then it also follows that

v̇ = ü = 3u − 2u̇ = 3u − 2v. Now for these

functions u and v we have a first order sys-

tem of equations:⎧⎪⎨
⎪⎩
u̇ = v

v̇ = 3u− 2v
.

Find the general solution for this system.

In particular, verify that it gives the same

general solution for u that is obtained using

other means.

25 Following the approach illustrated in

Exercise 24, find the general solution of

ẍ + 2ẋ + x = 0 by letting y = ẋ and then

solving a first order linear system of differ-

ential equations for (x(t), y(t)). Verify that

the solution you obtain for x(t) is the same

you as you would find by solving the second

order equation for x using other means.

26 Find general solutions for the following

systems of ODE:
⎧⎪⎨
⎪⎩
Ṙ = aJ

J̇ = bR
and

⎧⎪⎨
⎪⎩
Ṙ = aJ

J̇ = −bR
.

Compare your results with your answers for

Problems 13.6 and 13.7.

27 Solve the initial-value problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −y

ẏ = x

x(0) = x0

y(0) = y0

using the techniques from this chapter.

Compare your results with those of Exer-

cises 13.11 and 13.12. Are they equivalent?



APPENDIX A

Separation of Variables

Solving ordinary differential equations is usually introduced in integral calculus. In-

deed, finding an anti-derivative is really solving a differential equation of the form y′ =

f(x). But one also learns how to solve certain differential equations in which the depen-

dent variable also appears: so-called separable differential equations.

A first order ODE is called separable if it can be written in the form

(10)
dy

dx
= f(x)g(y).

The name comes from the fact that we will try to find solutions of this differential equation

by separating the dependent and independent variables to opposite sides of the equation:

(11)
dy

g(y)
= f(x) dx.

This equation can be given an independent meaning if one studies differentials in a rigor-

ous way, but we will instead think of it as a shorthand for the following. Assume that (10)

holds and that g(y0) �= 0. Then dividing both sides of (10) by g(y) gives us

1

g(y)

dy

dx
= f(x).

Write y out as y(x) and integrate both sides of the equation from x0 to x:
∫ x

x0

1

g(y(x))

dy

dx
dx =

∫ x

x0

f(x) dx.

Make a substitution u = y(x) in the integral on the left side, with du = dy
dxdx, to obtain

∫ y

y0

1

g(u)
du =

∫ x

x0

f(x)dx.

Now if G is any anti-derivative of 1
g , and if F is any anti-derivative of f , we have

(12) G(y)−G(y0) = F (x)− F (x0).

And if G is an invertible function, we can solve for y:

y = G−1 (F (x)− F (x0) +G(y0)) .

207
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The process above is valid if f and g are both continuous and if x is sufficiently close to x0.

(In fact, continuity and the assumption g(y0) �= 0 are enough to guarantee that G will be

invertible where necessary.)

However, this is not usually how the process is used. Instead of using definite integrals,

we will typically write indefinite integrals. Beginning with (11), we anti-differentiate both

sides to obtain ∫
1

g(y)
dy =

∫
f(x) dx

which leads to

G(y) +C1 = F (x) + C2.

This is equivalent to (12) if appropriate values are chosen for C1 and C2. However, we can

also write this in a simpler form if we let C = C2 − C1:

G(y) = F (x) + C.

The value of C can be obtained from a given initial condition, or it may be treated as a free

parameter. Isolating y gives an explicit formula for y in terms of x. The process of solving

an ODE in this manner is called separation of variables.

EXAMPLE A.1: Use separation of variables to solve the IVP y′ = x
y2
, y(0) = 1.

Separating the variables in dy
dx = x

y2
and integrating produces

∫
y2 dy =

∫
x dx.

Finding the general anti-derivatives on each side, we write

y3

3
+ c1 =

x2

2
+ c2.

Isolating y now gives us

y =
3

√
3

2
x2 + 3(c2 − c1).

Because c1 and c2 are both just constants, we can replace the expression 3(c2 − c1) with a

single constant, say, C:

y =
3

√
3

2
x2 + C.

By selecting the appropriate value for C, we can now solve the initial value problem.

Inserting x = 0 and y = 1 produces

1 =
3

√
3

2
(0)2 + C,
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and consequently, we see that C = 1. Therefore

y =
3

√
3

2
x2 + 1,

and it is easy to verify that this is indeed a solution of the initial value problem. �
It is typical to combine the constants of integration as in the previous example right

away without ever writing them separately; when we evaluate the anti-derivatives, we

just write one constant of integration on one side of the equation (usually the side with

the independent variable). Also, if the algebra we encounter forces us to mutiply that

constant by another constant, we typically consume the constants into a single symbol,

and it is common to reuse a symbol from the previous line. It is understood in this context

that a constant such as C may differ in value from line to line, though in each individual

line it is known to be a constant.

EXAMPLE A.2: Solve the IVP y′ = xexy4, y(0) = 2.

Separating variables gives us
∫

1

y4
dy =

∫
xex dx.

We integrate both sides, using integration-by-parts on the right:

−1

3y3
= xex −

∫
ex dx

= xex − ex +C.

Multiply both sides by −3:
1

y3
= −3xex + 3ex +C.

(Notice that C has changed value from the previous line!). Let’s find the value of the

unknown constant in this line by inserting the initial condition, y = 2 when x = 0:

1

8
= 3 + C, so C = −23

8
.

Insert this for C, and then isolate y by taking reciprocals and cube roots of both sides:

y =
1

3

√
−3xex + 3ex − 23

8

.

�
As the next example shows, the independent variable need not explicitly appear in the

ODE.
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EXAMPLE A.3: Solve y′ = y3, y(0) = 3.

Separating variables produces
∫

1

y3
dy =

∫
1 dx.

Therefore
−1

2y2
= x+ C,

and multiplying both sides by −2 produces:

1

y2
= −2x+ C.

(Notice that C here has a different value from the previous line!) Taking reciprocals pro-

duces

y2 =
1

C − 2x
,

and trying to isolate y results in the relation

y = ± 1√
C − 2x

.

Because the y we seek is a function of x, and a continuous one at that, we have to go with

either + or − in our solution (if we leave a ± symbol in place, it suggests two outputs for

each input, violating the definition of ‘function’.) Because the initial condition y(0) = 3

gives a positive output, we can settle on the choice of +:

y =
1√

C − 2x
.

Finally, using the initial condition to solve for the unknown constant will give us C = 1
9 ,

so

y =
1√

1
9 − 2x

.

�

EXERCISE A.1: Solve y′ = y
x , y(1) = 2.

EXERCISE A.2: Solve y′ = 1 + y2, y(0) = 0.

For an ODE to be separable, we must be able to use only multiplication and division to

separate the variables. This is because we treat dy
dx as if it were a fraction of two quantities,

dy and dx, and we use multiplication by dx to separate these across the equal sign. If we
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try to mix this operation with addition or subtraction, we wil not be able to “get all of the

x’s on one side and all of the y’s on the other.”

EXERCISE A.3: Determine which of each of the following equations is separable.

(1) y′ = x+ y

(2) y′ = x2y + xy

(3) y′ = ln(xy)

(4) y′ = ex+y

Recall that we required g(y0) be nonzero when we deduced this method. If g(y0) = 0,

then this process may or may not produce a solution – there are no guarantees. However,

when that does happen, the constant function y(x) = y0 for all x is a solution of dy
dx =

f(x)g(y) because both sides of the equation will be zero (the left, because y is a constant

function, the right, because g(y0) = 0). Constant solutions of differential equations are

called equilibrium solutions.

EXERCISE A.4: Solve the IVP y′ = y2 − 6y + 8, y(0) = 4.

EXAMPLE A.4: Find a solution of the initial-value problem y′ = y(1− y), y(0) = y0.

We first observe that y = 0 and y = 1 are equilibrium solutions. To find other solutions,

we begin by separating variables to obtain
∫

1

y(1− y)
dy =

∫
dx.

The left side can be rewritten using a partial fractions decomposition: 1
y(1−y) = A

y + B
1−u

when we select A = 1 and B = 1, so
∫

1

y
+

1

1− y
dy =

∫
dx.

Anti-differentiation gives us

ln |y| − ln |1− y| = x+ C.

The left side can be simplified using the property of logarithms that ln a− ln b = ln a
b :

ln

∣∣∣∣ y

1− y

∣∣∣∣ = x+ C.
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Exponentiate both sides to obtain ∣∣∣∣ y

1− y

∣∣∣∣ = ex+C .

Therefore
y

1− y
= ±eCeX .

The value of C and the choice of ± are determined by initial conditions:

y0
1− y0

= ±eC .

So
y

1− y
=

y0
1− y0

ex.

Multiplying both sides by 1− y, expanding, and then isolating y gives us

y =

y0
1−y0

ex

1 + y0
1−y0

ex
.

Observe that this formula captures the equilibrium solution y = 0 because, when y0 = 0,

the whole function will be zero. On the other hand, this expression is not defined when

y0 = 1. However, notice that this can be rectified if we multiply the top and bottom of the

expression by 1− y0:

y =
y0e

x

1− y0 + y0ex
.

This formulation gives us a valid solution for all possible values of the initial condition

y0. �
The final form of the answer in the last example is what we call a general solution.

It represents all possible solutions of the differential equation and can be used to satisfy

any initial condition.

EXAMPLE A.5: Find a general solution for the differential equation y′ = 6xy2.

Solution: Observe that y = 0 is an equilibrium solution. For nonzero initial values,

we find solutions by separating variables:∫
dy

y2
=

∫
6xdx

Hence

(13) −1

y
= 3x2 + C,

where C can be any real number. Therefore

y = − 1

3x2 +C
.
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By selecting an appropriate value of C, we can solve any initial value problem of the form

y(x0) = y0 as long as y0 �= 0. (There’s no value C could take which would produce an output

of 0 from this function.) Therefore, our general solution is

y =

⎧⎪⎨
⎪⎩
0 if y0 = 0

− 1
3x2+C

otherwise
.

Note that C can be any constant other than −3x20 (in order to avoid dividing by zero). To

satisfy y(x0) = y0, we isolate C in equation (13) to obtain C = − 1
y0

− 3x20. �
Notice how we were able to use line (13) to identify the value of C necessary to satisfy

any initial condition. When we need to find a general solution, it is a good idea to avoid

changing the values of unknown constants from line to line, just to make this easier. On

the other hand, sometimes it is easier to display the general solution if we allow ourselves

to change the meaning of the parameter, as the next example illustrates.

EXAMPLE A.6: Find a general solution of y′ = ky.

Solution: The constant function y = 0 is an equilibrium solution. Separating vari-

ables gives us ∫
dy

y
=

∫
k dx,

so that

ln |y| = kx+ C.

Exponentiate both sides to get

|y| = ekx+C ,

and thus

y = ±eCekx.

C can be any real number, but then eC will be any positive number. The ability to select

plus or minus means that the expression ±eC can be any nonzero number. So a simpler

way to display the solution would be to write

y = Aekx where A is any nonzero number.

The parameter A would never be zero as a result of how it is derived from separating

variables. So we can express the general solution in the form

y =

⎧⎪⎨
⎪⎩
Aekx if y0 �= 0

0 if y0 = 0
.
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However, notice that this can be simplified if we allow A to take the value zero: we can

just say the the general solution is

y = Aekx, where A is any real number.

To satisfy an initial condition of the form y(x0) = y0, we let A = y0e
−kx0. �

EXERCISE A.5: Find a general solution of y′ = 1− y. What value should your parameter take in

order to satisfy the initial condition y(x0) = y0?

EXERCISE A.6: Find a general solution of y′ = ex+y. What value should your parameter take in

order to satisfy the initial condition y(x0) = y0?

EXERCISE A.7: Solve the initial value problem y′ = y(3− y), y(0) = 1.

EXERCISE A.8: Solve the initial value problem y′ = y2+2y+2, y(0) = 1. (Hint: After you separate

variables, you will need to write the quadratic denominator you find in ‘vertex form’ (y − h)2 + k

before you can integrate.)
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Complex Numbers

When we solve characteristic equations, we are often faced with complex numbers. For

example, the solutions of a quadratic equation ax2 + bx+ c = 0 are given by the quadratic

formula

x =
−b±√

b2 − 4ac

2a
,

and if the discriminant b2−4ac is negative, then we are looking at square roots of negative

numbers, so the roots of the original equation are complex numbers. These can be written

in the form

z = α+ βi,

where α and β are both real, and i satisfies i2 = −1. If z = α + βi in this way, then we

call α the real part of z, and we call β the imaginary part. A complex-valued function

f(x) can also be written in the form f(x) = u(x) + iv(x), where u and v are real-valued

functions. In this case, u is the real part of f and v is the imaginary part of f .

We can usually understand the arithmetic operations on complex numbers by writing

numbers in terms of their real and imaginary parts.

EXAMPLE B.1: Let z = 1 + 3i and w = 3− 2i. Then:

• z + w = (1 + 3i) + (3− 2i) = (1 + 3) + (3− 2)i = 4 + i

• zw = (1 + 3i)(3 − 2i) = (1)(3) + (3i)(3) + (1)(−2i) + (3i)(−2i) = 3 − 2i + 3i − 6i2 =

3− 2i+ 3i− 6(−1) = 9 + i

EXERCISE B.1: Let u = 2 + 4i and v = 1− 2i. Find 2u+ 3v and 2uv.

The complex conjugate of z = α+βi is the complex number z = α−βi. For example,

1 + 3i = 1− 3i.

EXERCISE B.2: Prove that for any complex numbers z and w, z + w = z + w and zw = (z)(w).

215
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EXERCISE B.3: Prove that for any complex number z, the product z · z is a real number. (Hint:

Start by writing z = α+ βi.) Can you say anything more about the value of zz?

The conjugate is especially useful for simplifying division with complex numbers. For

any complex numbers z and w, with w �= 0, we see that z
w = zw

ww , and the latter denominator

is a real number.

EXAMPLE B.2: Let z = 1 + 2i and w = 2− 4i. Then

z

w
=

1 + 2i

2− 4i

=
(1 + 2i)

(2− 4i)

(2 + 4i)

(2 + 4i)

=
2 + 4i+ 4i+ 8i2

4− 16i2

=
−6 + 8i

20

= − 3

10
+

2

5
i.

EXERCISE B.4: Let u = 2+4i and v = 1− i. Simplify the expressions u
v and v

u . Write the answers

in the form α+ βi.

Real numbers are usually visualized as points on a line. Complex numbers can be

visualized similarly as points in a plane. We let the horizontal axis represent the real

numbers, and the vertical axis the imaginary numbers. Then the coordinates of a point in

the plane represent the real and imaginary parts of the corresponding complex number:
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In the study of ordinary differential equations, we will often see complex numbers arise

in exponential functions. Therefore we now turn our attention to finding a better under-

standing of exponentials.

First of all, we need to say what we mean by ez when z is complex. To answer this, we

turn to the power series representation of the exponential function:

ez =

∞∑
n=0

zn

n!
.

(Here, we use the standard convention when working with power series that z0 = 1, even

when z = 0.) This series has an infinite radius of convergence and therefore converges for

all complex numbers z.

To work with a complex exponent, we usually write it in terms of its real and imaginary

parts, and then use a law of exponents1 to separate these:

ez = eα+βi = eαeβi.

1The law ex+y = exey is true for real as well as for complex exponents. The proof uses the series rep-

resentation for ez and rearranges terms in the sum. It involves a careful use of the Binomial Theorem. See

[4].
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Therefore it will be profitable for us if we now focus our attention on expressions of the

form eβi, and that’s where the power series representation becomes helpful:

eβi =

∞∑
n=0

(βi)n

n!

=

∞∑
n=0

βnin

n!

=
∞∑

n=0, n even

βnin

n!
+

∞∑
n=0, n odd

βnin

n!

=

∞∑
n=0

β2ni2n

(2n)!
+

∞∑
n=0

β2n+1i2n+1

(2n + 1)!

=

∞∑
n=0

β2n(−1)n

(2n)!
+

∞∑
n=0

β2n+1i(−1)n

(2n+ 1)!

= cos(β) + i sin(β).

Combining this with the previous result gives us Euler’s formula:

Euler’s Formula

eα+βi = eα(cos(β) + i sin(β))

Note that in the calculation above, we made use of the power series for sine and cosine:

sin(z) =

∞∑
n=0

z2n+1(−1)n

(2n + 1)!
and cos(z) =

∞∑
n=0

z2n(−1)n

(2n)!

These series also allow us to define sine and cosine for complex arguments, and this will

be explored briefly in the exercises below.

EXERCISE B.5: Find the values of eπi, e2πi and e
1
2 ln(2)−πi

4 . Sketch these as points in the complex

plane.

EXERCISE B.6: Prove that, if the solutions of the quadratic equation ax2+ bx+ c = 0 are complex

numbers, and if the coefficients a, b and c are all real numbers, then the solutions are complex

conjugates of one another. (Hint: Taking the complex conjugate of both sides of the equation gives

us ax2 + bx+ c = 0; now take advantage of the result in Exercise B.2.)
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EXERCISE B.7: Use power series to prove that sin(z) = e−iz−eiz

2 . Use this formula to evaluate

sin(i).

EXERCISE B.8: Find a representation formula for cos(z) (similar to the one for sine above) and

use it to evaluate cos(2i).





APPENDIX C

Reduction of Order

Sometimes it is not too hard to find one nontrivial solution of a second order differential

equation, and the method we explore next can often provide us with a means of moving

from just one solution to a general solution.

EXAMPLE C.1: Consider the second order differential equation ÿ−y = 0. We observe that

the function y1(t) = et is a solution on the interval R, and that this solution is non-zero for

all t ∈ R. If y(t) is any solution of the ODE, let u(t) be defined by u(t) = y(t)
y1(t)

, or y = uy1.

We substitute this into the ODE to see that

0 = ÿ − y

=
d2

dt2
[
uet
]− (uet)

= (üet + 2u̇et + uet)− (uet)

= üet + 2u̇et.

Dividing by et, which is never zero, gives us the following differential equation for u:

ü+ 2u̇ = 0.

Make the substitution v = u̇ to obtain

v̇ + 2v = 0.

This equation can be solved using the method of integrating factors (the integrating factor

is e2t):

d

dt

[
e2tv
]
= 0

e2tv = C

v = Ce−2t
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Integrating this shows that u = Ce−2t + D, and inserting this into the equation y = uy1

we see that

y(t) = (Ce−2t +D)et = Ce−t +Det

is the general solution of the ODE. �
The procedure used in this example is called reduction of order, and the general

process is as follows.

Reduction of Order

• Find a solution y1 of the ODE

• set y = uy1, and apply this substitution for y in the ODE

• simplify to find a differential equation for u

• find a general solution for u

• the product y = uy1 gives the general solution for the

ODE on the set where y1 �= 0

The last point is an important one: because we define u by u = y
y1

, this process is only

guaranteed to give a formula for a general solution on the set where y1 �= 0. One might

get lucky and obtain a general solution on a larger domain, but there is no guarantee that

will happen in general.

EXERCISE C.1: Verify that y1(x) = e−x is a solution of the differential equation y′′ +3y′ +2y = 0.

Then use reduction of order to find a general solution of this ODE defined on R.

EXERCISE C.2: Verify that y1(x) = e2x is a solution of y′′ − 2y′ = 0. The use reduction of order to

find a general solution on R.

EXERCISE C.3: Verify that y1(t) = t is a solution of the ODE t2ÿ+2tẏ−2y = 0. Then use reduction

of order to find the general solution of this ODE defined on the interval (0,∞).

EXERCISE C.4: Verify that y1(t) = sin(2t) is a solution of the ODE ÿ+4y = 0. Then use reduction

of order to find a general solution on R. (Note: Because y1(t) = 0 for t = kπ
2 , the method only

guarantees a solution on an interval of the form
(

kπ
2 , (k+1)π

2

)
; therefore you will need to verify

directly that the formula you obtain is a solution on R.)
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Now we will explore the theory of this method – that is to say, we will discuss why

it works. Before getting into the details, let’s point out that although the idea of finding

a general solution of the form y = uy1, where y1 is a known solution, might seem like a

big intuitive leap, it is related to an idea which the reader has certainly seen before. For

example, if we know that x1 is a root of some polynomial equation p(x) = 0, we can try to

find other roots by writing p(x) as (x−x1)q(x) and trying to find the roots of q(x). This idea

is where polynomial division comes from. Finding one particular solution as a stepping

stone to finding more solutions is a deep and powerful idea in mathematics.

Now, on to the details of the theory. Begin with an ODE of the form

a(x)y′′ + b(x)y′ + c(x)y = 0,

and a function y1(x) which is a solution of this equation. Let I be an open interval where

y1 �= 0. Then if y(x) is any solution of this ODE on I, we can define u = y
y1

on I; thus

y = uy1. The product rule gives us y′ = u′y1 + uy′1 and y′′ = u′′y1 + 2u′y′1 + uy′′1 . Inserting

these into the ODE yields

0 =a(x)y′′ + b(x)y′ + c(x)y

= a(x)
(
u′′y1 + 2u′y′1 + uy′′1

)
+ b(x)

(
u′y1 + uy′1

)
+ c(x)(uy1)

= a(x)y1u
′′ + (2a(x)y′1 + b(x)y1)u

′ + (a(x)y′′1 + b(x)y′1 + c(x)y1)u,

and the last term in the last line is zero on I since y1 satisfies the ODE there. We are left

with

a(x)y1u
′′ + (2a(x)y′1 + b(x)y1)u

′ = 0.

If we make the subsitution v = u′, we get

a(x)y1(x)v
′ + (2a(x)y′1(x) + b(x)y1(x)v = 0.

This is a first-order equation which can often be solved to find a general formula for v, and

integrating that solution gives us a general formula for u; inserting that formula for u into

the equation y = uy1 gives us a general formula for y on I.

It is because of the fact we always obtain an equation of the form ã(x)u′′ + b̃(x)u′ = 0,

which can be reduced to a first order equation ã(x)v′+ b̃(x)v = 0 via the substitution v = u′,

that this method gets it name.

EXERCISE C.5: Verify that the function y1(t) = et is a solution of the third order ODE y′′′− y = 0.

Then let y be any other solution of the ODE, and use reduction of order to show that y = uex, where
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u is a solution of the ODE u′′′+3u′′+3u′ = 0. (You may try to solve this ODE after finishing Chapter

7. Start by making a substitution.)

EXERCISE C.6: Find a power function y1(x) = xn that solves the differential equation x2y′′ −
3xy′ + 4y = 0. Then use reduction of order to find a general solution on the interval (0,∞). (Hint:

Plug y1 into the differential equation to obtain an algebraic equation for n.)

EXERCISE C.7: Find a power function y1(x) = xn that solves the differential equation x2y′′ −
7xy′ − 6y = 0. Then use reduction of order to find a general solution on the interval (0,∞).

EXERCISE C.8: Consider the ODE y′′ − 2αy′ + α2y = 0, where α is a constant. (a) Find a value

of r such that y1(x) = erx is a solution of this ODE. (b) Use the solution you found in part (a) and

reduction of order to find a general solution of the ODE.

EXERCISE C.9: Consider the ODE y′′ − (α+ β)y′ +αβy = 0, where α, β are constants and α �= β.

(a) Prove that the only values of r such that y1(x) = erx solves the ODE are r = α and r = β.

(b) Use the solution y1(x) = eαx and reduction of order to find the general solution of the ODE.

Simplify your solution.



APPENDIX D

Matrix Algebra

In this appendix we introduce some basic terminology and notation used in linear

algebra.

Our first goal here is to develop an efficient means of representing a system of m linear

algebraic equations in n unknowns, x1, x2, ..., xn:

(14)

a11x1 + a12x2 + · · · a1nxn = b1

a21x1 + a22x2 + · · · a2nxn = b2
...

am1x1 + am2x2 + · · · amnxn = bm

.

MATRICES

To achieve this end, our main objects of discussion will be matrices (which is the

plural form of the word matrix). A matrix is a collection of numbers aij , where i and j are

independent indices: i = 1, 2, ...,m and j = 1, 2, ..., n; the symbol i here is an index, as is

the symbol j (indices is the plural form of index). Each number aij is called an entry of

the matrix. We often display a matrix as a rectangular array in the form

(15)

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and we can use a single symbol, such as A, to denote the entire matrix. It is common to

denote a matrix by a capital letter, such as B, and its entries by the corresponding lower-

case letter with indices, such as bij. Alternatively, we can indicate the entries of B by

using the functions entij, which ‘extract’ the entries: entij(B) = bij .

EXAMPLE D.1: For the matrix B =

⎡
⎣2 1

3 −1

⎤
⎦, we have b22 = −1 and ent21(B) = 3. �

Horizontal subsets of (15) are called rows, and vertical subsets are called columns.

Therefore the matrix in (15) has m rows, and it has n columns. These numbers are the

225
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dimensions of the matrix; we can also say the the dimension of the matrix is m × n.

(This is read aloud as “ m by n”.) If the entries of the matrix A are real numbers, we

abbreviate all this by writing A ∈ R
m×n (‘A is in the set of m × n real matrices’). But

we can also consider matrices with complex-valued entries, in which case we would write

A ∈ C
m×n (‘A is in the set of m× n complex matrices’). We say that two matrices are equal

if their corresponding coefficients are equal: A = B if and only if aij = bij for all indices

i, j. Two matrices can only be equal if they have the same dimension.

EXAMPLE D.2: Consider the matrix

C =

⎡
⎣2 −1 3

4 −1 3

⎤
⎦ .

The matrix C has 2 rows and 3 columns, so the dimension of this matrix is 2 × 3. All the

entries are real numbers, so C ∈ R
2×3. The entries of the matrix are

c11 = 2, c12 = −1, c13 = 3, c21 = 4, c22 = −1, c23 = 3.

�
Note from the previous example that, even though the second and third columns are

identical, we still say that the matrix has 3 columns.

EXERCISE D.1: Consider the matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 5

2 −1

−3 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Identify the dimension of D, and list all of its entries.

If a matrix has only one row or one column, we refer to it as a vector. An m×1 matrix

is called a column vector, and a 1× n matrix is called a row vector.

Now let us start defining algebraic operations on matrices. When two matrices have

the same dimension, we can define addition of the matrices by just adding corresponding

entries in the same positions. That is, the sum of A and B is denoted by A + B, and

it’s entries are entij(A + B) = entij(A) + entij(B). Subtraction of matrices is performed

similarly, with the difference A − B defined by entij(A − B) = entij(A) − entij(B). Any

matrix can be multiplied by a scalar, meaning a real-or complex number, according to
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the rule entij(sA) = sentij(A). We follow the conventional order or operations for real and

complex numbers; so, for example, 2A + 3B requires that both scalar multiplications be

performed before the addition.

EXAMPLE D.3: Let A =

⎡
⎣ 2 3

−1 −1

⎤
⎦ and B =

⎡
⎣−1 1

0 2

⎤
⎦. Then

A+B =

⎡
⎣ 1 4

−1 1

⎤
⎦ , B −A =

⎡
⎣−3 −2

1 3

⎤
⎦ , 3A =

⎡
⎣ 6 9

−3 −3

⎤
⎦ and 3A+B =

⎡
⎣ 5 10

−3 −1

⎤
⎦ .

�
All this suggests the following natural question: can we multiply two matrices to-

gether? Of course, we could try to define multiplication of matrices in a similar way – by

multiplying corresponding entries – but that turns out not to be very useful for our pur-

poses. Instead, we define matrix multiplication as follows: if A is m × n and B is n × l,

then the product AB is defined by entij(AB) =
∑n

k=1 entik(A)entkj(B). This definition

may not seem intuitive at first, but we will see shortly how useful it is. It is important to

note that we do not require the matrices to have the same dimensions for multiplication;

instead, we can only compute the product AB if the number of columns of A is equal to the

number of rows of B. The result is a matrix AB with the same number of rows as A and

the same number of columns as B.

EXAMPLE D.4: Let A =

⎡
⎣ 2 3 −1

−1 0 1

⎤
⎦ and B =

⎡
⎢⎢⎢⎣

1 −1 2 0

−2 0 1 1

3 0 1 2

⎤
⎥⎥⎥⎦. Then A is 2 × 3 and B

is 3 × 4. Therefore AB is defined and is a 2 × 4 matrix. (But note that BA is not defined!)

The first entry of the product matrix AB is

ent11(AB) =

3∑
k=1

a1kbk1 = a11b11 + a12b21 + a13b31 = (2)(1) + (3)(−2) + (−1)(3) = −7.

Doing this for all the entries of AB gives us

AB =

⎡
⎣−7 −2 6 1

2 1 −1 2

⎤
⎦

�

EXERCISE D.2: Let A =

⎡
⎣1 2

0 1

⎤
⎦ and B =

⎡
⎣ 2 1

−1 0

⎤
⎦. Compute both AB and BA.
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The previous examples shows that matrix multiplication is not commutative: even

when both products are defined, and even when both products have the same dimensions,

AB and BA may not be equal.

Now we are ready explain why this is a useful way to define matrix multiplication.

Consider the matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then AX is an m× 1 matrix (the same a B):

AX =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11x1 + a12x2 + · · · a1nxn
a21x1 + a22x2 + · · · a2nxn

...

am1x1 + am2x2 + · · · amnxn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Thus the statement AX = B is equivalent to the system of linear equations in (14). It is

a compact, efficient way of expressing the same information: a system of linear equations

can be written as a single matrix equation. The matrix A is called the coefficient matrix

for the system, as it contains the coefficients of the unknowns xj in the corresponding

system.

EXAMPLE D.5: The system of algebraic equations

2x+ 3y = 7

x− 3y = 0

is equivalent to the matrix equation⎡
⎣2 3

1 −3

⎤
⎦
⎡
⎣x
y

⎤
⎦ =

⎡
⎣7
0

⎤
⎦ .

�

EXERCISE D.3: Express the system of equations

2x+ 4y − z = 0

x+ y + z = 1

4z − 2x = 2
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as a matrix equation. (Hint: Rewrite the last equation in the system so that the terms line up better

with the lines above, and remember that there is a hidden 0y there.)

One very important matrix in linear algebra is the n× n identity matrix defined by

entij(I) =

⎧⎪⎨
⎪⎩
1 if i = j

0 if i �= j
.

In full display, the identity matrix is

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is probably easiest to remember the description of I in words: I has 1’s along the main

diagonal which goes from the top left to the bottom right of the matrix, and all the other

entries of I are 0.

In matrix multiplication, the identity matrix plays the same role as the number 1 does

in the multiplication of numbers: for any matrix A,

(16) AI = IA = A.

I is always assumed to have the necessary dimensions to make any matrix multiplications

valid, even if this varies from one occurrence to the next. Therefore, if A is m × n, then

the first I in (16) is n× n and the second I is m×m. If it is ever important to specify that

the identity matrix has a certain size, that can be done with subscripts: the n× n identity

matrix can be written as In×n, or even just In.

EXERCISE D.4: Verify equation (16) for A =

⎡
⎣2 1 0

1 −1 3

⎤
⎦.

DETERMINANTS

A system of linear equations with the same number of equations as unknowns would

be represented using a square coefficient matrix A, meaning it would have the same

number of rows as columns. (Every identity matrix is a square matrix.) Such a system

could have either no solution, one solution, or infinitely many solutions, depending in part

on the right sides of the equations. But when a certain condition is satisfied by a square
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coefficient matrix A, we can be guaranteed that there will always be exactly one solution

X of the matrix equation AX = B, regardless of what B is. We will state this condition

presently.

First, to gain some insight, let’s restrict our attention to the situation with two equa-

tions in two unknowns:

(17)
ax+ by = u

cx+ dy = v
.

This can be represented by the matrix equation

⎡
⎣a b

c d

⎤
⎦
⎡
⎣x
y

⎤
⎦ =

⎡
⎣u
v

⎤
⎦ .

We can also visualize it geometrically as a pair of lines in the xy-plane, with a solution of

the equations corresponding to the coordinates of the point of intersection, if there is one.

The figure below shows a possible graph of this pair of lines.

ax+by=u

cx+dy=v(x ,y )00

We’ll know for sure that these lines will have a unique intersection of the lines are not

parallel, which is the case if they have different slopes. If the two lines do have the same

slope, then either (a) they have no intersection (in which case the system in (17) has no

solution), or (b) the two equations both represent the same line (in which case (17) actually

has infinitely many solutions).
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EXERCISE D.5: Consider the pair of lines defined by the equations in (17). (a) Prove that, if both

lines are vertical, then ad− bc = 0. (b) Prove that, if the lines are not vertical but are still parallel,

then ad− bc = 0. (c) Prove that, if ad− bc = 0, then the lines are parallel.

We define the determinant of a 2× 2 matrix A =

⎡
⎣a b

c d

⎤
⎦ to be

det(A) = ad− bc.

The determinant function can also be defined for larger square matrices (see any textbook

on linear algebra, for example, [5].). The solution of the previous exercise proves the

following important theorem when n = 2.

THEOREM 1. Suppose A is a square n× n matrix and X, B are n× 1 vectors.

(1) If det(A) �= 0, then AX = B has a unique solution X for every given B;

(2) If det(A) = 0, then AX = B has either infinitely many solutions X or no solutions,

depending on B.

EXAMPLE D.6: The system of equations

2099x − y = u

1010x + 2y = v

has a unique solution for each choice of u, v because the determinant of the coefficient

matrix is not zero:

det

⎡
⎣2099 −1

1010 2

⎤
⎦ = (2099)(2) − (−1)(1010) = 5208 �= 0.

On the other hand, if there is a solution (x, y) to the system

44x− 99y = u

−12x+ 27y = v
,

then there must be infinitely many solutions because the determinant of the coefficient

matrix is zero:

det

⎡
⎣ 44 −99

−12 27

⎤
⎦ = (44)(27) − (−99)(−12) = 0.

�
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When det(A) = 0, it can still be hard to determine whether there are infinitely many

solutions of AX = B or no solutions at all, because that usually depends on what B is.

However, there is one situation for which we can always give a complete description.

THEOREM 2. If det(A) �= 0, then the only solution of AX = 0 is X = 0. If det(A) = 0,

then the matrix equation AX = 0 has infinitely many solution vectors X.

In the matrix equation AX = 0, it is understood that 0 does not represent a scalar –

instead, 0 represents a vector whose entries are all zeros and whose dimension matches

that of AX.

EIGENVALUES AND EIGENVECTORS

An common matrix equation we need to solve is AX = λX. Here, A is a given square

matrix and both X and λ are unknowns: X is a vector, and λ is a scalar. Finding solutions

of this equation means finding vectors X for which AX is just a scalar multiple of X.

EXERCISE D.6: Let A =

⎡
⎣2 1

0 2

⎤
⎦. (a) Verify that if X =

⎡
⎣4
0

⎤
⎦, then AX is a scalar multiple of X .

What is the scalar? (b) Show that if X =

⎡
⎣1
2

⎤
⎦, then AX is not a multiple of X .

Observe that if X = 0, then the equation AX = λX is always true, for any A and for

any λ. This is not very interesting or useful. We will only be concerned with non-zero

vectors X which satisfy the equation (though it is perfectly permissible for λ to be the zero

scalar, because that is not a trivial case). When there is a non-zero vector X and a scalar

λ satsifying AX = λX, we call λ an eigenvalue of A, and we call X a corresponding

eigenvector of A.

There is a straightforward method of finding eigenvalues and eigenvectors for square

matrices A (and it is fairly efficient, provided the matrix A is not too big). Notice that λX is

the same as λIX, and that AX = λIX if and only if λIX−AX = 0 (a matrix whose entries

are all zeros). Factoring out X allows us to write (λI−A)X = 0. According to Theorem (2),

this system has infinitely many solutions (and therefore non-zero solutions) X precisely

when det(λI −A) = 0. This is the key insight we will use to find eigenvalues. What makes

it useful is the fact that det(λI −A) = 0 is a scalar equation which we can always solve (if

the dimension of A is not too large). We call this equation the characteristic equation

of the matrix A.
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Finding Eigenvalues of a Matrix

The eigenvalues of a square matrix A are precisely the solutions

of the characteristic equation

det(λI −A) = 0.

Once we know the eigenvalues, we can insert them into the equation (λI −A)X = 0 to

find corresponding eigenvectors.

EXAMPLE D.7: Find the eigenvalues and corresponding eigenvectors of A =

⎡
⎣−8 10

−5 7

⎤
⎦.

The characteristic equation is

0 = det

⎡
⎣λ+ 8 −10

5 λ− 7

⎤
⎦ = (λ+ 8)(λ− 7)− (−10)(5) = λ2 + λ− 6,

or 0 = (λ + 3)(λ − 2), which has solutions λ = −3 and λ = 2. These are the eigenvalues of

A.

For the eigenvalue λ = 2, we get the equation (2I − A)X = 0, which would be written

out as ⎡
⎣10 −10

5 −5

⎤
⎦
⎡
⎣x1
x2

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ .

This is equivalent to the system of equations

10x1 − 10x2 = 0

5x1 − 5x2 = 0
.

Notice that these equations are algebraically equivalent, so any solution of one is also a

solution of the other. We can see that the solutions must satisfy x1 = x2; therefore any

scalar multiple of

⎡
⎣1
1

⎤
⎦ is a solution of the equation (2I − A)X = 0. In particular, any

non-zero scalar multiple of

⎡
⎣1
1

⎤
⎦ is an eigenvector of A corresponding to the eigenvalue

λ = 2.

Similarly, inserting λ = −3 into (λI −A)X = 0 gives us
⎡
⎣5 −10

5 −10

⎤
⎦
⎡
⎣x1
x2

⎤
⎦ =

⎡
⎣0
0

⎤
⎦ ,
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and the solutions of this satisfy x1 = 2x2. Thus non-zero multiples of

⎡
⎣2
1

⎤
⎦ are eigenvectors

of A corresponding to the eigenvalue λ = −3. �
It will always be the case that, if X is an eigenvector of A, then so is any non-zero

scalar multiple of X, because AX = λX implies that, for any scalar s, A(sX) = sAX =

sλX = λ(sX).

EXERCISE D.7: Find the eigenvalues and corresponding eigenvectors of A =

⎡
⎣−2 3

4

0 1

⎤
⎦.

EXERCISE D.8: Find the eigenvalues and corresponding eigenvectors of A =

⎡
⎣ 0 1

−1 0

⎤
⎦.

EXERCISE D.9: Find the eigenvalues and corresponding eigenvectors of 4I, where I is the 2 × 2

identity matrix.

EXERCISE D.10: Find the eigenvalues and corresponding eigenvectors of A =

⎡
⎣3 1

0 3

⎤
⎦.

The last two exercises illustrate what can happen when a 2× 2 matrix A has only one

eigenvalue: either A is a scalar multiple of the identity matrix, or the set of eigenvectors

of A is merely the set of non-zero scalar multiples of a single vector X.



APPENDIX E

Linear Operators

In advanced mathematics, we say that a real-valued function defined on R
n is linear

if it satisfies the following two properties:

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ R
n; and

(2) f(cx) = cf(x) for all c ∈ R and x ∈ R
n.

This definition is not consistent with what most students are taught in beginning algebra

– at that level, we call a function defined on R linear if its graph is a straight line; however,

the properties listed above imply that f(0) = 0, which means, according to this definition,

a function on R is linear only if its graph is a straight line through the origin. Functions

whose graphs are straight lines but do not pass through the origin are instead called

affine.

EXERCISE E.1: Prove that if f is a linear function on R
n, then f(0) = 0. (Here, 0 indicates the

origin of Rn when it appears as the input of the function, and it represents the real number zero

when it appears as the output of the function.)

We can extend the definition of linear to other mathematical objects as well. For ex-

ample, the same definition works equally well when applied to functions defined on C
n.

We will be interested in using the idea of linearity in the context of operators.

A function F whose input and output are both functions defined on the same domain is

called an operator. For example, let D represent the differentiation operator defined

on the set of differentiable functions on R, so that

Df = f ′.

Observe that

D(f + g) = (f + g)′ = f ′ + g′ = Df +Dg

and, for any constant c,

D(cf) = (cf)′ = cf ′ = cDf.

235
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These are the same properties listed at the beginning of this section for linear functions;

we therefore say that D is an example of a linear operator. We use the notation D2 to

denote the second-derivative operator, defined by D2f = f ′′. The symbol D3 denotes the

third derivative operator satisfying D3f = f (3), and so on. These are all linear operators.

EXAMPLE E.1: Consider the operator L = D2 + 3, defined by Lf = (D2 + 3)f = f ′′ + 3f .

Then L is linear because, for any twice-differentiable functions f and g we have

L(f + g) = (D2 + 3)(f + g)

= (f + g)′′ + 3(f + g)

= f ′′ + g′′ + 3f + 3g

= f ′′ + 3f + g′′ + 3g

= (D2 + 3)f + (D2 + 3)g

= Lf + Lg,

and, if c is any scalar,

L(cf) = (D2 + 3)(cf)

= (cf)′′ + 3(cf)

= cf ′′ + c3f

= c(f ′′ + 3f)

= c(D2 + 3)f

= cLf.

. �
Notice from the previous example that we usually don’t use parentheses to surround

the input of an operator; instead, we just write the symbol for the operator to the left

of the function on which it acts. This should not lead us to confuse the operation with

multiplication, since it wouldn’t make any sense to multiply a function and an operator

together.

Suppose that p(x) is a polynomial, p(x) = a0+a1x+a2x
2+· · ·+akx

k; we use the notation

p(D) to denote the linear operator

p(D) = a0 + a1D + a2D
2 + · · · + akD

k.
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EXAMPLE E.2: Let p(x) = x2 + 1, and suppose f(x) = e2x + x Then

P (D)f(x) = (D2 + 1)f(x)

= D2f(x) + f(x)

= f ′′(x) + f(x)

= 4e2x + e2x + x

= 5e2x + x.

EXERCISE E.2: Prove that, for any polynomial p(x), the operator p(D) is linear.

With this notation, we can efficiently summarize the key idea of Chapter 7 and extend

it to higher-order differential equations. The notation Πk
n=1ak = a1 ∗ a2 ∗ · · · ∗ ak is used

to denote products (similar to how Σ notation is used to denote sums). The following

result is a consequence of the observation that, for a differential equation p(D)y = 0, the

corresponding characteristic equation is p(r) = 0.

General Solutions of p(D)y = 0

Suppose

p(x) = Πn
k=1ak(x− rk)

mk

is a polynomial. Here, each rk ∈ C is a distinct root of the polyno-

mial, and mk is the multiplicity of the root rk. Then the general

solution of the differential equation

p(D)y = 0

is

y(t) =
n∑

k=1

mk∑
l=1

ck,lt
l−1erkt,

where the ck,l are arbitrary coefficients.

EXAMPLE E.3: Consider the differential equation y(4) + 2y(3) + y′′ + 2y′ + y = 0. This can

be written as p(D)y = 0, where

p(x) = x4 + 2x3 + x2 + 2x+ 1

= (x+ 1)2(x− i)(x + i).
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The roots are x1 = −1 (with multiplicity 2) and x2 = i, x3 = −i (each with multiplicity 1).

Therefore, the general solution of this differential equation is

y(t) = c1,1e
−t + c1,2te

−t + c2,1e
it + c3,1e

−it,

where c1,1, c1,2, c2,1 and c3,1 are arbitrary constants. �
We can also use this notation to simplify parts of the method of Laplace Transforms.

Consider a differential equation of the form aÿ + bẏ + cy = f(t), with rest initial condi-

tions y(0) = 0, ẏ(0) = 0. Taking the Laplace Transform of both sides gives us

aL[ÿ] + bL[ẏ] + cL[y] = L[f ],

and the reduction formula implies

a(s(sL[y]− y(0)) − ẏ(0)) + b(sL[y]− y(0)) + cL[y] = L[f ].

We can simplify this using the rest initial conditions to obtain

(as2 + bs+ c)L[y] = L[f ],

or

L[y] =
L[f ]

as2 + bs+ c
.

This analysis applies in general to higher-order, constant-coefficient linear differential

equations. For an nth order equation, we would use the phrase rest initial conditions to

specify the n initial values y(0) = y′(0) = · · · = y(n−1)(0) = 0.

Laplace Transform of p(D)y = f with Rest Initial Condi-

tions

If p(x) is a polynomial (not the zero function) and p(D)y = f ,

where y satisfies rest initial conditions, then

L[y] =
L[f ]

p(s)
.

Let’s end this section by explaining the origin of the term ‘linear differential equation’.

In general, an nth order differential equation can be written in the form

f(x, y, y′, · · · , y(n)) = g(x),

where y(x) is the unknown function. The function f has n + 2 inputs. We say that the

differential equation is linear if f is a linear function of the vector (y, y′, · · · , y(n)).



E. LINEAR OPERATORS 239

This will be easier to understand if we begin by concentrating on first-order equations,

which have the form

f(x, y, y′) = g(x).

If f is linear in the vector (y, y′), then it satisfies conditions (1) and (2) at the beginning of

this section in the following way: for any (y, y′) and (z, z′) in R
2,

f(x, y + z, y′ + z′) = f(x, y, y′) + f(x, z, z′)

and, for any scalar c,

f(x, cy, cy′) = cf(x, y, y′).

Using these two conditions with the vectors (y, 0) and (0, y′), we can write

f(x, y, y′) = f(x, 0 + y, y′ + 0)

= f(x, 0, y′) + f(x, y, 0)

= f(x, y′ ∗ 0, y′ ∗ 1) + f(x, y ∗ 1, y ∗ 0)

= y′f(x, 0, 1) + yf(x, 1, 0).

Therefore the differential equation can be written as

y′f(x, 0, 1) + yf(x, 1, 0) = g(x).

If we let a(x) = f(x, 0, 1) and b(x) = f(x, 1, 0), we then have

a(x)y′ + b(x)y = g(x),

which is exactly how we defined first-order linear equations in Chapter 4. At the time,

the reason for describing an equation of the form a(x)y′ + b(x)y = g(x) as linear may not

have been obvious, but we see now that the term comes from the fact that the differential

equation itself involves a linear function of the unknown y and its derivative. Similar

results can be obtained for higher order differential equations. If the coefficient functions

a(x), b(x) (etc.) are constant, then the equation can be written in the form p(D)y = g for

some polynomial p(x).
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rows, 225

Runge-Kutta method, 47

scalar, 226
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sensitive dependence on initial conditions, 52

separable, 207
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shift-and-cutoff operator, 158

singular points, 62

slope field, 25, 181

solution, 7, 8, 180

solution curve, 182

solution trajectory, 182

spring-mass system, 91, 106, 121, 153

square matrix, 229

stable, 35

standard form, 54, 179

steady-state response, 127

steady-state solution, 127

step size, 44

straight line solutions, 194

substitution, 57, 62

subtraction of matrices, 226

sum of matrices, 226

systems of ordinary differential equations, 179

table of Laplace Transforms, 145

tangent-line approximation, 42

Taylor approximation, 68

Taylor polynomial, 68

Taylor series, 63

terminal velocity, 34

Torricelli’s Law, 19

trajectory, 182

transient solution, 127

two-parameter family, 15

uncoupled, 202

underdamping, 123, 124

uniform norm, 77

unique solution, 75

uniqueness, 78

unit step function, 153

unstable, 35

vector, 226

viscous drag, 22, 61
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