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Dedication

This book is dedicated to Mel Hochster on the occasion of his eightieth
birthday.

Mel is truly the founder of the subject of F -singularities: an idea ul-
timately attributable to him underlies nearly every sentence of this manu-
script.

Mel’s work was foundational in establishing the importance of the Cohen-
Macaulay property and using prime characteristic to establish it. He in-
troduced F -purity as a way to understand singularities and his lectures
[Hoc75b] have driven research in commutative algebra for nearly 50 years.
Mel’s profound ideas crystalized with the theory of tight closure and F -
regularity (in collaboration with Huneke) in the late 1980’s. Since then,
tight closure and F -singularities have continued to evolve through the work
of an ever-broadening circle of mathematicians, finding deep applications in
prime characteristic birational geometry and now even in mixed characteris-
tic. There can be no doubt that Mel Hochster’s genius is the driving force of
all this progress in commutative algebra, algebraic geometry and arithmetic
geometry. His contributions will endure as long as mathematics continues to
fascinate humans, or whatever intelligence comes next.

Most importantly, Mel Hochster is kind and gifted mentor, who gradu-
ated forty-nine PhD students and championed countless other young math-
ematicians, including the authors of this book. He generously shares his
insight and encourages all to embrace their own mathematical journey. Not
only mathematics, but also the world, are much better for Mel’s dedicated
service to us all.
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Notation

◦ The canonical module ωR of a ring or canonical sheaf ωX of a
scheme.
◦ The dualizing complex ω q

R of a ring, or scheme ω q
X .

◦ D+(f) = Y \V(f), is the open set of Y = ProjS assuming f ∈ S is
homogeneous.
◦ for φ ∈ HomR(F e∗OX ,OX) and ψ ∈ HomR(F d∗OX ,OX),

φ ? ψ := φ ◦ F e∗ψ ∈ HomR(F e+d∗ OX ,OX)

in other words the map corresponding to multiplication in the Cartier
algebra. See Chapter 1 Subsection 4.2.
◦ Weil divisor associated to φ ∈ HomOX (F e∗OX ,OX), Dφ. See Chap-
ter 5 Definition 1.1.
◦ The anti-canonicalQ-divisor associated to φ ∈ HomOX (F e∗OX ,OX),

∆φ. See Chapter 5 Definition 2.1.
◦ The finitistic tight closure of an ideal I∗ fg or of a submodule N∗ fg

M .
Chapter 7 Definition 1.12.
◦ F -pure threshold fpt(f t), fpt(at). See Chapter 4 Definition 3.1 Def-
inition 4.28.
◦ Gorenstein in codimension n, Gn.
◦ Hilbert-Kunz multiplicity of I along a moduleM , eHK(I;M). Chap-
ter 9 Definition 2.15.
◦ RHom into a dualizing complex,RHomR(−, ω q

R) orRH omOX (−, ω q
X),

D(−).
◦ Hom into a canonical module, HomR(−, ωR) or H omOX (−, ωX),

(−)∨ω .
◦ ith cohomology of a complex C q , Hi(C q

).
◦ K(X) or K(R), the function field of X or the total ring of fractions
of the ring R.
◦ length of an R-module M , `R(M).
◦ Minimal number of generators of M as an R-module, µR(M).
◦ Matlis dual HomR(−, E) = (−)∨.
◦ Regular in codimension n, Rn.
◦ Right derived functor of F , RF .
◦ Ring dual: HomR(−, R) = (−)∗, H omOX (−,OX) = (−)∗. See
Appendix B (4.1.1) and (4.1.2).
◦ reflexification/S2-ification, (−)S2 .
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10 NOTATION

◦ Serre’s condition Sn.
◦ Sheaf of units of a sheaf of rings OX , O×X , or group of units of a ring
R, R×.
◦ The tight closure of an ideal I∗ or submodule N∗M . See Chapter 7
Definition 1.1.
◦ Vanishing locus of an ideal I, V(I).
◦ Vector space dual Homk(−, k) = (−)∨.



Preface

The goal of this book is to introduce the Frobenius morphism and its
uses in commutative algebra and algebraic geometry.

Let X be a Noetherian scheme of prime characteristic p. The Frobenius
morphism is the scheme map

F : X → X OX → F∗OX

defined to be the identity map on the underlying topological space X and
the pth power map on sections. For example, when X = SpecR is affine, the
Frobenius map is essentially just the ring homomorphism R → R sending
r 7→ rp. An important special case to keep in mind is the case where X is a
variety1 over an algebraically closed field k of characteristic p > 0.

A major theme of this book is the use of Frobenius in studying singu-
larities of schemes. This story begins with a famous 1964 theorem of Ernst
Kunz: a Noetherian scheme X is regular if and only if the Frobenius mor-
phism is flat [Kun69a]. For varieties, this says that X is smooth if and only
if F∗OX is a locally free sheaf (or vector bundle).

By relaxing the flatness condition for the Frobenius in various ways, we
get a host of other "mild singularity" classes in prime characteristic. Many
theorems that hold for smooth varieties over fields of characteristic p can be
extended to these classes of "F -singularities." We will prove that these classes
of singularities are analogous to many of the classes of "mild singularities"
in the minimal model program. In fact, in many cases, Frobenius can be
used to detect the singularity class of complex varieties as well, by reduction
to characteristic p. For example, Kawamata log terminal singularities are
equivalent, after suitably "reducing to prime characteristic," to strongly F -
regular singularities. Likewise, there is a conjectural association between
log canonical and F -pure (or locally Frobenius split) singularities in prime
characteristic.

1The Frobenius map is not a map of varieties, however, because it is not k-linear but
rather raises scalars to the p-th power. Some authors prefer to work with a variant called
the relative Frobenius which is k-linear. In this book, we will work in the category of
schemes, and so always mean the absolute Frobenius map when referring to Frobenius.

11



12 PREFACE

Vast bodies of techniques in birational algebraic geometry that had been
developed for complex varieties using differential forms and L2-analysis have
"characteristic p" analogs defined using the Frobenius map. The multiplier
ideals, made famous by complex geometers (cf. [GR70, Koh79, EV83,
Kol86, Nad90, Lip94, Siu09, DEL00]), for example, share many of the
properties of test ideals, which first arose in Hochster and Huneke’s theory
of tight closure, and can be used to prove the same kinds of theorems. Like-
wise, a numerical invariant of singularities called the log canonical threshold,
which is defined using convergence of certain integrals, has a "characteristic
p analog" called the F -pure threshold which beautifully captures some of
the more subtle kinds of singularities that can arise in prime characteristic.
As one concrete example, consider the simple cusp defined by y2 = x3. This
singularity has F -pure threshold equal to

1/2 in char 2
2/3 in char 3

5
6 −

1
6p if char p = 5mod 6

5
6 if char p = 1mod 6.

We see that cusp is most singular in characteristic 2, because the F -pure
threshold is smallest then. It is slightly less singular in characteristic 3,
and even less singular for larger p. For infinitely many p (namely, those
p congruent to 5 mod 6), it it is not really anymore singular than it is
over complex numbers, in the sense that the log canonical threshold of the
cusp over C is also 5/6. The fact that the cusp is "more singular" in some
characteristics than it is over C is deeply connected to arithmetic issues such
as supersingularity for elliptic curves.

Characteristic p techniques can be used to recover or prove character-
istic zero theorems, by standard (or sometimes by especially clever) reduc-
tion to prime characteristic techniques. But even better, tools developed in
F -singularity theory can serve as replacements to the analytic techniques,
allowing us to extend results known for complex varieties to varieties over
an arbitrary field. For example, the Ein-Lazarsfeld-Smith theorem on the
uniform behavior of symbolic powers of ideal sheaves on smooth varieties,
first proved with the help of multiplier ideals for complex varieties, can be
proven in prime characteristic with the test ideal. In a different direction,
recent progress in the minimal model program for varieties of prime charac-
teristic p relies in key steps on restricting attention to the class of strongly
F -regular pairs (X,D), rather than the traditional log terminal pairs used
in the minimal model program over C [HX15, Bir16, BW17, Wal18,
DW19, HW22, HW23, Cas21].

The local story of the Frobenius map has a storied history in commutative
algebra, going back to the work of Kunz as mentioned above [Kun69a], to
work of Peskine and Szpiro [PS73], and especially to the work Hochster and
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Robert’s proof that the ring of invariants of a linearly reductive group acting
linearly on a polynomial ring (over a field of any characteristic) is Cohen-
Macaulay [HR74]. Hochster later used Frobenius to prove the existence
of (big) Cohen-Macaulay modules [Hoc73b, Hoc75b, Hoc75a], and later
with Huneke, that the absolute integral closure R+ of any excellent local
domain R of characteristic p > 0 is a Cohen-Macaulay R-algebra [HH92].
The subject eventually matured into Hochster and Huneke’s theory of tight
closure, which has inspired much of the theory we present here, even when
the roots are not always visible. Although it arose independently, tight
closure is reminiscent of Faltings’ theory of "almost ring theory" in arithmetic
geometry [Fal02, GR03], which is used in Scholze’s theory of perfectoid
algebras. Ideas pioneered in tight closure theory have contributed to recent
progress on the minimal model program in mixed characteristic; see [TY23,
BMP+23, HW23].

When employed globally, the Frobenius map can be used to prove van-
ishing theorems for cohomology of line bundles and other results about the
global geometry of projective varieties. Here, the emphasis is not so much
on singularities—many such applications are interesting even in the realm of
smooth projective varieties—but rather on positivity of the geometry. For ex-
ample, Frobenius splitting implies a type of positivity for the anti-canonical
sheaf, allowing us to bypass tricky situations in prime characteristic such as
the failure of Kodaira Vanishing, or the lack of a resolution of singularities
in characteristic p. Combined with its usefulness in delicately quantifying
singularities in prime characteristic, this explains why the Frobenius tech-
niques of this book have generated intense interest in the current quest for
the minimal model program in prime characteristic.

At the time of this writing, one frontiers for the subject lies in extend-
ing and developing the theory to mixed characteristic—meaning for local
rings that do not contain any field, or for schemes over Zp. Much of the
progress in this direction comes from the connection tight closure and big
Cohen-Macaulay algebras developed in [HH92] and [Smi94], in light of
the new theory of perfectoid algebras and its applications to big Cohen-
Macaulay Algebras due to André, Bhatt, Gabber, and Scholze, as well as
others [And20, BS22]. We briefly discuss the relevant tight closure theory
in characteristic p in Chapter 7, pointing out the relevant parts of the the-
ory that are now being generalized to mixed characteristic by Hacon, Ma,
Schwede, Tucker, and others.

0.1. Conventions. The letter p always denotes a (positive) prime in-
teger.
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The word "ring" in these notes always means a commutative ring with
unity (unless explicitly stated otherwise). Typically, our rings and schemes
are Noetherian as well, but we will include this as an explicit hypothesis. A
ring is called local if it has a unique maximal ideal; we do not assume a local
ring is Noetherian. The notation (R,m) or (R,m, k) will denote a local ring
with maximal ideal m and residue field k = R/m.

For a field k, the notation k denotes an algebraic closure of k. By variety,
we mean a reduced irreducible separated scheme of finite type over an alge-
braically closed field. Often, the fact that the ground field k is algebraically
closed is not important, and may be replaced by the assumption that k is
perfect, or even that [k : kp] is finite.
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CHAPTER 1

Introduction to the local theory of Frobenius
splitting

1. Frobenius on rings and schemes

Fix a positive prime integer p. A commutative ring R (with unity) has
characteristic p if the subring generated by 1R is a field of cardinality p.

A simple but powerful feature of rings of characteristic p is that the p-th
power map

R
F−→ R sending r 7→ rp

is a ring homomorphism. This is the Frobenius map of R and the subject of
this book.

1.1. Frobenius on Spec. Like any ring homomorphism, the Frobenius
map induces a morphism of the corresponding scheme SpecR, which we also
denote by F . It is easy to check that this induced map on Spectra

SpecR
F−→ SpecR sending P 7→ F−1(P ) = {r ∈ R | rp ∈ P}

is the identity map. Thus, the Frobenius map on the affine scheme X =
SpecR is the identity map on the underlying topological space, while the
corresponding map of structure sheaves

OX → F∗OX

is the p-th power map locally on sections. While using the same notation F
for both the map of rings and its corresponding (dual) map of schemes is an
abuse of notation, the intended meaning is usually clear from the context.
In any case, this abuse is ubiquitous throughout the literature.

1.2. Frobenius as a map of modules. Whenever we have a ring

homomorphism R
f

−→ S, we can view S as an R-module via restriction of
scalars: by definition, r ∈ R acts on s ∈ S by r · s = f(r)s. This is true in
particular for the Frobenius map.

15



16 1. INTRODUCTION TO THE LOCAL THEORY OF FROBENIUS SPLITTING

Because both the source and target of Frobenius are the same ring R,
this can be confusing. We therefore usually use the notation F∗R to denote
the target ring. This is consistent with the notation for the induced map
of sheaves OX → F∗OX for the corresponding affine scheme morphism. We
consider F∗R as an R-module via restriction of scalars for the Frobenius
map.

As an Abelian group, the R-module F∗R is precisely R, but its R-module
structure is defined by

(1.0.1) r ∈ R acts on x ∈ F∗R by r · x = rpx ∈ F∗R.
With this R-module structure on F∗R, the Frobenius map

(1.0.2) R→ F∗R r 7→ rp

is not only a ring map, but also a map of R-modules. In particular, the
Frobenius map (1.0.2) defines an R-algebra structure on F∗R.

Example 1.1. Suppose R = Fp[x], and consider the R-module F∗R. Using
the notation (1.0.1), then, 2 · x = 2x since 2p ≡ 2 (mod p). However, x · x =
xpx = xp+1. This example emphasizes the need for care in distinguishing
elements of R and F∗R, even though these are the same sets. We will soon
address the notation further; see Notation 1.4.

1.3. Frobenius on schemes. The following fact is so fundamental that
we highlight it as a proposition despite its straightforward proof:

Proposition 1.2. Let R φ−→ S be any ring homomorphism between commu-
tative rings of prime characteristic p. Then the diagram

R R

S S

F

φ φ

F

commutes, where rightward arrows are the Frobenius maps on their respective
rings.

As a special case, we see that the Frobenius map commutes with the
localization map R → W−1R at any multiplicative system W . This allows
us to easily generalize the Frobenius morphism to arbitrary schemes.

Given a scheme X of prime characteristic, we can cover X by affine
charts, each of which is endowed with its own Frobenius morphism. Because
the Frobenius map commutes with localization, these Frobenius maps on
charts restrict to the Frobenius map on every open subset of each chart.
So they uniquely patch together to define a Frobenius map on X, which
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we denote F : X → X. The map of the underlying topological space is
the identity map by Paragraph 1.1, whereas the map of sheaves of rings
OX → F∗OX is the p-th power map over every open set U ⊆ X. That is,
the ring map

OX(U)→ F∗OX(U) = OX(F−1(U)) = OX(U)

sends a section f ∈ OX(U) to fp ∈ OX(U).

Remark 1.3. The Frobenius morphism is clearly an affine morphism: the
preimage of an affine open set U is again U , so affine. Even more, the
Frobenius is an integral morphism: the ring maps OX(U) → F∗OX(U) are
integral because every element of the target ring satisfies a polynomial of the
form Xp − f , where f ∈ OX(U). However, the Frobenius map need not be
finite in general, although it is in most cases of interest; See Definition 1.17.

1.4. The Frobenius pushforward functor. Fix a ring R of prime
characteristic p. For any R-module M , we denote by

F∗M

the R-module that is M as an abelian group, but whose R-module structure
is twisted by the Frobenius map on R. That is, the R-module structure on
F∗M is defined by

r ∈ R acts on m ∈ F∗M by r ·m = rpm.

The case M = R recovers the notation F∗R above. The notation F∗M is
consistent with the standard notation for the pushforward of the coherent
sheaf defined by M on the affine scheme SpecR under the Frobenius map
on SpecR.

Clearly, the operation F∗ defines a functor{
R-modules

}
//
{
R-modules

}
M � // F∗M

from R-modules to R-modules. It is exact because it does nothing to the
underlying abelian group structure.

Notation 1.4. It is convenient to use the notation F∗m for elements of
F∗M . Remembering that, as sets, F∗M = M , the element F∗m denotes the
element m ∈M viewed as an element of F∗M , so that the R-module action
on F∗M can be written

rF∗m = F∗(r
pm)

Observe how the notation works: for x, y ∈M , we have

F∗x+ F∗y = F∗(x+ y) in F∗M

and if x, y ∈ R (or some other R-algebra), furthermore,

F∗xF∗y = F∗xy in F∗R.
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Note that despite our notation, the functor F∗ does not actually act on
elements of M : the symbol F∗m is just notation for the element m viewed
in the module F∗M .

Example 1.5. Rewriting Example 1.1 using this new notation, we have

2F∗x = F∗2x and xF∗x = F∗x
p+1.

This notation emphasizes the different roles of the elements in the ring R
and in the R-module F∗R (even though as sets, R and F∗R are identical).
For this reason, it is our preferred notation for most of the book.

Of course, the Frobenius map similarly defines a natural push-forward
functor on the category of quasi-coherent sheaves on a scheme X of charac-
teristic p: {

quasi-coherent
sheaves on X

}
//

{
quasi-coherent
sheaves on X

}
M � // F∗M

Again, this functor is the identity on the underlying sheaves of abelian
groups, so it is exact.

Remark 1.6. If R→ S is a homomorphism of rings of characteristic p > 0,
then any S-module M may also be considered an R-module by restriction of
scalars. Fortunately, there is no ambiguity in the notation F∗M in this case:
we could write FR∗M (respectively FS∗M) for the Frobenius pushforward
functor on R-modules (respectively S-modules) applied to M . But these
agree: viewing M as an R-module, the R-module FR∗M is precisely the
S-module FS∗M viewed as an R-module via restriction of scalars. For this
reason, we usually write simply F∗M in this situation. Of course, as an
abelian group F∗M is always simply M—only the R-module (or S-module)
structure is changed by twisting by Frobenius.

To emphasize this point, we reiterate using the notation for schemes.
If X g→ Y is a morphism of schemes of prime characteristic, then Proposi-
tion 1.2 ensures that there is a commutative diagram of schemes

(1.6.1) X

g

��

FX // X

g

��

Y
FY

// Y.

So for any sheafM on X, we have that

(1.6.2) FY ∗g∗M = g∗FX∗M.
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Again, there is little risk of confusion if we simply write F for both FX
and FY : Frobenius commutes with any morphism X

g→ Y of schemes, and
F∗g∗ = g∗F∗ as functors of quasicoherent sheaves on X.

Example 1.7. For a local ring R with maximal ideal m and residue field k,
the ring F∗R has maximal ideal F∗m and residue field F∗k, which is a degree
[k : kp] extension of k. Here kp is the field of pth powers of elements of k.
Note that the notation F∗k can have two different meanings, since k is a
ring of characteristic p in its own right as well as an R-module. Fortunately,
there is little danger of confusion, since there is a canonical identification
Fk∗k = FR∗k (Remark 1.6).

1.5. Alternative notations. An alternative notation makes F∗ more
concrete in the case R where is a domain (or reduced). In this case, we can
identify F∗R with the subring R1/p of an algebraic closure of the fraction field
(or total quotient ring) of R consisting of the p-th roots of elements of R.
Since every element has a unique p-th root, there is a canonical isomorphism
of R-algebras

F∗R→ R1/p sending F∗r 7→ r1/p.

Here, the R-module structure on R1/p is the obvious one: r ∈ R acts on
x1/p in R1/p by r · x1/p = rx1/p (which is the same as (rpx)1/p). Under this
identification, the Frobenius map

R→ F∗R sending r 7→ F∗r
p

becomes simply the inclusion

R ↪→ R1/p r 7→ r = (rp)1/p.

Here we see concretely that the ring R1/p is an R-algebra in the obvious way,
since it is an extension ring of R. This R-algebra is canonically isomorphic
to the R-algebra F∗R. Elements of the R-algebra R1/p will be denoted by
x1/p (instead of F∗x) when using this notation.

Alternately, we can let Rp denote the subring of pth powers of elements
of R. Then the Frobenius map R F−→ R has image Rp, and if R is reduced
we have that Rp ∼= R as rings. In this case, the inclusion Rp ↪→ R is also
identified with the Frobenius map. We won’t use this observation much,
though occasionally it adds insight.

For certain R-modules M , the notation M1/p makes sense literally as
p-th roots and can be used in place of F∗M . For example, if I is an ideal
in a domain R, then we can write I1/p to denote the p-th roots of elements
of I. Note that I1/p is an ideal of R1/p, and under the identification of F∗R
with R1/p, the R-submodule F∗I of F∗R is identified with I1/p. Similarly, if
M is an R-submodule of the fraction field K of R, then M1/p makes sense
as a subset of the field K1/p.
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Even more generally, some authors use the notation R1/p to denote the
target copy of R under the Frobenius map even when R is not a domain (or
reduced). In this case, the elements of R1/p are the symbols r1/p with the
obvious ring structure, so that the Frobenius map becomes

R→ R1/p r 7→ (rp)1/p.

We caution the reader, however, that this notation can be misleading when
R is not reduced since (rp)1/p may be zero instead of r if rp = 0. In this
book, we will use this notation when we feel it is illuminating, but never in
the non-reduced case.

Similarly, some authors use the notation M1/p in place of F∗M for ar-
bitrary modules M . There is little chance of confusion when R is a domain
and M is a submodule of its fraction field, for example, but in general, this
notation can get confusing so we will generally avoid it.

Example 1.8. Let R be the polynomial ring Fp[x] over the field Fp of p
elements. Then it is easy to see that R1/p is a free R-module with ba-
sis 1, x1/p, . . . , x(p−1)/p. Equivalently F∗R is a free R-module with basis
F∗1, F∗x, . . . , F∗x

p−1.

1.6. Iterates of Frobenius. The Frobenius homomorphism on a ring
of characteristic p can be iterated:

R
F−→ R

F−→ R
F−→ · · · F−→ R

r 7→ rp 7→ (rp)p = rp
2 7→ · · · 7→ rp

e
.

Iterating e times, the resulting map F e raises elements to the pe-th power,
and is of course also a ring homomorphism. Just as in the case of Frobenius,
we denote the target ring by F e∗R, and endow it with the unique R-module
structure that makes the ring map

(1.8.1) R −→ F e∗R r 7→ F e∗ r
pe

also an R-module homomorphism. Again, we use the notation F e∗x to denote
the element x ∈ R viewed in the target ring F e∗R. In particular, note that

rF e∗x = F e∗ (rp
e
x),

for all elements r ∈ R and F e∗x ∈ F e∗R, exactly as in Notation 1.4.

The iterates of Frobenius are defined similarly on any scheme X of char-
acteristic p. The map F e : X → X is the identity map on the underlying
topological space and the pe-th power map locally on sections.

Likewise, for each e ∈ N, we have the Frobenius pushforward functor
F e∗ on R-modules (or quasi-coherent sheaves on the scheme X). Since this
functor does nothing to the underlying abelian groups (or sheaves of abelian
groups), it is exact. Note also that F∗ ◦F e∗ = F e+1

∗ as functors for all e ∈ N.
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Notation 1.9. For any ideal in any ring R of characteristic p, the notation
I [pe] denotes the expansion of the ideal I under the (iterated) Frobenius
map F e : R → R sending r 7→ rp

e . Explicitly, I [pe] is the ideal generated
by the pe-powers of all elements (or equivalently, any set of generators) of I.
Practicing the notation, note that

IR1/pe = (I [pe]R)1/pe and IF e∗R = F e∗ I
[pe].

We prove the following to help practice this notation. This observation
will become important to us later in Chapter 9.

Proposition 1.10. Let (R,m, k) be an arbitrary local ring of characteristic
p. If F∗R is a finitely generated module, then it is minimally generated by

[k : kp] dimk(R/m
[p])

elements. Here kp is the subfield of k consisting of all pth powers.

Proof. By Nakayama’s Lemma, the minimal number of generators for
F∗R is the dimension of the R-module R/m⊗R F∗R. This is isomorphic to
F∗R/mF∗R ∼= F∗(R/m

[p]). Considered as a vector space over its residue field
F∗k, the ring F∗(R/m[p]) has dimension equal to dimk(R/m

[p]). So to find
its dimension over k we must multiply by the degree of the field extension
k → F∗k. Remembering that k 7→ F∗k is the p-th power map, we see that
[F∗k : k] = [k : kp], and the formula follows. �

An easy, but crucial, point is that the Frobenius pushforward functor F e∗
commutes with localization in every possible sense.

Lemma 1.11. Let R be a ring of prime characteristic p and W a multi-
plicative set in R. Suppose that M is any R-module. Then for every e ∈ N,
there is a natural W−1R-module isomorphism

(1.11.1) W−1F e∗M −→ F e∗ (W−1M)
r

w
⊗ F e∗m 7→ F e∗

(
rp
e
m

wpe

)
,

where the second F e∗ can be viewed as the Frobenius pushforward functor for
either W−1R-modules or for R-modules.

Proof. The basic point is that inverting all the elements of W is the
same as inverting only their p-th-powers. The map (1.11.1) is clearly linear
over W−1R. It is surjective because

F e∗

(m
w

)
= F e∗

(
mwp

e−1

wpe

)
=

1

w
F e∗ (mwp

e−1),
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which is the image of 1
w ⊗F

e
∗ (mwp

e−1) under (1.11.1). It is easily seen to be
injective as well: an arbitrary element,

t∑
i=1

ri
wi
⊗ F e∗mi ∈W−1F e∗M = W−1R⊗R F e∗M

can be written in the form 1
w ⊗ F

e
∗m for suitable w ∈ W and m ∈ M (by

finding a common denominator for the ri
wi

and pulling the numerators across
the tensor symbol). Now if 1

w ⊗ F
e
∗m is in the kernel, then F e∗ ( m

wpe
) = 0,

which in turn means that m
wpe
∈W−1M is zero, since F e∗ does not affect the

underlying abelian group. This means that there exists h ∈ W such that
hm = 0, so

1

w
F e∗m =

h

hw
F e∗m =

1

hw
F e∗ (hp

e
m) =

1

hw
F e∗ 0 = 0

in W−1F e∗M as well. �

Example 1.12 (Polynomial and power series rings). Let k be any perfect
field of characteristic p > 0, and consider the ring R of either polynomi-
als k[x1, . . . , xn] or power series kJx1, . . . , xnK in n variables over k. It is
not hard to check that in both cases, F e∗R is a free R-module on the basis
{F e∗x

a1
1 · · ·xann | 0 ≤ ai ≤ pe− 1}. In particular, the module F e∗R is free over

R of rank pne.

The situation is more complicated for non-polynomial rings.

Example 1.13. Working over the field F2 of two elements, consider the
cuspidal ring R = F2[s, t]/(s3 − t2) = F2[x2, x3] ⊆ F2[x]. Let us examine the
structure of R1/2 as an R-module.

Observe that R has an F2-vector space basis consisting of all monomials
xn where n is any positive integer except 1. Thus R1/2 has an F2-vector
space basis consisting of all monomials xn/2 where n is any positive integer
except 1, as well. Note that R is N-graded in a natural way, and that this
grading is compatible with a natural 1

2N-grading on R1/2.

It is not hard to see that {1, x, x3/2, x5/2} is a generating set for R1/2

over R. Because each basis element has a different degree, this is a minimal
generating set for the graded R-module R1/2.

However these polynomials are not a free basis over R. The ring R and
the ring F2[x] have the same fraction field F2(x), so if R1/2 is free over R
of some rank d, then localizing we see that also (F2(x))1/2 is free over F2(x)
of the same rank d. This is also the free rank of F∗F2[x] over F2[x], which
is two, from Example 1.8. But we have seen that R1/2 over R requires at
least four generators. So in this case, F∗R is not free over R: it is minimally
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generated by four elements in a neighborhood of the maximal ideal (s, t)
despite having generic rank two.

1.7. Frobenius and completion. Let R be a ring and n ⊆ R be a
finitely generated ideal and let R̂ = R̂n denote the n-adic completion of R
(most typically (R, n) will be a Noetherian local ring with maximal ideal
n and R̂ will be the n-adic completion of R). Consider the following two
compositions

R→ F∗R→ (̂F∗R)

R→ R̂→ F∗R̂.

In the first, we follow Frobenius R → F∗R by the natural completion map1

for the R-module F∗R at J . In the second, we first complete at J , then
follow with the Frobenius map for R̂. Fortunately, these two compositions
are essentially the same:

Lemma 1.14. Let R be a commutative ring of prime characteristic, and let
R̂n denote its completion at an arbitrary finitely generated ideal n. Then we
have a canonical identification of the maps

R̂n → (̂F∗R)
n

and R̂n → F∗R̂
n

where the first map is the completion of the Frobenius map for R and the
second map is the Frobenius map on R̂n. Likewise, the same statement holds
for any iterate F e of Frobenius.

Proof. By definition, the completion (̂F∗R)
n
at n is lim←−F∗R/n

nF∗R
and the map

R̂n → (̂F∗R)
n

is obtained by taking the inverse limit of the natural mapsR/nn → (F∗R)/nn(F∗R).

There are natural isomorphisms

F∗R/n
nF∗R ∼= F∗R/F∗(n

n)[p] ∼= F∗(R/(n
n)[p])

for all n. Now the point is that the ideals {(nn)[p]}n and {nn}n are cofinal
with each other as we range over all n. Indeed, since (nn)[p] ⊆ nn for all
n, we we only need to check that for each n, there is some N such that
nN ⊆ (nn)[p]. Indeed, it is easy to check that N = pdn works, where d is the
number of generators for n.

1See [AM69, §10] for basic material on completion.
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Because {(nn)[p]}n and {nn}n are cofinal, they define the same inverse
limits. That is, lim←−F∗R/n

nF∗R ∼= F∗R̂
n. Thus the completion of the Frobe-

nius map R→ F∗R produces a natural map

R̂n → lim←−F∗(R/(n
n)[p]) ∼= F∗R̂

n

which is the p-th power map on R̂n. �

Corollary 1.15. If R is Noetherian and the Frobenius map is finite, then
for any ideal n, there is a natural isomorphism

R̂n ⊗R F∗R ∼= F∗R̂
n.

Proof. This follows immediately from Lemma 1.14 because for Noether-
ian rings, the completion functor on finitely generated modules is equivalent
to the functor −⊗R R̂n ([AM69, Prop 10.13] or [Sta19, Tag 00MA]). �

Caution 1.16. If F∗R is not finitely generated, then it need not be the case
that F̂∗R ∼= R̂n ⊗R F∗R; see Exercise 1.6.

1.8. Finiteness of Frobenius. While there are many potential patholo-
gies of arbitrary Noetherian rings (see, for example, [Nag62]), there is a sim-
ple condition in prime characteristic which eliminates nearly all of these—
namely that Frobenius map is finite:

Definition 1.17. A ring of prime characteristic is F -finite if Frobenius is
a finite map—that is, if F∗R is a finitely generated R-module. Likewise, a
scheme of prime characteristic is F -finite if Frobenius is a finite morphism
of schemes.

Most of the rings we encounter in algebraic geometry are F -finite:

Example 1.18. A field k of characteristic p is F -finite if and only if the
extension kp ⊆ k has finite degree. In particular, perfect—including alge-
braically closed— fields are F -finite.

Example 1.19. Any polynomial ring k[x1, . . . , xn] or power series ring
kJx1, . . . , xnK over an F -finite field is F -finite. Indeed, a generating set for
F∗R in this case can be taken to be F∗λxa1

1 · · ·xann where λ ranges through
some (finite) basis for k over kp and 0 ≤ ai ≤ p − 1 for each i. In fact,
this computation shows that shows that F∗R is a free R-module of rank
[F∗k : k]pn. Hence, when k is perfect, F∗R has rank pn. See also Exam-
ple 1.8.

Example 1.20. The cuspidal ring F2[x2, x3] is F -finite, as F∗R is generated
over R by four elements by Example 1.13.

Indeed, all prime characteristic varieties, their local rings at any point,
and the completions of those local rings are also F -finite:

https://stacks.math.columbia.edu/tag/00MA
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Proposition 1.21. (a) Any homomorphic image of an F -finite ring is
F -finite. In particular, any finitely generated algebra over an F -
finite field is F -finite.

(b) Any Noetherian complete local ring of characteristic p > 0 with F -
finite residue field is F -finite.

(c) A module finite extension of an F -finite ring is F -finite.
(d) Any localization of an F -finite ring is F -finite. In particular, rings

essentially of finite type over an F -finite field are F -finite.
(e) The completion of a Noetherian F -finite ring at any ideal is F -finite.

In particular, if (R,m) is an F -finite Noetherian local ring, then its
m-adic completion R̂ is F -finite.

Proof of Proposition 1.21. Statements (a) holds since the images of
generators of F∗R over R will generate F∗RI over RI for any ideal I; the second
sentence follows immediately from Example 1.19. Likewise, (b) follows from
(a) by using the Cohen Structure theorem to view the ring as a quotient of a
formal power series over a field isomorphic to its residue field. Statement (c)
follows from general properties about composition of finite maps, while (d)
is immediate because Frobenius commutes with localization. For (e), note
that a ring R is F -finite if and only if there is a surjective R-module map
from a finitely generated free R-module

R⊕d � F∗R.

Applying the completion functor lim←−R/I
t ⊗R − to this surjection, we see

that F̂∗R is a finitely generated R̂-module; see [Mat89, Theorem 8.1(ii)]
or [Sta19, Tag 0315]. So by Lemma 1.14 also F∗R̂ is a finitely generated
R̂-module—that is, the completion R̂ along I is F -finite. �

On the other hand, it is not hard to find non-F -finite rings:

Example 1.22. A field of infinite transcendence degree over Fp is an exam-
ple of a non-F -finite ring. For example, the field K = Fp(x1, x2, . . . ), where
we adjoin infinitely many variables, is not F -finite.

Some of the nice properties of F -finite rings (and schemes) are summa-
rized below:

Theorem 1.23. Let R be an F -finite Noetherian ring of prime characteris-
tic.

(a) The regular locus of R is open.
(b) The ring R is excellent.
(c) If R is reduced, then its normalization2 is also F -finite.

2i.e., integral closure in its total quotient ring

https://stacks.math.columbia.edu/tag/0315
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(d) The ring R is a homomorphic image of a regular ring of finite Krull
dimension, in particular R itself has finite Krull dimension.

(e) The ring R admits a dualizing complex and hence if it is locally
equidimensional, it has a canonical module.

(f) If R is equidimensional, then it admits a canonical canonical module
ωR with the property that F !ωR ∼= ωR.

Proof. We will deduce (a) as a corollary of a theorem of Kunz in Corol-
lary 2.3. For (b), see [Kun76]. Statement (c) follows from (b) using the
commutative diagram involving the normalization map R ν−→ S:

R

ν

��

F // F∗R

F∗ν
��

S
F
// F∗S.

Indeed, because R is excellent, the map ν, and hence F∗ν, is finite; since
the top arrow is finite, it follows that so is the bottom arrow. Statement (e)
is due to Gabber; see [Gab04]; Gabber’s construction immediately implies
(f). �

Iterates of Frobenius are always finite in F -finite rings:

Proposition 1.24. For a ring R (or a scheme X) of prime characteristic,
the Frobenius map is finite if and only if the iterated Frobenius F e is finite
for some (equivalently, every) e ∈ N.

One more elementary property about F -finite rings that we use fre-
quently is that the modules HomR(F e∗R,R) commute with flat base:

Lemma 1.25. Suppose R is an F -finite Noetherian ring. Then for any flat
R-algebra S, there is a natural isomorphism

HomR(F e∗R,R)⊗R S ∼= HomS(S ⊗R F e∗R,S).

In particular,

(a) HomR(F e∗R,R)⊗RW−1R ∼= HomW−1R(F e∗ (W−1R),W−1R) for any
multiplicative system W ⊆ R; and

(b) HomR(F e∗R,R) ⊗R R̂ ∼= Hom
R̂

(F e∗ R̂, R̂) where R̂ denotes the com-
pletion of R along any ideal.

That is, the formation of the module HomR(F e∗R,R) commutes with local-
ization and completion for F -finite Noetherian rings.
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Proof. Our hypothesis on R ensures that for all e ∈ N, the R-module
F e∗R is finitely presented. Thus the statement follows from general results
about flat base change in commutative rings [Sta19, Tag 087R]. For (b), we
also invoke Corollary 1.15. �

1.9. Exercises.

Exercise 1.1. Prove Proposition 1.2. Use it to verify that there is a unique
Frobenius map defined on an arbitrary scheme of characteristic p.

Exercise 1.2. Let k be any field of characteristic p. Find a minimal gen-
erating set for F e∗ k[x1, . . . , xn] over k[x1, . . . , xn], and prove that it is a free
basis. If [k : kp] = d < ∞, prove that the rank of both F e∗ k[x1, . . . , xn] over
k[x1, . . . , xn] and F e∗ kJx1, . . . , xnK over kJx1, . . . , xnK is depne.

Exercise 1.3. Let R = Fp[x2, x3], where p > 2. Find a minimal set of
generators for the R-module R1/p. Conclude that F∗R is not free over R in
any characteristic.

Exercise 1.4. Let (R,m, k) be an F -finite Noetherian local ring of charac-
teristic p. Prove that the minimal number of generators of the R-module
F e∗R is

[k : kp]e dimk(R/m
[pe]).

Exercise 1.5. To practice the (notoriously confusing!) notation associated
with the Frobenius pushforward functor F e∗ , verify the following statements,
where F e : R→ F e∗R denotes the e-iterated Frobenius map:

(a) F 2 = F∗F ◦ F as R-module maps R −→ F 2
∗R;

(b) F e = F∗F
e−1 ◦F = F e−1

∗ F ◦F e−1 for all e > 0 as maps R −→ F e∗R;
(c) For any c ∈ R, if µc : R

mult by c−−−−−−→ R denotes the "multiplica-
tion by c" map, then F e∗µc is the multiplication by F e∗ c map in
HomR(F e∗R,F

e
∗R).

Exercise 1.6. Let k = Fp(t1, t2, . . . ) be a field generated over Fp by infinitely
many indeterminates ti, and let R = k[x] by the polynomial ring over k.

(a) Show that F∗R is not a finitely generated R-module.
(b) Show that the canonical map (of rings) R̂ ⊗ F∗R −→ F̂∗R is not an

isomorphism, where the notation M̂ denotes completion of the R
module M at the maximal ideal (x).

Exercise 1.7. Suppose A is a ring of characteristic p > 0 and R is an
A-algebra.

(a) In the case A = Fp, show that the Frobenius map F : R −→ R is a
map of A-algebras.

https://stacks.math.columbia.edu/tag/087R
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(b) In the case that A 6= Fp is a field, construct an A-algebra R such
that the Frobenius map F : R −→ R is not an A-algebra map.

Exercise 1.8 (Relative Frobenius). Suppose that A is a ring of characteristic
p > 0 and R is an A-algebra. The previous exercise demonstrated that
F : R −→ R is not generally a map of A-algebras. Define a map of F∗A-
algebras

FR/A : R⊗A (F∗A) // F∗R

(r ⊗ F∗a) � // F∗(r
pa).

This map is called the relative Frobenius of R over A. Show that it is a map
of F∗A-algebras. Further show that for any A-algebra B, the base change
map FR/A ⊗F∗A F∗B is equal to FR⊗AB/B. In other words, the relative
Frobenius is compatible with base change.

Exercise 1.9. Consider A = Fp[t] and R = A[x]/(xp − t). Write down
explicitly the relative Frobenius map FR/A and show that the source and
target are not isomorphic as rings.

Exercise 1.10. Suppose A is a ring of characteristic p > 0 and R is an A-
algebra. Describe explicitly the dotted vertical map that makes the following
diagram commute:

R

��

F // F∗R

R⊗A (F∗A)
FR/A

// F∗R

Suppose, furthermore, that A is perfect, in other words that the Frobenius
map on A is an isomorphism. Prove in this case that the dotted arrow is an
isomorphism of rings.

2. Frobenius and regularity

A major theme of this book is that the Frobenius map can detect singu-
larities of a Noetherian ring R of characteristic p.

Already Frobenius detects the most basic restriction on singularities: it
is easy to see that R is reduced if and only if its Frobenius map is injective.
Put differently, R is reduced if and only if the R-module F∗R is faithful.

A much deeper fact, due to Ernst Kunz, is that Frobenius can detect
whether or not a ring has any singularities at all:

Theorem 2.1. [Kun69b, Kun69a] If R is a Noetherian ring of prime
characteristic, then R is regular if and only if F∗R is a flat R-module.
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For a variety over a perfect field, or more generally any F -finite scheme
of characteristic p, Kunz’s theorem can be stated as follows:

Corollary 2.2. A Noetherian F -finite scheme X is regular if and only if the
coherent sheaf F∗OX is locally free.

Proof. Corollary 2.2 follows immediately from the fact that a finitely
generated flat module over a Noetherian ring is locally free [Mat89, Thm
7.10]. �

Kunz’s Theorem has the following important consequence:

Corollary 2.3. The regular locus of a Noetherian F -finite scheme is open.
That is, the locus of points P ∈ X where OX,P is regular is an open subset
of X.

Proof. Because openness can be checked on an affine cover, the state-
ment immediately reduces to the affine case. By Kunz’s theorem, we know
that RP is regular if and only if F∗RP = (F∗R)P is flat. Since F∗R is a
finitely generated R-module, flatness and freeness of (F∗R)P over RP are
equivalent. So the locus of points in SpecR such that RP is regular is the
same as the locus of points in SpecR such that (F∗R)P is free over RP .
But the free locus for any coherent sheaf on any Noetherian scheme is open
([Har77, Ex II 5.7]). �

Caution 2.4. There exist Noetherian schemes with non-open regular loci.
The following example is due to Hochster [Hoc73a]. Fix any field k. Con-
sider the subringR′ of the polynomial ring over k in countably many variables
{xi | i ∈ N} generated by {x2

i , x
3
i | i ∈ N}. The set

U = R′ \
∞⋃
i=1

(x2
i , x

3
i )R

′

is the complement of the union of (countably many) prime ideals, hence
multiplicatively closed. The localization

R = U−1R′

is a Noetherian domain whose maximal ideals mi are indexed by the xi. Each
localization Rmi is a one-dimensional domain of the form

Li[x
2
i , x

3
i ](x2

i , x
3
i )

where Li is the field of infinite transcendence degree over k generated by the
variables xj (where j 6= i). In particular, each Rmi is non-normal (and hence
non-regular). Thus R is a one dimensional Noetherian domain whose regular
locus consists only of the generic point (0) ∈ SpecR. Since the proper closed
sets of SpecR are finite, the regular locus of Spec R is not open.
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We now turn to the proof of Kunz’s Theorem, proving in fact the follow-
ing superficially stronger result:

Theorem 2.5. If R is a Noetherian ring of characteristic p > 0, then R is
regular if and only if F e∗R is a flat R-module for some (equivalently, every)
e ∈ N.

The rest of this section will be devoted to the proof of Theorem 2.5.
We will present two proofs: the original, fairly elementary Kunz, and a
recent more machinery-heavy proof of Bhatt and Scholze which provides
new insight.

Proof of Theorem 2.5. Since both flatness and regularity can be checked
locally, Theorem 2.5 immediately reduces to the local case. Furthermore,
since a local Noetherian ring (R,m) is regular if and only if its completion
R̂ is regular, the proof of Theorem 2.5 reduces to the complete local case by
the following:

Lemma 2.6. Let (R,m) be a Noetherian local ring of prime characteristic
p. Then the Frobenius map for R is flat if and only if the Frobenius map for
R̂ is flat. Likewise, the same holds for the composition F e of Frobenius with
itself e times, for any e ∈ N.

Proof. Assume first that F e∗R is flat over R. Completing at the max-
imal ideal of R, we have also that F̂ e∗R is flat over R̂ [Sta19, Tag 06LD].
Thus F e∗ R̂ is flat over R̂ (Lemma 1.14).

Conversely, assume that F e∗ R̂ is flat over R̂. Consider the following
diagram:

R̂
F e // F e∗ R̂

R

OO

F e
// F e∗R

OO

The vertical arrows, both being completion, are faithfully flat (note that
right vertical arrow is essentially just a renaming of the left arrow). Because
we are assuming that the upper arrow is flat, and a composition of flat maps
is flat, we know that the composition R → F e∗R → F e∗ R̂ is flat. Thus, the
bottom horizontal arrow R→ F e∗R is flat by [Sta19, Tag 039V]. �

Continuing with the proof of Theorem 2.5, we now assume that (R,m)
is a Noetherian complete local ring, whence the Cohen Structure Theorem3

3See [Mat89, Theorem 29.4(iii)] or [Sta19, Tag 032A].

https://stacks.math.columbia.edu/tag/06LD
https://stacks.math.columbia.edu/tag/039V
https://stacks.math.columbia.edu/tag/032A
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allows us to write R = kJx1, . . . , xnK/I where I is some ideal of the power
series ring kJx1, . . . , xnK, and n is the embedding dimension of R.

First, assuming that R is regular, we may assume R = kJx1, . . . , xnK. To
see that Frobenius is flat on R, we factor the Frobenius map as

kJx1, . . . , xnK ⊆ kJx1/p
1 , . . . , x1/p

n K ⊆ k1/p ⊗k kJx
1/p
1 , . . . , x1/p

n K ⊆ k1/pJx1/p
1 , . . . , x1/p

n K.

Now, the first extension is flat because the set

{(xa1
1 x

a2
2 · · ·x

an
n )1/p | 0 ≤ ai ≤ p− 1}

is a free basis for for kJx1/p
1 , . . . , x

1/p
n K over kJx1, . . . , xnK. And the second

extension is flat because k1/p is a flat k-module and flatness is preserved by
base change. The final extension is flat because it is completion (see [Sta19,
Tag 0AGW] taking M = k1/p ⊗k kJx

1/p
1 , . . . , x

1/p
n K in their notation). Since

a composition of flat maps is flat, we conclude that Frobenius (and all its
iterates F e) is flat for R.

For the converse, we assume that F e∗R is flat for some natural number e.
We will give two different proofs that R = kJx1, . . . , xnK/I is regular.

2.1. Kunz’s proof that flatness of Frobenius implies regularity.
This proof is elementary but relies on explicitly understanding minimal gen-
erators of the maximal ideal. We make use of the following notion:

Definition 2.7. A set of elements {f1, . . . , fs} of a commutative ring is called
Lech independent if whenever a1f1 + . . .+ asfs = 0 for some elements ai
in the ring, then each ai ∈ (f1, . . . , fs).

The most obvious example of a Lech independent set is a set of minimal
generators for the maximal ideal of a local Noetherian ring. Given a Lech
independent set, the next results (whose proofs are left as exercises) let us
construct others:

Lemma 2.8. Let R be an arbitrary ring, and assume elements f1, . . . , fn ∈ R
generate an ideal J with the property that J/J2 is a free R/J-module of rank
n. Then the images {φ(f1), . . . , φ(fn)} under any flat map R φ−→ S form a
Lech independent set in S.

In particular, if Frobenius is flat in a local ring R whose maximal ideal is
minimally generated by x1, . . . , xn, then {xp

e

1 , . . . , x
pe
n } is a Lech independent

set for all e ∈ N..

Lemma 2.9. [Lec64, Lemma 3] Let {f1, . . . , fs} be a Lech independent set
in some ring, and assume that g1 divides f1. Then {g1, f2, . . . , fs} is also
Lech independent.

https://stacks.math.columbia.edu/tag/0AGW
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In particular, any set of powers of the minimal generators for the max-
imal ideal of a local Noetherian ring in which Frobenius is flat form a Lech
independent set. In other words, combining the two lemmas we have:

Lemma 2.10. Let (R,m, k) be a Noetherian local ring of prime characteristic
p, and let {x1, . . . , xn} be a minimal set of generators for m. If some iterate
of Frobenius on R is flat, then the set

{xα1
1 , . . . , xαnn }

is Lech independent for any positive α1, . . . , αn.

Next, we note that the lengths of modules obtained by killing Lech in-
dependent sets are controlled:

Lemma 2.11. [Lec64, Lemma 4] Let {f1, . . . , fs} be a Lech independent set
of an arbitrary ring, and suppose that f1 = g1h1. If `R(R/(f1, . . . , fs)) is
finite, then

`R(R/(f1, . . . , fs)) = `R(R/(g1, f2, . . . , fs)) + `R(R/(h1, f2, . . . , fs)),

where here `R(M) denotes the length4 of M as an R-module.

Proof. This follows from the short exact sequence

0→ R/(h1, f2, . . . , fs)
mult by g1−−−−−−→ R/(f1, . . . , fs)→ R/(g1, f2, . . . , fs) −→ 0,

where the non-zero mapping on the right is the natural quotient map, and
the non-zero mapping on the left is multiplication by g1. To see the latter is
injective, let r represent an element in its kernel, so that rg1 ∈ (f1, . . . fs).
Rearranging, g1(r− a1h1) ∈ (f2, . . . fs), so that multiplying by h1 and using
the fact that f1, . . . , fs is Lech independent, we conclude that r − a1h1 ∈
(f1, f2, . . . fs) ⊆ (h1, f2, . . . fs). Thus r ∈ (h1, f2, . . . fs), and the class of r is
zero. �

The next result follows immediately from Lemma 2.11 by induction on
α1 + · · ·+ αn:

Lemma 2.12. Let (R,m) be a complete local ring of prime characteristic and
assume that some power of the Frobenius map on R is flat. Let x1, . . . , xn
be minimal generators for the maximal ideal m. Then

`R

(
R

(xα1
1 , . . . , xαnn )

)
= α1 · α2 · · ·αn

for all αi ∈ N. In particular, R/m[pt] has length pnt for all t ∈ N.

4For instance, if R is a local ring containing a field k isomorphic to its residue field
(for instance, a complete local ring), then `R(M) = dimk(M). See [Sta19, Tag 00IU] for
basics about length.

https://stacks.math.columbia.edu/tag/00IU
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Now, to complete the proof of Kunz’s theorem, suppose that some power
of Frobenius is flat for the complete local ring R ∼= kJx1, . . . , xnK/I. By
Lemma 2.12, the quotient R/(xp

t

1 , . . . , x
pt
n ) has dimension (pt)n = ptn over k

for all t. But also

dimk kJx1, . . . , xnK/(x
pt

1 , . . . , x
pt

n ) = ptn

for all t, since the set {xa1
1 x

a2
2 · · ·xann | 0 ≤ ai < pt} is a k-basis. So the

quotient map
kJx1, . . . , xnK

(xp
t

1 , . . . , x
pt
n )
�

kJx1, . . . , xnK

I + (xp
t

1 , . . . , x
pt
n )

must be an isomorphism for every t. This means that

I ⊆
⋂
t

(xp
t

1 , . . . , x
pt

n ) ⊆
⋂
t

(x1, . . . , xn)p
t

in the power series ring kJx1, . . . , xnK, and so I = 0 by the Krull intersection
theorem [Sta19, Tag 00IP]. We conclude that R = kJx1, . . . , xnK, so that R
is regular, completing the proof of Kunz’s theorem. �

Remark 2.13 (Hilbert-Kunz Multiplicity). For a Noetherian local ring
(R,m) of dimension d, the Hilbert-Kunz multiplicity is defined to be the
limit:

eHK(R) = lim
e−→∞

`R
(
R/m[pe]

)
ped

.

Notice that if F∗R is a flat R-module (that is, when R is regular), the
argument above shows that eHK(R) = 1. We will see later that this limit
exists in general, and indeed, is equal to 1 if and only ifR is regular Chapter 9,
or see [WY00, HY02].

2.2. Alternate proofs that flatness of Frobenius implies regular-
ity. There are several proofs of Kunz’s Theorem; see, for example, [Her74]
and [MR10, Theorem 4.4.2]. Of particular interest is a recent proof due
to Bhatt and Scholze, which uses their result that the perfection of a com-
plete local ring has finite global dimension [BS17]. We include it because it
provides a different perspective on this material, though the machinery used
here will not be needed later.

Definition 2.14. Let R be a ring of prime characteristic p. We say that R
is perfect if the Frobenius map on R is an isomorphism. Likewise a scheme
is perfect if the Frobenius map on its structure sheaf is an isomorphism.

Because Frobenius is injective if and only if R is reduced, we can also
define a perfect ring as a reduced ring in which every element has a p-
th root. This terminology agrees with the usual terminology for perfect
fields. In particular, every perfect field— including every finite field and
every algebraically closed field— is a perfect ring.

https://stacks.math.columbia.edu/tag/00IP
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Example 2.15. The ring Fp[x, x1/p, x1/p2
, x1/p3

, . . . ] obtained by adjoining
all pe-th roots to Fp[x] is perfect.

Every ring of characteristic p admits a natural map to a perfect ring:

Definition 2.16. Let R be a ring of prime characteristic p. The perfection
of R is the direct limit ring

Rperf = lim−→
F

R = lim−→(R
F−→ R

F−→ R
F−→ R . . . )

where each transition map F above is Frobenius.

Remark 2.17. The perfection Rperf of R is obviously a perfect ring, and
there is obviously a natural ring homomorphism R → Rperf . We can alter-
natively define a perfect ring as one such that the natural map R→ Rperf is
an isomorphism.

Remark 2.18. If R is reduced (for example, a domain), we can identify the
perfection with the subring

⋃
e≥0R

1/pe of the algebraic closure of the total
quotient ring of R consisting of the pe-th roots of every element of R. This
ring is also denoted R∞ or R

1
p∞ in the literature.

Example 2.19. The perfection of the ring R = Fp[x] is the perfect ring
Rperf = Fp[x, x1/p, x1/p2

, x1/p3
, . . . ].

Remark 2.20. The perfection of R is rarely Noetherian, even when R is.
Indeed, the only Noetherian perfect rings are finite products of perfect fields.
On the other hand, it is easy to check that SpecRperf −→ SpecR is a home-
omorphism of the underlying topological spaces. In particular, when R is a
Noetherian local ring, its perfection has finite Krull dimension.

Remark 2.21. The perfection Rperf is always reduced even when R is not.
Indeed, the Frobenius map on Rperf is always injective: if something is killed
by Frobenius, it is also killed by some map defining the direct limit.

For any map of rings R → S, there is a naturally induced compatible
map of perfections Rperf → Sperf . Similarly, if R is an arbitrary ring that
admits a homomorphism to a perfect ring R → Sperf , then this map must
factor uniquely through the perfection of R:

R→ Rperf → Sperf .

Remark 2.22. The perfection we have introduced is sometimes also called
the direct limit perfection or colimit perfection. This is because there is
another natural way to get a map from an arbitrary ring R of characteristic
p to a perfect ring—namely, we get take the inverse limit of the Frobenius
maps instead:

Rperf = lim←−
F

R = lim←−(R
F←− R F←− R F←− · · · ).
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The perfect ring Rperf is called the inverse limit perfection. For example,
if R = Fp[x], then Rperf ∼= Fp. Whereas the perfection adds p-th roots to
get a perfect ring, the inverse limit perfection annihilates all elements that
are not p-th powers to get a perfect ring. We will not need this construction
here.

Bhatt and Scholze prove the following beautiful theorem:

Theorem 2.23. Let Rperf be the perfection of a complete local Noetherian
ring R of prime characteristic. Then Rperf has finite global dimension.

A ring has finite global dimension if there is an upper bound on the
projective dimension for all R-modules. Recall that for a Noetherian local
ring, one of the many characterizations of regularity is precisely finite global
dimension.5

Theorem 2.23 says that the perfection of a complete local ring, while not
Noetherian, behaves homologically like a regular local ring.

To prove Theorem 2.23, we need the following:

Lemma 2.24. Suppose

R oooo
g

S
h // // R′

are surjections of Noetherian rings of characteristic p > 0 with induced sur-
jections

Rperf
oooo
g

Sperf
h // // R′perf

of perfect rings. Then Tor
Sperf

i (Rperf , R
′
perf) = 0 for all i 6= 0; in other words,

there is a isomorphism

Rperf ⊗L
Sperf

R′perf
∼= Rperf ⊗Sperf

R′perf

in the derived category.

Proof. The proof is carried out in a series of steps in the exercises; see
Exercises 2.5, 2.6, 2.7, 2.8, 2.9. �

Proof of Theorem 2.23. Write R = S/I for S = kJx1, . . . , xdK and
note that the induced map Sperf −→ Rperf is also surjective.

LetM be an arbitraryRperf -module. We will show thatRHomRperf
(M,N)

has cohomology in bounded degrees (independent of M and N). In other
words, for all i� 0, ExtiRperf

(M,N) = 0.

5See [Ser56, AB56], or [Sta19, Tag 00OC].

https://stacks.math.columbia.edu/tag/00OC
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We first show we may assume that R = S—that is, that it suffices to
consider the power series ring. Indeed, notice that there are isomorphisms
in the derived category:

M ∼= M ⊗L
Rperf

Rperf
∼= M ⊗L

Rperf
(Rperf ⊗L

Sperf
Rperf) ∼= M ⊗L

Sperf
Rperf

by Lemma 2.24. Now, by the derived version of Hom-tensor adjointness, see
[Wei94, Theorem 10.7.6] or [Sta19, Tag 0A65], there are natural isomor-
phisms

RHomRperf
(M,N)

∼= RHomRperf
(M ⊗L

Sperf
Rperf , N)

∼= RHomSperf
(M,RHomRperf

(Rperf , N))
∼= RHomSperf

(M,N).

So it suffices to prove that the perfection Sperf of the power series ring S
has finite global dimension. But note that when S = kJx1, . . . , xdK, the
perfection

Sperf = lim
−→

S1/pe

is a limit of the regular rings k1/peJx1/pe

1 , . . . , x
1/pe

d K, each of which has global
dimension d. So by a theorem of Israel Bernstein, the limit, Sperf , has global
dimension at most d+ 1 [Ber58, Cor 1]. �

Corollary 2.25. Suppose R is a Noetherian ring of prime characteristic
such that F∗R is a flat R-module. Then R is regular.

Proof. The proof reduces to the complete local case by Lemma 2.6. In
this case, it suffices to check that (R,m, k) has finite global dimension by
[Ser56, AB56], (or see [Sta19, Tag 00OC]). For this, it suffices to show
that there is an d ∈ N such that for any finitely generated R-module M ,

TorRn (M,k) = 0 for n > d.

We claim that we can take d to be the global dimension of Rperf , which is
finite by Theorem 2.23 of Bhatt and Scholze. Indeed, assuming Frobenius is
flat, we see that Rperf is a limit of flat R-modules, and so flat itself; moreover,
Rperf is faithfully flat since mRperf 6= Rperf (note m is a subset of the maximal
ideal of Rperf). Thus it suffices to check that

Rperf ⊗R TorRn (M,k) = 0 for n > d.

By flatness of Rperf , this is the same as Tor
Rperf
n (Rperf ⊗RM,Rperf ⊗R k) =

0 for n > d, which is immediate by definition of global dimension d for
Rperf . �

https://stacks.math.columbia.edu/tag/0A65
https://stacks.math.columbia.edu/tag/00OC
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2.3. Exercises.

Exercise 2.1. If (R,m)
φ−→ (S, n) is a local homomorphism of Noetherian

local rings, then φ is flat if and only if the induced map on completions is
R̂m φ−→ Ŝn if flat. This generalizes the technique used to prove Proposition
2.6.
Exercise 2.2 (A relative form Kunz’s theorem). Let f : X → Y be a flat
map of varieties over a field of prime characteristic. Then f is smooth if
and only if the relative Frobenius map for X/Y (in the sense of Exercise 1.8)
is flat,6 in which case it is locally free of rank pn where n is the relative
dimension of X/Y .

Hint: The smoothness of f in this case is equivalent to regularity of the
closed fibers. Use Exercise 1.8.

Exercise 2.3. Prove the two lemmas about Lech independence, Lemmas 2.8
and 2.9, used in Kunz’s proof that flatness of Frobenius implies regularity.
Exercise 2.4. Suppose R is a perfect (but not necessarily Noetherian) ring
of characteristic p > 0. Let S = R[x1, . . . , xn]/I for some finitely generated
ideal I. Show that F∗S is a finitely presented S-module.
Exercise 2.5. With notation as in Lemma 2.24, let I = ker g = (f1, . . . , fn)
so that R = S/I. Show that

ker gperf = ker(Sperf −→ Rperf) = (f
1/pe

1 , . . . , f1/pe

n )e≥0.

Exercise 2.6. With notation as in the previous exercise, assume we can
prove Lemma 2.24 in the case that I is generated by fewer than j elements.
Set Ij = (f

1/pe

1 , . . . , f
1/pe

j )e≥0 ⊆ Sperf and fix Rperf,j = Sperf/Ij . Show that

Rperf,j ⊗L
Sperf

R′perf
∼= Rperf,j ⊗Rperf,j−1

(Rperf,j−1 ⊗Sperf
R′perf)

Deduce that it suffices to prove the result in the case that I = (f) is principal.
Exercise 2.7. With notation as in the previous exercise, consider the di-
rected system

{Sperf , ·f
p−1
pn } =

Sperf
·f
p−1

p2

−−−−→ · · · ·f
p−1

pn−1

−−−−→ Sperf
·f
p−1
pn

−−−−→ Sperf
·f

p−1

pn+1

−−−−→ · · ·

 .

Verify that there is a map from this directed system to Iperf sending a (from
the nth spot) to f1/pna. Show that the induced map on the direct limit

µ : lim
−→
{Sperf , ·f

p−1
pn } −→ Iperf .

6More generally, a map of prime characteristic Noetherian rings R → S is regular
(meaning flat with geometrically regular fibers) if and only if the relative Frobenius map
FR ⊗R S → F∗S is flat. This is sometimes called the Radu-André Theorem; see [MP20,
10.1] for a nice proof.
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is an isomorphism. Here, the notation ·g means the map "multiplication by
g."

Exercise 2.8. Likewise consider IperfR
′
perf =

⋃
f1/peR′perf , the ideal gener-

ated by the image of f1/pe in R′perf and thus the direct system

{R′perf , ·f
p−1
pn } = R′perf

·f
p−1

p2

−−−−→ · · · ·f
p−1

pn−1

−−−−→ R′perf
·f
p−1
pn

−−−−→ R′perf
·f

p−1

pn+1

−−−−→ · · ·

As in the previous exercise, show that the induced map

ν : lim
−→
{R′perf , ·f

p−1
pn } −→ IperfR

′
perf .

is an isomorphism.

Exercise 2.9. Using the previous exercises, show that

Iperf ⊗L
Sperf

R′perf
∼= IperfR

′
perf .

Use this to deduce that Rperf ⊗L
Sperf

R′perf
∼= Rperf ⊗Sperf

R′perf which proves
Lemma 2.24.

3. Local Frobenius splitting

We have seen that the Frobenius map can be used to identify when
a Noetherian scheme of prime characteristic is regular (or non-singular):
regularity is equivalent to the flatness of Frobenius.

Our next goal is to relax the flatness assumption on Frobenius slightly.
This leads to several classes of "F -singularities" that, as we will see, are
robust classes of "mild" singularities with many nice properties.

In this section, we introduce the local property of prime characteristic
rings called Frobenius splitting. Later in this chapter, we will introduce
the related local notions of strongly F -regular, F -rational, F -pure, and F -
injective singularities. Global versions of Frobenius splitting (and other F -
singularities, at least in certain settings) can also be defined, but we caution
the reader that global Frobenius splitting is typically quite a bit stronger
than local Frobenius splitting in the non-affine case. All discussion of the
global issues will be postponed until Chapter 3.

3.1. Frobenius splitting. Let R be a commutative ring of character-
istic p > 0.

Definition 3.1. We say that R is Frobenius split (or simply F -split) if the
Frobenius map R F−→ F∗R splits in the category of R-modules. Explicitly,
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this means that there exists an R-module map F∗R
π−→ R such that the

composition
R

F−→ F∗R
π−→ R

is the identity map for R.

Example 3.2. The polynomial ring S = k[x1, . . . , xd] over an arbitrary field
of characteristic p > 0 is Frobenius split. For example, if k is perfect, then
F∗S is a free S-module on the basis

{F∗xa1
1 · · ·x

ad
d | 0 ≤ ai < p},

so the S-module map F∗S
π−→ S defined by sending the basis element F∗1 to

1 and all other basis elements to zero is a splitting of Frobenius. The map
π is sometimes called the standard monomial Frobenius splitting of S or the
toric splitting of S (see also Example 1.4 in Chapter 3). See Exercise 3.3 for
arbitrary k.

Proposition 3.3. A Frobenius split ring is reduced.

Proof. Let R be a Frobenius split ring. Because the composition

R
F−→ F∗R

π−→ R

is the identity map, we see that the p-th power map F must be injective.
This implies that R is reduced. �

Lemma 3.4. The localization of a Frobenius split ring at any multiplicative
set is Frobenius split.

Proof. Let W ⊆ R be a multiplicative set. If π ∈ HomR(F∗R,R) is a
splitting of Frobenius for R, then tensor the composition

R
F−→ F∗R

π−→ R

with W−1R to see that π induces a Frobenius splitting for W−1R. �

The next proposition provides non-regular examples of Frobenius split
rings:

Proposition 3.5. Let S ι−→ R be any homomorphism of rings which splits
as a map of S-modules. If R is Frobenius split, then so is S.

Proof. The point is that a composition of splittings is a splitting. In-
deed, the hypothesis means that there is an S-linear map R φ−→ S such that
φ ◦ ι is the identity map on S. Fix a Frobenius splitting F∗R

π−→ R, and
consider the composition

S
F−→ F∗S

F∗ι−→ F∗R
π−→ R

φ−→ S,
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where the notation F ∗ι denotes functor F∗ applied to the S module map ι
(see Subsection 1.4). All these maps are S-module maps (since any R-linear
map is automatically linear over S), and the composition is the identity map
on S. This means that the Frobenius map for S is split by the composition
φ ◦ π ◦ F∗ι. �

Example 3.6. Any Veronese subring

k[x1, . . . , xd]
(n) := k[{monomials of degreen}] ⊆ k[x1, . . . , xd]

of a polynomial ring over a field of characteristic p > 0 is Frobenius split
by Proposition 3.5. Indeed, Veronese subrings split off the polynomial ring
(simply by mapping any homogenous element whose degree is a multiple of
n to itself and killing all others).

Example 3.7 (Invariant Rings). Let G be a finite group whose order is not
divisible by p. Suppose that G acts on a ring R of characteristic p by ring
automorphisms. If R is Frobenius split (e.g., a polynomial ring), then the
ring of invariants

RG := {f ∈ R | g · f = f for all g ∈ G}

is Frobenius split as well. This is because we have a splitting of RG ↪→ R
defined by “averaging the orbit" of each element r:

R→ RG r 7→ 1

|G|
∑
g∈G

g · r.

Example 3.8. The homogeneous coordinate rings of Grassmannians G(d, n)
of any size over an F -finite field are Frobenius split [BK05, Ch 2], as are
generic determinantal rings [HH94a]. Likewise, upper cluster algebras are
always Frobenius split when defined over an F -finite field, even when they
they are not finitely generated [BMRS15].

As another application of the fact that a composition of split maps is
split, we have the following characterizations of Frobenius split rings.

Proposition 3.9. Let R be a commutative ring of prime characteristic p.
Then the following are equivalent:

(a) R is Frobenius split;
(b) For every e > 0, the iterated Frobenius R F e−−→ F e∗R defined by r 7→

F e∗ r
pe splits;

(c) There exists e > 0 such that R F e−−→ F e∗R splits.

Proof. Because a composition of split ring maps is split, (a) easily
implies (b), which obviously implies (c). It remains to show (c) implies
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(a). Assume that for some e, the R-module map R F e−→ F e∗R splits, and let
F e∗R

φ−→ R be splitting. This means that composition

R
F e−→ F e∗R

φ−→ R

is the identity map on R. But now we can factor F e as F e−1◦F , so that the
identity map on R factors further as

R
F−→ F∗R

F∗F e−1

−→ F e∗R
φ−→ R.

In particular, the composition φ ◦ F∗F e−1 is a splitting of Frobenius. �

Definition 3.10. Maps φ : F e∗R −→ R can be viewed as Abelian group
maps φ : R −→ R by forgetting the R-module structure on the source. In
such a case they are called p−e-linear maps as they satisfy the relation
φ(rp

e
x) = rφ(x). We will adopt this notation later in Chapter 8.

3.2. Examples of non Frobenius split rings. Frobenius splitting is
a fairly restrictive condition. For example, the following lemma is useful in
identifying rings that are not Frobenius split.

Lemma 3.11. Let R→ S be a ring homomorphism that splits in the category
of R-modules. For every I ⊆ R, we have IS ∩ R = I. In particular, for an
ideal I in a Frobenius split ring, if zp ∈ I [p], then7 z ∈ I.

Proof. Suppose that z ∈ IS ∩R, it suffices to prove that z ∈ I. Write
z = s1x1 + · · · + snxn where si ∈ S and xi ∈ I ⊆ R. Let φ : S → R be the
splitting of the ring map R→ S. Applying φ to z we have

z = φ(z) = φ(s1)x1 + · · ·+ φ(sn)xn ∈ I.
So IS ∩ R ⊆ I. The final statement follows from the first by considering
the split homomorphism R

F−→ F∗R. Note that z ∈ IF∗R ∩ R means that
zp ∈ I [p]. �

Example 3.12. Consider the subring R = Fp[x2, x3] of Fp[x], where p is any
prime. The ring R is not Frobenius split. To see this, note that x3 6∈ (x2) in
R. However, x3p = x2pxp ∈ (x2)[p]. So x3 ∈ IF∗R ∩ R but not in I for the
ideal I = (x2) in R. By Lemma 3.11, the ring R is not Frobenius split.

Example 3.13. For d ≥ 4 (and p not dividing d), the normal ring

R = Fp[x, y, z]/(xd + yd + zd)

is not Frobenius split. This follows from Lemma 3.11, as we will show that
(zd−1)p ∈ (xp, yp)R but zd−1 6∈ (x, y)R. Indeed, R is a free module over its
subring A = Fp[x, y], with basis 1, z, . . . , zd−1, so zd−1 6∈ (x, y)R. On the

7The notation I [p] is defined in Notation 1.9.
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other hand, (zd−1)p has degree dp−p, so we can write (zd−1)p as an A-linear
combination

a0 + a1z + · · ·+ ad−1z
d−1,

where the coefficients ai are polynomials in Fp[x, y] of degrees (d − 1)p − i.
We claim that each such ai ∈ (xp, yp), which of course implies zp ∈ (xp, yp)R.
To check this claim, it suffices to show that each monomial xαyβ of degree
at least (d − 1)p − (d − 1) is in (xp, yp). But if not, we’d have α, β ≤ p − 1
such that

(d− 1)p− (d− 1) ≤ α+ β ≤ 2p− 2;

rearranging,
(d− 3)p ≤ (d− 3),

a contradiction. So R is not Frobenius split by Lemma 3.11. See also Exer-
cise 3.10.

Remark 3.14. Frobenius splitting is closely related to F -purity, a slightly
weaker condition equivalent to Frobenius splitting in the F -finite case; see
Definition 7.18.

Remark 3.15. The converse of Lemma 3.11 holds under mild hypothesis,
as well. Indeed, the property of a ring map R → S that for every I ⊆ R,
IS ∩ R = I is often called cyclic purity. Hochster showed in [Hoc77]
that cyclic purity is equivalent to purity for maps R → S whenever R is a
local Noetherian ring which is approximately Gorenstein, a mild condition
satisfied, for example, by any reduced excellent8 local ring. On the other
hand, purity of a finite extension of Noetherian rings is the same as splitting
by Proposition 2.3 in Appendix A.

3.3. Frobenius splitting for F -finite rings. Frobenius splitting is
best behaved in the F -finite setting, where it can be thought of as a weak-
ening of flatness of Frobenius (i.e. regularity):

Proposition 3.16. An F -finite regular local ring is Frobenius split.

Proof. Suppose that (R,m) is an F -finite regular local ring. Then F∗R
is both finitely generated and flat over the local ring R, hence free. Any
minimal set of generators will be a free basis; we can find one9 by lifting an
R/m-basis for F∗R/mF∗R = F∗(R/m

[p]). In particular, since 1 /∈ m[p], we
can take F∗1 to be among a free basis for F∗R over R. Any projection onto
the R-submodule spanned by F∗1 is a Frobenius splitting. �

8for example, F -finite, by [Kun76]
9by Nakayama’s Lemma; [Sta19, Tag 07RC]

https://stacks.math.columbia.edu/tag/07RC


3. LOCAL FROBENIUS SPLITTING 43

In F -finite Noetherian rings, Frobenius splitting is an open condition,
which can be checked locally analytically10. This follows from the next two
propositions:

Proposition 3.17. For a Noetherian F -finite ring R of prime characteristic:

(a) The locus of points Q in SpecR such that RQ is Frobenius split is
a Zariski open set of SpecR.

(b) R is Frobenius split if and only if for every prime (or equivalently,
maximal) ideal P ∈ SpecR, the local ring RP is Frobenius split.

Proposition 3.18. Suppose R is a Noetherian F -finite ring. If R is F -split,
then the completion of R at any ideal is also F -split. Furthermore, if (R,m)

local, then R is Frobenius split if and only if its completion R̂ at the maximal
ideal is Frobenius split.

Both propositions follow from the following general lemma:

Lemma 3.19. Let R be an arbitrary commutative ring, and R ι−→ M be
any R-module homomorphism.

(a) The map ι splits if and only if the natural R-module map

HomR(M,R)
Ψ−→ R φ 7→ φ(ι(1)).

is surjective.
(b) If M is finitely presented, then the locus of points

{P ∈ SpecR | ιP : RP →MP splits}

where ι splits is the open set complementary to the closed set V(im Ψ)
of prime ideals containing the image of Ψ.

Proof of Lemma 3.19. For (a), observe that to find a splitting of
R

ι−→M is to find an R-module map φ ∈ HomR(M,R) such that φ(ι(1)) =
1. Clearly this is equivalent to the surjectivity of Ψ.

For (b), observe that (a) implies that the R-module R
im Ψ is zero if and

only if the map R ι−→ M splits. Now if M is finitely presented, then there
is a natural isomorphism11

(3.19.1) HomRP (MP , RP ) = RP ⊗R HomR(M,R),

so that RP ⊗R R
im Ψ

∼= RP
im ΨP

. So ι splits locally at P if and only if P is not
in the support of R

im Ψ , that is, if and only if P 6⊃ im Ψ. �

10Analytically means "up to completion” in this context.
11[Sta19, Tag 0583]

https://stacks.math.columbia.edu/tag/0583
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Proofs of Proposition 3.17 and Proposition 3.18 . Both propo-
sitions follow from Lemma 3.19, taking ι to be the Frobenius map R →
F∗R. In particular, the closed set defining the non-Frobenius split locus is
V(im Ψ) ⊆ SpecR where Ψ is the "evaluation at F∗1" map

(3.19.2) HomR(F∗R,R)
Ψ−→ R φ 7→ φ(F∗1).

For the statements about completion, we see that (3.19.2) remains sur-
jective after tensoring with R̂. Since R̂ is flat:

HomR(F∗R,R)⊗R R̂ ∼= Hom
R̂

(F∗R⊗ R̂, R̂) ∼= Hom
R̂

(F∗R̂, R̂),

where the first isomorphism is from Lemma 1.25 and the second from Corol-
lary 1.15. The map Hom

R̂
(F∗R̂, R̂) −→ R̂ induced via this isomorphism and

tensor product is still evaluation-at-1. This proves the first part of Proposi-
tion 3.18.

In the second part, completion at m is faithfully flat, and so the map
(3.19.2) is surjective if and only if it is surjective after tensoring with R̂. �

Remark 3.20. From the proof, we see that Proposition 3.17 holds when R
is not Noetherian, provided F∗R is a finitely presented R-module.

Caution 3.21. Propositions 3.17 and Proposition 3.18 can fail for non-F -
finite rings. For example, Caution 2.4 constructed a one-dimensional Noe-
therian domain R with infinitely many maximal ideals whose Frobenius split
locus consists only of the generic point, showing that 3.17(a) need not hold.
And in [DS18, §3], examples of discrete valuation rings in the field Fp(x, y)
are constructed which are not Frobenius split; their completions, however,
are power series rings over Fp, hence always Frobenius split, showing that
Proposition 3.18 can fail. Those discrete valuation rings, however, are not
F -finite.

Caution 3.22. For a non-F -finite ring R, the module HomR(F∗R,R) can
be the zero module, even for relatively nice R. Clearly in this case, R has no
hope to be Frobenius split. This can happen even if R is a one-dimensional
regular local ring [DS18, §4] and even for the Tate algebra, which is an
excellent regular ring [DM20b].

Remark 3.23. As Caution 3.21 and Caution 3.22 indicate, Frobenius split-
ting is not always well behaved in the non-F-finite setting. The property of
F -purity is a often good substitute; see Subsection 7.6.

3.4. Local Frobenius splitting for schemes. It is natural to extend
the local condition of Frobenius splitting at each point to schemes:

Definition 3.24. Let X be a scheme of characteristic p. We say that X is
Frobenius split at x ∈ X if the local ring OX,x (the stalk at x) is Frobenius
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split. We say X is locally Frobenius split (or simply locally F -split) if X
is Frobenius split at every point.

Example 3.25. Any F -finite regular scheme is locally Frobenius split by
Proposition 3.16. In particular, smooth varieties (over an algebraically closed
field) of prime characteristic are always locally Frobenius split.

Caution 3.26. Splitting of the Frobenius map OX
F→ F∗OX at each point

x ∈ X is a much weaker condition, for general X, than the splitting of
Frobenius map OX

F→ F∗OX in the category of OX -modules on X. The
latter condition is called global Frobenius splitting, and will be discussed in
detail in Chapter 3. Unlike flatness or smoothness, splitting a map of sheaves
on a scheme is not a local condition.

Summarizing previously proved facts in the context of schemes, we have
the following:

Corollary 3.27. (C.f.Proposition 3.17(a)) Let X be a Noetherian F -finite
scheme of prime characteristic. The locus of points of X at which X is locally
Frobenius split is an open subset of X.

Corollary 3.28. (C.f.Proposition 3.17(b), Proposition 3.9) Let X be a Noe-
therian F -finite scheme of prime characteristic. The following are equivalent:

(a) X is locally Frobenius split at every point;
(b) X has an open affine cover by spectra of Frobenius split rings;
(c) For every open affine set U ⊆ X, the ring OX(U) is Frobenius split;
(d) The iterated Frobenius map OX

F e−→ F e∗OX splits at each point x ∈
X for some (equivalently, every) e ∈ N.

3.5. An application to lifting rings modulo p2. The following is an
interesting application of Frobenius splitting, but will not be used later.

Definition 3.29. Suppose R = Fp[x1, . . . , xd]/I is a finite type Fp = Z/(p)
algebra. A lift of R modulo p2 is a finite type Z/(p2) algebra R′ such that:

(a) R′ is flat over Z/(p2) and,
(b) R′/(p) ∼= R.

Not all finite type rings of characteristic p admit liftings modulo p2,
although it is not difficult to see that complete intersections do; see Exer-
cise 3.14. The point of this section is to show that Frobenius split rings always
lift modulo p2. In fact, following [Zda18, Definition 3.15, Theorem 3.16], we
explicitly construct a lifting to Z/(p2) of R from a Frobenius splitting of R.
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Fix a ring R as in Definition 3.29, and suppose that φ : F∗R −→ R
is a fixed splitting of Frobenius. Consider the set R′ = R × R. Define a
multiplication on R′ by

(3.29.1) (a0, a1) · (b0, b1) = (a0b0, a1b0 + a0b1),

and an addition by

(3.29.2) (a0, a1) + (b0, b1) =
(
a0 + b0, a1 + b1−φ

(
F∗

p−1∑
i=1

(p− 1)!

i!(p− i)!
ai0b

p−i
0

))
.

Here each coefficient (p−1)!
i!(p−i)! is an integer which might be better thought of

as the quotient of the binomial coefficient
(
p
i

)
(which is always divisible by

p for 0 < i < p) by p. In particular, the term φ
(
F∗
∑p−1

i=1
(p−1)!
i!(p−i)!a

i
0b
p−i
0

)
in

(3.29.2) can be interpreted, informally, as

(3.29.3)
(
a0 + b0

)p − ap0 − bp0
p

.

We claim that with these formulas for addition and multiplication, the
set R′ becomes a commutative ring with additive identity (0, 0) and multi-
plicative identity (1, 0). There are various properties to check, most of which
we leave to the reader. For example, we verify distributivity:

(a0, a1)
(
(b0, b1) + (c0, c1)

)
= (a0, a1)

(
b0 + c0, b1 + c1 − φ

(
F∗
∑p−1

i=1
(p−1)!
i!(p−i)!b

i
0c
p−i
0

))
=

(
a0b0 + a0c0, a1(b0 + c0) + a0b1 + a0c1 − a0φ

(
F∗
∑p−1

i=1
(p−1)!
i!(p−i)!b

i
0c
p−i
0

))
=

(
a0b0 + a0c0, a1b0 + a0b1 + a1c0 + a0c1 − φ

(
F∗
∑p−1

i=1
(p−1)!
i!(p−i)!(a

i
0b
i
0)(ap−i0 cp−i0 )

))
=

(
a0b0, a1b0 + a0b1

)
+
(
a0c0, a1c0 + a0c1

)
= (a0, a1)(b0, b1) + (a0, a1)(c0, c1).

Notice the fact that aφ(F∗r) = φ(F∗a
pr) for all a, r ∈ R was key. Associa-

tivity is left to the reader in Exercise 3.11.

Since φ(F∗n) = n for all n ∈ Fp, the reader can check that
p∑
j=1

(1, 0) = (0, 1).

in R′; see Exercise 3.12. In particular, the element (0, 1) is the image of
the integer p under the canonical ring map Z → R′, and the second factor
{(0, z) | z ∈ R} ⊆ R′ corresponds to the ideal of R′ generated by p. In
particular, R′/(p) = R. Furthermore,

p∑
j=1

(0, 1) = (0, 0)
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in R′, so that p2 = (0, 0) and R′ contains Z/(p2) as a subring.

To see that R′ is flat over Z/p2Z, it suffices to check that the natural
multiplication map pZ/p2Z⊗R′ −→ R′ is injective [Sta19, Tag 00ML]. But
pZ/p2Z⊗ R′ −→ R′ maps bijectively onto {(0, t) | t ∈ R}, which is a subset
of R′.

Putting this together, we see that:

Theorem 3.30 ([Zda18, Definition 3.15, Theorem 3.16]). The set R′, with
addition and multiplication defined above, is a lift of R to Z/(p2).

Remark 3.31 (Witt vectors). More generally, if k is an arbitrary perfect
field, a lift of a finite type k-algebra is a W2(k)-algebra, where W2(k) is the
ring of second Witt vectors, satisfying the corresponding conditions (a) and
(b). When k = Fp, W2(Fp) ∼= Z/(p2). The proof of Theorem 3.30 carries
over to this case with no essential change; see [Zda18, Theorem 3.16].

Remark 3.32 (Global versions). A global nonconstructive version of The-
orem 3.30 was known earlier. Indeed, it follows from [Sri90, Introduction,
(iii)], cf. [MS87, Appendix], that if a smooth variety X is globally Frobenius
split12, then X has a lift to Z/(p2), meaning that there exists a scheme X ′
flat over Z/(p2), such that X ′ ×Z/(p2) Fp = X. For related results in the
singular setting, see [Bha14].

3.6. Exercises.

Exercise 3.1. Prove the following are equivalent for a ring R of character-
istic p > 0:

(a) The ring R is Frobenius split.
(b) There exists φ ∈ HomR(F∗R,R) such that φ(F∗1) = 1.
(c) There is a surjective map of R-modules π : F∗R −→ R.
(d) There is an R-module isomorphism F∗R ∼= R ⊕ M for some R-

module M .
(e) The "evaluation at 1" map

HomR(F∗R,R)→ R φ 7→ φ(F∗1)

is surjective.

Exercise 3.2. Show that a Noetherian zero dimensional Frobenius split ring
is a product of fields.

Exercise 3.3. Let k be an arbitrary field of characteristic p > 0. Show that
the polynomial ring k[x1, . . . , xn] is Frobenius split.

12Meaning that OX −→ F∗OX splits, see Chapter 3.

https://stacks.math.columbia.edu/tag/00ML
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Exercise 3.4. Show that the non-Frobenius split locus of an F -finite Noe-
therian normal ring has codimension at least two.

Exercise 3.5. Show that kJx1, . . . , xdK is Frobenius split, where k is an
arbitrary field of characteristic p.

Exercise 3.6. Show that the ring R = Fp[x, y, z]/(xyz) is Frobenius split.

Exercise 3.7. Suppose R is a reduced Noetherian ring. The localization
map to the total ring of fractions R −→ K(R) induces

νR : HomR(F∗R,R) −→ HomR(F∗K(R),K(R))

Now consider the ring R = Fp[x2, x3] with normalization R′ = Fp[x], so R
and R′ have the same field of fractions. Find an explicit map φ ∈ Image(νR′)
that is not in the image of νR.

Hint: Can there be any map F∗R −→ R that sends F∗1 7→ 1?

Exercise 3.8. Suppose that k is a field of characteristic p > 0 and x ∈ k
is an element without a pth root. Let L = k(x1/p). Show that if a k-linear
map φ : F∗k −→ k extends to an L-linear map φL : F∗L −→ L, then φ is the
zero map.

Exercise 3.9. Consider the ring R = Fp[x, y, z]/(xy − z2) where p 6= 2.
Show that there is a Frobenius splitting F∗R −→ R that sends the ideal
F∗(x, z) to (x, z). Show that this splitting then induces a Frobenius splitting
of R/(x, z).

Hint: It might help to realize that R ∼= Fp[a2, b2, ab] ⊆ Fp[a, b].

Exercise 3.10. Let f ∈ k[x1, . . . , xn] be a homogeneous polynomial of de-
gree d > n over an an F -finite field k. Show that the quotient k[x1, . . . , xn]/(f)
is not Frobenius split.

Hint: Change coordinates so that f = xd1 + a1x
d−1 + · · · + ad where ai is

homogeneous of degree i in x2, . . . , xn; now use the method of Example 3.13.

Exercise 3.11. Suppose R′ is the set with binary operations multiplication
and addition defined as in (3.29.1) and (3.29.2). Show that these operations
are commutative and associative, proving R′ is in fact a commutative ring.

Exercise 3.12. Suppose R is a Frobenius split ring of characteristic p > 0
with Frobenius splitting φ : F∗R −→ R. Show that in the ring R′ constructed
in Subsection 3.5 has the property that

p =

p∑
j=1

(1, 0) = (0, 1).
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Hint:

Exercise 3.13 ([Zda18, Theorem 3.16]). Suppose g : R −→ S is a map of
Frobenius split rings of finite type over Fp = Z/(p). Further suppose that
φR : F∗R −→ R and φS : FS −→ S are compatible splittings of Frobenius in
the sense that the following diagram commutes:

F∗R

F∗g
��

φR
// R

g

��

F∗S
φS

// S

Show that there is an induced map R′ −→ S′ where R′ and S′ are lifts of R
and S modulo p2 constructed as in Subsection 3.5.

Exercise 3.14.

4. Frobenius splitting along elements and strong F -regularity

Strong F -regularity is a stronger form of Frobenius splitting. Strongly
F -regular rings, as we will see, have many splittings of Frobenius—they are
eventually Frobenius split along every non-zerodivisor.

4.1. Frobenius splitting along a non-zerodivisor. Frobenius split-
tings are R-linear maps (in HomR(F∗R,R)) sending F∗1 to 1. It turns out
to be useful to consider R-linear maps sending other elements F e∗ c to 1.

Definition 4.1. Let R be a ring of prime characteristic, and let c ∈ R. We
say that F e splits along c or that R is e-Frobenius split along c if the
R-module map

(4.1.1) R→ F e∗R determined by 1 7→ F e∗ c

splits in the category of R-modules. We say that R is eventually Frobenius
split along c if there exists an e > 0 such that F e splits along c.

Equivalently, R is e-Frobenius split along c if there exists e > 0 and
φ ∈ HomR(F e∗R,R) such that φ(F e∗ c) = 1. Note that 1-Frobenius splitting
along 1 is simply Frobenius splitting.

Example 4.2. A ring of prime characteristic is eventually Frobenius split
along 1 if and only if it is Frobenius split, by Proposition 3.9.

Caution 4.3. The map (4.1.1) is not the Frobenius map, nor indeed, any
ring map (unless c = 1). Rather it is the R-module map obtained as the
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composition

(4.3.1)
R

F e−−→ F e∗R
mult by F e∗ c−−−−−−−−→ F e∗R

r 7−→ F e∗ r
pe 7−→ F e∗ cr

pe .

Of course, being R-linear, the map (4.1.1) is determined by where it sends
1. Because we’ve specified that 1 goes to F e∗ c, it follows that each r must be
sent to rF e∗ c = F e∗ r

pec.

Example 4.4. An F -finite regular local ring is eventually Frobenius split
along every non-zero element. Indeed, let (R,m) be such a ring, and c ∈ R
any non-zero element. Choose e � 0 so that c 6∈ m[pe] (see Exercise 4.1).
Then the image of F e∗ c in F e∗R/mF

e
∗R = F e∗ (R/m[pe]) is non-zero, so that

by Nakayama’s Lemma, F e∗ c is part of a minimal generating set for the free
R-module F e∗R. So the R-submodule of F e∗R generated by F e∗ c splits off
F e∗R.

Eventual Frobenius splitting along c places restrictions on both the ring
and the element c, as the next two results show:

Proposition 4.5. If R is eventually Frobenius split along c, then c is not a
zero divisor.

Proof of Proposition 4.5. Suppose that rc = 0 for some r 6= 0.
Then the map R ι−→ F e∗R sending 1 7→ F e∗ c is not injective: ι(r) = rF e∗ c =
F e∗ r

pec = F e∗ 0 = 0. So ι can not split: there is no φ ∈ HomR(F e∗R,R) such
that φ ◦ ι is the identity. �

Proposition 4.6. If R is e-Frobenius split along a product cd, for some
elements c and d in R, then R is e-Frobenius split along both c and d. In
particular, if R is eventually Frobenius split along some c ∈ R, then R is
Frobenius split.

Proof of Proposition 4.6. Assume that the R-module map

R→ F e∗R 1 7→ F e∗ cd

splits. Fix φ ∈ HomR(F e∗R,R) such that φ(F e∗ cd) = 1. Consider the compo-
sition

F e∗R
F e∗ d−→ F e∗R

φ−→ R

where the first map is multiplication by F e∗ d. It is easy to check this com-
position is an R-module map sending F e∗ c to φ(F e∗ cd) = 1. That is, R is
e-Frobenius split along c.

For the second statement, consider c as the product of c and 1. Eventual
Frobenius splitting along c then implies eventual Frobenius splitting along
1, so R is Frobenius split by Proposition 3.9. �
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One splitting often means many more, as the next two results show:

Lemma 4.7. Let R be a ring of prime characteristic p. Assume that R-
module map

R
ιe−→ F e∗R 1 7→ F e∗ c

splits in the category of R-modules for some e = e0. Then it splits for all
e ≥ e0 as well.

Proof of Lemma 4.7. Because R is eventually Frobenius split along
c, we know R is Frobenius split by Proposition 4.6. Let π : F∗R −→ R be a
Frobenius splitting, and let φ ∈ HomR(F e∗R,R) be a splitting of the map ιe.
Then the composition

R
F−→ F∗R

F∗ιe−→ F e+1
∗ R 1 7→ F e+1

∗ c

is split by π ◦ F∗φ, as one easily verifies. That is, ιe+1 splits as a map of
R-modules as well. By induction, we have the desired splittings for all larger
e as well. �

Caution 4.8. If F e splits along c, it is not usually the case that F e′ splits
along c for e′ < e, although we saw that this is the case when c = 1
(Proposition 3.9). For example, if c ∈ m[p] in a local ring (R,m), then
F∗c ∈ F∗m

[p] = mF∗R, so that F never splits along c, though a higher
iterate F e may; see Example 4.4.

The converse of Proposition 4.6 also holds:

Proposition 4.9. Suppose that R is e-Frobenius split along c and f -Frobenius
split along d. Then R is (e+ f)-Frobenius split along cped.

In particular, R is eventually split along cd if and only if it is eventually
Frobenius split along both c and d.

Proof. Our hypothesis implies that the R-module maps

R
ιc−→ F e∗R and R

ιd−→ F f∗ R

sending 1 to F e∗ c and F
f
∗ d, respectively, are both split. Then the composition

of split maps

(4.9.1)
R

ιc−→ F e∗R
F e∗ ιd−−−→ F e+f∗ R

1 7−→ F e∗ c 7−→ F e+f∗ cp
e
d

is split as well, proving the first sentence. The second follows from Proposi-
tion 4.6. �
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Remark 4.10. With notation as in the proof of Proposition 4.9, we can
describe the splitting along cped explicitly as

φ ◦ F e∗ψ ∈ HomR(F e+f∗ R,R)

where φ ∈ HomR(F e∗R,R) and ψ ∈ HomR(F f∗ R,R) are eventual Frobenius
splittings along c and d, respectively.

The following form of Proposition 4.9 is especially useful:

Corollary 4.11. Suppose that R is e-Frobenius split along c. Then R is
ne-Frobenius split along c1+pe+p2e+···pe(n−1) for every integer n > 0.

In particular, if R is eventually Frobenius split along c, then R is even-
tually Frobenius split along cm for every integer m > 0.

Remark 4.12. The idea of "Frobenius splitting along a divisor" was first
used in [RR85] although it was not named such until [Ram91]. The exten-
sion to iterates of Frobenius and "eventual" splitting along c were introduced
in [Smi00a] (although the latter is called "stable Frobenius splitting along
c" there).

4.2. The Cartier Algebra. We digress to formalize a powerful con-
ceptual tool that has so far been mostly implicit.

Take φ ∈ HomR(F e∗R,R) and ψ ∈ HomR(F d∗R,R). As we have seen, it
can be useful to “compose” these maps, by which we mean the composition13

(4.12.1) F e+d∗ R
F e∗ψ−−→ F e∗R

φ−→ R,

or equivalently, the R-linear map

(4.12.2) φ ? ψ := φ ◦ F e∗ψ ∈ HomR(F d+e
∗ R,R),

defined by
φ ? ψ(F e+d∗ r) = φ(F e∗ (ψ(F d∗ r))

for all r ∈ R. The map φ ? ψ is literally composition of φ and ψ, if we
remember that as a set, F e∗R is simply R.

The composition φ ? ψ defines a natural multiplication on the abelian
group

(4.12.3) CR =
⊕
e∈N

HomR(F e∗R,R),

13Here the notation F e∗ψ denotes the functor F e∗ applied to the map ψ as discussed
in Subsection 1.4 of Chapter 1.
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making it into graded (non-commutative) ring. Note that although R sits
inside CR as the subring of degree zero elements, CR is not an R-algebra
because R is not central :

(4.12.4) r ? φ = φ ? rp
e

for r ∈ R and φ ∈ HomR(F e∗R,R) in CR. The ring CR is called the (full)
Cartier Algebra; we will revisit it and some generalizations in depth in
Chapter 8.

The Cartier Algebra point of view often simplifies notation and adds
insight. For example, in the proof of Corollary 4.11, if we let φ denote a
splitting of the map

R
ι−→ F e∗R sending 1 7→ F e∗ c,

then the composition14

(4.12.5) φ?n := φ ? φ ? · · ·φ ? φ ∈ HomR(Fne∗ R,R)

is a splitting of the composition

R
ι−→ F e∗R

F e∗ ι−→ F 2e
∗ R

F 2e
∗ ι−→ · · · −→ Fne∗ R,

sending 1 to c1+pe+···p(n−1)e . Note that notationally φ?n is much simpler than
writing

φ ◦ F e∗φ ◦ F 2e
∗ φ ◦ · · · ◦ F

e(n−1)
∗ φ,

although they both denote the same mapping in HomR(Fne∗ R,R).

As another example of the power of this notation, we can rephrase the
key idea of Corollary 4.11 as follows:

Proposition 4.13. Let R be a commutative ring of characteristic p > 0
and g ∈ R arbitrary. For any φ ∈ HomR(F e∗R,R), consider the map ψ =
φ ◦ F e∗ g ∈ HomR(F e∗R,R). Then

ψ?n = φ?n ◦ Fne∗ g1+pe+···+pe(n−1)

as maps in HomR(Fne∗ R,R). Equivalently, in the Cartier algebra CR, we
have (φ ? g)?n = φ?n ? g1+pe+···+pe(n−1)

.

Proof. Working in the Cartier Algebra, this follows immediately from
repeated applications of the relation r ? φ = φ ? rp

e (4.12.4). �

14We sometimes also use the notation φn when the risk of confusion is low.
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4.3. Strong F -regularity. The nicest Frobenius split rings are those
that are eventually split along every non-zerodivisor:

Definition 4.14. LetR be a Noetherian F -finite ring of prime characteristic.
We say that R is strongly F -regular15 if R is eventually Frobenius split
along every non-zerodivisor.

Remark 4.15. We can define a version of strong F -regularity when R is not
assumed F -finite or Noetherian, but it is less well-behaved. See Chapter 7,
where this notion is called F -pure regularity.

Example 4.16. Every F -finite regular local ring is strongly F -regular; the
proof is essentially the same as the proof in Example 4.4.

Caution 4.17. There are regular local rings that are not eventually Frobe-
nius split along any non-zerodivisor. See Caution 5.6.

Proposition 4.18. Suppose that S ↪→ R is a ring homomorphism between
F -finite Noetherian rings that splits as a map of S-modules. Then if R is
strongly F -regular, so is S.

Proof. When R is a domain, it is clear that every non-zerodivisor in S
is a non-zerodivisor in R, so the proof is similar to the analogous statement
for Frobenius split rings (Proposition 3.5). The reduction to the domain case
is left as Exercise 4.10. �

Example 4.19. For instance, Proposition 4.18 implies that the ring of in-
variants for a finite group (whose order is not divisible by p) acting on a
strongly F -regular ring is strongly F -regular; see Example 3.7.

Example 4.20. The coordinate ring of an affine (normal) toric variety (over
an F -finite field) of prime characteristic is strongly F -regular. Indeed, any
normal semi-group ring over a field is a direct summand of a Laurent ring
by [BH93, 6.1.10]. Laurent rings, being localizations of polynomial rings,
are regular and hence strongly F -regular (when over an F -finite field).

Example 4.21. A major class of finitely generated cluster algebras—the
locally acyclic cluster algebras introduced by Greg Muller [Mul13]—are
strongly F -regular when defined over an F -finite field [BMRS15].

Remark 4.22. An analog of Proposition 4.18 is an open problem in charac-
teristic zero for Kawamata log terminal singularities except in the finite case
see [Sho92] or [FG12]. Relevant work on this open question can be found
for instance in [Sch05, BGLM21].

15We sometimes say "F -regular" for short, especially in the context of schemes where
these adjectives are frequently decorated with the adverbs "locally" and "globally." Be
warned, however, that there are three flavors of F -regularity in the literature—weak F -
regularity, strong F -regularity and F -regularity—all conjectured to be equivalent for F -
finite rings. See Chapter 7 for more on this topic.
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Strong F -regularity behaves well under localization:

Proposition 4.23. Let R be a Noetherian F -finite ring, and let W ⊆ R be
a multiplicative set.

(a) If R is strongly F -regular, then so is W−1R;
(b) Conversely, if Rm is strongly F -regular for each maximal m ∈ SpecR,

then R is strongly F -regular.

A deeper fact will be proved in Theorem 5.12: the strongly F -regular lo-
cus is open. The proof is postponed until we have developed a theory of "test
elements" in Section 5. The proof of Proposition 4.23 follows immediately
from the following lemma:

Lemma 4.24. Let R be a Noetherian F -finite ring, and let W ⊆ R be a
multiplicative set.

(a) If R is e-Frobenius split along c ∈ R, then W−1R is e-Frobenius
split along the image of c in W−1R;

(b) Conversely, if for some c ∈ R, the ring Rm is eventually Frobenius
split along the image of c in the local ring Rm for each maximal ideal
m of R, then R is eventually Frobenius split along c.

Proof of Lemma 4.24. For (a): Any R-module map F e∗R → R send-
ing F e∗ c to 1 can be tensored with W−1R to produce an W−1R-linear map

F e∗ (W−1R)→W−1R

sending F e∗
c
1 to 1

1 . So if R is e-Frobenius split along c, then W−1R is e-
Frobenius split along c

1 .

For (b): Consider the "evaluation at F e∗ c map"

(4.24.1) Hom(F e∗R,R)
eval at F e∗ c−−−−−−−→ R φ 7→ φ(F e∗ c).

By Lemma 3.19, R is eventually Frobenius split along c if and only if there
exists an e ∈ N such that the map (4.24.1) is surjective. By hypothesis, for
each m ∈ SpecR, the R-module map

(4.24.2) HomRm(F e∗Rm, Rm)
eval at F e∗

c
1−−−−−−−→ Rm φ 7→ φ(F e∗

c

1
)

is surjective for some e0 > 0 and hence for all e ≥ e0 by Lemma 4.7. But
because R is Noetherian and F -finite, we know (from Lemma 1.25 (a)) that

HomRm(F e∗Rm, Rm) ∼= HomR(F e∗R,R)⊗R Rm

and that the map (4.24.2) is natural localization of the map (4.24.1).
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Because the surjectivity of (4.24.1) is an open condition, there exist,
for each m, some e = em ∈ N and a neighborhood Um of m such that

HomR(F e∗R,R)n
eval at F e∗

c
1−−−−−−−→ Rn is surjective for all n ∈ Um. These Um cover

SpecR. Now because SpecR is quasi-compact, we may pick a finite sub-
cover, and then choose e ≥ em for each of the finitely many m indexing the
finite subcover. But then the R-module map (4.24.1) is surjective at every
point of R, and hence surjective. That is, R is eventually Frobenius split
along c. �

Remark 4.25. The Noetherian F -finite hypothesis in Lemma 4.24 was used
only to prove (b). In fact, the argument for (b) works without the Noetherian
assumption provided F∗R is a finitely presented R-module; this implies F e∗R
is finitely presented for all e > 0 (see [Sta19, Tag 00F4]).

Remark 4.26. Strong F -regularity was originally defined by Hochster and
Huneke in [HH89]. Their definition demanded that R be eventually Frobe-
nius split along every c not in any minimal prime of R, rather than every
non-zerodivisor c, but this is equivalent. Indeed, either formulation implies
that R is eventually Frobenius split along 1, so that the ring R is reduced.
But in a reduced ring, the set of zero-divisors is precisely the union of the
minimal primes [Sta19, Tag 02LV].

Because strong F -regularity localizes well, it also globalizes well, and we
can define F -regularity for schemes:

Definition 4.27. An F -finite Noetherian scheme X is locally F -regular
(or locally strongly F -regular16) if any of the following equivalent condi-
tions is satisfied

(a) The scheme X has an open cover by affine schemes SpecRλ with
each Rλ strongly F -regular;

(b) For every open affine set U in SpecR ⊆ X, the ring OX(U) is
strongly F -regular.

(c) For every point x ∈ X, the local ring OX,x is strongly F -regular.
(d) For every closed point x ∈ X, the local ring OX,x is strongly F -

regular.

Caution 4.28. Like Frobenius splitting, we can also define a global form of
F -regularity for a scheme X, which is a much stronger condition than local
F -regularity if X is not affine. The global forms of both Frobenius splitting
and strong F -regularity place very strong restrictions on a projective variety,
which we consider carefully in Chapter 3.

16We often drop the adverb "strongly" when it is clear from the context. There are
contexts where it is needed, including any discussion about tight closure. See Chapter 7.

https://stacks.math.columbia.edu/tag/00F4
https://stacks.math.columbia.edu/tag/02LV
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Remark 4.29. A non-singular Noetherian F -finite scheme is locally F -
regular (Example 4.16) and a locally F -regular scheme is locally Frobenius
split (Proposition 4.6).

4.4. Normality of F -regular Rings. An important property of F -
regular rings is normality. For domains, normal is synonymous with inte-
grally closed in its field of fractions. See [Sta19, Tag 037B] for a review of
the relevant facts about normality.

Theorem 4.30. [HH90] A strongly F -regular ring is integrally closed in
its total fraction ring. In particular, any strongly F -regular ring is a finite
product of strongly F -regular domains, and every locally F -regular scheme is
a disjoint union of irreducible locally F -regular schemes.

Remark 4.31. A related fact is that Frobenius split rings are weakly normal
(and hence semi-normal). See Exercise 4.14.

Proof of Theorem 4.30. Assume that R is strongly F -regular. Then
R is Frobenius split, and hence reduced. Thus R is a subring of its total
fraction ring K(R) obtained by inverting all non-zerodivisors of R.

Fix an element x/y in the total fraction ring K(R), and assume x/y is
integral over R. We must show that y divides x in R. Since x/y is integral
over R, the ring T = R[x/y] ⊆ K(R) is a finite integral extension of R—
indeed, as an R-module, T is generated by {1, xy , (

x
y )2, . . . , (xy )m−1} where m

is the degree of the monic polynomial of integral dependence of x/y on R.
Hence there is a non-zerodivisor c ∈ R such that cT ⊆ R (for example, we
can take c = ym−1).

Now, since (xy )p
e ∈ T for all e, we have c(xy )p

e ∈ R for all e ∈ N. That
is, cxpe ∈ (yp

e
) in R for all e ≥ 1. Therefore, for all e,

(4.31.1) cxp
e

= rey
pe

for some re ∈ R which depends on e. Since R is strongly F -regular, we can
find φ ∈ HomR(F e∗R,R) such that φ(F e∗ c) = 1. Viewing (4.31.1) in the ring
F e∗R, we have

F e∗ cx
pe = F e∗ rey

pe ,

which simplifies to

(4.31.2) xF e∗ c = yF e∗ re.

Applying the R-linear map φ to the equation (4.31.2), we get

x = xφ(F e∗ c) = yφ(F e∗ re) ∈ (y)

in R. This shows that x/y ∈ R, proving that R is integrally closed in K(R).
The second statement follows from Exercise 4.6 and the fact that a reduced

https://stacks.math.columbia.edu/tag/037B
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ring with finitely many minimal primes which is integrally closed in its total
quotient ring is a finite product of normal domains; see e.g. [Sta19, Tag
030C]. �

Remark 4.32. We don’t need R to be F -finite or Noetherian in the proof
of Theorem 4.30 provided that R has finitely many minimal primes and is
eventually Frobenius split along every non-zerodivisor.

4.5. Exercises.

Exercise 4.1. Suppose (R,m) is a Noetherian local ring of characteristic p.
Suppose 0 6= c ∈ R. Show that there exists an e such that c /∈ m[pe].

Hint: Use Krull’s Intersection Theorem, which says that if (R,m) is a Noe-
therian local ring, then ∩n∈Nmn = 0.

Exercise 4.2. Let R be an arbitrary ring of characteristic p > 0. Let f ∈ R.
Show that there is a splitting of

R→ F e∗R 1 7→ F e∗ f

if and only if there is a splitting of

R→ F e+1
∗ R 1 7→ F e+1

∗ fp.

Hint: Either condition implies that R is Frobenius split. Now compose
relevant splittings to get the desired ones.

Exercise 4.3. To practice the notion introduced in Subsection 4.2, show
that in the Cartier Algebra CR, if π ∈ HomR(F∗R,R) is a Frobenius splitting,
then π?n is a splitting of the n-th iterate of Frobenius Fn.

Exercise 4.4. (Dual Cartier Algebra) Let R be a ring of characteristic p
and consider the abelian group

(4.32.1)
⊕
e≥0

HomR(R,F e∗R).

Define for φ ∈ HomR(R,F e∗R) and ψ ∈ HomR(R,F d∗R), define φ ? ψ ∈
HomR(R,F d+e

∗ R) by F d∗ φ ◦ ψ.

(a) Prove that this composition can be used to define a graded ring
structure on the abelian group (4.32.1).

(b) Show that φ ? r = rp ? φ for all r ∈ R.

Exercise 4.5. (Cartier Modules) Let R be a ring of characteristic p and let
M be an R-module. Consider the abelian group

(4.32.2) CR(M) :=
⊕
e≥0

HomR(F e∗M,M).

Show that CR(M) has a natural ring structure that is non-commutative.

https://stacks.math.columbia.edu/tag/030C
https://stacks.math.columbia.edu/tag/030C
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Exercise 4.6. Prove that a product ring R1 × R2 is strongly F -regular if
and only if both R1 and R2 are strongly F -regular.

Exercise 4.7. Prove Proposition 4.23.

Hint: Show that a non-zerodivisor of W−1R can be assumed of the form c
w

where c is a non-zerodivisor of R. Then use Proposition 4.6.

Exercise 4.8. Let R be a ring of prime characteristic. Show that the fol-
lowing are equivalent:

(a) R is eventually Frobenius split along some unit;
(b) R is eventually Frobenius split along every unit;
(c) For every e > 0, R is e-Frobenius split along every unit;
(d) R is Frobenius split.

Exercise 4.9. Prove that if R −→ S is a faithfully flat extension of reduced
F -finite Noetherian rings, and S is strongly F -regular, then so is R.

Exercise 4.10. Prove Proposition 4.18.

Hint: Reduce to domain case using Theorem 4.30 and Exercise 4.6.

Exercise 4.11. Fix a ring R of characteristic p > 0 and a non-zerodivisor
c ∈ R. Let 1

cR denote the cyclic R submodule of the total ring of fractions17

of R generated by the element 1
c . Prove that R is eventually Frobenius split

along c if and only if there exists an e ∈ N such that the map

R // F e∗
1
cR

1 � // F e∗ 1

splits as a map of R-modules.

Exercise 4.12. Let R be a reduced Noetherian ring. Suppose that φ :
F e∗R −→ R is an R-linear map. Fix I an ideal and consider J := ΓI(R) ⊆ R,
the ideal of elements annihilated by a power of I. Prove that φ(F e∗J) ⊆ J .
Conclude that if Q ⊆ R is a minimal prime, then φ(F e∗Q) ⊆ Q. (We will
study this condition—called compatibility of J and φ— in detail in Section 6).

Exercise 4.13. Consider the Frobenius split ring R = Fp[x, y, z]/(xyz) from
Exercise 3.6. Show that R is not eventually Frobenius split along any element
in the maximal ideal m = (x, y, z). In particular, conclude the local ring Rm

is not Frobenius split along any non-unit.

17If this level of generality is unfamiliar, it is valuable to keep the example of an
integral domain in mind. See [Sta19, Tag 02LV] for basics on total rings of fractions.

https://stacks.math.columbia.edu/tag/02LV
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Hint: One way to do this is to use Exercise 4.12. Notice that if φ(F e∗Q1) ⊆ Q1

and φ(F e∗Q2) ⊆ Q2 then φ(F e∗ (Q1 +Q2)) ⊆ Q1 +Q2.

Exercise 4.14. A reduced Noetherian ring R of characteristic p > 0 is called
weakly normal if x ∈ K(R) and xp ∈ R implies that x ∈ R. Any ring is
called seminormal if x ∈ K(R), and x2, x3 ∈ R implies that x ∈ R. Show
that Frobenius split rings are weakly normal, and that weakly normal rings
are seminormal. For a more thorough introduction to weak normality, see
Chapter 2 Subsection 4.5 in the exercises of that section.

Exercise 4.15. Fix p > 2. Consider the injective ring homomorphism

R = Fp[x]
x 7→y2

−−−→ Fp[y] = S. For any i in the range 0 ≤ i ≤ p − 1, let
φi be the R-module map F∗R −→ R sending F∗xi 7→ 1 and the other basis
elements F∗xj (with j 6= i, 0 ≤ j ≤ p− 1) of the free R module F∗R to zero.

(a) Show that φ1 extends to an S-module map F∗S −→ S.
(b) Show that φp−1 does not extend to an S-module map F∗S −→ S.
(c) More generally, show that φi extends to an S-module map F∗S −→ S

if and only if i ≤ (p− 1)/2.

5. Test elements and the test ideal

The test ideal on a Noetherian F -finite scheme is a canonical sheaf of
ideals defining the closed locus of non-strongly F -regular points. As such,
the test ideal endows the non-strongly F -regular locus with a natural scheme
structure enjoying very special properties with respect to Frobenius.

Test elements—essentially just elements of the test ideal—provide a use-
ful technical tool for working with Frobenius splitting in various settings.
For example, in this section, we will use test elements to prove that strongly
F -regularity is preserved by completion (Proposition 5.5) and by any étale
extension (Proposition 5.8), and that the strongly F -regular locus is open
(Theorem 5.12).

While test ideals first arose in tight closure theory (see Chapter 7), they
have since come to be viewed as "prime characteristic analogs" of multiplier
ideals in complex algebraic geometry (see Chapter 6). The theory of test
ideals will be substantially generalized in Chapters 4, 5, 7, and 8.

5.1. Testing for F -regularity. One difficulty in verifying strong F -
regularity is the need to check eventual Frobenius splitting along every non-
zerodivisor. The next theorem, Theorem 5.1, streamlines this process by
allowing us to check just one well-chosen non-zerodivisor:
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Theorem 5.1. [HH89, Thm 3.3] Let R be an F -finite Noetherian ring, and
suppose that d ∈ R has the property that R[d−1] is strongly F -regular. Then
if R is eventually Frobenius split along d, then R is strongly F -regular.

Remark 5.2. The element d of Theorem 5.1 can be informally called a
"test element" since we can "test" for eventual splitting along one such d
in order to conclude R is strongly F -regular. This is closely related to (but
not exactly the same as) a strong test element (Definition 5.14) and a test
element for tight closure (see Chapter 7).

Remark 5.3. In practice, it is easy to find non-zerodivisors d satisfying
the first sentence of Theorem 5.1. For example, suppose that R is reduced,
Noetherian and F -finite. For each minimal prime P of R, the stalk RP is
a field, and hence regular, so P does not contain the defining ideal I of
the non-regular locus of SpecR (this locus is closed by Corollary 2.3). So
by Prime Avoidance, there exist d ∈ I but not in any minimal prime18 of
R. Such an element d is a non-zerodivisor with R[d−1] regular and hence
strongly F -regular.

Proof of Theorem 5.1. Take any non-zerodivisor c ∈ R. We need to
show that R is eventually split along c. Consider the "evaluation at c map"

(5.3.1) HomR(F f∗ R,R)
eval at F f∗ c−−−−−−−→ R φ 7→ φ(F f∗ c).

Because R[d−1] is strongly F -regular, for large enough f the map (5.3.1)
becomes surjective after tensoring with R[d−1]. This means that dm is in
the image of the map (5.3.1) for some (possibly large) f > 0 and somem > 0.
Without loss of generality, we may assume that m = p` for some integer `,
and fix f and ψ ∈ HomR(F f∗ R,R) such that

(5.3.2) ψ(F f∗ c) = dp
`
.

Now, because R is eventually Frobenius split along d, R is in particular
Frobenius split, so we can find a splitting π ∈ HomR(F `∗R,R) of F `. For
this map,

(5.3.3) π(F `∗d
p`) = dπ(F `∗1) = d.

Also fixing an eventual Frobenius splitting along d, we have φ ∈ HomR(F e∗R,R)
such that

(5.3.4) φ(F e∗ d) = 1.

18See [Sta19, Tag 00DS] for the Prime Avoidance Lemma. However, for rings R
containing an infinite field, it is worth noting that prime avoidance is a simple fact about
vector spaces; in this case viewing ideals in R as sub vector spaces, an ideal I can not
be contained in a finite union of ideals unless it is contained in one of them, so a general
element of I satisfies the prime avoidance lemma.

https://stacks.math.columbia.edu/tag/00DS
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Finally, consider the composition α = φ ? π ? ψ ∈ HomR(F f+`+e
∗ R,R).

We claim that α(F f+`+e
∗ c) = 1. This will complete the proof, as then α is an

eventual Frobenius splitting along c. To check the claim, we follow F f+`+e
∗ c

through the composition α:

F f+`+e
∗ R

F `+e∗ ψ−−−−→ F `+e∗ R
F e∗π−−−−−→ F e∗R

φ−→ R.

Making use of the equations (5.3.2), (5.3.3) and (5.3.4), we see

F `+e∗ F f∗ c
F `+e∗ ψ7−→ F e+`∗ dp

`
= F e∗ (dF `∗1)

F e∗π7−→ F e∗ d
φ7−→ 1,

completing the proof. �

Remark 5.4. The proof of Theorem 5.1 cleans up nicely if remember that
as sets F e∗R = R, so we can (mostly) ignore the R-module structure when
we compute φ ? π ? ψ applied to c. We know ψ takes c to dp` , and π takes
dp

` to d. Finally, φ takes d to 1.

Armed with this new tool for "testing" for F -regularity by splitting along
just one element, we establish several basic properties of F -regularity.

Proposition 5.5. Let (R,m) be an F -finite Noetherian local ring. Then R
is strongly F -regular if and only if its completion R̂ at the maximal ideal is
strongly F -regular.

More generally, if R is F -finite Noetherian and strongly F -regular. Then
completion of R along any ideal is strongly F -regular.

Caution 5.6. There are examples of discrete valuation rings in Fp(x, y) that
are not F -finite but whose completions are F -finite [DS18]. Such discrete
valuation rings provide examples of non strongly F -regular Noetherian local
rings whose completions are strongly F -regular, showing that the F -finite
hypothesis in Proposition 5.5 is necessary. Likewise, such discrete valuation
rings are regular but not strongly F -regular.

Proof. Fix a non-zerodivisor c of R. Because completion is flat, the
image of c in R̂ is also a non-zerodivisor. Consider the R-module maps

(5.6.1) HomR(F e∗R,R)
eval at F e∗ c−−−−−−−→ R φ 7→ φ(F e∗ c).

The formation of HomR(F e∗R,R) commutes with completion (Lemma 1.25(b)),
so the map (5.6.1) becomes

(5.6.2) Hom
R̂

(F e∗ R̂, R̂) −→ R̂ φ 7→ φ(F e∗ c)

after tensoring with R̂. The map (5.6.1) is surjective if and only if (5.6.2) is
surjective, by the faithful flatness of completion. SoR is eventually Frobenius
split along c if and only if R̂ is eventually Frobenius split along (the image of)
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c. Thus clearly if R̂ is strongly F -regular, then also R is strongly F -regular,
as c was an arbitrary non-zerodivisor of R.

For the converse, we assume that R is strongly F -regular but stop as-
suming R is local. In this case R̂ is the completion of R along an arbitrary
ideal J .

To show that R̂ is strongly F -regular, we may check that R̂ is eventually
Frobenius split along one c such that R̂[c−1] is regular (Theorem 5.1). Thus,
by the previous paragraph, it suffices to find a non-zerodivisor c ∈ R such
that the localization of R̂ at (the image of) c is regular.

To find such c, note that because R is reduced, Noetherian and F -finite,
we can find a non-zerodivisor c ∈ R such that R[c−1] is regular (see Re-
mark 5.3). Furthermore, since F∗R[c−1] is a locally free R[c−1]-module,
tensoring with R̂, we see

R̂⊗R F∗R[c−1] ∼= F∗(R̂[c−1])

is locally free over R̂[c−1] as well. Thus R̂[c−1] is regular by Kunz’s Theorem
(Theorem 2.1), completing the proof. �

5.2. Étale extensions. Test elements can be applied to prove the "per-
manence" of strong F -regularity under étale extensions.19 For a field K, an
extension K → L is étale means simply that L is a finite product of fi-
nite separable field extensions. In general, an étale map is simply a flat and
finitely presented map whose fibers are étale field extensions. More precisely,

Definition 5.7. An extension of rings A −→ B is étale if it is finitely
presented, flat, and for all P ∈ SpecA, the ring AP

PAP
⊗A B is a product of

finitely many finite separable field extensions of the residue field AP
PAP

at P .

Regularity is preserved by étale maps in the sense that if A → B is an
étale map with A regular, then B is also regular [Sta19, Tag 025L]. Similarly,
strong F -regularity is preserved by étale maps:

Proposition 5.8. Let R −→ S be an étale map of F-finite Noetherian rings.
If R is strongly F -regular, then S is strongly F -regular.

The point of the proof is the following fact (see Exercise 5.13 for a proof)
about how Frobenius interacts with étale maps:

19The reader can consult [Sta19, Tag 00U0] or [Mil80] for a careful development of
the theory of étale morphisms.

https://stacks.math.columbia.edu/tag/025L
https://stacks.math.columbia.edu/tag/00U0
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Proposition 5.9. [Sta19, Tag 0EBS] Let A → B be an étale map of
Noetherian rings of positive characteristic p > 0. Then the natural map
F e∗A⊗A B −→ F e∗B is an isomorphism.

Proof of Proposition 5.8. Choose c ∈ R such that R[c−1] is regular.
Because étale maps are preserved by arbitrary base change [Sta19, Tag
00U0], the map R[c−1] −→ R[c−1]⊗R S = S[c−1] is étale, and so also S[c−1]
is regular, since it is étale over the regular ring R[c−1]. Thus, by Theorem 5.1,
it suffices to show that S is eventually Frobenius split along c. We know there
is an e such that

R
17→F e∗ c−−−−→ F e∗R

splits. Tensoring over R with S, then also

S
17→F e∗ c⊗1−−−−−−→ F e∗R⊗R S ∼= F e∗S,

splits as well, with the last isomorphism following from Proposition 5.9. In
particular, S is strongly F -regular. �

Remark 5.10. Conversely, if R −→ S is a faithfully flat map of F -finite
Noetherian rings, and S is strongly F -regular, then so is R. See Exercise 4.9.
So for a local étale map of local Noetherian F -finite rings, the source is
strongly F -regular if and only if the target is.

Remark 5.11. It is worth comparing Proposition 5.9 with Corollary 1.15,
which says that for a Noetherian local F-finite ring, there is a natural iso-
morphism F∗R ⊗R R̂ ∼= F∗R̂, where R̂ denotes the completion of R at its
maximal ideal. Similarly, compare Proposition 5.5 with Proposition 5.8 (and
Remark 5.10).

5.3. The openness of the strongly F -regular locus. Test elements
allow us to establish the openness of the strongly F -regular locus:

Theorem 5.12. The locus of strongly F -regular points on any Noetherian
F -finite scheme is open.

Proof. The statement reduces immediately to the affine case because
both local F -regularity and openness can be checked on an affine open cover.
So without loss of generality, assume R is a Noetherian F -finite ring. We
need to prove the openness of the locus of points Q ∈ SpecR such that RQ
is strongly F -regular.

Suppose Q ∈ SpecR is a strongly F -regular point. We need to find
an open neighborhood U of Q such that for every P ∈ U , RP is strongly
F -regular. Note that the reduced locus is open (as its complement is the
closed set defined by the annihilator of the nilradical) and non-empty (as it

https://stacks.math.columbia.edu/tag/0EBS
https://stacks.math.columbia.edu/tag/00U0
https://stacks.math.columbia.edu/tag/00U0
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contains Q). So, replacing SpecR by an affine neighborhood of Q contained
in the open set of reduced points, we may assume that R is reduced.

By prime avoidance, we can fix a non-zerodivisor d such that R[d−1] is
regular (see Remark 5.3). Let Je be the image of the map

(5.12.1) HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R φ 7→ φ(F e∗ d),

and note that the closed set V(Je) ⊆ SpecR is the locus of points where the
map (5.12.1) fails to be surjective.

Now by Theorem 5.1, the local ring RP is strongly F -regular if and
only if there exists e > 0 such that the map (5.12.1) is surjective after
localizing at P . Put differently, RP is not strongly F -regular if and only if
P ∈

⋂
e∈NV(Je). Thus the non-strongly F -regular locus is the closed set of

SpecR defined by the ideal J =
∑

e∈N Je. �

Remark 5.13. The ideal J constructed in the proof of Theorem 5.12 defines
the non-strongly F -regular locus, but noncanonically so, as it depends on the
choice of a "test element" d; see, however, Exercise 5.2.

5.4. Strong test elements. To get a canonically defined ideal defining
the non-strongly F -regular locus, we should look at the images of the maps
(5.12.1) for all non-zerodivisors d:
Definition 5.14. Let R be ring of prime characteristic. A strong test
element for R is an element c with the property that for all non-zerodivisors
d, there exists an e0 > 0 such that c is in the image of the map

(5.14.1) HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R φ 7→ φ(F e∗ d)

for all e ≥ e0.

Remark 5.15. A Noetherian F -finite ring is strongly F -regular, essentially
by definition, if and only if the element 1 is a strong test element. In this
case, all elements of R are strong test elements. See Exercise 5.3.
Remark 5.16. For any ring of characteristic p, clearly 0 is a strong test ele-
ment20 but it is not yet obvious, in the non-strongly F -regular case, whether
any others exist. We’ll address this in Theorem 5.21.
Lemma 5.17. Let R be a ring of prime characteristic. The set of all strong
test elements forms an ideal of R.

Proof. For each e, the image of the R-module map (5.14.1) is an ideal
of R. So for each i, the intersection

(5.17.1) Ji(d) =:
⋂
e≥i

im
(

HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R

)
20But see Caution 5.26!
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is an ideal of R. Clearly Ji(d) ⊆ Jj(d) when j > i, since the latter is an
intersection over fewer ideals. Thus as i increases, the ideals (5.17.1) form
an increasing chain of ideals; let J(d) be the union

⋃
i∈N Ji(d). Clearly J(d)

consists of all c ∈ R for which there exists some e0 such that c is in the image
of (5.14.1). Now, the set of strong test elements is the intersection, over all
non-zerodivisors d, of the ideals J(d), hence clearly an ideal of R. �

Armed with Lemma 5.17, we make the following definition:

Definition 5.18. Let R be a reduced Noetherian F -finite ring. The test
ideal of R, denoted τ(R), is the ideal of all strong test elements of R.

The test ideal of a reduced Noetherian F -finite ring behaves well under
localization, completion, and étale maps, but we postpone the proof until
the next section.

Remark 5.19. Because the test ideal localizes well (Proposition 6.17), it
also globalizes, so we get a sheaf of ideals τ(X) on any reduced Noetherian
F -finite scheme X; this sheaf of ideals cuts out the non-strongly F -regular
locus by Remark 5.15.

Remark 5.20. Even if R is not reduced, the ideal of all strong test
elements is the entire ring if and only if R is strongly F -regular. We’ll
explore this ideal and a few other variants in the exercises, but we will not
call this the test ideal in the non-reduced case, for technical reasons we discuss
in Chapter 8.

5.5. Test elements and non-zerodivisors. Test elements are most
useful when they are non-zerodivisors. Yet from the definition, it is not even
clear whether or not the ideal of strong test elements is non-zero! Fortu-
nately, we have the following important result, essentially due to Hochster
and Huneke (C.f. [HH89, Thm 3.4]):

Theorem 5.21. Let R be a Noetherian F -finite ring, and let b ∈ R be such
that R[b−1] is strongly F -regular. Then b has a power that is a strong test
element for R.

Before proving Theorem 5.21, we record some immediate consequences:

Corollary 5.22. Let R be a Noetherian reduced F -finite ring. Then R has
a strong test element that is a non-zerodivisor.

In particular, the test ideal τ(R) has positive height.

Proof. This follows from Remark 5.3, so is left as an exercise. �
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Corollary 5.23. The test ideal τ(R) of a reduced Noetherian F -finite ring
is generated by non-zerodivisors.

Proof. This is a general fact about any ideal of positive height in a
reduced Noetherian ring. See Exercise 5.10. �

Proof of Theorem 5.21. Suppose R[b−1] is strongly F -regular. In
particular, R[b−1] is Frobenius split. Since

HomR[b−1](F∗R[b−1], R[b−1]) = HomR(F∗R,R)⊗R R[b−1],

any splitting of Frobenius for R[b−1] is induced by some π ∈ HomR(F∗R,R)
after localization at b. In particular, we may assume there exists some π ∈
HomR(F∗R,R) where π(F∗1) = bm. Multiplying by b if needed, we may
further assume that m = pm′ for some m′ ∈ N.

We claim that b2m is in the image of π` ∈ HomR(F `∗R,R) for all ` ∈ N,
where by π` we mean the `-fold composition π?` in the Cartier Algebra.
Indeed, this is clear for ` = 1, so assume inductively, that π`−1(F `−1

∗ r) = b2m

for some r ∈ R. Then
π`(F `∗r) = π(F∗(π

`−1(F `−1
∗ r))) = π(F∗b

2m) = b2m
′
π(F∗1) = b2m

′
bm,

so that

(5.23.1) b2m = bm−2m′π`(F `∗r) ∈ im(π`).

Finally, we claim that b2m+1 is a strong test element. To prove this, we
must show that for every non-zerodivisor d ∈ R,

(5.23.2) b2m+1 ∈
⋂
e�0

im
(

HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R

)
.

Because d
1 ∈ R[b−1] is a non-zerodivisor in R[b−1] and R[b−1] is strongly F -

regular, there exists ψ ∈ HomR(F e∗R,R) such that ψ(F e∗ d) = bme for some
me > 0 (using an argument as in the opening paragraph). Multiplying by a
power of b if needed, we may assume that

ψ(F e∗ d) = bp
n

for any sufficiently large n ∈ N. Also, since b2m ∈ imπ` for all `, we can find
r ∈ R such that

b2m = πn(Fn∗ r).

Now, we claim that the composition

β = πn ? r ? ψ := πn ◦ Fn∗ r ◦ Fn∗ ψ ∈ HomR(Fn+e
∗ R,R)

has the property that β(Fn+e
∗ d) = b2m+1. Since d was an arbitrary non-

zero-divisor in R and this works for all n � 0, this will show that b2m+1 is
a strong test element, completing the proof.
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To check this claim, we follow Fn+e
∗ d through the composition β

Fn+e
∗ n

Fn∗ ψ−−−→ Fn∗ R
Fn∗ r−−→ Fn∗ R

πn−→ R

to see that

Fn+e
∗ d

Fn∗ ψ7−→ Fn∗ b
pn = bFn∗ 1

Fn∗ r7−→ bFn∗ r
πn7−→ bb2m.

So β(Fn+e
∗ d) = b2m+1, as needed. �

Proposition 5.24. The test ideal of a Noetherian F -finite Frobenius split
ring is radical.

Proof. Suppose bn ∈ τ(R). Then bp
n ∈ τ(R) as well. Let π ∈

HomR(Fn∗ R,R) be a splitting of (the n-th iterate of) Frobenius. In particu-
lar, π(Fn∗ b

pn) = bπ(Fn∗ 1) = b. Now, fix any non-zerodivisor d ∈ R. By defi-
nition of strong test element, for all e� 0, we can find φe ∈ HomR(F e∗R,R)
such that φe(F e∗ d) = bp

n . Applying π, we have

π(Fn∗ φe(F
e
∗ d)) = π∗(b

pn) = b

so the element π ? φe ∈ HomR(F e+n∗ R,R) takes F e+n∗ d to b for all e � 0.
This shows b ∈ τ(R). See also Exercise 6.24 for a different proof. �

Another immediate consequence is left as Exercise 5.7:

Corollary 5.25. Let R be a Noetherian F -finite ring. Then the ideal of
strong test elements21 defines the locus of non strongly F -regular points of
SpecR.

Caution 5.26. Test elements were first defined by Hochster and Huneke in
their theory of tight closure; their definition is different, but closely related
to ours, as we will discuss later in Chapter 7. One important difference is
worth highlighting immediately: while the tight closure literature defines
test elements exclusively as elements not in any minimal prime with certain
features, we do notmake that restriction here; see, for example, Remark 5.16.
Otherwise, our strong test elements—at least for a reduced Noetherian F -
finite local ring—turn out to be the same as non-finitistic test elements or
big test elements in tight closure theory. These are slightly "stronger," a
priori, than completely stable test elements, although there is evidence for
a conjecture predicting that all these types of test elements are equivalent
under mild hypothesis.

Remark 5.27. One may also consider a variant of Definition 5.14 in which
the elements d are required only to be not in any minimal prime of R.
Of course, for reduced rings, there is no difference, but for non-reduced
rings, this leads to an interesting parallel theory developed in the exercises,
beginning with Exercise 5.17.

21By definition, this is the test ideal if R is reduced.
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Caution 5.28. The reader is cautioned not to confuse our notion of a strong
test element (Definition 5.14) with "an element in a strong test ideal" in the
sense of Huneke [Hun97], a notion refining the test ideal for tight closure.
Vraciu showed [Vra02] that the test ideal for tight closure of a complete
local reduced ring is a strong test ideal in Huneke’s sense. In particular, it is
expected that under mild hypothesis, the test ideal (in any equivalent sense)
will be the largest strong test ideal (in Huneke’s sense).

5.6. Exercises.

Exercise 5.1. Let R = Fp[x1, . . . , xn]/(xd1 + · · ·+ xdn) for some d > n and p
not dividing d. Prove that the test ideal of R is primary to (x1, . . . , xn).

Hint: Use the method of Example 3.13 to show that R is not strongly F -
regular.

Exercise 5.2. Let R be a Noetherian F -finite ring. Show that the non-
strongly F -regular locus of SpecR is the closed set defined by the ideal Je
for e � 0, where Je is the image of the "evaluation at F e∗ d" map from the
proof of Theorem 5.12.

Hint: Show that the radicals of the ideals Je are increasing by making use
of Lemma 4.7.

Exercise 5.3. Let R be a Noetherian F -finite ring. Prove that R is strongly
F -regular if and only if 1 ∈ R is a strong test element.

Exercise 5.4. Let R be a Noetherian ring of prime characteristic. Prove
that if R has a strong test element that is a non-zerodivisor, then R is
reduced.

Hint: If Q is an associated prime of R, show that RQ is eventually Frobenius
split along a unit, and hence reduced.

Exercise 5.5. Let R be a Noetherian F -finite Frobenius split ring. Prove
that the test ideal τ(R) is precisely the set of all elements b ∈ R such that
R[b−1] is strongly F -regular22.

Exercise 5.6. Let R be a Frobenius split ring. Show that if c has the
property that for every non-zero-divisor d ∈ R, there exists an e and φ ∈
HomR(F e∗R,R) such that φ(F e∗ d) = c, then c is a strong test element.

Exercise 5.7. Prove Corollary 5.25.

22Here, we make the convention that the zero ring is vacuously strongly F -regular.
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Exercise 5.8. Let R be a ring a prime characteristic. Show that if c is a
strong test element, then so is φ(F e∗ c) for any φ ∈ HomR(F e∗R,R). We will
study this property in some depth in the next section.

Exercise 5.9. Let R be a ring a prime characteristic. Prove that the nilrad-
ical of R kills the ideal of all strong test elements. That is, if n is nilpotent
and c is a strong test element, then nc = 0.

Exercise 5.10. Let R be a reduced Noetherian ring. If an ideal J ⊆ R has
positive height, then J is generated by non-zerodivisors.

Hint: Use prime avoidance ([Sta19, Tag 00DS] and the fact that J is not
contained in any minimal prime of R.

Exercise 5.11. Let A −→ B be an étale map of F -finite Noetherian rings.
Show that if A is Frobenius split, then so is B.

Hint: Use Proposition 5.9.

Exercise 5.12. Let K be a field of characteristic p > 0. For any finite
separable field extension K ↪→ L, show that K1/pe ⊗K L ∼= L1/pe . This is a
special case of Proposition 5.9.

Exercise 5.13. Let g : A→ B be an étale map of Noetherian F -finite rings.
Prove Proposition 5.9 using the following steps and the diagram below.

F∗B

F∗A //

F∗g

44

F∗A⊗A B

99

A

F

OO

g
// B

OO F

BB

(a) Explain and label the diagram. In particular, identify three solid
arrows representing étale maps.

(b) Prove that the dotted arrow23 is étale by proving the following: If
a composition f ◦ h and h are both étale, then also f is étale.

(c) Show that the dotted arrow induces an isomorphism on fibers—
that is, it becomes an isomorphism after tensoring with κ(x) for
any x ∈ SpecF∗A⊗A B.

(d) Show that the dotted arrow is an isomorphism.

Hint: For (b), use the fact that a finite type map of rings is unramified if and
only if the corresponding diagonal map is open [Mil80, Prop 3.5 in Chap 1]

23which, by the way, is the relative Frobenius map FB/A of Exercise 1.8.

https://stacks.math.columbia.edu/tag/00DS
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For (c), show that the fiber over x is both separable and purely inseparable
over κ(x). For (d), show that a finite flat map of Noetherian rings with
isomorphic fibers is an isomorphism.

5.6.1. Variants of test ideals.

Exercise 5.14. Suppose R is a Noetherian F -finite reduced ring with min-
imal primes Q1, . . . , Qt, . . . , Qn. We define τ6⊆Q1,...Qt(R) to be the set of
elements c ∈ R such that for every d ∈ R \ (Q1 ∪ · · · ∪ Qt) there exists an
e0 ≥ 0 such that for every e ≥ e0 there exists φ ∈ HomR(F e∗R,R) such that

c ∈ Image
(

HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R

)
.

Prove that τ6⊆Q1,...Qt(R) is an ideal of R whose expansions in RQt+1 , . . . , RQn
are all zero.

Hint: Use prime avoidance and multiplication of elements to show that
we may restrict to ds in the above definition whose images d/1 in each of
RQt+1 , . . . , RQn are all zero.

Exercise 5.15. Suppose R is a Noetherian F -finite reduced ring with min-
imal primes Q1, . . . , Qt, . . . , Qn. Suppose that c ∈ R \ (Q1 ∪ · · · ∪ Qt) but
c ∈ Qt+1, . . . , Qn. Suppose that Rc is strongly F -regular. Prove that

cN ∈ τ6⊆Q1,...,Qt(R)

for some integerN � 0. In particular conclude that τ6⊆Q1,...,Qt(R) 6⊆ Q1, . . . , Qt.

Hint: Mimic the argument of Theorem 5.21.

Exercise 5.16. Suppose R is a Noetherian F -finite reduced ring with min-
imal primes Q1, . . . , Qt, . . . , Qn. Show that τ6⊆Q1,...,Qt(R) can be generated
by elements which are not contained in any of Q1, . . . , Qt.

Hint: Modify the proof of Corollary 5.23.

Exercise 5.17. Consider the following variant of a strong test element in
which we replace the phrase "all non-zerodivisors d" by the phrase "all d not
in any minimal prime": Define c to be a height test element if for all d
not in any minimal prime of R, there exists an e0 > 0 such that c is in the
image of the map

(5.28.1) HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R

for all e ≥ e0. Prove that the set of all height test elements forms an ideal
of R, which is trivial (in the Noetherian F -finite setting) if and only if R is
strongly F -regular.
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Hint: The argument is the same as in Lemma 5.17.

Exercise 5.18. Prove that if R is an F -finite Noetherian ring and b ∈ R is
such that R[b−1] is strongly F -regular, then b has a power that is a height
test element (as defined in Exercise 5.17). Deduce that the ideal of height
test elements has positive height if R is a Noetherian F -finite generically
reduced ring

Hint: See Theorem 5.21.

Exercise 5.19. Prove analogs of Exercises 5.8 and 5.9 for the height test
ideal (in the sense of Exercise 5.17).

6. Compatibility of ideals and maps

We now introduce the important idea of compatibility between ideals
of R and maps in HomR(F e∗R,R). Essentially, an ideal J is compatible
with a map φ whenever φ induces a map for the quotient ring R/J . This
leads to the well-known notion of compatibly split subschemes of Frobenius
split schemes. Such schemes (when irreducible) can be viewed as prime
characteristic analogs of centers of log-canonicity in complex geometry; see
Chapter 6.

In this section, we will characterize the test ideal τ(R) of a reduced Noe-
therian F -finite ring as the unique smallest ideal of positive height that is
uniformly compatible—meaning compatible with every map in HomR(F e∗R,R)
for every e ≥ 0. This characterization allows us to easily establish basic
properties of the test ideal, such as its good behavior under localization,
completion, and étale maps.

6.1. Compatible ideals. Fix a ring R of prime characteristic p, and an
arbitrary R-linear map F e∗R −→ R (not necessarily a splitting of Frobenius).
Given some quotient ring R = R/J , we would like to understand when our
map descends to a well-defined map F e∗R −→ R.

Definition 6.1. Given a map φ ∈ HomR(F e∗R,R) and an ideal J ⊆ R, we
say that J is compatible with φ, or symmetrically, that φ is compatible
with J , if

φ(F e∗J) ⊆ J.
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Equivalently, φ and J are compatible if there exists an R-module map φ
making the diagram

(6.1.1) F e∗R

����

φ
// R

����

F e∗R
φ
// R

commute. Here, the vertical arrows are the natural quotient maps, so φ,
when it exists, is uniquely defined by

F e∗ (x mod J) 7→ φ(F e∗x) mod J.

We also say J is φ-compatible, or simply that J is compatible when
the map φ clear from the context.

Example 6.2. For a trivial example, note that every ideal of R is compatible
with the zero map in HomR(F e∗R,R). Likewise, every map in HomR(F e∗R,R)
is compatible with both the zero ideal and the trivial ideal R.

Example 6.3. For a less trivial example, let π be the standard monomial
splitting Frobenius for Fp[x, y] described in Example 3.2. Then the principal
ideal (x) is compatible with π. Indeed, for any monomial xayb ∈ Fp[x, y], if
we use the division algorithm to write the exponents as

(6.3.1) a = n1p+ r1 and b = n2p+ r2 where ri < p,

then we can check that

π(F∗x
ayb) = xn1yn2φ(F∗x

r1yr2) =

{
xn1yn2 r1 = r2 = 0

0 otherwise.

Now, for a monomial xayb ∈ (x), we have a ≥ 1, so either r1 > 0 or n1 ≥ 1
in (6.3.1). Thus π(F∗x

ayb) ∈ (x), and (x) is π compatible.

Compatible ideals are closed under sums and intersections:

Proposition 6.4. Let F e∗R
φ−→ R be an R-linear map, where R is an arbitrary

ring of prime characteristic. Then

(a) Arbitrary sums of φ-compatible ideals are φ-compatible.
(b) Arbitrary intersections φ-compatible ideals are φ-compatible.

Proof. This is immediate from the definition. �

Example 6.5. Let S = Fp[x, y]. The principal ideal (x) is compatible with
the standard monomial splitting π (Example 6.3), and symmetrically, so is
(y). Thus both (xy) = (x) ∩ (y) and (x, y) = (x) + (y) are π-compatible, by
Proposition 6.4.
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Example 6.6. Let R be a ring of characteristic p > 0, and let f ∈ R. Fix
any φ ∈ HomR(F e∗R,R), and consider the composition φ′ :

F e∗R
mult by F e∗ fp

e−1

−−−−−−−−−−−→ F e∗R
φ−−→ R.

Then the map φ′ is compatible with the principal ideal (f). Indeed, for an
arbitrary fr ∈ (f), we have

φ′(F e∗ fr) = φ(F e∗ f
pe−1fr) = φ(F e∗ f

per) = fφ(F e∗ r) ∈ (f).

In other words, every map in the submodule

{φ ◦ F e∗ fp
e−1 | φ ∈ HomR(F e∗R,R)} ⊆ HomR(F e∗R,R)

is compatible with (f).

Compatibility behaves well under localization and completion:

Proposition 6.7. Let R be a ring of characteristic p > 0 and let W ⊆ R be
an arbitrary multiplicative set in R. For any ideal J ⊆ R, let W−1J denote
its image in the localization W−1R, and for any map φ ∈ HomR(F e∗R,R),
let φ

1 denote the naturally induced map F e∗W−1R −→W−1R.

(a) If J and φ are compatible, then their localizations are compatible—
that is, the ideal W−1J is compatible with the map φ

1 .
(b) If the localization W−1J is compatible with φ

1 , then the contraction24

of W−1J to R is compatible with φ.
(c) In particular, a prime ideal P ⊆ R is φ compatible if and only if

PRP ⊆ RP is φ
1 compatible.

Proof. We leave (a) and (b) as straightforward exercises; see Exer-
cise 6.9. Note that (c) follows from (a) and (b), since PRP ∩R = P . �

Proposition 6.8. Let (R,m) be an F-finite Noetherian local ring of char-
acteristic p > 0, and let (R̂, m̂) be its completion at the maximal ideal.
For any ideal J ⊆ R, let Ĵ be its m-adic completion, and for any map
φ ∈ HomR(F e∗R,R), let φ̂ be the induced map in Hom

R̂
(F̂ e∗R, R̂).

Then J is compatible with φ if and only if Ĵ is compatible with φ̂.

Proof. Recall that the m-adic completion F̂ e∗R of F e∗R is canonically
identified with F e∗ R̂ by Lemma 1.14. Now if J is φ-compatible, we have a

24Recall that for any ring map f : R −→ S, the contraction of an ideal J ⊆ S is
the ideal f−1(J) ⊆ R. This is often (abusively) written J ∩ R though it is not literally
intersection unless f is injective.
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commutative diagram

F e∗R

��

φ
// R

��

F e∗R/J
φ

// R/J,

so completing in the m-adic topology produces a commutative diagram

(6.8.1) F e∗ R̂ = F̂ e∗R

��

φ̂
// R̂

��

F e∗ R̂/J = F̂ e∗R/J
φ̂
// R̂/J.

Because the completion functor is exact on finitely generated modules, we
have R̂/J = R̂/Ĵ , and so the diagram (6.8.1) ensures Ĵ is φ̂ compatible. For
this direction we do not need F -finite.

For the other direction, note that since R̂ is faithfully flat, Ĵ ∩ R =

JR̂ ∩ R = J . The desired result now follows easily from the fact that
Hom

R̂
(F e∗ R̂, R̂) ∼= HomR(F e∗R,R)⊗R R̂ (Lemma 1.25). �

Remark 6.9. Suppose R is F -finite Noetherian but not necessarily local
and R̂ is the completion of R along an arbitrary ideal. Then we still have
that if J is compatible with φ, that Ĵ is compatible with φ̂. The proof is
unchanged.

6.2. Uniform compatibility. A distinguished class of ideals are those
compatible with every map:

Definition 6.10. An ideal J in a ring R of characteristic p is said to be
uniformly compatible if, for every e ≥ 0, J is compatible with every
φ ∈ HomR(F e∗R,R).

The next proposition gives many examples:

Proposition 6.11. Each associated prime of a ring of prime characteristic
is uniformly compatible.

Proof. When Q ∈ SpecR is an associated prime of R, there is an R-
module injection R/Q ↪→ R identifying Q with

Q = annR x = {r ∈ R | xr = 0}
for some25 x ∈ R. Take any φ ∈ HomR(F e∗R,R). We need to show that
φ(F e∗Q) ⊆ Q. To this end, take any r ∈ Q. To see that φ(F e∗ r) ∈ Q, we

25specifically, take x to be the image of 1 under the embedding R/Q ↪→ R
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check
xφ(F e∗ r) = φ(F e∗x

per) = φ(0) = 0.

So φ(F e∗ r) ∈ annR x = Q. �

Example 6.12. Let R = Fp[x, y]/(xy, x2). Then the ideals (x) and (x, y)
are both associated primes of R, so they are uniformly compatible by Propo-
sition 6.11.

At the opposite extreme, we have

Proposition 6.13. The only uniformly compatible ideals in a strongly F -
regular domain are the zero ideal and the whole ring.

Proof. Let J be a non-zero ideal in a strongly F -regular domain R.
Take any non-zero c ∈ R. By definition of strong F -regularity, there exists
e > 0 and φ ∈ HomR(F e∗R,R) such φ(F e∗ c) = 1. So if J is compatible with
φ, then J = R. �

Remark 6.14. Uniform compatibility can be expressed in terms of the
Cartier algebra CR introduced in Subsection 4.2. By construction, R is a
naturally a module over CR. Now it follows easily that an ideal J ⊆ R is uni-
formly compatible if and only if J is a CR-submodule of R; see Exercise 6.10.

6.3. The test ideal is uniformly compatible. The test ideal admits
an important characterization in terms of compatibility:

Theorem 6.15. Let R be a reduced Noetherian F -finite ring. The test
ideal is the unique smallest uniformly compatible ideal containing a non-
zerodivisor.

Proof. We first show that τ(R) is uniformly compatible. Take any
c ∈ τ(R). We must show that for any φ ∈ HomR(F e

′
∗ R,R) (for arbitrary e′),

φ(F e
′
∗ c) ∈ τ(R).

By definition of strong test element, we know that for all non-zerodivisors
d ∈ R, there exists e0 such that for all e ≥ e0, there is some ψ ∈ HomR(F e∗R,R)
such that

(6.15.1) c = ψ(F e∗ d).

Applying φ to (6.15.1), we have

(6.15.2) φ(F e
′
∗ c) = φ(F e

′
∗ (ψ(F e∗ d)).

In other words,
φ(F e

′
∗ c) = (φ ? ψ)(F e

′+e
∗ d)
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where φ ? ψ ∈ HomR(F e+e
′

∗ R,R). Thus clearly for all f ≥ e0 + e′, we can
find an element in HomR(F f∗ R,R) such that φ(F e

′
∗ c) is in the image of

HomR(F f∗ R,R)
eval at d−−−−−→ R.

That is, φ(F e
′
∗ c) ∈ τ(R).

Next, note that τ(R) contains a non-zerodivisor by Corollary 5.22. To
show that τ(R) is minimal among uniformly compatible ideals J containing
a non-zerodivisor, take any uniformly compatible ideal J , and let d ∈ J
be a non-zerodivisor. We need to show that τ(R) ⊆ J . Take an arbi-
trary c ∈ τ(R). By definition of strong test element, there exists some
ψ ∈ HomR(F e∗R,R) such that ψ(F e∗ d) = c. Since J is ψ-compatible and
d ∈ J , we know ψ(F e∗ d) ∈ J . That is, c ∈ J . This shows τ(R) ⊆ J . �

There is a sense in which any strong test element which is a non-zerodivisor
generates all the strong test elements.

Corollary 6.16 (cf. [HT04, Lemma 2.1]). ] Let R be a reduced Noetherian
F -finite ring. Let d ∈ τ(R) be any non-zerodivisor in the test ideal. Then

τ(R) =
∑
e≥0

∑
φ

φ(F e∗ d)

where φ runs over elements of HomR(F e∗R,R) Put differently, the test ideal
τ(R) is generated by any non-zerodivisor in τ(R) as a (left-)module over the
Cartier Algebra CR.

Proof. The ideal on the right is compatible with all maps φ ∈ HomR(F e∗R,R)
for all e, and is clearly the smallest such ideal containing d. So since d ∈ τ(R),
it must be contained in τ(R) by Theorem 6.15. By minimality of τ(R), we
get equality. �

Several basic properties of the test ideal follow easily (see Exercise 6.15):

Proposition 6.17. Suppose R is a reduced F -finite Noetherian ring. Then:

(a) For any multiplicative setW ⊆ R, we have that τ(W−1R) = W−1τ(R).

(b) If R is local and R̂ denotes the completion at an arbitrary ideal, then
τ̂(R) = τ(R)R̂.

(c) If S is any F -finite étale R-algebra, then τ(S) = τ(R)S.

Proof. See Exercise 6.15. �
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6.4. Compatible Frobenius splitting. Compatibility is of particular
interest for Frobenius splittings:

Definition 6.18. Let R be a Frobenius split ring. We say an ideal J ⊆ R
is compatibly split26 (by φ) if there exists a splitting of Frobenius φ ∈
HomR(F e∗R,R) compatible with J .

We see immediately that if J is a compatibly split ideal in a Frobenius
split ring R, then R/J is Frobenius split. It follows that compatibly split
ideals are always radical.

Example 6.19. Consider the polynomial ring S = Fp[x1, . . . , xn], with its
standard monomial splitting of Frobenius π : F∗S −→ S sending the ba-
sis element F∗1 to 1 and all other monomial basis elements in the basis
{F∗xa1

1 · · ·xann | 0 ≤ ai ≤ p − 1} to zero. Generalizing Example 6.3, the
reader will quickly verify that each ideal (xi) is compatibly split with π. In
light of Proposition 6.4, it follows that all ideals generated by square-free
monomials are compatibly split by π. See Exercise 6.17.

Remark 6.20. Looking more closely at the prime compatibly split ideals
we found in Example 6.19, we see that there are exactly

(
n
d

)
of each height

d:
{(xi1 , xi2 . . . , xid) | 1 ≤ i1 < i2 < · · · < id ≤ n}.

In fact, according to [ST10b] (cf. [HW15]), there are at most
(
n
d

)
primes

compatibly split with respect to a fixed splitting in any Frobenius split ring
R. So we have in fact found all ideals compatibly split with the standard
monomial splitting of Frobenius in Fp[x1, . . . , xn]. See Exercise 6.18.

Caution 6.21. If R is Frobenius split, there can be Frobenius split quotients
R/J that are not compatibly split for any φ ∈ HomR(F e∗R,R).

Remark 6.22. Compatible Frobenius splitting was first defined by Mehta
and Ramanathan in [MR85], although it was also considered implicitly
a few years earlier by Fedder [Fed83]. Later, ideals compatible with all
φ ∈ HomR(F e∗R,R) were identified as an important class in Schwede’s work
centers of F -purity [Sch10a].

Remark 6.23. In a normal Q-Gorenstein ring R, the set of uniformly com-
patible ideals are closely related to the “log canonical centers” (or “non-klt
centers”) of X = SpecR. For additional discussion see [Sch10a].

6.5. Exercises.

Exercise 6.1. Let φ ∈ HomR(F e∗R,R) and J ⊆ R be a compatible pair.
and let φ be the induced map F e∗R/J

φ−→ R/J. Show that

26More precisely, one might say "compatibly Frobenius split" or "compatibly F -split",
since we require that J be compatible with a splitting of Frobenius and not some other
splitting. But historically, the "Frobenius" has been dropped from this phrase.
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(a) If φ is surjective, then so is φ.
(b) If R is local and φ is surjective, then so is φ.
(c) If R is local, show φ ◦ F is an automorphism of R/J if and only if

φ ◦ F is an automorphism for R.

Exercise 6.2. Let S be an F -finite regular ring, and R any quotient. Prove
that every map φ ∈ HomR(F e∗R,R) lifts to some map in HomS(F e∗S, S)–that
is, there exist ψ ∈ HomS(F e∗S, S) compatible with the kernel of S � R and
inducing φ.

Hint: Kunz’s Theorem implies that F e∗S is a projective S-module.

Exercise 6.3. Show that for any x ∈ R and for all e ≥ 0, the ideal annR x ⊆
R is compatible with every φ ∈ HomR(F e∗R,R).

Exercise 6.4. Show that if J is compatible with φ ∈ Hom(F e∗R,R), then J
is φ?n-compatible for all n.

Exercise 6.5. Show that if φ ∈ Hom(F e∗R,R) is surjective, then every φ-
compatible ideal J is radical and φ(F e∗J) = J .

Exercise 6.6. Show that if R is strongly F -regular, then the only proper
uniformly compatible ideals are the minimal primes of R and intersections
of them.

Hint: Use the fact that a strongly F -regular ring is a product of strongly
F -regular domains.

Exercise 6.7. Prove that an F -finite Noetherian integral domainR is strongly
F -regular if and only if the only uniformly compatible ideals are (0) and R.
This proves a converse to Proposition 6.13.

Exercise 6.8. Let R be a Noetherian F -finite ring. Show that a prime P is
uniformly compatible if and only if PRP is uniformly compatible in RP .

Exercise 6.9. Prove Proposition 6.7.

Exercise 6.10. Let R be any ring of characteristic p > 0, and let J ⊆ R
be any ideal. Show that J is uniformly compatible if and only if J is a
CR-submodule of R. Here CR denotes the Cartier algebra, as defined in
Subsection 4.2.

Exercise 6.11. Find an example of a ring R and quotient ring R/J , both of
which are Frobenius split, but not compatibly for any φ ∈ HomR(F∗R,R).

Exercise 6.12. Let R f−→ S be a homomorphism of rings of characteristic p
and assume φ ∈ HomR(F e∗R,R) and ψ ∈ HomS(F e∗S, S) commute with f in
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the sense that the diagram

F e∗S
ψ
// S

F e∗R

F e∗ f

OO

φ
// R.

f

OO

commutes. Prove that if J ⊆ S is a ψ-compatible ideal, then its contraction
f−1(J) ⊆ R is φ-compatible.

Exercise 6.13. Suppose S is a ring of characteristic p > 0 and Q ⊆ S is
prime. Let φ ∈ HomS(F e∗S, S) and let φQ : F e∗SQ −→ SQ be the induced
map. Show that φ is compatible with Q if and only if φQ is compatible with
QSQ.

Exercise 6.14. Suppose S is a ring of characteristic p > 0 and Q1, . . . , Qt ∈
SpecS are incomparable prime ideals and φ ∈ HomS(F e∗S, S). Prove that
each Qi is compatible with φ if and only if Q1 ∩Q2 ∩ · · · ∩Qt is compatible
with φ.

Hint: Use Exercise 6.13 and its proof.

Exercise 6.15. Use Corollary 6.16 to deduce that the test ideal commutes
with localization, completion and étale maps (see Proposition 6.17).

Hint: In each case, show that there exists d ∈ R that is also a strong test
element for W−1R, R̂, S. For (c), you’ll also need to use Proposition 5.9 to
show that for an étale map R → S, HomR(F e∗R,R) ⊗R S ∼= HomS(F e∗S, S)
for all e ≥ 0.

Exercise 6.16. SupposeR is a ring of characteristic p > 0 and φ ∈ HomR(F e∗R,R).
Let J be an ideal. Prove that

J + φ(F e∗J) + φ2(F 2e
∗ J) + · · · =

∞∑
i=0

φi(F ie∗ J)

is the smallest ideal containing J and compatible with φ. Note if R is
Noetherian then this sum eventually stabilizes. In fact, as soon as the nth
sum agrees with the (n + 1)st sum, it stabilizes. This observation is useful
in computing test ideals, see Corollary 6.16 and [Kat08].

Exercise 6.17. Prove that all radical monomial ideals in Fp[x1, . . . , xn] are
compatible with the standard monomial Frobenius splitting of Fp[x1, . . . , xn]
defined in Example 3.2. This generalizes Example 6.3.

Hint: A radical monomial ideal is the intersection of monomial prime ideals—
that is, ideals generated by subsets of the variables.
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Exercise 6.18. Show that any ideal of Fp[x1, . . . , xn] compatible with the
standard monomial splitting of Frobenius is a radical monomial ideal.

Hint: Use the fact that the monomials are the elements homogeneous with
respect to the standard multi-grading.

Exercise 6.19. Generalizing the previous exercise, let R be a finitely gener-
ated algebra over an F -finite field that is graded by some torsion free abelian
semi-group G. For example, R might be a polynomial algebra with its stan-
dard N-grading, or with its standard multi-grading (which we can view as
its standard Nn-grading).

(a) Show that F e∗R has a natural 1
peG grading defined by deg(F e∗ r) =

deg r
pe and that the Frobenius map R → F e∗R is degree preserving

map of graded R-modules with this grading.
(b) Show that if φ ∈ HomR(F e∗R,R) is a homogeneous mapping, then

any ideal compatible with φ is homogeneous.
(c) Show that if J ⊆ R is homogeneous, then the submodule MJ ⊆

HomR(F e∗R,R) of maps compatible with J is a graded submodule.

Exercise 6.20. Suppose R is a Noetherian F -finite domain and R ⊆ S is a
finite extension of rings. Prove that

τ(R) ⊆ Image(HomR(S,R)
eval at 1S−−−−−−→ R).

Hint: Localize to show that 0 6= Image(HomR(S,R)
eval at 1S−−−−−−→ R) and show

that the image is uniformly compatible.

Exercise 6.21. Suppose that R is strongly F -regular. Use Exercise 6.20 to
prove that every finite ring extension R ⊆ S splits as a map of R-modules.
That is, prove that strongly F -regular rings are splinters.27

Exercise 6.22. Let R be a Noetherian F -finite ring, not necessarily reduced.
Show that if the ideal of all height test elements contains some d not in any
minimal prime, then it is the unique smallest uniformly compatible ideal
containing of positive height, and equal to∑

e≥0

∑
φ

φ(F e∗ d)

27It is an open question whether the converse is true for Noetherian F -finite rings.
This is known, for example, for Q-Gorenstein rings [Sin99a], and rings with finitely
generated anti-canonical rings [CEMS18] (also proven independently by Singh, but not
published).
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where φ runs over all elements of HomR(F e∗R,R). Show, furthermore in this
case, that the ideal of height test elements commutes with localization in
this case.

Hint: See Exercise 5.17.

Exercise 6.23. Suppose R is an F -finite reduced ring. Fix e0 ≥ 0. Show
that τ(R) is the smallest ideal, not contained in any minimal prime of R,
such that φ

(
F e∗ τ(R)

)
⊆ τ(R) for all e ≥ e0. Additionally show that

τ(R) =
∑
e≥e0

∑
φ

φ(F e∗ τ(R))

where φ runs over all elements of HomR(F e∗R,R).

Exercise 6.24. Let R be a Noetherian F -finite reduced ring, and let d be
a non-zerodivisor that is also a strong test element. Show that

τ(R) :=
⋂
e�0

im
(

HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R

)
.

6.5.1. More on variants of test ideals. Refer to the exercises above in
Subsection 5.6.1 for notation.

Exercise 6.25. Fix R a Noetherian F -finite reduced ring with minimal
primes Q1, . . . , Qt, . . . , Qn. With notation as in Exercise 5.14, show that
τ6⊆Q1,...,Qt(R) is the smallest ideal, not contained in any of Q1, . . . , Qt, that
is uniformly compatible. Conclude that

τ6⊆Q1,...,Qt(R) =
∑
e≥0

∑
φ∈HomR(F e∗R,R)

φ(F e∗ dR)

for any d ∈ τ6⊆Q1,...,Qt(R) not in Q1, . . . , Qt.

Exercise 6.26. Fix R a Noetherian F -finite reduced ring with minimal
primes Q1, . . . , Qt, . . . , Qn. Show that

τ6⊆Q1,...,Qt(R) =

t∑
i=1

τ6⊆Qi(R) ∼=
t⊕
i=1

τ6⊆Qi(R).

In particular, τ(R) =
∑n

i=1 τ6⊆Qi(R). Conclude that τ6⊆Q1,...,Qt(R) = τ(R) ∩
Qt+1 ∩ · · · ∩Qm.

Hint: Show first that each τ6⊆Qi(R) ⊆ τ6⊆Q1,...,Qt(R) for i = 1, . . . , t. Then
use minimality for the first equality. For the isomorphism, use Exercise 5.14.

Exercise 6.27. Suppose R is a Noetherian F -finite reduced ring with min-
imal primes Q1, . . . , Qt, . . . , Qn. Suppose c is a strong test element such
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that c ∈ Qt+1 ∩Qn (that is, c/1 is zero in RQt+1 , . . . , RQn). Show for every
element d ∈ R \ (Q1 ∪ · · · ∪Qt) we have that there exists e0 > 0 such that

c ∈ Image(HomR(F e∗R,R)
eval at F e∗ d−−−−−−−→ R)

for all e ≥ e0.

Hint: Note it is harmless to replace d with a multiple. Also use Exercise 6.26
to show that c ∈ τ6⊆Q1,...,Qt(R).

6.5.2. Exercises on conductors and normalization. We next recall the
definition of the conductor.

Definition 6.24 (The conductor). Suppose that R is a reduced Noetherian
ring with normalization in its total ring of fractions RN ⊆ K(R). For any
R ⊆ R′ ⊆ RN we define the conductor ideal of R in R′ to be

cR′/R := R :K(R) R
′.

If R′ = RN, then this is just called the conductor of R as we’ve seen before,
and simply denoted by c. This ideal gives a scheme structure to the locus
where SpecR′ −→ SpecR is not an isomorphism.

Exercise 6.28. Show that also cR′/R = R :R′ R
′ = R :R R′. Next prove

that the conductor is the unique largest ideal of R that is also an ideal of R′.

Exercise 6.29. In the notation of Exercise 6.20, assume S is the normaliza-
tion of the domain R. Show also that Image(HomR(S,R)

eval at 1S−−−−−−→ R) = c,
where c = R :R S is the conductor of R. Conclude that τ(R) ⊆ c.

Exercise 6.30. With notation as in Exercise 6.28, show that for any map
ψ ∈ HomR(F e∗R,R), we have that ψ(F e∗ cR′/R) ⊆ cR′/R, that is cR′/R is
compatible with ψ.

Hint: Tensor ψ with K(R) to obtain a map F e∗K(R) −→ K(R). Apply that
map to x ∈ cR′/R and use that cR′/R is an ideal of R′.

Exercise 6.31. Let R be a Noetherian F -finite domain whose normalization
S is strongly F -regular. Prove that τ(R) is the conductor c = (R :R S).

Hint: For c ∈ c and non-zerodivisor d ∈ τ(R), prove there is a map
in HomR(F e∗R,R) sending F e∗ d to c by modifying an appropriate map in
HomS(F e∗S, S).

6.5.3. Test ideals in non-reduced rings.
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Exercise 6.32. Let R be a Noetherian F -finite ring, not necessarily reduced.
Prove that the ideal of strong test elements is uniformly compatible. Show,
furthermore, that the ideal of strong test elements is contained in every
uniformly compatible ideal containing a non-zerodivisor.

Exercise 6.33. Let R be a Noetherian F -finite ring, not necessarily reduced.
Prove that if there is a strong test element that is a non-zerodivisor, then
the ideal of strong test elements is the unique smallest uniformly compatible
ideal containing a non-zerodivisor.

Exercise 6.34. Let R be a Noetherian F -finite ring, not necessarily reduced.
With the definition of height test element introduced in Exercise 5.17, show
that the ideal of height test elements is uniformly compatible and contained
in every uniformly compatible of positive height.

Exercise 6.35. Let R be a Noetherian F -finite ring, not necessarily reduced.
Show that if the ideal of all strong test elements contains a non-zerodivisor
d, then this ideal is ∑

e≥0

∑
φ

φ(F e∗ d)

where φ runs over all elements of HomR(F e∗R,R). Use this to show that the
ideal of strong test elements commutes with localization in this case.

7. The Frobenius action on local cohomology

Like any map of schemes, the Frobenius map induces natural maps on
cohomology in various settings. In Chapter 3, we will see the tremendous
applications of Frobenius to proving vanishing theorems for line bundles on
projective varieties.

In this section, we look at the Frobenius action on the local cohomology
modules of a local ring (R,m). This will allow us to prove that strongly
F -regular rings are Cohen-Macaulay. It also leads naturally to two new
classes of singularities: F -injective and F -rational singularities, and allows
us to prove that Frobenius splitting behaves well under deformation in the
Gorenstein setting.

7.1. Frobenius Action on Local Cohomology. Local cohomology
is a standard tool in commutative algebra.28 Given a ring R and an ideal
J ⊆ R, recall that the local cohomology with respect to J is the collection of

28See any of the standard sources [Har67], [BS98], [Sta19, Tag 0952], [BH93] or
[Hoc11] for the basic theory.

https://stacks.math.columbia.edu/tag/0952
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derived functors H i
J(−) on the category of R-modules for the functor H0

J(−)
defined by

H0
J(M) = {m ∈M | m|U = 0 as a section of M̃, where U = SpecR \ V(J)},

where M̃ denotes the quasicoherent sheaf on SpecR determined by M . If J
is a finitely generated ideal of R, we can also write

H0
J(M) =

⋃
t∈N
{m ∈M | J tm = 0}.

The main case for us is the case where (R,m) is local and J = m.

The Frobenius map R F e−−→ F e∗R naturally induces R-linear maps of local
cohomology

(7.0.1) H i
J(R) −→ H i

J(F e∗R) ∼= F e∗H
i
J(R)

called the Frobenius action on local cohomology. For a cohomology class
η ∈ H i

J(R), we will write F e∗ ηp
e for its image under this induced Frobenius

map. The map (7.0.1) itself will be denoted by F e (somewhat abusively,
since this is also the name of the map R→ F e∗R that induces it).

Remark 7.1. The isomorphism H i
J(F e∗R) ∼= F e∗H

i
J(R) in (7.0.1) is a natural

isomorphism of R-modules; see Exercise 7.8.

Caution 7.2. Remembering that R = F e∗R as an abelian group, the Frobe-
nius action can be written

(7.2.1) H i
J(R)

F e−−→ H i
J(R) η 7→ ηp

e
,

which is typical in the literature. Written this way, however, (7.2.1) is not
R-linear, as

(7.2.2) F e(rη) = rp
e
ηp

e
= rp

e
F e(η).

This emphasizes the usefulness of the notation introduced in Subsection 1.4:
if we instead view the target of (7.0.1) as the R-module F e∗H i

J(R), the equa-
tion (7.2.2) precisely says that the Frobenius map is R-linear:

F e(rη) = F e∗ (rp
e
ηp

e
) = rF e∗ (ηp

e
).

7.2. Cohen-Macaulayness of strongly F -regular Rings. Cohen-
Macaulayness is a property of Noetherian schemes that is defined locally—
meaning that a scheme X is defined to be Cohen-Macaulay if all its local
rings at closed points are Cohen-Macaulay.29 A local ring is Cohen-Macaulay
if some (equivalently, every) system of parameters is a regular sequence.
Cohen-Macaulayness can also be characterized cohomologically:

29There are many good basic sources for background on Cohen-Macaulay rings; we
suggest [Har67], [BH93, Chapter 3], [BS98] and [Hoc11], for example. See also Appen-
dix C for a discussion in terms of the dualizing complex from Grothendieck duality.
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Proposition 7.3 ([Har67, Theorem 3.8], [Sta19, Tag 0AVZ]). A Noether-
ian local ring (R,m) is Cohen-Macaulay if and only if the local cohomology
modules H i

m(R) = 0 for all i < dimR.

Using this local cohomological characterization, we easily prove

Theorem 7.4. [HH90] Every strongly F -regular ring is Cohen-Macaulay.

Corollary 7.5 (The Hochster Roberts Theorem). [HR74] A direct sum-
mand of a regular ring of characteristic p > 0 is Cohen-Macaulay.

Proof of Corollary. We prove the corollary here under the addi-
tional assumption that both rings are F -finite; see [HR74] for the gen-
eral case. Recall that F -finite regular rings are strongly F -regular (Ex-
ample 4.16), and direct summands of strongly F -regular rings are strongly
F -regular (Proposition 4.18). So Theorem 7.4 guarantees they are Cohen-
Macaulay. �

Remark 7.6. Hochster and Roberts actually proved a stronger statement—
that a pure subring of a regular ring of characteristic p is Cohen-Macaulay
[HR74]. Purity is a weakening of splitting which is often better behaved
for non-finite maps; see Subsection 7.6. Indeed, their motivation was to es-
tablish the Cohen-Macaulayness of rings of invariants of linearly reductive
groups acting linearly on polynomial rings over an arbitrary field, but their
proof reduces to characteristic p, a technique we will discuss in Chapter 6.
As Hochster and Roberts themselves say “the study of pure subrings is forced
upon us, because [in certain steps of the argument], we lose the direct sum-
mand property but retain purity."

Remark 7.7. The mixed characteristic case of Corollary 7.5—meaning for
rings that do not contain any field— had been open for decades, until re-
cently proved by Heitmann and Ma [HM18] using Scholze’s perfectoid spaces
[Sch12] and building upon recent work of André, Bhatt, Gabber, and others
[And18, Bha18].

Proof of Theorem 7.4. Let (R,m) be a strongly F -regular ring. In
particular, R is a normal domain by Theorem 4.30. To prove R is Cohen-
Macaulay, it suffices to show that H i

m(R) = 0 for each i < dimR (Proposi-
tion 7.3). For this, there is no loss of generality in assuming that (R,m) is
complete (Proposition 5.5).

Now, there exists non-zero c ∈ R such that cH i
m(R) = 0 for all i < dimR

(by Exercise 7.5, or see Appendix C Corollary 6.5). Since R is eventually
Frobenius split along c, by definition, there is an e > 0 such that the com-
position

R
F e−−→ F e∗R

F e∗ c−−→ F e∗R

https://stacks.math.columbia.edu/tag/0AVZ
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splits, where the second arrow is just multiplication by F e∗ c. So take a
splitting φ ∈ HomR(F e∗R,R), and note that this means the composition

R
F e−−→ F e∗R

F e∗ c−−→ F e∗R
φ−→ R

is the identity map on R. Applying the functor H i
m(−) we see that the

composition

(7.7.1) H i
m(R)

F e−−→ H i
m(F e∗R)

F e∗ c−−→ H i
m(F e∗R)

φ−→ H i
m(R)

is also an isomorphism. But because c kills H i
m(R), of course F e∗ c kills

F e∗H
i
m(R) ∼= H i

m(F e∗R) as well. So the isomorphism (7.7.1) is the zero map!
This means that H i

m(R) is zero for all i < dimR, proving that R is Cohen-
Macaulay. �

7.3. F -injective and F -rational rings. We are led naturally to de-
fine F -injective and F -rational singularities, two classes of singularities that
can be viewed as weakenings of Frobenius split and strongly F -regular sin-
gularities, respectively.

The key point in the proof of Theorem 7.4 was that, when R is strongly
F -regular and c is a non-zerodivisor, the map

(7.7.2) H i
m(R)

F e∗ c ◦ F e−−−−−−→ F e∗H
i
m(R)

is injective for each i ≥ 0 and each e > 0. Focusing on this property leads
to the following natural definitions:

Definition 7.8. A local ring (R,m) of prime characteristic is F -injective
if the natural Frobenius action on local cohomology H i

m(R)
F e−−→ F e∗H

i
m(R) is

injective for all i ∈ N and all e > 0.

Definition 7.9. A Noetherian local ring (R,m) of prime characteristic and
dimension d is F -rational ifR is Cohen-Macaulay and for all non-zerodivisors
c, the map on local cohomology

(7.9.1) Hd
m(R)

F e∗ c ◦ F e−−−−−−→ F e∗H
d
m(R)

is injective for some e > 0 (equivalently, for all e� 0, Exercise 7.3)

While these definitions make clear that a local strongly F -regular ring is
both F -rational and F -injective, they have some disadvantages. For example,
it is not immediately clear whether these definitions of F -rationality or F -
injectivity pass to localizations. We will return to these singularities with
a dual approach in Chapter 2 which will have the advantage of globalizing
easily to non-local rings and schemes in the F -finite setting.

None-the-less the local-analytic approach has advantages, such as making
certain properties quite obvious:
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Proposition 7.10. Let (R,m) be a local ring of prime characteristic. Then

(a) If R is Frobenius split, then R is F -injective.
(b) If R is strongly F -regular, then R is F -rational.
(c) An F -rational ring is F -injective.
(d) The ring R is F -injective if and only if its completion R̂ is F -

injective.
(e) If R̂ is F -rational, then so is R.

Proof. Left as Exercise 7.2. �

Remark 7.11. While we did not assume any finiteness conditions in the def-
inition of F -injective, nor F -finiteness in the definition of F -rational, these
notions are better behaved when we do. For instance, when R is Noetherian
and F -finite, both the F -injective and the F -rational loci are open (Corol-
lary 4.9 and Lemma 5.16, respectively, in Chapter 2).30 In addition, the
converse of (e) holds for F -finite local rings (Corollary 5.18 in Chapter 2).

Remark 7.12. We will prove later that F -rational rings are normal while F -
injective rings weakly normal (Lemma 5.19 and Lemma 4.11 in Chapter 2).
We do this in the F -finite case although the statements hold more generally.

Remark 7.13. The definition of F -rationality here is different from (but
equivalent to) the original tight closure definition of Hochster and Huneke
in the case of an excellent local ring [Smi94]; see Chapter 7.

7.4. Deformation of F -singularities. We now prove that, in Cohen-
Macaulay rings, F -injectivity and F -rationality behave well under deforma-
tion, and then deduce the same for Frobenius splitting and F -regularity in
Gorenstein rings. The main result is:

Theorem 7.14. Let (R,m) be a Cohen-Macaulay local ring and let f ∈ m
be a non-zerodivisor.

(a) If R/(f) is F -injective, then also R is F -injective.
(b) If R/(f) is F -rational, then also R is F -rational.

Remark 7.15. We digress to explain the phrase "behaves well under de-
formation." Suppose P is a local property of schemes— such as regularity,
Cohen-Macaulayness, or strong F -regularity. The phrase "P behaves well un-
der deformation" means that, given a local ring (R,m) and non-zerodivisor
f ∈ R, if R/(f) has property P, then also R has property P. For example,
both the Cohen-Macaulay property and regularity (smoothness for varieties)
behave well under deformation.

30Recently, the openness of the F -injective locus was established for rings of finite
type over a local ring that is sufficiently close to excellent [DM20a].
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So what does this have to do "deformation" in a geometric sense? Given
a proper flat family of varieties X −→ A1

k = Spec k[t], we’d often like to know
that if some fiber, say X0 = X ×Spec k[t] Spec k[t]/(t), has property P, then
all "nearby" fibers Xλ—deformations of X0— also have property P. The key
step is to show that property P "deforms" from the fiberX0 to the total space
X—that is, that X has property P at each point x of X0 ⊆ X. Looking at
the corresponding surjection of local rings OX,x −→ OX0,x = OX,x/(t), this
amounts to proving that if OX,x/(t) satisfies P, then also OX,x satisfies P.

Proof of Theorem 7.14. Set T = R/(f), and dimR = d. Consider
the commutative diagram with exact rows and the two rightmost downward
arrows the Frobenius on R and T , respectively:

0 // R

��

f
// R

F e

��

// T

F e

��

// 0

0 // F e∗R
F e∗ f // F e∗R // F e∗T // 0.

Note that to make the diagram commute, the leftmost downward arrow must
be F e∗ fp

e−1 ◦ F e, or equivalently, the R-module map sending 1 to F e∗ fp
e−1.

Applying the local cohomology functor, we have a map of long exact se-
quences

0 // Hd−1
m (T )� _

F e

�

// Hd
m(R)

F e∗ f
pe−1◦F e

��

f
// Hd

m(R)

F e

��

// 0

0 // Hd−1
m (F e∗T ) // Hd

m(F e∗R) // Hd
m(F e∗R) // 0,

with the exactness of the rows coming from the Cohen-Macaulay assumption
(Proposition 7.3).

Now, to prove (a), assume that T is F -injective, so that the left-most
downward arrow above is injective. To show R is F -injective, we must show
the rightmost downward arrow is injective. For this, it suffices to show that
middle vertical arrow is injective (as if F e(η) = 0 for some η ∈ Hd

m(R), then
certainly also F e∗ cF e(η) = 0). So suppose that η ∈ Hd

m(R) is in the kernel of
the middle map. Without loss of generality, we may assume fη = 0; indeed,
like all elements of Hd

m(R), η is killed by a power of m, so we can replace η by
f tη where t is maximal such that f tη 6= 0. Now, chasing the diagram we see
that η must come from the submodule Hd−1

m (T ), and using the F -injectivity
of T , ultimately, that η = 0. This proves the deformation of F -injectivity in
the Cohen-Macaulay case.

Statement (b) is left as a somewhat tricky exercise; see Exercise 7.19. We
will prove it for F -finite (quasi-)Gorenstein rings later using a dual approach
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(see Remark 5.22 in Chapter 2). We will give a slick proof later in Chapter 7
Theorem 5.12 which is essentially the same as our proof of F -injectivity
above. �

It is an open question whether F -injectivity deforms without the Cohen-
Macaulay hypothesis.

Conjecture 7.16. Suppose (R,m) is a Noetherian local ring of characteristic
p > 0 and f ∈ m is a non-zerodivisor such that R/(f) is F -injective. Then
R is F -injective.

Some results in this direction can be found in [HMS14], including the
fact that Frobenius splitting of R/(f) implies F -injectivity of R. We will
prove this and more in Chapter 8, Theorem 1.28.

7.5. The Gorenstein case. There are many equivalent formulations of
the (quasi-)Gorenstein property, see Appendix A, Appendix C, [Hoc11], or
[BH93, Chapter 3]. For us the most crucial characterization is the following:
A Noetherian local ring (R,m) is Gorenstein if it has a dualizing complex
(which is automatic if R is F -finite), and is

(1) Cohen-Macaulay and

(2) the local cohomology module HdimR
m (R) is an injective hull of the

residue field R/m.

Condition (2) is equivalent to the condition:

(2′) The canonical module ωR ∼= R.

If condition (2) holds (or equivalently (2′)) without the Cohen-Macaulay
hypothesis, then the ring is called quasi-Gorenstein. For more discussion
see Appendix A Section 8 and Appendix C Lemma 3.14, Corollary 6.6, and
Corollary 6.6.

Although Frobenius splitting is generally a stronger condition than F -
injectivity, these concepts agree for Gorenstein rings:

Proposition 7.17. An F -finite quasi-Gorenstein Noetherian local ring is

(a) F -injective if and only if it is Frobenius split
(b) F -rational if and only if it is strongly F -regular (in which case it is

also Gorenstein since it is Cohen-Macaulay).
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To prove Proposition 7.17, we find that it is actually simpler to prove
a more general statement. Namely, we can stop insisting that R is F -finite
and replace splitting by purity, which we now digress to review.

Without the Gorenstein hypothesis, F -rational rings need not be strongly
F -regular (or even F -split) and F -injective rings need not be F -split. See
Chapter 4 Example 2.16 and Example 2.17.

7.6. F -purity. Recall that an R-module map M → N is pure31 if, for
every R-module P , the induced map M ⊗R P → N ⊗R P is injective. In
particular,

Definition 7.18. A ring R of prime characteristic is F -pure if the Frobenius
map R F−→ F∗R is pure.

Example 7.19. Any faithfully flat map is pure [Sta19, Tag 08WP]. In
particular, the Frobenius map is pure in a regular ring, by Kunz’s theorem.
That is, regular rings are F -pure.

F -purity is closely related to Frobenius splitting:

Proposition 7.20. Every Frobenius split ring is F -pure. Conversely, every
Noetherian F -finite F -pure ring is Frobenius split.

Proof. The first statement is obvious: if the Frobenius map splits, then
it also splits (so is injective) after tensoring with any R-module. The second
statement is an immediate consequence of Proposition 2.3 in Appendix A.
Indeed, that proposition implies the converse even without the Noetherian
assumption, provided F∗R is finitely presented as an R-module. �

Remark 7.21. Proposition 7.20 is not surprising, because in general, a pure
map is essentially the same as a direct limit of split maps [Sta19, Tag 058K].

Now, purity has a useful local analytic characterization, from which we
can easily deduce Proposition 7.17:

Lemma 7.22 ([HR74, Prop 6.11], Lemma 2.4 in Appendix A). Let (R,m)
be a Noetherian local ring, and let E denote an injective hull of its residue
field. Then the R-module map R φ−→M is pure if and only if the map induced
by tensoring with E,

E
1E⊗φ−−−→ E ⊗RM

is injective.

31See [Sta19, Tag 058H] for a detailed discussion of purity, or Section 1 of Appendix A
for the basic facts.

https://stacks.math.columbia.edu/tag/08WP
https://stacks.math.columbia.edu/tag/058K
https://stacks.math.columbia.edu/tag/058H
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Proof of Proposition 7.17. For (a), we need only check that F -
injective implies F -pure, by Proposition 7.20. Now for a (quasi-)Gorenstein
ring (R,m), the local cohomology module HdimR

m (R) is an injective hull E of
the residue field R/m (Appendix C Remark 8.4), so the proof is immediate
from Lemma 7.22 once one recalls the natural isomorphism HdimR

m (R)⊗N ∼=
HdimR

m (N) for any R-module N , for us N = F e∗R; see Appendix A Proposi-
tion 10.1. The analogous result for F -regularity follows similarly. �

Remark 7.23. The proof of Proposition 7.17 actually shows that a Noe-
therian quasi-gorenstein ring that is F -injective is also F -pure—without as-
suming the finiteness of Frobenius or Cohen-Macaulayness.

The next statement follows immediately from Theorem 7.14:

Corollary 7.24. Let (R,m) be an F -finite Gorenstein local ring and let
f ∈ m be a non-zerodivisor.

(a) If R/(f) is Frobenius split, then so is R.
(b) If R/(f) is strongly F -regular, then so is R.

Remark 7.25. See Remark 5.22 in Chapter 2 for another proof of Corol-
lary 7.24 which is dual to the one here. That proof extends, by working
with a dualizing complex and using Grothendieck duality, to include the
case where R is not necessarily Cohen-Macaulay. Thus Corollary 7.24 holds
for quasi-Gorenstein rings. In fact, it also generalizes to Q-Gorenstein rings
in general by [PS22].

Remark 7.26. We can not weaken the hypothesis of Corollary 7.24 to
include non-Gorenstein Cohen-Macaulay rings: it was known as early as
[Fed83] that the F -pure property does not deform in general, as we will
see in Chapter 4 Example 2.16. At this time, the strongest positive results
on deformation of F -purity can be found in [PS22] where deformation for
F -purity is proved in the Q-Gorenstein case; also see Section 4 in Chapter 5.

7.7. The story so far. We summarize the main classes of F -singularities
introduced so far in the following diagram. For an F -finite Noetherian local
ring (R,m), we have proven that the following implications hold:

Strongly F -Regular +3

��

F -Rational

+Gor.

rz

��
F -Split +3 F -Injective

+quasi-Gor.

dl
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In addition, the singularities in the top row of the diagram are Cohen-
Macaulay and normal, while those on the bottom are weakly normal, al-
though we have not yet proven the normality conditions for the singularities
on the right side of the diagram.

Exercises.

Exercise 7.1. Let R be a Frobenius split ring and let J ⊆ R be an arbitrary
ideal. Then show that the annihilator, in R, of the local cohomology module
H i
J(R) is radical for all i ≥ 0.

Hint: If x2 is in the annihilator, so is xp. Now use the Frobenius splitting.

Exercise 7.2. Prove Proposition 7.10.

Hint: For (d), observe that H i
m(R) ∼= H i

m(R̂), and for (e), observe that if
c ∈ R is a non-zerodivisor, then its image in R̂ is too.

Exercise 7.3. Suppose that (R,m) is F -rational and c ∈ R is a nonzero

divisor. Show that Hd
m(R)

F e∗ c ◦ F e−−−−−−→ F e∗H
d
m(R) injects for all e� 0.

Hint: Note if c = 1, we may take e = 1 as well. Then compose injective
maps.

Exercise 7.4. Let ι : R → S be a finite extension of F -finite Noetherian
local domains. Prove that if ι splits, then F -injectivity of S implies F -
injectivity of R, and similarly for F -rationality.

Exercise 7.5. Let (R,m) be a complete local equidimensional ring. Prove
that there exists a c ∈ R, not in any minimal prime, such that c annihilates
the local cohomology modules H i

m(R) for all i < dimR.

Hint: Use the Cohen Structure theorem to write R as a homomorphic image
of a regular local ring S. Now use local duality on S to find c.

Exercise 7.6. Suppose R is a Noetherian F -finite ring eventually Frobenius
split along some c ∈ R such that R[c−1] is Cohen-Macaulay. Show that R is
Cohen-Macaulay, and in particular, R is locally equidimensional.

Hint: Reduce to the complete local case and first prove that R is equidi-
mensional using Exercise 4.12 (note that if Q1, Q2 are minimal primes whose
quotients have different dimensions, then cn ∈ Q1 +Q2 for n� 0).
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Exercise 7.7. Suppose that (R,m) is an F -finite equidimensional reduced
local ring. Suppose that c ∈ R is a strong test element. Prove that cH i

m(R) =
0 for all i < d = dimR.

Hint: Pick b ∈ R a non-zerodivisor such that Rb is regular and bH i
m(R) = 0.

Use that there exists φ ∈ Hom−R(F e∗R,R) such that φ(F e∗ b) = c.

Exercise 7.8. Let J be an ideal in a Noetherian ring R of prime charac-
teristic, and let M be an R-module. Show that for every i ∈ N and every
e ∈ N, there is a natural isomorphism of R-modules H i

J(F e∗M) ∼= F e∗H
i
J(M).

Hint: Show that if M −→ I
q is an injective resolution of M , then F∗M −→

F∗I
q is a flasque32 resolution of F∗M .

Exercise 7.9. Suppose that R −→ S is an arbitrary map of rings that is
pure as an R-module map (for example, split). Show that for every ideal
J ⊆ R, J = JS ∩R. Compare to Lemma 3.11.

Hint: Tensor R→ S with R/J and consider the kernel.

Exercise 7.10. Prove that if B ↪→ R is a finite extension of Noetherian
domains, then there exists φ ∈ HomB(R,B) such that φ(1R) 6= 0.

Exercise 7.11. Let (R,m) be a complete local domain containing a copy of
its residue field, and let x1, . . . , xd be a system of parameters. Given z ∈ m,
prove that R is a finite extension of a Cohen-Macaulay ring B that contains
the elements {x1, . . . , xd, z}.

Hint: Use the Cohen Structure Theorem to represent R as a finite extension
of a power series ring in {x1, . . . , xd}. Now adjoin z.

Exercise 7.12. Let (R,m) be a complete local domain containing a copy of
its residue field, and let x1, . . . , xd be a system of parameters. Suppose there
is some z such that zxi ∈ (x1, . . . , xi−1). Prove that there is a non-zerodivisor
c ∈ R such that czpe ∈ (xp

e

1 , . . . , x
pe

i−1) for all e > 0.

Hint: Note that zpexp
e

i ∈ (xp
e

1 , . . . , x
pe

i−1) for all e ≥ 1. Now, use Exercises
7.11 and 7.10 to construct a Cohen-Macaulay subring B of R where czpexp

e

i ∈
(xp

e

1 , . . . , x
pe

i−1).

32By definition, an R module N is flasque if the localization maps N −→ NP are
surjective for all P ∈ SpecR; see [Sta19, Tag 09SV].

https://stacks.math.columbia.edu/tag/09SV
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Exercise 7.13. Use Exercise 7.12 to show directly that, in a strongly F -
regular ring, every system of parameters is a regular sequence—that is,
strongly F -regular rings are Cohen-Macaulay.

Exercise 7.14. Let (R,m) be a Cohen-Macaulay Noetherian local ring of
dimension d. Suppose x1, . . . , xd is a system of parameters. Because local
cohomology can be computed with the Čech complex ([Sta19, Tag 0A6R]
or [Hoc11]), there is an exact sequence

d⊕
i=1

R[(x1x2 · · · x̂i · · ·xd)−1] −→ R[(x1x2 · · ·xd−1xd)
−1] −→ Hd

m(R) −→ 0,

where the first map is induced by the natural localization maps. Representing
η ∈ Hd

m(R) by a fraction z

(x
t1
1 x

t2
2 ··· xtdd )

∈ R[(x1x2 · · ·xd−1xd)
−1], prove

(7.26.1) η = 0 if and only if z ∈ (xt11 , x
t2
2 , · · · , x

td
d ).

Hint: Use the fact that the system of parameters is a regular sequence.

Exercise 7.15. Let (R,m) be a Cohen-Macaulay ring of dimension d. Let η
be a non-zero element in the socle ofHd

m(R)—that is, such that mη = 0. Sup-
pose x1, . . . , xd is a system of parameters. Prove that η can be represented
by a fraction of the form z

x1x2···xd in the notation of Exercise 7.14

Exercise 7.16. Let (R,m) be a Cohen-Macaulay ring. Prove that the Frobe-
nius action onHd

m(R) is injective if and only if for every ideal I ⊆ R generated
by a system of parameters, I = IF∗R ∩R.
Exercise 7.17. Give an alternate proof of Theorem 7.14(a) using the rep-
resentation of elements in local cohomology given in Exercise 7.14.

Hint: Exercise 7.15 may be of use.

Exercise 7.18. An alternate approach to defining F -rationality suggested
by the proof of Theorem 7.4 would be to require the injectivity of (7.7.2)
for all i (and drop the Cohen-Macaulay requirement). Show that if R is a
complete, reduced and equidimensional, this definition agrees with the one
given in Definition 7.9.

Hint: Use Exercise 7.5 and the proof of Theorem 7.4.

Exercise 7.19. Prove Theorem 7.14(b) under the hypothesis that R/(f) is
a domain.

Hint: One approach is outlined in Exercise 7.17; step (c) below might be
helpful as well. Another follows our proof for F -injectivity using the following
the steps:

https://stacks.math.columbia.edu/tag/0A6R
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(a) Use the same strategy as the proof of deformation for F -injectivity,
to show that F efpe−1c ◦ F e is injective on Hd

m(R) whenever the
image c ∈ R/(f) is a non-zerodivisor.

(b) Show that if d, d′ ∈ R, and the induced map F edd′ ◦F e on Hd
m(R) is

injective for some e, then also the induced map F ed◦F e is injective.
Conclude that, given any non-zerodivisor in R, it suffices to find c ∈
R whose image in T is a non-zerodivisor, and such that cfm ∈ (d)
for some m > 0.

(c) Given an arbitrary non-zerodivisor d on R, show we can write d =
cfm where c is a non-zerodivisor on R/(f).



CHAPTER 2

An intermezzo on Frobenius and canonical modules

Warning, this chapter is likely to be substantially revised.

The goal of this intermezzo is to introduce the Groethendieck dual to
Frobenius for F-finite schemes. To do so, we must carefully define canonical
modules (or sheaves), which as we will see, can be done in a natural way for
any Noetherian F -finite scheme of positive characteristic.

Let R be a Noetherian F -finite ring of prime characteristic p > 0 and
let ωR be a canonical module for R (which we will define below). As we will
explain, applying the functor HomR(−, ωR) to the Frobenius map R −→ F∗R,
produces an R-module map

(0.0.1) T : F∗ωR −→ ωR,

the Grothendieck dual of Frobenius or the Grothendieck trace of Frobenius.1
Such a dual to Frobenius map T : F∗ωX −→ ωX exists for any Noetherian
F -finite scheme X.

This dual-to-Frobenius map T is important for both the global and lo-
cal theory of F -singularities. For example, it allows us to globalize the
definitions of F -rational and F -injective singularities, which had previously
been defined only in the local case (Section 7 of Chapter 1). Likewise, the
theory of compatible ideals (Section 6 of Chapter 1) can be generalized to
T -compatible submodules of ωX , which leads to an analog of the test ideal
called the test module living inside the canonical module. The test module
provides an obstruction to F -rationality in the same way the test ideal pro-
vides an obstruction for strong F -regularity; in particular, we will see that
the locus of F -rational points is open for F -finite Noetherian rings.

We hope to bring the dual-to-Frobenius map T down to earth by dis-
cussing it in several concrete settings before defining it in general. We will

1Technically, the Grothendieck trace map is a map in the derived category of bounded
OX -modules; our map (0.0.1) is the induced map on the homology at a particular spot.
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explain how and why the dual-to-Frobenius morphism exists for any Noe-
therian F -finite scheme, using the recent work of Bhatt, Blickle, Schwede and
Tucker guaranteeing the existence of a canonically defined dualizing complex
in this setting.

Simply defining canonical modules (or dualizing complexes) is a laborious
process that has been done only in certain settings, most notably, for proper
schemes over a complete local ring.2 In fact, there are Noetherian schemes—
even Cohen-Macaulay local rings—that do not admit any canonical module.
Moreover, despite their name, canonical modules are not even unique up to
isomorphism! None-the-less, the reader has likely encountered duality and
canonical modules in some context before. Familiar settings include Serre
duality for a smooth projective variety X over k, where the canonical module
is ωX = ∧dimXΩX/k, and Matlis duality for a complete local equidimensional
ring (R,m), where the canonical module ωR is the Matlis dual of HdimR

m (R).
While it is unclear how these definition interact in general, there is a unified
approach for Noetherian F -finite schemes of positive characteristic: there is
a natural choice—or "canonical canonical module" ωX—in this setting, and
applying the dualizing functor H omOX (−, ωX), we get a functorial map
T : F∗ωX −→ ωX . This dual-to-Frobenius map plays a starring role in the
theory of F -singularities, as we will see in subsequent chapters.

Section 1 begins by discussing the dual to Frobenius for polynomial rings
over a perfect field, building from there the general story for finitely gen-
erated algebras over an F -finite field. In Section 2, we discuss a natural
construction of the canonical module and the dual of Frobenius for any nor-
mal variety, building from the familiar setting of Serre duality on smooth
varieties. For local rings, we discuss canonical modules and duality in Sec-
tion 3 using Matlis duality, culminating with a discussion of the dualizing
complex and Grothendieck duality more generally. In Section 4 we will de-
scribe the general picture for arbitrary F -finite rings and schemes. Finally,
in Section 5, we will discuss an application to F -rational singularities.

While we attempt to keep the discussion elementary, duality is a diffi-
cult topic; many technical details—for example, Matlis duality and derived
functors—are relegated to the appendices and original references, which ded-
icated readers may wish to consult.

1. The dual to Frobenius for finite type k-algebras

Let A→ B be any map of commutative rings. Considering A −→ B as a
map of A-modules, we can apply the functor HomA(−, A) to get an A-linear

2Add references to Residues and Duality and Conrad’s book.
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map

(1.0.1)
HomA(B,A)→ HomA(A,A) ∼= A

φ 7→ φ(1B).

We are interested in understanding this map when A is a ring of prime
characteristic and A −→ B is the Frobenius map A→ F e∗A. We have already
encountered this "evaluation at 1" map in this context in our proof of the
openness of the Frobenius split locus for F -finite rings (Proposition 3.17 in
Chapter 1).

Ultimately, for a satisfying duality theory, the functor HomA(−, A) will
need to be replaced by HomA(−, ωA) for some suitable A-module ωA. In
this section, we explain how to do this for finite type algebras over a field.

1.1. The dual to Frobenius for polynomial rings. We begin by
examining this dual to Frobenius map,

(1.0.2) HomA(F e∗A,A)→ A φ 7→ φ(F e∗ 1),

carefully in the case where A is the polynomial ring k[x1, . . . , xd] over a
perfect field k of characteristic p > 0. The story for finite type k-algebras
will follow by Noether normalization.

Our first step is a closer look at the module HomA(F∗A,A). Quite gen-
erally, if B is an algebra over some ring A and M is some A-module, then
HomA(B,M) has a (right) B-module structure induced by the action of B
on the source. That is, b ∈ B acts on φ ∈ HomA(B,M) by φ ◦ b, where we
view b ∈ B as the "multiplication by b" map B → B.

Now fixing any ring R of prime characteristic, we give HomR(F e∗R,R)
the structure of an F e∗R-module in exactly this way. A ring element F e∗ r acts
on φ ∈ HomR(F e∗R,R) to produce the composition φ ◦ F e∗ r (or equivalently,
φ ? r in the notation of Subsection 4.2 of Chapter 1).

Example 1.1. Let k be an F -finite field. Then Homk(F
e
∗ k, k) is isomorphic

to F e∗ k as a F e∗ k-vector space. Indeed, fixing any non-zero ψ ∈ Homk(F
e
∗ k, k),

the F e∗ k-linear map

F e∗ k −→ Homk(F
e
∗ k, k) F e∗λ 7→ ψ ◦ F e∗λ

is F e∗ k-linear and non-zero, hence injective. On the other hand, it is also a
map of k-vector spaces of the same finite dimension over k, so it must be
surjective as well.

Caution 1.2. The isomorphism in Example 1.1 is non-canonical: it depends
on the choice of some non-zero ψ. This non-canonicity is the heart of the
difficulty in duality theory.
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Example 1.1 generalizes to polynomial rings over k:

Proposition 1.3. Let A = k[x1, . . . , xn] be a polynomial ring over a perfect
field k of characteristic p > 0. Then there exists Φe ∈ HomA(F e∗A,A) such
that the map

(1.3.1) F e∗A→ HomA(F e∗A,A) F e∗a 7→ Φe ◦ F e∗a
is an isomorphism of F e∗A-modules. Explicitly, Φe can be taken to be the
A-module map defined on the standard monomial A-module basis

(1.3.2) {F e∗xa | xa = xa1
1 x

a2
2 · · ·x

an
n , 0 ≤ ai ≤ pe − 1}

by

(1.3.3) Φe(F e∗x
a) =

{
1 if a1 = · · · = an = pe − 1
0 otherwise.

That is, the map Φe (freely) generates HomA(F e∗A,A) as an F e∗A-module.3

Proof of Proposition 1.3. The dualA-module HomA(F e∗A,A) is freely
generated (over A) by the dual basis to (1.3.2):

(1.3.4) {ρxb | 0 ≤ bi ≤ pe − 1 for all i = 1, . . . n},
where ρxb ∈ HomA(F e∗A,A) is defined on the basis (1.3.2) by

ρxb(F e∗x
a) =

{
1 if ai = bi for i = 1, 2, . . . n
0 otherwise.

Note that ρxpe−1 is the generating map Φe, where xpe−1 is the monomial
(x1x2 . . . xn)p

e−1.

The map (1.3.1) is clearly F e∗A-linear. To see that it is surjective, it
suffices to show that each projection ρxb can be obtained from Φe by pre-
composition with some element in F e∗A. This is clear: ρxb = Φe◦F e∗xpe−1−b,
because the composition

(1.3.5) F e∗A
mult by F e∗xpe−1−b

−−−−−−−−−−−−−→ F e∗A
Φe−→ A

has the exact same effect on each of the free basis elements F e∗xa for F e∗A
as does the map ρxb . On the other hand, the fact that the map (1.3.1)
is injective can be deduced from Example 1.1, since Φe is not a torsion
element. �

Remark 1.4. The map Φe is called the standard monomial generating
map for the polynomial ring. Of course, any other F e∗A-module generator
Ψ ∈ HomA(F e∗A,A) differs from Φe by pre-multiplication by a unit in F e∗A.

Definition 1.5. For a Noetherian ring of prime characteristic, an element
Ψ ∈ HomR(F e∗R,R) that generates as an F e∗R-module will be called a gen-
erating map.

3The map Φe is not a Frobenius splitting; note that it sends F e∗ 1 to 0.
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Remark 1.6. There are prime characteristic rings R, other than polynomial
rings, which admit generating maps—that is, for which HomR(F e∗R,R) is
isomorphic to F e∗R. However, this is not the case in general, even for finitely
generated algebras over finite fields. A key goal of this chapter is to construct,
for all Noetherian F -finite rings, an R-module ωR for which HomR(F e∗R,ωR)
is isomorphic to F e∗ωR as an F e∗R-module. Such a functorial isomorphism is
a crucial component of a satisfying duality theory.

Remark 1.7. Although the symbol e in the notation Φe in Proposition 1.3
can be read as a simple index, the reader can check that in fact Φe = (Φ1)?e,
the e-fold composition of Φ1 with itself in the Cartier algebra; also see Ap-
pendix A Proposition 5.3.

Remark 1.8. The proof of Proposition 1.3 works also for the power series
ring kJx1, . . . , xnK, or the localization of the polynomial ring at the maximal
ideal (x1, . . . , xn). Furthermore, one can extend to the case where k is F -
finite (rather than perfect) with only slightly more fuss; see Exercise 1.3.

We return to the "evaluation at F e∗ 1" map (1.0.2) dual to Frobenius in
the polynomial case. Identifying the source HomA(F e∗A,A) with F e∗A using
Proposition 1.3, the composition

(1.8.1) F e∗A
F e∗ a 7→Φe◦F e∗ a−−−−−−−−−→ HomA(F e∗A,A)

eval at F e∗ 1−−−−−−−→ A,

recovers precisely our choice of generating map

F e∗A→ A sending F e∗a 7→ Φe
∗(F

e
∗a).

Thus, for a polynomial ring, if we define ωA to be A itself, the generating
map (1.8.1) becomes

(1.8.2) T eA : F e∗ωA → ωA,

which we can view as the dual to Frobenius for the polynomial ring A.
Of course, the map ?? depends on that choice of generator Φe, which we see
is a generator for HomA(F e∗ωA, ωA) as an F e∗A-module in this case.

Alternatively, the map

(1.8.3) T eA : HomA(F e∗A,ωA)
eval at F e∗ 1−−−−−−−→ ωA

is defined with no choices, so might be considered a more canonical "dual-to-
Frobenius", provided we have a natural isomorphism F e∗ωA

∼= HomA(F e∗A,ωA).
We will eventually discuss a way to construct ωA to eliminate all such choices.

1.2. Finitely generated k-algebras. In general, if A ↪→ B is a finite
inclusion of domains4 and ωA is a canonical module for A, then

(1.8.4) HomA(B,ωA)

4or more generally, locally equidimensional rings



102 2. AN INTERMEZZO ON FROBENIUS AND CANONICAL MODULES

is a canonical module for B; see Proposition 5.6 in Appendix C.

Now if R is domain of finite type over a field k, then R admits a
Noether normalization—that is, a polynomial subalgebra A = k[x1, . . . , xd]
over which R is finite. So, since A is a canonical module for itself, we can
define the canonical module for R to be

(1.8.5) ωR := HomA(R,A).

This canonical module is independent of the choice of Noether normaliza-
tion, up to isomorphism, as we will see below in Remark 1.11. Even a
smaller ground field k′ ⊆ k produces an isomorphic canonical module; see
Exercise 1.7.

The following lemma is critical:

Lemma 1.9. If R is a finitely generated domain over a perfect field k of
prime characteristic, then (defining ωR as in (1.8.5)) there is an F e∗R-module
isomorphism

HomR(F e∗R,ωR) ∼= F e∗ωR.

Remark 1.10. In fact, Lemma 1.9 holds more generally, assuming only that
k is F -finite, rather than perfect. See Exercise 1.8.

Proof. Because k is perfect, F e∗A ↪→ F e∗R is a Noether Normalization
for the finitely generated k-algebra F e∗R, so by definition

(1.10.1) ωF e∗R := HomF e∗A(F e∗R,F
e
∗A) = F e∗ HomA(R,A) = F e∗ωR.

Because R → F e∗R is finite, HomR(F e∗R,ωR) is also a canonical module for
F e∗R. In fact, it is isomorphic to the canonical module defined in (1.10.1),
via the adjunction of tensor and Hom:

HomR(F e∗R,ωR) = HomR(F e∗R,HomA(R,A)) ∼= HomA(F e∗R,A) ∼= ωF e∗R,

with the last isomorphism a consequence of the fact that A→ F e∗R is also a
Noether normalization for F e∗R. �

Now applying the functor HomR(−, ωR) to the Frobenius map R→ F e∗R,
we get an R-module map

(1.10.2) HomR(F e∗R,ωR)→ HomR(R,ωR),

or equivalently, the dual-to-Frobenius map

(1.10.3) T eR : F e∗ωR → ωR.

Remark 1.11. The canonical module ωR, and hence the map above, is
independent of the choice of Noether normalization up to isomorphism. This
follows from the general theory of Grothendieck duality, cf. [Har66, Con00]
or [Sta19, Tag 0DWE]. The point is if f : SpecR −→ Spec k is the induced

https://stacks.math.columbia.edu/tag/0DWE
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map, then ωR is the first non-zero cohomology of f !k. On the other hand,
for a Noether normalization k[x1, . . . , xd] = A ⊆ R and induced

SpecR
g−→ SpecA

h−→ Spec k,

then f !k ∼= g!h!k. On the other hand, h!k := ∧dΩA/k[d] ∼= A[d] and
g!A = RHomA(R,A), and the bottom cohomology of RHomA(R,A) is
HomA(R,A). Putting this together we see that

ωR := HomR(R,A)

is independent ofA. The map F∗F !(−) −→ (−) is the trace map in Grothendieck
duality.

Remark 1.12. Like in the polynomial ring case, the map T eR is a F e∗R-
module generator for HomR(F e∗ωR, ωR) under mild hypothesis on R; see
Proposition 3.14.

1.3. Affine Varieties. If X is an affine variety whose coordinate ring is
the finitely generated k-algebra R, then we can define ωX to be the coherent
sheaf ω̃R given by the module ωR. Furthermore, when k is an F -finite field,
we define the dual-to-Frobenius map

T eX : F e∗ωX −→ ωX

to be the one induced by T eR. While this works for the affine variety X =
SpecR, more effort is needed to correctly patch the ωR together to define the
canonical module ωX (and hence the dual to Frobenius T eX) on a non-affine
variety. To avoid this, for now, we take a more geometric approach to the
construction in the next section.

1.4. Exercises.

Exercise 1.1. Let Φe ∈ HomA(F e∗A,A) be the standard monomial generat-
ing map as defined in Proposition 1.3. Prove that for an arbitrary monomial
xb11 · · ·xbnn , we have

Φe(F e∗x
b1
1 · · · x

bn
n ) =

 x
b1−(pe−1)

pe

1 · · · x
bn−(pe−1)

pe

n if bi ≡ pe − 1 (mod pe) ∀i

0 otherwise.

Exercise 1.2. Fix a polynomial ring A = k[x1, . . . , xn] over an field k of
characteristic p > 0. Let FR/k : F∗k ⊗k R → F∗R be the relative Frobenius
map (see Exercise 1.8 in Chapter 1). Prove a version of Proposition 1.3 in
this setting, and use it to derive a "dual to relative Frobenius" for finitely
generated domains over k such that the map FR/k∗ωR → F∗k ⊗k ωR is F∗k-
linear.
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Hint: It might be helpful to think of the relative Frobenius as the F∗k-
algebra map (F∗k)[x1, . . . , xn] ↪→ F∗(k[x1, . . . , xn]) defined by sending each
xi to F e∗x

pe

i .

Exercise 1.3. Fix a polynomial ring A = k[x1, . . . , xn] over an F -finite field
k. Fix a basis {F e∗λi, | i = 1 . . . , t} for F e∗ k over k such that F e∗λ1 = F e∗ 1.
Define Φe ∈ HomA(F e∗A,A) by

Φe(F e∗λix
a) =

{
1 if a1 = · · · = an = pe − 1, λi = 1
0 otherwise.

Show that the map

F e∗A→ HomA(F e∗A,A) F e∗a 7→ Φe ◦ F e∗a

is an isomorphism of F e∗A-modules.

Hint: Fix any splitting ν ∈ Homk(F
e
∗ k, k) of Frobenius on k. Consider the

composition
F e∗A→ (F e∗ k)[x1, . . . , xn]

ν−→ k[x1, . . . , xn]

where the first map is given by formula (1.3.3).

Exercise 1.4. Let R be an F -finite Noetherian ring, and assume that
φ ∈ HomR(F e∗R,R) is a generating map.5 For any multiplicative setW ⊆ R,
prove that φ

1 ∈ HomW−1R(F e∗W
−1R,W−1R) is an F e∗W−1R-module gener-

ator.

Exercise 1.5. Let (R,m) be an F -finite Noetherian local ring. For any
φ in HomR(F e∗R,R), prove that φ is an F e∗R-generator if and only if φ̂ ∈
Hom

R̂
(F e∗ R̂, R̂) is a F e∗ R̂-generator.

Exercise 1.6. Let k be a perfect field, and let A be the polynomial ring
k[x1, . . . , xn]. Show that the dual to Frobenius T eA (as defined in (1.8.2))
satisfies

TA

(
F∗

1

x1 · · ·xd

)
=

1

x1 · · ·xd
TA

(
F∗(x1 · · ·xd)p−1

)
=

1

x1 · · ·xd
when extended to the fraction field of A.

Exercise 1.7. Let R be a domain finitely generated over k. Fix a Noether
Normalization A = k[x1, . . . , xn] ⊆ R. Now consider a subfield k′ ⊆ k such
that [k : k′] is finite, and the polynomial ring A′ = k′[x1, . . . , xn] ⊆ R. Notice
that A′ ⊆ R is a Noether normalization of R with respect to k′. Show that
there is an isomorphism of R-modules HomA(R,A) ∼= HomA′(R,A

′).

Hint: Adjunction of tensor and Hom

5If R is Gorenstein and local, such a φ will exist, see Corollary 3.16.
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Exercise 1.8. Prove Lemma 1.9 in the case where k is only F -finite, making
use of Exercise 1.7 and Exercise 1.3.

Exercise 1.9. Let R be a finitely generated algebra over a perfect field k,
and let T 1

R be the dual of Frobenius as defined in (1.10.3). Explain how
the Cartier algebra composition ? on

⊕
e HomR(F e∗ωR, ωR) gives that T eR =

(T 1
R)?e for all e ≥ 1.

Hint: See Subsection 4.2 of Chapter 1.

2. The dual to Frobenius for varieties

We now examine the dual-to-Frobenius map in a less coordinate-dependent
way, starting with the case of smooth varieties over a perfect field. In local
coordinates, of course, such a dual-to-Frobenius map will look like the map
TA constructed for polynomial rings in (1.8.2), but by working with differ-
ential forms we get a globally defined dual of Frobenius (induced by the
Cartier operator). Using standard tricks, we can then construct the dual-
to-Frobenius map TX in a coordinate-free way for any normal variety X by
defining it first on the nonsingular locus and then extending to all of X. For
non-normal varieties, a different approach is needed, which we explain con-
cretely for quasi-projective varieties over a perfect field, and more generally
by making use of the dualizing complex.

2.1. Canonical modules on smooth varieties. Recall that a variety
X is smooth over k if the coherent sheaf of Kähler differentials ΩX/k is
locally free of rank dimX.

Definition 2.1. Let X be an n-dimensional variety smooth over a field k.
The canonical module of X is the invertible sheaf ωX =

∧n ΩX/k.

Example 2.2. If X is Ank = Spec k[x1, . . . , xn], then ΩX/k is the free OX -
module of rank n generated by the differentials dxi. In particular, ωAn is the
free OX -module generated by dx1 ∧ · · · ∧ dxn. On the other hand, if X is
Pn, then ωX is not trivial. The n-th exterior power of the locally free sheaf
sheaf ΩX/k is isomorphic to OPn(−n− 1) [Har77, Ch II, Example 8.20.1].

Remark 2.3. This definition of ωX depends on the ground field k; but see
Exercise 2.1.

As before, the adjunction of tensor and Hom produces the following key
insight in prime characteristic:

Lemma 2.4. Let X be a smooth variety over a perfect field of positive char-
acteristic, and let ωX be as defined in Definition 2.1. Then there is an
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isomorphism of F e∗OX-modules

H omOX (F e∗OX , ωX) ∼= F e∗ωX .

Proof. For those not familiar with Grothendieck duality, the following
argument will not be very useful (but perhaps see the references cited). Note
that X F−→ X

π−→ Spec k gives X another structure as a variety over k. Since
k = kp, we see that Ω(̧F∗OX)/k

= Ω(F∗OX)/F∗k and so X is also smooth over
k with this structure as well. The result then follows from properties (9)
and (6) in [Sta19, Tag 0AU3] as well as [Sta19, Tag 0ATX] applied to the
factorization above. �

Now fix a smooth variety X over a perfect field, and consider the Frobe-
nius mapOX → F e∗OX . Applying the Serre dualizing functor H omOX (−, ωX)
we get a natural map of sheaves of OX -modules

(2.4.1) F e∗ωX
∼= H omOX (F e∗OX , ωX)

eval at 1−−−−−→ ωX ,

which is our dual to Frobenius

(2.4.2) TX : F e∗ωX → ωX .

Remark 2.5. Indeed, this turns out to be equivalent to the Cartier map6

which, in local coordinates {x1, . . . , xd} at a point z on X, has the property
that

F e∗x
pe−1
1 · · ·xp

e−1
d dx1 ∧ · · · ∧ dxd 7→ udx1 ∧ · · · ∧ dxd,

(where u is a unit). Note the similarity with the dual-to-Frobenius map
defined in Subsection 1.2 in the case Ank .

2.2. Extending to normal varieties. There is a standard trick for
working with the canonical module and duality on a normal variety. The
point is that reflexive sheaves on a normal Noetherian scheme, as well as
maps between them, are completely determined by their restriction to any
open set U whose complement has codimension two or more: the functor i∗,
where i : U ↪→ X is the natural inclusion, defines an equivalence of categories
of reflexive sheaves on U and X. See [Sta19, Tag 0EBJ] and Appendix B
Theorem 4.9.

In particular, for normal varieties over a perfect field k, the smooth locus
of X/k is an open set whose complement has codimension two or more,7 so
we can define:

6because it is induced by the Cartier isomorphism. See [BK05, Def 1.3.5, Lemma
1.3.6], where TX is called the "trace map", or [EV92, §9.13] for more details on the
construction of the Cartier map.

7since normal implies regular in codimension 1 [Sta19, Tag 031S], which in our setting
implies smooth in codimension 1 over k, as k is perfect

https://stacks.math.columbia.edu/tag/0AU3
https://stacks.math.columbia.edu/tag/0ATX
https://stacks.math.columbia.edu/tag/0EBJ
https://stacks.math.columbia.edu/tag/031S
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Definition 2.6. If X is a normal variety over a perfect field k, then its
canonical module is defined to be ωX := i∗ωU , where i : U ↪→ X is the
natural inclusion of the smooth locus of X/k in X.

Equivalently, ωX is the unique reflexive sheaf on X whose restriction to
the smooth locus agrees with

∧dimX ΩU/k.

Remark 2.7. In terms of divisors, if KU is a Weil divisor on U such that
ωU ∼= OU (KU ), then ωX ∼= OX(KX) where KX is the unique Weil divisor
on X such that KX |U = KU . (Here U is as in Definition 2.6, or any open set
smooth over k whose complement has codimension two or more.)

Remark 2.8. The sheaf ωX can also be defined as the "double dual"

(2.8.1) H omOX (H omOX (

dimX∧
ΩX/k,OX),OX).

Indeed, the sheaf (2.8.1) is reflexive and the natural map

dimX∧
ΩX/k −→H omOX (H omOX (

dimX∧
ΩX/k,OX),OX)

is an isomorphism on the smooth locus of X/k. The sheaf (2.8.1) is called the
"reflexive hull" or "S2-ification" of

∧dimX ΩX/k, so we denote it (
∧dimX ΩX/k)

S2 .
See Appendix C.

Now to define a "dual-to-Frobenius" map F e∗ωX −→ ωX , we apply the
functor i∗ to the map TU : F e∗ωU −→ ωU described in (2.4.2), where U ⊆ X
is the smooth locus over k. The resulting map

TX/k : i∗F
e
∗ωU = F e∗ i∗ωU = F e∗ωX −→ i∗ωU = ωX

is the dual of Frobenius. In particular, the dual of Frobenius for a normal
variety can be viewed as the Cartier map in a neighborhood of any smooth
point.

2.3. The dual to Frobenius for quasi-projective varieties. For a
non-normal variety, a different approach is needed to define ωX . We now
describe a generalization of the approach to finitely generated algebras in
Section 1 that works for all quasi-projective varieties.

A quasi-projective variety X is an open subset of a closed subvariety in
some projective space Pn over k. So to understand the canonical module (and
the dual to Frobenius for X), it is enough to understand these constructions
for closed projective varieties in the smooth variety Pnk (as we can then
restrict to the open set X). The next definition of canonical module works
in this, and somewhat more general, situations:
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Definition 2.9. Let X be a variety finite type over a field k and admitting
a finite k-morphism j : X −→W to a smooth variety W of dimension n over
k (for instance, a quasi-projective variety). Then we can define a canonical
module ωX for X (over k) to be the unique coherent8 OX -module ωX such
that

j∗ωX ∼= E xtn−dOW (j∗OX , ωW )

as j∗OX -modules. Here ωW is as defined in Section 2. This canonical module
ωX is independent of the map j, up to isomorphism; see [Sta19, Tag 0AA3]
or [Har66]. See also [Har77, Chapter III, Section 7].

Remark 2.10. Examples of maps j : X −→ W satisfying the hypoth-
esis of Definition 2.9 include closed embeddings, generic projections of a
d-dimensional variety in Pn to a d-dimensional projective subspace, or the
Noether Normalizations considered in Section 1 for affine varieties. In partic-
ular, for an affine variety over k, Definition 2.9 agrees with our construction
of the canonical module in Subsection 1.2. Furthermore, if X is smooth, we
see that Definition 2.9 agrees with the construction in Section 2 by taking j
to be the identity map.

Remark 2.11. Given a schemeX over a perfect k, we can view it as a variety
in many different ways. Of course, we can view it as X −→ Spec k, but we
can also view it as a variety over k via the composition X FX−−→ X −→ Spec k

(equivalently X −→ Spec k
Fk−→ Spec k), and via iterates of Frobenius in the

same way. If j : X −→ W is finite with W smooth over k. However, if
k is perfect, so that Spec k

Fk−→ Spec k is an isomorphism, a scheme W is
smooth over k no matter which way we view it as a variety. Furthermore,
ΩW/k, and hence the top wedge ωW is independent of the variety structure
we give it via iterates of Frobenius. It follows then that ωX is independent
of its variety structure via Frobenius as well. This, and in fact everything
in this section,also holds over F -finite fields k as well, using an isomorphism
F∗k = Homk(F∗k, k).

Lemma 2.12. Let X be a quasi-projective variety over a perfect field k. Then
with ωX defined as in Definition 2.9, we have an isomorphism of F e∗OX-
modules

(2.12.1) ωF e∗OX = F e∗ωX
∼= H om(F e∗OX , ωX).

Proof. See Appendix C Remark 4.5 and the surrounding discussion
which even does it over a possibly imperfect, but still F -finite, field.

�

8Such a sheaf exists because j is affine, so the category of coherent j∗OX -modules is
equivalent to the category of coherent OX -modules, see [Sta19, Tag 01SB].

https://stacks.math.columbia.edu/tag/0AA3
https://stacks.math.columbia.edu/tag/01SB
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In particular, with this definition of the canonical module, we can now
apply the functor H omOX (−, ωX) to the Frobenius map

OX
F−→ F e∗OX

on our quasi-projective variety to get a dual-to-Frobenius map

T eX : F e∗ωX → ωX .

Again, in a neighborhood of a smooth point, this will look like the Cartier
map (2.4.2) or the map (1.10.3) described in Subsection 1.2. If X is addi-
tionally S2, then we will see that

T eX ∈H omOX (F e∗ωX , ωX)

generates the H om-sheaf as a F e∗OX -module. The point is the generation
holds locally by Proposition 3.14 below, and so it holds globally as well.

2.4. Dualizing complexes. To understand the dual-to-Frobenius map
more deeply, and to generalize beyond quasi-projective varieties, we must
look at the dualizing functor in the derived category9, where the coherent
sheaf ωX is replaced by the full dualizing complex ω q

X .

Instead of working with coherent OX -modules, we now work in the
bounded derived category Db

coh(X) of OX -modules with coherent cohomol-
ogy. Each object in this category is represented, up to quasi-isomorphism,
by a complex of OX -modules whose cohomology is trivial for all but finitely
many cohomological degrees, where it is coherent. A map of complexes of
OX -modules induces a morphism in Db

coh(X); if the induced map on coho-
mology is an isomorphism in each cohomological degree, this induced map
is a quasi-isomorphism.10 We think of Db

coh(X) as an enlargement of the
category of coherent OX -modules by thinking of a coherent sheaf M as a
complex of sheaves with M in cohomological degree zero, and zeros else-
where. In the derived category, the module M can be identified with an
injective resolution (or any other resolution ofM).

Definition 2.13 (Dualizing complexes for quasi-projective schemes). Sup-
pose that X is a scheme of finite type over a field k admitting a finite
k-morphism j : X −→ W to a smooth scheme of pure11 dimension n over k.

9The reader who is not comfortable with derived categories can skip ahead to Section 3
as dualizing complexes will not be needed immediately. On the other hand, the “derived”
picture mimics (and generalizes) the non-derived world, so this section can be approached
as a crash course in Grothendieck duality as used in this text. For more details, see
Appendix C.

10Caution: there are other morphisms in the category Db
coh(X); formally we "invert"

all quasi-isomorphisms. See for instance [Har66], [Wei94], or [Sta19, Tag 031S].
11If W has components of different dimensions, one must replace ωW [n] with an

appropriate complex ω
q
W which will be the appropriate shift of ωW on each component.

https://stacks.math.columbia.edu/tag/031S
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Then the dualizing complex of X (over k) is defined to be the object ω q
X in

Db
coh(X) such that

j∗ω
q
X := RH omOW (j∗OX , ωW [n]).

Here ωW denotes the canonical sheaf as defined in Definition 2.1, viewed as
a complex, and ωW [n] is the "shifted" complex.12

The dualizing complex is independent of the map j (up to quasi-isomorphism),
this is discussed in this setting in Appendix C Remark 4.4.

Definition 2.14. Let X be an equidimensional13 scheme of finite type over
a field k admitting a finite k-morphism j : X −→ W to a smooth variety
of equidimension n over k. Then the canonical module of X (over k) is
ωX := H− dimX(ω

q
X).

Since the dualizing complex is independent of the map j up to quasi-
isomorphism, the canonical module ωX is independent of j up to OX -module
isomorphism.

2.5. Hom’ing into a dualizing complex. The dualizing complex ω q
X

has the property that the functor RH om(−, ω q
X) defines a natural involu-

tion on the category Db
coh(X). In particular, for any object A q ∈ Db

coh(X),
there is a natural quasi-isomorphism

(2.14.1) A q → RH om(RH omOX (A q
, ω

q
X), ω

q
X).

This can be thought of as a massive generalization of the natural isomorphism

(2.14.2) V → Homk(Homk(V, k), k) v 7→ "eval at v map"

for finite dimensional vector spaces over a field.

Remark 2.15. When the dualizing complex is concentrated in one cohomo-
logical degree, the canonical module ωX is also called a dualizing module.
This is the case if and only if X is Cohen-Macaulay and equidimensional
(see Appendix C Lemma 3.20 for a generalization).

Again, we have the fundamental fact about how the dualizing complex
interacts with Frobenius:

Lemma 2.16. With hypothesis and definition of ω q
X as in Definition 2.13,

assume furthermore that k is a perfect field of prime characteristic. Then

(2.16.1) F e∗ω
q
X
∼= RH om(F e∗OX , ω

q
X).

12In general, for a complex A q
, the shifted complex A q

[n] is the same as A q
except

that its cohomological degree i spot is the i+ n spot of the complex A q
.

13The dualizing complex is defined without any equidimensionality assumption; to
derive a canonical module from it, however, we need a well-defined dimension at which to
to compute the cohomology.
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Proof. This is a direct consequence of Grothendieck duality for the
finite map F , but we sketch it below (which essentially proves a special case
of Grothendieck duality). We argue similarly as in the proof of (2.12.1),
using a version of Tensor-Hom adjointness in the derived category. To wit,
there are natural isomorphisms of functors from Db

coh(X) to itself:

j∗RH omOX (−, ω q
X)

∼= RH omj∗OX (j∗−, j∗RH omOW (j∗OX , ωW [n]))
∼= RH omOW (j∗ −⊗L

j∗OX j∗OX , ωW [n])
∼= RH omOW (j∗−, ωW [n])

Thus, loosely speaking, RH om-ing into ω q
X is really the same as RH om-

ing into ωW [n]. Now applying this functor to F e∗OX , we get an isomorphism
in the derived category

(2.16.2) RH omOX (F e∗OX , ω
q
X) ∼= ω

q
F e∗OX

∼= F e∗ω
q
X .

�

Remark 2.17. More generally, any scheme of finite type over an F -finite
field—and indeed, any Noetherian F -finite scheme— admits a dualizing com-
plex such that (2.16.2) holds; see Section 4. In particular, taking cohomology,
any locally equidimensional connected F -finite scheme X admits a canonical
module, ωX = H−n(ω

q
X) for some appropriate n ∈ Z (n is not always the di-

mension of the scheme X). This ωX satisfies H omOX (F e∗OX , ωX) = F e∗ωX .

Again, we get a dual-to-Frobenius map:

Definition 2.18 (Dual of Frobenius, on the dualizing complex). With hy-
pothesis and definition of ω q

X as in Definition 2.13 over a perfect field k,
applying the functor

(2.18.1) RH omOX (−, ω q
X)

to the e-iterated Frobenius map OX −→ F e∗OX , we obtain a OX -linear map

(2.18.2) F e∗ω
q
X −→ ω

q
X .

This map of complexes is the (Grothendieck) dual to Frobenius.

WhenX is locally equidimensional, we obtain the dual-to-Frobenius map
F e∗ωX → ωX by taking the first nonzero cohomology of (2.18.2).

Remark 2.19. Sometimes it is useful to consider the maps induced by
(2.18.1) by taking cohomology at different degrees, as we shall see when we
study F -injectivity later in Subsection 4.3.
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2.6. Exercises.

Exercise 2.1. Let X be a smooth variety over a field k. For any subfield
L ⊆ k such that [k : L] is finite, explain why X can also be viewed as
a variety over L. Show that X is smooth over L if and only if L ⊆ k is
separable. In this case, show that the canonical module ωX is independent of
whether we compute it as ∧dΩX/k or ∧dΩX/L. What happens when L ⊆ k
is not separable?

Exercise 2.2. Show that for any separated d-dimensional scheme X finite
type over a field, that H−dω q

X 6= 0.

Hint: Take the map j from Chapter 2 Definition 2.13 to be a finite surjective
map (for instance, a generic projection).

Exercise 2.3. SupposeX is a reduced separated equidimensional d-dimensional
scheme finite type of field K. Suppose further that X = Y ∪Z where Y and
Z are distinct irreducible components of X. Let c = dimY ∩Z. If c < d− 1
then show that H−c−1ω

q
X 6= 0.

3. The dual to Frobenius for F -finite local rings

We begin with a brief description of where canonical modules and du-
alizing complexes come from. A summary of more facts about dualizing
complexes and canonical modules can be found in the appendix Appendix C
Section 3 and Section 5 respectively.

Definition 3.1 (Canonical modules for local rings). Suppose (R,m) is a
Noetherian local ring which admits a finite ring map S −→ R 14 from a
Gorenstein local ring (S, n). If R is equidimensional, the canonical module
of R is the defined to be

ωR = ExtdimS−dimR(R,S).

Canonical modules for local Noetherian rings are independent of the choice
of S, up to isomorphism15.

The dualizing complex is constructed analogously:

14For example, this assumption holds when R is essentially of finite type over a field,
complete (by the Cohen structure theorem) or F -finite (by [Gab04]).

15In full generality, for either rings or schemes, canonical modules are only unique up
to tensoring with rank-1 locally free modules, but over a local ring this does nothing. There
are canonical choices one can make to make them more canonical for F -finite schemes
though as we will discuss.
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Definition 3.2. Let (R,m) be a Noetherian local ring, and assume that
there is a finite ring map (S, n) → (R,m), with S Gorenstein of dimension
n. A normalized dualizing complex of R is defined to be

(3.2.1) ω
q
R := RHomS(R,S[n]).

Dualizing complexes for local Noetherian rings are independent of the choice
of S, up to isomorphism in the derived category.

If ω q
R is a dualizing complex for R, then so is ω q

R[i] for any integer i. It
is with respect to this shift that the dualizing complexes we defined above
are normalized.

Remark 3.3. If a Noetherian local ring has a dualizing complex then it is a
quotient of a Gorenstein ring [Kaw02], so our hypothesis in Definition 3.2 or
Definition 3.1 is not a substantive restriction. Furthermore, if a Noetherian
ring has a dualizing complex then it is universally catenary and in particular,
dimension behaves geometrically [Sta19, Tag 0A80].

Remark 3.4. If (R,m) is equidimensional with a dualizing complex, it fol-
lows from the above that we can define the canonical module as the first
nonzero cohomology of the dualizing complex. However, we do not define
the canonical module of a ring that fails to be locally equidimensional, see
Exercise 3.2.

As a corollary of uniqueness of canonical modules and normalized dual-
izing complexes for local rings, we immediately obtain the following.

Corollary 3.5. Suppose (S,m) −→ (S′,m′) is a finite map of Gorenstein local
rings of the same dimension n. Then we have an S′-module isomorphism

HomS(S′, S) ∼= S′

and
ExtiS(S′, S) = 0

for every i > 0.

In particular, if S is an F -finite Gorenstein local ring, then F e∗S
∼=

HomS(F e∗S, S) ∼= RHomS(F e∗S, S).

Proof. The point is that S′ is a canonical module and S′[n] a normal-
ized dualizing complex for S′. But HomS(S′, S) is also a canonical module
and RHomS(S′, S[n]) is a normalized dualizing complex. A simple compu-
tation gives the Ext vanishing. �

For a generalization, see also Corollary 3.16 below.

https://stacks.math.columbia.edu/tag/0A80
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By [Gab04], every F -finite local Noetherian ring is a quotient of an F -
finite regular ring. In particular, each such ring has a dualizing complex and
hence it has a canonical module if it is equidimensional.

We record a few easy properties of canonical modules and dualizing com-
plexes for future reference.

Proposition 3.6. Let R with a canonical module ωR and dualizing complex
ω
q
R. Then the following properties are satisfied.

(a) For every multiplicative set W in R, the module W−1R⊗R ωR is a
canonical module for W−1R. Likewise, W−1R⊗R ω

q
R is a dualizing

complex for R.
(b) The canonical module ωR is supported on all of SpecR; that is, for

all P ∈ SpecR, (ωR)P 6= 0.
(c) For reduced R, the canonical module is torsion-free; that is, the nat-

ural map ωR −→ ωR ⊗R K(R) is injective, where K(R) is the total
ring of fractions.

(d) For R-modules M satisfying Serre’s S2 condition,16 the natural map

M −→ HomR(HomR(M,ωR), ωR)

is an isomorphism.

Proof. These follow from Appendix C Lemma 3.9, Lemma 5.8, Lemma 5.4,
and Proposition 6.9. �

Lemma 3.7. Let (R,m) be an F -finite Noetherian local ring with a canonical
module ωR. there is an isomorphism of F e∗R-modules

F e∗ωR
∼= HomR(F e∗R,ωR).

Proof. By [Gab04] we know that R = S/I where S is a local regular
(and hence Gorenstein) F -finite ring. We set c = dimS − dimR. Since S is
F -finite, then S −→ R and the composition S −→ R

F e−−→ F e∗R are both finite.
So we have an isomorphism of F e∗R-modules

ωF e∗R
= ExtcS(F e∗R,S)
∼= ExtcF e∗S(F e∗R,HomS(F e∗S, S))
∼= ExtcF e∗S(F e∗R,F

e
∗S)

= F e∗ωR.

The third line comes from a derived variant of the adjunction of tensor
and Hom, plus the Ext vanishing of Corollary 3.5 or a spectral sequence
argument. The fourth lines come from Corollary 3.5. �

16If R is normal, all reflexive R modules satisfy this condition; see Appendix C Propo-
sition 6.9 for more discussion.
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Remark 3.8. More generally, a slight modification of the proof of Lemma 3.7
shows that for an F -finite Noetherian local ring,

ω
q
F e∗R

= RHomR(F e∗R,ω
q
R) ∼= F e∗ω

q
R

in the derived category as well, using the derived version of tensor-Hom
adjunction (see also the proof of Lemma 2.16).

We are now ready to construct the dual-to-Frobenius map for a Noether-
ian F -finite local ring. Applying the contravariant functor Extn−dS (−, S) to
the Frobenius map R −→ F e∗R, we get a natural R-module map

Extn−dS (F e∗R,S) −→ Extn−dS (R,S)

which becomes our desired dual-to-Frobenius

(3.8.1) T eR : F e∗ωR −→ ωR,

using the identification Lemma 3.7.

Because the functors RHomS(−, S[n]) and RHomR(−, ω q
R) are natu-

rally isomorphic,17 the map (3.8.1) can also be described as applying the
functor HomR(−, ωR) to the Frobenius map:

(3.8.2) T eR : F e∗ωR
∼= HomR(F e∗R,ωR) −→ ωR.

Again, the maps (3.8.1) and (3.8.2) agree with our previous descriptions of
the dual to Frobenius (up to isomorphism of ωR).

Remark 3.9. We can also apply the full dualizing functor RHomR(−, ω q
R)

(or equivalently, RHomS(−, S[n])) to the Frobenius map R −→ F e∗R to get
a dual-to-Frobenius map in the derived category:

(3.9.1) F e∗ω
q
R
∼= RHomR(F e∗R,ω

q
R) −→ RHomR(R,ω

q
R) = ω

q
R.

The first isomorphism here comes from Remark 3.8. Our dual-to-Frobenius
map (3.8.1) can be obtained by taking the −d-th cohomology of (3.9.1).

Remark 3.10. We can also take other cohomologies of (3.9.1) to obtain
maps:

F e∗Hiω
q
R −→ Hiω

q
R

for every integer i. We will see another interpretation of these maps via local
cohomology in Proposition 3.13 below.

17by an application of derived Hom-tensor adjointness, using that ω
q
R =

RHomS(R,S[n])
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3.1. Matlis duality and Frobenius on local cohomology. Fix an
F -finite Noetherian local ring (R,m), of equidimension d. We now explain
how the dual-to-Frobenius map F e∗ωR −→ ωR is related to the Frobenius
action on local cohomology

Hd
m(R) −→ Hd

m(F e∗R)

discussed in Section 7 in Chapter 1. The point is that they are Matlis Dual.

Definition 3.11 (The Matlis duality functor). Suppose (R,m) is a Noether-
ian local ring and E an injective hull of its residue field. The Matlis duality
functor is the exact functor

M 7−→M∨ := HomR(M,E)

taking the category of R-modules to itself.

The Matlis duality functor18 takes Noetherian R-modules to Artinian R-
modules, and Artinian R-modules to Noetherian R̂-modules where R̂ is the
m-adic completion of R. In particular, over a complete ring, (M∨)∨ ∼= M
for all Noetherian and all Artinian R-modules.

Proposition 3.12. Suppose (R,m) is an F -finite local Noetherian ring of
equidimension d. Applying Matlis duality to the dual to Frobenius map
(3.8.1)

T e : F e∗ωR −→ ωR

produces the Frobenius action on top local cohomology

Hd
m(R) −→ Hd

m(F e∗R)

as defined in Chapter 1, Section 7. Furthermore, Matlis duality applied to
the Frobenius action on top local cohomology produces the dual to Frobenius
on R̂, the m-adic completion of R:

F e∗ωR̂ −→ ω
R̂
.

Proof. Write R = S/I where S is Gorenstein, local, and n-dimensional.
Then the dual to Frobenius may be identified with

Extn−dS (F e∗R,S) −→ Extn−dS (R,S).

Local duality (see Appendix C Corollary 6.2) tells us that the Matlis dual
of this map is precisely Hd

m(R) −→ Hd
m(F e∗R). The final statement follows

because applying Matlis duality to a finitely generated module twice simply
completes the module (Appendix C Theorem 1.5). �

More generally:

18See Appendix C Section 1" for more about Matlis duality.
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Proposition 3.13. Suppose (R,m) is an F -finite Noetherian local ring. By
taking cohomology of the dual to Frobenius map (3.9.1), we obtain maps

H−iF e∗ω
q
R −→ H−iω

q
R

whose Matlis duals are the maps

(3.13.1) H i
m(R) −→ H i

m(F e∗R)

induced by Frobenius on R. Furthermore, the Matlis dual of the maps (3.13.1)
are dual to Frobenius on the completion of R.

H−iF e∗ω
q̂
R
−→ H−iω q̂

R
.

Proof. The proof is essentially the same as that of Proposition 3.12,
but we use the derived category notation and take cohomology besides the
dth. Note H−iω q

R = H−iRHomS(R,S[n]) = Extn−iS (R,S). �

An an application, we prove the following useful fact that we have already
observed in the polynomial ring case:

Proposition 3.14. Let (R,m) be an F -finite Noetherian local ring satisfying
Serre’s S2-condition19. Let ωR be the canonical module for R. For e ∈ N, let
T e ∈ HomR(F e∗ωR, ωR) be the dual to Frobenius as defined in (3.8.1). Then
the natural map

(3.14.1) F e∗R −→ HomR(F e∗ωR, ωR) F e∗ r 7−→ T e ◦ F e∗ r

is an isomorphism of F e∗R-modules. In particular, HomR(F e∗ωR, ωR) is freely
generated as an F e∗R-module by the dual of Frobenius T e.

Remark 3.15. We can even take e = 0 in Proposition 3.14. The "0-th
Frobenius map" F 0 : R → R is the identity map R 7→ rp

0
= r. The map

(3.14.1) becomes the isomorphism

R→ HomR(ωR, ωR) r 7→ ·r,

of Proposition 3.6(d).

Proof. The map (3.14.1) is clearly F e∗R-linear. To see that it is surjec-
tive, take arbitrary φ ∈ HomR(F e∗ωR, ωR). We need to show that φ factors
as T e∗ ◦ F e∗ r = T e ? r for some c ∈ R. Applying the contravariant functor

19For example, all normal rings satisfy this condition.
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HomR(−, ωR) to φ we obtain:

HomR(ωR, ωR)
OO

∼=
��

// HomR(F e∗ωR, ωR)
OO

∼=
��

HomR(HomR(R,ωR), ωR)
OO

∼=

// HomR(HomR(F e∗R,ωR), ωR)
OO

∼=

R
φ∨ω

// F e∗R.

Here, the lower two vertical isomorphisms follow from Proposition 3.6(d)
since both R and F e∗R satisfy Serre’s S2 condition.

To see that φ factors as desired, we observe that its dual φ∨ω does.
Indeed, φ∨ω is determined by where it sends 1: if φ∨ω(1) = F e∗ r, then we
may factor φ∨ω as F e∗ r ◦ F e. Applying the contravariant functor (−)∨ω =
HomR(−, ωR) therefore,

φ = (φ∨ω)∨ω = (F e∗ r ◦ F e)∨ω = ◦(F e)∨ω ◦ (F e∗ r)
∨ω = T e ◦ F e∗ r,

which is exactly what we wanted to show to see that (3.14.1) is surjec-
tive. Finally, the map is injective, since no element of F e∗R acts trivially on
HomR(F e∗ωR, ωR). �

Corollary 3.16. With notation as above, suppose R is quasi-Gorenstein
(which means that ωR ∼= R and R is S2, see Appendix C Lemma 6.10) then

HomR(F e∗R,R) ∼= F e∗R

as an F e∗R-module. In particular, if R is Gorenstein, then the dual of Frobe-
nius is a generating map for HomR(F e∗R,R).

Dually, even without the F -finite hypothesis, we also have the following
result.
Proposition 3.17 ([LS01, Example 3.7]). Suppose (R,m) is a complete
local ring satisfying Serre’s S2 condition. Then the Frobenius action on local
cohomology F e ∈ HomR(Hd

m(R), Hd
m(F e∗R)) is an F e∗R-module generator for

this module.

Proof. In the F -finite case this is simply the Matlis dual of Propo-
sition 3.14. The general case is left as an exercise to the reader below in
Exercise 3.5 or see the reference above. �

3.2. Exercises.
Exercise 3.1. Suppose that (R,m) is a complete Noetherian F -finite local
ring and I ⊆ R is an ideal. Then I is uniformly F -compatible20 if and only

20This means that φ(F e∗ I) ⊆ I for all φ ∈ HomR(F e∗R,R) and all e ≥ 0.
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if the image of
ER/I ⊆ E −→ E ⊗R F e∗R

is annihilated by F e∗ I. cf. [LS01, Sch10a].

Exercise 3.2 (Non-locally equidimensional rings). Let S be the power series
ring kJx, y, zK over a field k. For I = (x, y)∩(z) = (xz, yz), set R = S/I, and
consider its dualizing complex ω q

R = RHomS(R,S[dimS]). Investigate what
happens if we define a “canonical module” ωR = H− dimRω

q
R. For example,

show that this module is non-zero at one minimal prime of R and is zero
at the other. Explain why this implies that the "canonical module" doesn’t
behave well under localization.

Hint: You did a related computation in Exercise 2.3.

Exercise 3.3. Show that an equidimensional ring of finite type over a field
is locally equidimensional. In particular, our definition of canonical module
in this section agrees with that in Subsection 1.2.

Exercise 3.4. Suppose (R,m) is a complete Noetherian F -finite local ring
and E is an injective hull of the residue field. Show that the Matlis dual of
some φ ∈ HomR(F e∗R,R) can be identified with a map E −→ F e∗E, in other
words, a Frobenius action on E.

Hint: Use Appendix C Lemma 1.8 to see that HomR(F e∗R,E) ∼= F e∗E.

Exercise 3.5. Prove Proposition 3.17, that is show that if (R,m) is a d-
dimensional complete local Noetherian S2-local ring, then every R-module
map φ : Hd

m(R) −→ F e∗H
d
m(R) is a post-multiple of the canonical e-iterated

Frobenius on local cohomology.

Hint: Use the isomorphism coming from the adjointness of Hom and tensor:

HomR

(
Hd

m(R), F e∗H
d
m(R)

) ∼= HomF e∗R

(
Hd

m(R)⊗R (F e∗R), Hd
m(R)

)
,

combined with the isomorphism

Hd
m(N)⊗M ∼= Hd

m(N ⊗M),

see Appendix A Proposition 10.1. Finally, show that HomR

(
Hd

m(R), Hd
m(R)

) ∼=
R since R is complete and S2. See also [LS01, Example 3.7].

Exercise 3.6. Suppose that R is an F -finite equidimensional local ring ring.
Show that T e = T ?e.

Hint: Observe that F 2 is obtained by composing Frobenius with itself. Now
apply the functor HomR(−, ωR).
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Exercise 3.7. Suppose that (R,m) is an F -finite strongly F -regular Goren-
stein local ring and that φ ∈ HomR(F e∗R,R) such that φ generates HomR(F e∗R,R)
as an F e∗R-module. Prove that R has no ideals compatible with φ.

Exercise 3.8. Suppose (R,m) is a Cohen-Macaulay local ring and J ⊆ R
is an ideal with J ∼= ωR. Suppose that R/J is F -split (respectively strongly
F -regular), prove that then R is also. For generalizations see [Ma14].

Hint: Dualize the sequence 0 −→ J −→ R −→ R/J −→ 0, use that to observe
that R/J is Gorenstein. Note a local ring is Gorenstein if its dualizing
complex looks like a shift of the ring itself.

4. The dual to Frobenius for F -finite rings and schemes

We now discuss the canonical module and Grothendieck duality for F -
finite Noetherian ringsmore generally. This section black boxes the existence
of canonical canonical modules and canonical dualizing complexes, which
spring from a result of Gabber.

We begin with a brief description of where general dualizing complexes
come from. A summary of more facts about dualizing complexes can be
found in the appendix, Appendix C Section 3.

4.1. Rings with canonical modules and dualizing complexes.
We begin with some cautionary tales on dimension in this generality.

Example 4.1 (Codimension is not the difference of dimensions). Even
for “nice” excellent domains R, different maximal ideals can have different
heights. For instance, suppose k is any field, andR = kJtK[x]. Then I = (t, x)
is a maximal ideal of height 2 and J = (tx− 1) is a maximal ideal of height
1. In particular, both Y = V(I) = Spec(R/I) and Z = V(J) = Spec(R/J)
are subschemes of X = SpecR of dimension 0. However, Y has codimension
2 in X while Z has codimension 1.

Example 4.2 (Equidimensionality vs local equidimensionality). Let R =
kJtK, S = kLtM[u, v] and define a new ring A to be the pullback of the diagram
{R −→ kLtM = S/(u, v) ← S}. Then A is not normal and has normalization
R × S. In fact, SpecA is the gluing of SpecR to SpecS along the closed
subscheme VR(J) = VS(u, v), see for instance [Fer03]. Furthermore, even
though A is equidimensional of dimension 2 (both irreducible components
have dimension 2), it is not locally equidimensional since at the point where
we glued SpecR to SpecS, the two schemes have different dimensions 1 and
2 respectively.
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Dualizing complexes in fact provide a sort of dimension on projective
schemes in general, see [Sta19, Tag 0A7W]. But due to gluings like we
saw above, this dimension may not be the one we expect. If R is locally
equidimensional, connected and catenary (the latter of which follows if R is
F -finite), then we can treat R as if it is equidimensional.

4.2. F -finite rings and schemes. A theorem of Gabber guarantees
that any F -finite Noetherian ring R always admits a dualizing complex ω q

R
because it is a homomorphic image of an F -finite regular ring S.

We summarize this now (we do not prove it, although parts are sketched
in the exercises, see Exercise 4.6).

Theorem 4.3 (Gabber, [Gab04, BBST13]). If R is an F -finite ring, then
there exists an F -finite Noetherian regular ring S surjecting onto R (π : S �
R) so that:

(a) F e∗S is a free S-module. Furthermore, ΩS/Sp = ΩS/Fp is a free S-
module (see Exercise 4.1).

(b) S is complete with respect to kerπ.
(c) If R has connected Spec, then so does S.

Notice that for any ring S of characteristic p > 0, ΩS/Sp = ΩS/Fp as
you can see Exercise 4.1. Thus even though a-priori, ΩS/Fp need not be a
finite type S-module, if S is F -finite it is. Indeed, if S is regular, then a
computation shows that ΩS/Fp is a locally free S-module, see Exercise 4.2.
Following Bhatt-Blickle-Schwede-Tucker, we use this module to define our
canonical dualizing complex and canonical canonical module on S. Then we
use the canonical module on S to produce a canonical module on R.

Definition 4.4 ([BBST13]). Suppose S is an F -finite regular ring with
connected Spec. We define the canonical canonical module of S to be

ωS := ∧nΩS/Fp .

Here n = rankS ΩS/Fp is the rank of the free module (which must be constant
since Spec is connected).

We likewise define the canonical dualizing complex of S to be

ω
q
S = ωS [n].

We can also define the dualizing complex on a general regular ring without
connected Spec by working one connected component at a time.

One nice aspect of this construction is it clearly commutes with local-
ization. Regardless, we can now define our canonical canonical module (and
dualizing complex) in general.

https://stacks.math.columbia.edu/tag/0A7W
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Definition-Proposition 4.5 (Canonical canonical modules). Suppose R is
an F -finite Noetherian locally equidimensional ring with connected Spec. Let
S � R be a surjection from an F -finite regular ring with connected Spec.
Let m denote the codimension of SpecR in SpecS. Then we define the
canonical canonical module of R to be:

ωR = ExtmS (R,ωS)

where ωS is defined as in Definition 4.4. ωR is independent of the choice of
S � R by [BBST13]. This canonical module satisfies the property that

F e∗ωR
∼= HomR(F e∗R,ωR)

for every e > 0.

More generally, suppose X is an F -finite Noetherian scheme that is lo-
cally equidimensional and connected. Then the canonical modules implicitly
defined on affine charts above glue (in a canonical way) to produce a canon-
ical canonical module on X, ωX , such that for every e > 0,

F e∗ωX = H omOX (F e∗OX , ωX).

Due to the fact that the canonical canonical module above is independent
of the choice of S, one particularly convenient way of constructing canonical
canonical modules for normal rings and varieties is as follows.

Corollary 4.6. Suppose X is an F -finite normal integral scheme with reg-
ular locus i : U ↪→ X. Then the canonical canonical module of X is

ωX = i∗ ∧n ΩU/Fp = (∧nΩX/Fp)
S2

where n = rankOU ΩU/Fp.

In particular, if R is an F -finite normal integral domain, then

ωR = (∧nΩR/Fp)
S2 = HomR(HomR(ΩR/Fp , R), R)

is the canonical canonical module for R.

Definition-Proposition 4.7 (Canonical dualizing complexes, [BBST13]).
Suppose R is an F -finite Noetherian ring. Let S � R be a surjection from
an F -finite regular ring. Then we define the canonical dualizing complex of
R to be

RHomS(R,ω
q
S ) = RHomS(R,∧nΩS/Fp)

where n = rankS ΩS/Fp. This is independent of the choice of S.

More generally, for any F -finite Noetherian scheme X, the dualizing
complexes above glue21 in such a way to create a canonical dualizing complex

ω
q
X .

21via the Beilinson-Bernstein-Deligne gluing lemma, see [Sta19, Tag 0D6C] or
[BBD82]

https://stacks.math.columbia.edu/tag/0D6C
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Furthermore, for any finite type morphism of F -finite Noetherian excellent
schemes π : Y −→ X with canonical dualizing complex ω q

X and ω q
Y we have

that
π!ω

q
X = ω

q
Y .

In particular, specializing π to be the Frobenius on X, we have that (F e)!ω
q
X =

ω
q
X . In other words

F e∗ω
q
X
∼= RH omOX (F e∗OX , ω

q
X) = F e∗ (F e)!ω

q
X

for every e > 0.

4.3. Applications to F -injective rings. Our work above lets us han-
dle our global notions of F -injective singularities.

Recall the definition from Chapter 1 Definition 7.8. We say that a Noe-
therian ring is F -injective if for every maximal ideal m ⊆ R, the map on
local cohomology induced by Frobenius

H i
m(R) −→ H i

m(F ∗R)

is injective for every i. Throughout the rest of the chapter, when working
with F -injectivity, we work with only F -finite rings (an assumption we did
not make in Chapter 1).

If R is local, by local duality, H i
m(R) −→ H i

m(F ∗R) is Matlis dual to

H−iF∗ω
q
R
∼= H−iRHomR(F∗R,ω

q
R) −→ H−iRHomR(R,ω

q
R) ∼= H−iω q

R.

Thus we obtain that:

Corollary 4.8. Suppose R is an F -finite Noetherian ring of characteristic
p > 0 and dualizing complex ω q

R. Then R is F -injective if and only if the
maps (dual to Frobenius)

H−iF∗ω
q
R −→ H−iω

q
R

surjects for every i.

Proof. Surjection between modules can be checked locally. Hence we
may assume that R is local. Localizing the dualizing complex may yield a
non-normalized dualizing complex, but we may shift it so it is normalized.
The result then follows from the argument above. �

We thus obtain the following.

Corollary 4.9. Suppose that R is an F -finite ring and W ⊆ R is a multi-
plicative set. If R is F -injective, so is W−1R. Furthermore R is F -injective
if and only if Rm is F -injective for all maximal ideals m ⊆ R. Finally, the
locus where R is F -injective is open.
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Proof. The maps F∗H−iω
q
R −→ H−iω

q
R (for all i) are surjective exactly

where R is F -injective, and so the F -injective locus is open (since there are
only finitely many non-zero H−iω q

R). The formation of these maps also com-
mutes with localization (as we have seen before) which proves the remaining
results. �

For a partial generalization of the above result when R is not necessarily
F -finite, see Exercise 4.7 and for more general results, [DM20a].

We saw in Chapter 1 Proposition 7.17 that an F -finite F -split ring is
always F -injective and a quasi-Gorenstein F -finite F -injective ring is always
F -split. We also saw that F -split rings are weakly normal in Chapter 1
Exercise 4.14. In fact, F -injective singularities are also weakly normal.22

See the exercises of Subsection 4.5 for a series of exercises developing some
properties of weak normality and weak normalization.

First though, let us show that F -injective rings are reduced.

Lemma 4.10. If a Noetherian local ring (R,m) is F -injective, then R is
reduced.

Proof. A ring is reduced if and only if it is R0 and S1 [Sta19, Tag
031R]. Thus suppose first that R is not reduced after localizing at a minimal
prime Q ⊆ R. Then 0 6= H0

Q(RQ) = QRQ, and so Frobenius is not injective
on H0

Q(RQ), a contradiction.

Now suppose that R is F -injective but not reduced and so not S1. Then
there exists a embedded associated prime Q ⊆ R such that depth(RQ) = 0
but where dim(RQ) = h > 1, see [Sta19, Tag 031Q]. We consider Frobe-
nius acting on H0

Q(QRQ) ⊆ QRQ. But RQ is also non-reduced and hence
Frobenius does not act injectively on QRQ. �

We now provide an alternate characterization of weak normality involv-
ing local cohomology. We rely on some facts about weakly normal rings left
to the exercises.

Lemma 4.11. Suppose (R,m) is a reduced ring of characteristic p > 0 such
that SpecR \ {m} is weakly normal. Then R is weakly normal if and only if
the Frobenius action is injective on H1

m(R).

Proof. We may assume that dimR > 0. Let RWN denote the weak
normalization of R which exists by Exercise 4.9. Set X = SpecR, U =

22Recall a reduced ring K(R) is weakly normal if and only if for each x ∈ K(R) such
that xp ∈ R, we then have that x ∈ R.

https://stacks.math.columbia.edu/tag/031R
https://stacks.math.columbia.edu/tag/031R
https://stacks.math.columbia.edu/tag/031Q
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X \ {m} and notice also that ν : XWN = SpecRWN −→ X is a bijection, see
Definition 4.14.

By [Har77, Chapter III, Exercise 2.3(e)] we have the following diagram
of modules.

0 // R
� � //� _

��

Γ(U,OX)

∼=
��

// // H1
m(R) //

��

0

0 // RWN � � // Γ(U, ν∗OXWN) // // H1
m(RWN) // 0

The left horizontal maps are injective because R and RWN are reduced. Now,
R is weakly normal if and only if every r ∈ RWN with rp ∈ R also satisfies
r ∈ R.

First assume that the action of Frobenius is injective on H1
m(R). So

suppose that there is such an r ∈ RWN with rp ∈ R. Then r has an image
in Γ(U,OX) and therefore an image in H1

m(R). But rp has a zero image
in H1

m(R), which means r has zero image in H1
m(R) which guarantees that

r ∈ R as desired.

Conversely, suppose that R is weakly normal. Let r ∈ Γ(U,OX) be an
element such that the action of Frobenius annihilates its image r in H1

m(R).
Since r ∈ Γ(U,OX) we identify r with a unique element of the total field of
fractions of R. On the other hand, rp ∈ R so r ∈ RWN = R. Thus we obtain
that r ∈ R and so r is zero as desired. �

Theorem 4.12. An F -finite F -injective ring R is weakly normal.

Proof. By Corollary 4.9 and Exercise 4.11, both F -injectivity and weak
normalization localize. We may thus assume that (R,m) is local and SpecR\
{m} is weakly normal. But now the result follows from Lemma 4.11. �

In fact, the same result holds without the F -finite hypothesis [DM20a,
Corollary 3.5].

4.4. Exercises.

Exercise 4.1. Suppose R is a ring of characteristic p > 0. Prove that
ΩR/Fp = ΩR/Rp where Rp ⊆ R is the image of the Frobenius map. In the
case that R is F -finite and Noetherian, conclude that ΩR/Fp is a finitely
generated R-module.

Exercise 4.2. Suppose (S, n, k) is an F -finite local regular ring. Prove that
ΩS/Fp = ΩS/Sp is a free S-module.
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Hint: We can write S = Sp[x1, . . . , xn, y1, . . . , ym] where the xi are minimal
generators of the maximal ideal and the yi form a differential basis for k/kp.

Exercise 4.3. Let A be a DVR and set R = A[x]. Show that there is no
dualizing complex ω q

R on R such that for every maximal ideal m ⊆ R, that
(ω

q
R)m is a normalized dualizing complex for Rm.

Definition 4.13. Suppose S is a Noetherian domain of characteristic p > 0.
A set of elements x1, . . . , xd is called p-independentif the set of monomials
Λ := {xa1

1 · · ·x
ad
d | 0 ≤ ai ≤ p} is linear independent over Sp. It is called a

p-generating set if S = Sp[x1, . . . , xd]. A p-independent p-generating set
is called a p-basis.

It turns out that x1, . . . , xd is a p-basis if and only if it is a differential
basis. See [Mat80, 38.A, page 269] and also [Tyc88, Theorem 1] or [KN84].

Exercise 4.4. Suppose S is a regular ring with a p-basis x1, . . . , xd (equiv-
alently differential basis). Observe that ∧dΩS/Fp

∼= S. Prove by direct
computation that HomS(F∗S, S) ∼= F∗S as F∗S-modules. Conclude that for
any F -finite Noetherian ring R there exists a dualizing complex ω q

R such that

HomR(F e∗R,ω
q
R) ∼= F e∗ω

q
R.

Hint: Every F -finite ring is a quotient a regular ring with a p-basis by
[Gab04], see the theorems we stated this section.

Exercise 4.5. Suppose R is a Noetherian F -finite ring of characteristic
p > 0 and x1, . . . , xn ∈ R is a p-generating set (by definition, this means
that R = Rp[x1, . . . , xn]). Consider the rings

Re := R[X1, . . . , Xn]/(Xpe

1 − x1, . . . , X
pe

n − xn).

Show that:

(a) For each e > 0, there is a surjective map πe : Re � R which acts as
F e on R and sends Xi 7→ xi.

(b) For each e > 0, there is a map fe : Re+1 −→ Re sending Xi 7→ Xi

and which acts as Frobenius on R so that the following diagram
commutes:

Re+1

πe+1
""

fe
// Re

πe
��

R.

Exercise 4.6. With notation as in Exercise 4.5, prove that

R∞ := lim←−
fe

Re
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is a reduced ring with a surjective map R∞ −→ R. Further show that the
Xi = (Xi, Xi, . . . ) ∈ R∞ satisfy the property that R∞ is a free Rp∞-module
with basis

X1
a1 · · ·Xn

an
0 ≤ ai ≤ p− 1.

In particular, conclude that if one knew that R is Noetherian (which is true,
see [Gab04, MP20, BBST13]) then R is regular. This is how Gabber
constructs the regular rings S � R we described above.

Exercise 4.7. Suppose (R,m) is an F -injective Noetherian local ring with
a normalized dualizing complex ω q

R. Suppose Q ∈ SpecR. Prove that RQ is
also F -injective. One can find a more general result (without even assuming
R has a dualizing complex) in [DM20a].

Hint: This is slightly easier in the F -finite case. For the non-F -finite case,
show that R is F -injective if and only if H i

m(R) −→ H i
m(S) injects for every

finite generically purely inseparable ring extension R ⊆ S.

4.5. Exercises on weak normality. The following definition will be
used in the exercises that follow. Also see Subsection 5.5 in Chapter 6 for a
related discussion on seminormality.

Definition 4.14 (Weakly subintegral extensions and weakly normal rings).
An integral extension of reduced rings R ⊆ S is called weakly subintegral
if

(a) SpecS −→ SpecR is a bijection and,
(b) For every prime Q ∈ SpecR with corresponding Q′ ∈ SpecS, the

inclusion of residue fields k(Q) ⊆ k(Q′) is purely inseparable (for
instance, an isomorphism).

We say R is weakly normal in an overring B if every weakly subin-
tegral extension R ⊆ S ⊆ B has the property that R = S. We say that R is
weakly normal if it is weakly normal in its total ring of fractions K(R).

Exercise 4.8. Show that an integral extension R ⊆ S is weakly normal if
and only if SpecS −→ SpecR is a universal homeomorphism by using [Sta19,
Tag 04DF].

Exercise 4.9. Suppose R is a reduced ring and let R ⊆ S be a ring exten-
sion. The weak normalization of R in S is the largest weakly subintegral
extension of R that is contained in S. In the case that S = K(R) it is
denoted RWN. Show that RWN exists.

Hint: Consider the category of weakly subintegral extensions of R inside S
with morphisms the induced inclusions. Show that any two objects of this

https://stacks.math.columbia.edu/tag/04DF
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category are contained in another object in this category. See [Sta19, Tag
0EUK] to show that the weak normalization exists.

Exercise 4.10. Now suppose that R is a reduced Noetherian ring of char-
acteristic p > 0 and R ⊆ RN is finite23 (for generalizations see for instance
[Yan85]). In Chapter 1 Exercise 4.14 we said that R is weakly normal if
and only if the following condition was satisfied:

(?) any r ∈ K(R) satisfying rp ∈ R also satisfies r ∈ R.
We will show that this definition is equivalent to the definition of weak
normality given above in Definition 4.14.

(a) Suppose that r ∈ K(R) is such that rp ∈ R. Show that R[r] is a
weakly subintegral extension of R. This shows that if R is weakly
normal, then it satisfies condition ?.

(b) Suppose that R is a ring satisfying ?. Show that any localization of
R also satisfies ?.

(c) Suppose that R is a ring satisfying ? but that R ⊆ R′ ⊆ K(R) is
weakly subintegral. Show that R′ = R.
Hint: Let c = AnnR(R′/R) denote the conductor of R′ over R.
Localizing at a minimal prime of c we may assume that (R,m) and
(R′,m′) are local and c is m′-primary. Choose r ∈ R′. Consider
two cases: If r ∈ m′ then show that a peth power must be in c. If
r /∈ m′, consider its image in the residue field k(m′) ⊇ k(m) and use
Definition 4.14 (a) to replace r by an element in m′.

Exercise 4.11. In the setting of Exercise 4.10, show that the formation
of weak normalization commutes with localization. For more general state-
ments see for instance [Yan85].

5. Test submodules and F -rational rings

The theory of compatibility for ideals and maps developed in Section 6 of
Chapter 1 can be generalized to modules. This idea becomes especially pow-
erful when applied to the canonical module. Indeed, using it we get a parallel
theory to test ideals in which we consider compatibility of submodules within
the canonical module ωR. For example, for a Noetherian F -finite domain,
we’ll see that there is a unique non-zero uniformly compatible submodule of
ωR—an analog of the test ideal called the test module τ(ωR). The test mod-
ule provides an obstruction to F -rationality24 in much the same way that the
test ideal itself is an obstruction to strong F -regularity. In particular, using
the test module we can work easily with F -rationality in non-local rings.

23This holds for instance if R is excellent so it holds if R is F -finite.
24Chapter 1 Section 7

https://stacks.math.columbia.edu/tag/0EUK
https://stacks.math.columbia.edu/tag/0EUK
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5.1. Compatible submodules. Suppose that R is an F -finite Noe-
therian ring. For any R-module M , we have a (typically non-commutative)
ring

CR(M) =
⊕
e∈N

HomR(F e∗M,M)

whose multiplication is defined, for φ ∈ HomR(F e∗M,M) and ψ ∈ HomR(F f∗M,M),
by

φ ? ψ = φ ◦ F e∗ψ ∈ HomR(F e+f∗ M,M),

just as we defined it in the case whereM = R in Subsection 4.2 in Chapter 1.

Definition 5.1. Given a submoduleN ⊆M and a map φ ∈ HomR(F e∗M,M),
we say that N and φ are compatible if φ(F e∗N) ⊆ N . In this case, we also
say that N is φ-compatible.

Example 5.2. Suppose that M is an R-module and φ ∈ HomR(F e∗M,M).
Suppose J is any ideal. Then the submodule:

0 :M J = {x ∈M | Jx = 0}
is compatible with φ. Indeed, let us write N = 0 :M J and suppose x ∈ N .
We must show that φ(F e∗x) ∈ N . But observe that

Jφ(F e∗x) = φ(F e∗J
[pe]x) ⊆ φ(F e∗Jx) = φ(F e∗ 0) = 0.

It follows that
ΓJ(M) =

⋃
n

0 :M Jn

is also compatible with every φ ∈ HomR(F e∗M,M).

In particular, if Q is a minimal prime in the support of M , then we see
that ΓQ(M) is compatible with every φ ∈ HomR(F e∗M,M).

Sometimes modules are compatible with all possible maps.

Definition 5.3. Given a submodule N ⊆ M , we say that N is uniformly
compatible if for all e ∈ N, N is compatible with all φ ∈ HomR(F e∗M,M).

The case of interest in this section is whenM is the canonical module ωR
(recall that for us if R has a canonical module, then R also has a dualizing
complex and R is locally equidimensional). In this case, the canonical Cartier
algebra CR(ωR) has the following interesting property which is essentially a
restatement of Proposition 3.14:

Proposition 5.4. Let R be an F -finite Noetherian reduced ring, satisfying
Serre’s S2-condition.25 Then the dual-to-Frobenius map T ∈ HomR(F∗ωR, ωR)

25For example, all normal rings and all Cohen-Macaulay rings satisfy this condition;
see [Sta19, Tag 031S].

https://stacks.math.columbia.edu/tag/031S
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generates
CR(ωR) =

⊕
e∈N

HomR(F e∗ωR, ωR)

over R in the sense that every element of CR(ωR) is a sum of maps of the
form T ?e ? r for some e ∈ N and r ∈ R.

Proof. First note that an excellent S2 ring is locally equidimensional
([Sta19, Tag 0FIW]), so that the F -finite ring R admits a canonical module
ωR, see also Chapter 1 Theorem 1.23. Now the statement follows from the
facts that the dual to Frobenius map

T eR ∈ HomR(F e∗ωR, ωR)

generates HomR(F e∗ωR, ωR) as a F e∗R-module (Proposition 3.14), and that
T ?e = T e (Exercise 3.6). �

As an immediate corollary we obtain:

Corollary 5.5. Let R be an F -finite Noetherian reduced ring satisfying
Serre’s S2 condition. A submodule N ⊆ ωR is uniformly compatible if and
only if N is compatible with the dual-to-Frobenius map T : F∗ωR −→ ωR. In
other words, N is compatible with all maps if and only if

T (F∗N) ⊆ N.

5.2. The test module. We can now define the test module inside the
canonical module, also called the parameter test module (see Remark 5.11).
To do so, we need the following analog of Corollary 6.16 in Chapter 1:

Proposition 5.6. Let R be a reduced F -finite Noetherian ring with canonical
module ωR. Fix any non-zero divisor c that is a strong test element for R.
Then ∑

e>0

T e(F e∗ (c ωR)) ⊆ ωR

is contained in every T -compatible submodule of ωR supported on SpecR.

Proposition 5.6 implies that there is a unique smallest submodule of the
canonical module ωR compatible with T and supported on SpecR. We can
therefore make the following definition:

Definition 5.7. [cf. [Smi95]] Let R be a reduced F -finite Noetherian ring
with canonical module ωR. The test module in ωR, denoted τ(ωR), is
defined to be the smallest submodule M ⊆ ωR

(a) supported on all of SpecR (that is, not zero at any minimal prime
of R) and,

https://stacks.math.columbia.edu/tag/0FIW
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(b) compatible with T .

In particular, τ(ωR) is the sum in Proposition 5.6.

We now turn to the proof of Proposition 5.6.

Proof of Proposition 5.6. Little is lost if one simply assumes that
R is a domain, so for a first reading we encourage the reader to make this
simplifying assumption.

Fix any M ⊆ ωR, supported on SpecR, and compatible with T . For any
minimal prime P ∈ SpecR, (ωR)P = ωRP is the field RP . So the inclusion
M ⊆ ωR becomes an isomorphism after localizing at any minimal prime. By
prime avoidance, then, we can find a nonzero-divisor d ∈ AnnR(ωR/M). For
this d, we have dωR ⊆M .

Now, by the definition of a strong test element, there exists some φ ∈
HomR(F e∗R,R) such that c = φ(F e∗ d) for some e > 0. It follows that we
have a factorization:

R
F e−−→ F e∗R

F e∗ d−−→ F e∗R
φ−→ R

so that the composition is multiplication by c. Applying the contravariant
functor HomR(−, ωR), we have a map

ωR
φ∨−−→ F e∗ωR

F e∗ d−−→ F e∗ωR
T e−→ ωR

that is also multiplication by c. The image of the right two maps is

T e(F e∗ (d ωR)) ⊆ T e(F e∗M) ⊆M.

Since the total composition has even smaller image, we see that c ωR ⊆M .
Thus for all f ∈ N,

T f (F f∗ (c ωR)) ⊆ T f (F f∗M) ⊆M.

Now, clearly the submodule of ωR defined by

(5.7.1)
∑
e>0

T e(F e∗ (c ωR))

is compatible with T and contained in M . We only need to check that its
support is all of SpecR. For this, we must show that it is non-zero after
localizing at any minimal prime Q ∈ SpecR. At Q, the Frobenius map
becomes a split injection of the field RQ, and its dual TQ a split surjection.
Likewise, T eQ ◦F e∗ c is a split surjection because c (being a non-zerodivisor of
R) becomes a unit in RQ. In particular, T eQ(F e∗ (c ωR)) = (T e(F e∗ (c ωR)))Q
is nonzero, and the module (5.7.1) is supported at Q. �
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Proposition 5.6 says that the test module in ωR is essentially generated
by any non-zerodivisor that is a strong test element plus the action of T .
This makes the following results easy to prove:

Corollary 5.8. Suppose that R is F -finite with a canonical module ωR.

(a) SupposeW ⊆ R is a multiplicative set. ThenW−1τ(ωR) = τ(ωW−1R).
(b) Suppose (R,m) is local. Then τ̂(ωR) = τ(ω

R̂
) where (̂−) denotes

m-adic completion.

Proof. Recall that W−1ωR = ωW−1R by Appendix C Lemma 5.8. Part
(a) follows because we can choose c ∈ R a strong test element and non-
zerodivisor for both R and W−1R, and then apply Proposition 5.6. Noting
that the dual to Frobenius map F e∗ωR −→ ωR localizes since it is identified
with HomR(F e∗R,ωR) −→ HomR(R,ωR).

For part (b), we need to know that the formation of ωR commutes with
completion Appendix C Lemma 5.8. We also need that T : F∗ωR −→ ωR com-
mutes with completion but that follows since the map HomR(F∗R,ωR) −→
HomR(R,ωR) commutes with completion. �

Now that we know the formation of τ(ωR) commutes with localization
we can make the following definition.

Definition 5.9. Suppose that X is an F -finite Noetherian locally equidi-
mensional scheme with canonical module ωX such that H om(F e∗OX , ωX) ∼=
F e∗ωX . The test submodule τ(ωX) ⊆ ωX is the coherent subsheaf that agrees
on affine charts with τ(ωR).

Remark 5.10. One can weaken the hypothesis that c is a strong test element
in Proposition 5.6; see Exercise 5.2.

Remark 5.11. The test module was first constructed in [Smi95], in the
case of local rings, where it was called the parameter test module. The con-
struction there was in Matlis dual form (cf. Chapter 7), and so was defined
as the annihilator, in ωR, of the maximal proper Frobenius stable submodule
of the local cohomology module Hd

m(R). Originally, this parameter test mod-
ule was of interest because it annihilated tight closures of parameter ideals.
We will discuss the connections with tight closure in Chapter 7.

Remark 5.12. More generally, for any moduleM with map φ : F e∗M −→M ,
we could likewise try to make a similar definition (although being non-zero
at the minimal primes like we did for ωR is not quite the right thing to do).
This is the topic of Cartier modules, which we’ll discuss in Chapter 8. This
will also provide a definition of τ(ωR) even when R is non-reduced.
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5.3. F -rational rings. In Chapter 1 Definition 7.9 we defined a local
ring (R,m) to be F -rational if it was Cohen-Macaulay and if for every nonzero

divisor c ∈ R the map Hd
m(R)

F e∗ c◦F e−−−−−→ F e∗H
d
m(R) is injective.

By Matlis duality, we immediately see that if (R,m) is F -rational and
F -finite, then for every nonzero divisor c ∈ R there exists e > 0 such that

T e(F e∗ c ωR) = ωR.

This certainly implies that τ(ωR) = ωR. The converse is also true:

Lemma 5.13. Suppose (R,m) is a F -finite reduced Noetherian local ring
with canonical module ωR. If τ(ωR) = ωR, then for every non-zerodivisor

c ∈ R we have that Hd
m(R)

F e∗ c◦F e−−−−−→ F e∗H
d
m(R) injects for some e > 0.

Proof. It suffices to check this for c a strong test element for R. First
notice that T (F∗ωR) is a T -compatible submodule, and hence T (F∗ωR) =
ωR. This implies that for any e > 0:

T e+1(F e+1
∗ c ωR) ⊇ T e+1(F e+1

∗ cpωR) = T e(F e∗ c T (F∗ωR)) = T e(F e∗ c ωR).

In particular

· · · ⊆ T e(F e∗ c ωR) ⊆ T e+1(F e+1
∗ c ωR) ⊆ . . .

is ascending, and by definition the sum is τ(ωR) = ωR. Hence T e(F e∗ c ωR) =
ωR. �

This immediately yields the following.

Corollary 5.14. Suppose R is a Noetherian F -finite reduced ring with canon-
ical module ωR. Then R is F -rational (meaning all localizations at maximal
ideals are F -rational) if and only if

(a) R is Cohen-Macaulay26 and
(b) τ(ωR) = ωR.

Remark 5.15. This is still not the classical definition of an F -rational ring,
which involves tight closure, see Chapter 7. There is also a well-behaved
notion of the test module outside the reduced case due to M. Blickle and
G. Böckle, see Chapter 8 Definition 3.17 and [BB11].

Lemma 5.16 ([Vél95]). If an F -finite ring R is F -rational and W is
any multiplicative set, then W−1R is also F -rational. Furthermore R is
F -rational if and only if Rm is F -rational for every maximal ideal m ⊆ R.

Proof. This follows since the formation of the finitely generated module
τ(ωR) commutes with localization by Corollary 5.8. �

26which implies that R is locally equidimensional
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Corollary 5.17 ([Vél95]). If R is an F -finite Noetherian locally equidimen-
sional ring then the F -rational locus of SpecR is open.

Proof. Since R is F -finite, it is a quotient of a regular and ring hence
is excellent and has a dualizing complex as we’ve observed before. Next
observe that Cohen-Macaulay and reduced are open conditions. Therefore,
it suffices to observe that ωR/τ(ωR) is a finitely generated module, and hence
supported on a closed set. �

Corollary 5.18. If (R,m) is an F -finite local ring. Then R is if F -rational
if and only if R̂ is F -rational.

Proof. This is a direct consequence of Corollary 5.8 (b) and that fact
that a Noetherian ring is Cohen-Macaulay if and only if its completion is. �

While F -rational rings are Cohen-Macaulay by hypothesis, they are also
normal. Note this proof foreshadows the proof that F -rational singularities
are pseudo-rational, that we will study chapter Chapter 6.

Lemma 5.19. If an F -finite ring R is F -rational, then R is normal.

Proof. We may assume that R is local. Let R′ ⊆ K(R) denote a finite
extension (for instance, we could take the normalization since R is F -finite
and hence excellent) and consider the map R −→ R′. We will show R −→ R′

is an isomorphism. Applying the functor HomR(−, ωR) gives us a map

(5.19.1) ψ : ωR′ ∼= HomR(R′, ωR) −→ ωR.

This is generically an isomorphism (since every reduced 0-dimensional ring
is normal), and so that map is also injective since these modules are torsion
free. In fact, this map ψ (and F e∗ψ) sits in the following diagram obtained
by applying Frobenius and then duality to R and R′ simultaneously:

F e∗ωR′
T e
R
′
//

F e∗ψ

��

ωR′

ψ

��
F e∗ωR

T eR // ωR

Thus the image of ψ is compatible with T e and so ψ is surjective since R is
F -rational. But now ψ is an isomorphism, and so by applying HomR(−, ωR)
again to ψ and using by Appendix C Proposition 6.9 we obtain that

R −→ R′′

is also an isomorphism where R′′ is the S2-ification of R′. �
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We show that F -rationality satisfies the following deformation-type result
after some preliminary setup. In particular, we need to explain the origin of
a map π : ωR −→ ωR/(f). For those uncomfortable with derived categories,
we invite you to simply assume that R is Cohen-Macaulay and observe that
ωR/fωR ∼= ωR/(f) by [BH93, Exercise 3.3.23], in which case the map π is
simply the map which mods out by f .

Suppose R Noetherian locally equidimensional ring with connected Spec
and a dualizing complex and that f ∈ m ⊆ R is a non-zerodivisor. Consider
the short exact sequence

0 −→ R
·f−→ R −→ R/(f) −→ 0.

Suppose ω q
R is zero in degree < −d (if R is local then we may take ω q

R to
be normalized with d = dimR). Applying the functor RHomR(−, ω q

R) and
recalling that RHomR(R/(f), ω

q
R) ∼= ω

q
R/(f) is a dualizing complex for R/(f)

(so that H−dω q
R/(f) = 0), we obtain a long exact sequence.

0 −→ ωR
·f−→ ωR

π−→ ωR/(f) −→ H−d+1ω
q
R −→ . . .

That sequence produced a map

(5.19.2) π : ωR −→ ωR/(f)

which is surjective sometimes (for instance, when R is Cohen-Macaulay so
that H−d+1ω

q
R = 0). Not for a scheme X with a Cartier divisor D > 0, this

map becomes ωX⊗OX(D) −→ ωD which is sometimes called the adjunction
map.

Lemma 5.20. Suppose R is an F -finite reduced ring and f ∈ R is a non-
zero divisor such that both R and R/(f) are locally equidimensional. Suppose
also that π : ωR −→ ωR/(f) is the map described above. Then the following
diagram commutes:

(5.20.1) ωR
π // ωR/(f)

F e∗ωR

T e?fp
e−1

OO

F e∗π
// F e∗ωR/(f)

T e

OO

Proof. Consider the following commutative diagram:

0 // R
·f

//

17→F e∗ fp
e−1

��

R //

F e

��

R/(f) //

F e

��

0

0 // F e∗R F e∗ ·f
// F e∗R // F e∗R/(f) // 0.
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We apply the functor RHomR(−, ω q
R) and take cohomology to obtain the

following:

(5.20.2) 0 // ωR
·f

// ωR
π // ωR/(f)

// H−d+1ω
q
R

0 // F e∗ωR

T e

OO

F e∗ ·f
// F e∗ωR

T e?fp
e−1

OO

// F e∗ωR/(f)
//

T e

OO

F e∗H−d+1ω
q
R

OO

The middle square is exactly what we wanted. �

Theorem 5.21. Suppose that (R,m) is an F -finite reduced local ring and
that f ∈ m ⊆ R is a non-zerodivisor so that R/(f) is also reduced and that
both R and R/(f) are equidimensional. Suppose that π : ωR −→ ωR/(f) is the
from (5.19.2) above. Then

τ(ωR/(f)) ⊆ π(τ(ωR)).

Proof. First notice that since T (F∗τ(ωR)) ⊆ τ(ωR) we have that

T (F∗f
p−1τ(ωR)) ⊆ τ(ωR)

as well. It follows from Lemma 5.20 that π(τ(ωR)) is compatible with T (on
ωR/(f)). We want to show that π(τ(ωR)) is nonzero at each minimal prime
of R/(f). However, at each minimal prime Q of R/(f), since f is a non-
zerodivisor andR/(f) is reduced, we see thatRQ is regular whereQ ∈ SpecR
is the corresponding prime (a minimal associated prime of the ideal (f)).
Hence τ(ωR)Q = (ωR)Q. Since RQ is also Cohen-Macaulay, πQ : (ωR)Q −→
(ωR/(f))Q surjects and so π(τ(ωR))Q is nonzero. Thus τ(ωR/(f)) ⊆ π(τ(ωR))
by its definition of the test module as the smallest module satisfying these
properties, see Definition 5.7. �

Remark 5.22. It would be nice if the above easily implied the following.
That if (R,m) is local and R/(f) is F -rational, then R is F -rational since in
that case both R/(f) and R are Cohen-Macaulay (and so π : ωR −→ ωR/(f) is
surjective). There’s a slight complication however, just because π(τ(ωR)) =

τ(ωR)
fωR∩τ(ωR) ⊇ ωR/(f) does not immediately imply that τ(ωR) = ωR. If R is
Gorenstein, so that ωR ∼= R this consequence does follow. Indeed, in that
case π is identified with the quotient map R −→ R/(f) and a submodule of
a ring is the entire ring if and only if it contains a unit, and that can be
checked modulo f ∈ m.

In particular, we have shown that if (R,m) is local, F -finite and Goren-
stein, and R/(f) is F -rational, then R is F -rational.

Removing the Gorenstein hypothesis can be handled by modifying the
above argument, but it requires more work that we have chosen to omit (this
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result was already deduced in an exercise in Chapter 1 and will be proven in
a different and particularly slick way in Chapter 7).

5.4. Exercises.

Exercise 5.1. Suppose R is a Noetherian F -finite reduced ring with canon-
ical module ωR. Prove that T (F∗τ(ωR)) = τ(ωR).

Hint: Note the containment ⊆ is definitional.

Exercise 5.2. With R an F -finite ring, suppose c ∈ R is not in any minimal
prime of R and that c ωR ⊆ τ(ωR). Prove that

τ(ωR) =
∑
e>0

T e(F e∗ (c ωR)) ⊆ ωR.

If R is Cohen-Macaulay, c ∈ R is not in any minimal prime, and c ωR ⊆
τ(ωR), then c is called a parameter test element.

Exercise 5.3. With notation as in Exercise 5.2, show that every strong test
element is a parameter test element.

Exercise 5.4. Prove Theorem 6.12.

Exercise 5.5. Suppose that X is a projective variety of finite type over a
field k. Show that X has a dualizing complex ω q

X so that for every closed
point x ∈ X, we have that (ω

q
X)x is a normalized dualizing complex for OX,x.

Exercise 5.6. [Smi97a] Let (R,m) be a d-dimensional local ring. We say a
submodule N ⊆ Hd

m(R) is F -stable if F : Hd
m(R) −→ Hd

m(F∗R) = F∗H
d
m(R)

is the map induced by Frobenius, then F (N) ⊆ F∗N . Suppose now that R
is F -finite and Cohen-Macaulay. Show that R is F -rational if and only if the
only F -stable submodules of Hd

m(R) are 0 and Hd
m(R).

Exercise 5.7. Suppose that (R,m) is a local ring and f ∈ m ⊆ R is a
non-zerodivisor. Suppose that R/(f) is normal, prove that R is normal.

Hint: Use the fact that R is normal if and only if it is R1 and S2.

Exercise 5.8. A weakly normal ring R is called WN1 if for each height
one prime Q of R, we have that the normalization morphism RQ −→ RN

Q is
unramified27. Show that Frobenius split rings are WN1.

Hint: The conductor ideal is compatible with a Frobenius splitting by
Chapter 1 Exercise 6.30.

27This means that QRN
Q is a radical ideal.
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Exercise 5.9. Suppose that (R,m) is an F -finite local Noetherian equidi-
mensional ring and f ∈ m is a non-zerodivisor such that R/(f) is reduced.
Show that there exists a unique smallest submodule M ⊆ ωR, which agrees
with ωR at every minimal associated prime of (f) and which is compatible
with T ? fp−1 : F∗ωR −→ ωR.

Further show that if π : ωR −→ ωR/(f) is the map of (5.19.2), then
π(M) = τ(ωR/(f)).



CHAPTER 3

Introduction to the global theory of Frobenius
splitting

In this chapter, we look at global implications of Frobenius splitting for
a scheme X of characteristic p > 0. The natural Frobenius map

OX → F∗OX
may split globally, a much stronger condition than splitting locally at each
stalk. In this case, the scheme X is said to be globally Frobenius split.

A projective scheme with a global splitting of Frobenius has all the lo-
cal restrictions on its singularities implied by local Frobenius splitting, but
also very strong vanishing theorems that force restrictions on its global ge-
ometry. For example, Frobenius splittings for a smooth projective X—that
is, particular maps in Hom(F∗OX ,OX)—give rise to particular kinds of ef-
fective anti-canonical divisors on X. In particular, smooth varieties with
many splittings of Frobenius—globally F -regular varieties— have big anti-
canonical bundles. Thus while local Frobenius splitting can be thought of as
a restriction on the singularities at each point of a variety, global Frobenius
splitting tells us something further about its positivity.

In this chapter, we discuss vanishing theorems for globally Frobenius split
and globally F -regular varieties, and restrictions these conditions impose on
global geometry. We also examine compatible splitting in the global setting,
and connect global Frobenius splitting for a projective variety X to local
Frobenius splitting at the vertex of the affine cone over X.

1. Global Frobenius splitting

Let X be an arbitrary scheme of prime characteristic p > 0.

Definition 1.1. We say that X is globally Frobenius split if the Frobe-
nius map OX → F∗OX splits in the category of OX -modules. Explicitly,
this means that there is a OX -module map φ : F∗OX → OX such that the
composition

OX
F−→ F∗OX

φ−→ OX
139
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is the identity map of the sheaf OX . Equivalently, X is globally Frobenius
split if there exists a global section

φ ∈ Hom(F∗OX ,OX) = H0(X,H omOX (F∗OX ,OX))

such that φ(F∗1) = 1 on every open set.

Global Frobenius splitting always implies local Frobenius splitting:

Lemma 1.2. Let X be a globally Frobenius split scheme.

(a) For every open set U ⊂ X, the ring OX(U) is Frobenius split.
(b) For every point x ∈ X, the local ring OX,x is Frobenius split.

Proof. Both statements follow by considering that if a composition

OX
F−→ F∗OX

π−→ OX
is the identity map, then this is true on every open set U , and, by taking
a direct limit, at every stalk. But because Frobenius commutes with lo-
calization, we know that (F∗OX)(U) is F∗(OX(U)) and also that the stalk
(F∗OX)x is F∗OX,x. �

Remark 1.3. For an affine scheme that is both Noetherian and F -finite,
global and local Frobenius splitting are equivalent by Proposition 3.17 in
Chapter 1.

Example 1.4. The scheme Pnk is globally Frobenius split, for any field k of
prime characteristic p.

Proof of Example 1.4. We prove the case when k is perfect, and
leave the reduction to this case as Exercise 1.2.

Fix homogeneous coordinates x0, x1, . . . , xn for Pnk . Recall that Pnk is cov-
ered by affine coordinate charts D+(xi) = Spec k[x0

xi
, . . . , xnxi ]. On each such

chart, we define a Frobenius splitting of the polynomial ring OPnk (D+(xi)) =

k[x0
xi
, . . . , xnxi ] by sending

F∗(λ(
x0

xi
)t0 . . . (

xn
xi

)tn) 7→

{
λ1/p(x0

xi
)t0/p . . . (xnxi )tn/p if tj/p ∈ Z

0 otherwise.

We claim that these local splittings can be glued together to give a global
splitting of Frobenius for Pn. Indeed, it is easy to check that these splittings
agree on the intersections

D+(xi) ∩D+(xj)
= D+(xixj)

= Spec k[x0
xi
, . . . , xnxi ,

xn
xi ]

= Spec k[xnxj , . . . ,
xn
xj
,
xj
xi ].
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because the monomials of one chart also are monomials of the other chart.
�

Remark 1.5. The splitting of Frobenius constructed in Example 1.4 is
sometimes called the canonical toric splitting of Pn. Indeed, this map is
the unique Frobenius splitting of Pn which respects the standard toric vari-
ety structure on Pn. More generally, upper cluster varieties—which can be
viewed as a union of affine toric varieties glued together by a collection of
cluster mutations— admit a canonical splitting of Frobenius generalizing the
splitting in Example 1.4. See [BMRS15, Thm 3.7]

Example 1.6. Many familiar varieties are Frobenius split, including all
G/Q where G is a reductive group and Q a parabolic subgroup, and all their
Schubert subvarieties; see [MR85].

Global Frobenius splitting is much stronger, in general, than local Frobe-
nius splitting at each point: splitting a map of OX -modules is a priori much
stronger than splitting at each stalk. The next example illustrates the dra-
matic difference:

Example 1.7. Let X be a smooth projective curve over an algebraically
closed field of characteristic p. Then X is locally Frobenius split because the
stalk of OX at each point is an F -finite regular local ring (by Proposition 3.16
in Chapter 1). However, global Frobenius splitting depends, among other
things, on the genus of our curve:

(i). If X has genus zero, then X is globally Frobenius split; this follows
from Example 1.4.

(ii). If the genus of X exceeds one, then X is not globally Frobenius split;
this will be proved in Corollary 1.13.

(iii). IfX has genus one, thenX is globally Frobenius split if and only if it
is an ordinary (non-super-singular) elliptic curve; see Example 1.29.

Remark 1.8. In Section 4, we explain how the local and global points of
view converge by translating global splittings of a projective variety X into
local splittings "at the vertex of the cone" over X.

We record the following fact, which can be proved similarly to the affine
case (see Proposition 3.9 in Chapter 1):

Proposition 1.9. Let X be a scheme of prime characteristic p. Then the
following are equivalent:

(a) X is globally Frobenius split;
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(b) There exists an e > 0 such that the iterated Frobenius

OX → F e∗OX
splits;

(c) For every e > 0, the iterated Frobenius OX → F e∗OX splits.

Remark 1.10. Global Frobenius splitting is often simply called Frobenius
Splitting in the literature dealing primarily with smooth projective varieties,
including [BK05]. When the context is clear, or when a statement is true for
both local and global Frobenius splitting, we sometimes do the same. Usually,
however, we decorate the term "Frobenius split" with the adverbs "globally"
or "locally" in the non-affine case in order to avoid confusion.

1.1. Vanishing Theorems for Frobenius Split Varieties. Global
Frobenius splitting places strong restrictions on the geometry of a projec-
tive variety. This is a result of the strong vanishing theorems implied by
Frobenius splitting, such as the following prototypical example:

Theorem 1.11. Let X be a Noetherian scheme of prime characteristic and
let L be an invertible sheaf on X. If X is globally Frobenius split and
H i(X,L t) = 0 for some i ≥ 0 and all t� 0, then H i(X,L ) = 0.

Before proving Theorem 1.11, we deduce some easy consequences.

Corollary 1.12. Let X be a projective variety over a field of prime charac-
teristic. If X is globally Frobenius split and L is an ample invertible sheaf
on X, then H i(X,L ) = 0 for all i ≥ 1.

Proof of Corollary. The corollary follows immediately by combin-
ing Theorem 1.11 with Serre Vanishing1, which says that an ample invertible
sheaf L on a projective scheme X always satisfies H i(X,L t) = 0 for suffi-
ciently large t and all i ≥ 1. �

Corollary 1.13. A smooth projective curve of genus two or more can not
be globally Frobenius split.

Proof of Corollary 1.13. Suppose a smooth projective curveX has
genus two or more. Then ωX is ample (see [Har77, Chapter V]), and so
H1(X,ωX) = 0 by Corollary 1.12. But now by Serre duality,2 H0(X,OX) is
also zero. This is a contradiction, as H0(X,OX) includes, for example, all
the constant functions on X. �

1[Har77, Chapter III, Prop 5.3]
2Serre Duality states that for an invertible sheaf L on a Cohen-Macaulay variety

X proper over a field k, the k-vector space Hi(X,L ) is canonically identified with the
k-vector space dual of HdimX−i(X,ωX ⊗L−1) [Har77, Chapter III, Thm 7.6].
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Example 1.14. Corollary 1.13 generalizes to higher dimension as well: if
the canonical sheaf ωX of a smooth projective variety X is ample, then X is
not globally Frobenius split; see Exercise 1.8.

Example 1.15. Suppose d > n+1. Then a smooth hypersurface X ⊂ Pn of
degree d in Pn is not globally Frobenius split. This follows from Example 1.14
because in this case, ωX is ample. Indeed, by the adjunction formula,3

KX = (KPn +X)|X = (−(n+ 1)H + dH)|X = (d− n− 1)H|X ,

so that ωX is the pull-back of OPn(d − n − 1) to X, and is ample when
d > n+1. In fact, in it not necessary to assume X is smooth—the canonical
module ωX exists and is invertible because X is Gorenstein, so the same
arguments apply.

The Kodaira Vanishing Theorem can fail for smooth varieties of charac-
teristic p > 0; see [Ray78], [LR97]. But for globally Frobenius split varieties,
the following weak version of Kodaira vanishing holds:

Corollary 1.16. Let X be a Cohen-Macaulay projective scheme over a field
of prime characteristic p. If X is globally Frobenius split and L is an ample
invertible sheaf, then H i(X,ωX ⊗L ) = 0 for all i ≥ 1.

Proof. To show that H i(X,ωX ⊗ L ) = 0, it is equivalent to show
that HdimX−i(X,L −1) = 0 by Serre duality. By Theorem 1.11, it suffices
to show that HdimX−i(X,L −t) = 0 for large t. Dualizing again, this is
equivalent to the vanishing of H i(X,ωX ⊗ L t) for large t, which follows
from the ampleness of L by Serre Vanishing. �

Remark 1.17. Corollary 1.16 is true without the Cohen-Macaulay hypoth-
esis; see Theorem 2.32.

Turning to the proof of Theorem 1.11, we need the following lemma:

Lemma 1.18. Suppose X is a scheme of characteristic p > 0 and L is an
invertible sheaf. Then

L ⊗ F e∗OX ∼= F e∗L
pe .

Proof. By the projection formula,4 there is a natural isomorphism
F e∗OX ⊗ L ∼= F e∗ (F e∗L ). But pulling back the invertible sheaf L via
(the e-th iterate of) Frobenius produces L pe : the transition functions pull
back under F e to their pe-th powers, which are the transition functions for
L pe . �

3Add reference to Hartshorne.
4[Har77, Chapter II, Exercise 5.1(d)]
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Proof of Theorem 1.11. Assume that X is globally Frobenius split.
Then all iterates F e of the Frobenius map split. Let π be a splitting of F e,
so that the composition

OX
F e→ F e∗OX

π→ OX
is the identity map. Tensoring with the invertible sheaf L , the composition
is still the identity map:

(1.18.1) L
F e→ F e∗OX ⊗L

π→ L .

Applying Lemma 1.18, we see that the composition

(1.18.2) L
F e→ F e∗L

pe π→ L ,

is again the identity map of sheaves. Taking cohomology, we have the identity
map of abelian groups as well:

H i(X,L ) ↪→ H i(X,F e∗L
pe)� H i(X,L ).

Since F is affine, H i(X,F e∗L
pe) = H i(X,L pe) [Har77, Chapter III, Exer-

cise 4.1 or Exercise 8.1]. ThusH i(X,L ) is a direct summand ofH i(X,L pe),
and so it will vanish if H i(X,L pe) does. �

Remark 1.19. The global consequences of splitting Frobenius, and indeed
the term Frobenius split, were first treated systematically by Mehta and Ra-
manathan in [MR85]. While Hochster and Roberts’ paper [HR74] ten years
prior focused on Frobenius splitting for local (or graded) rings, Mehta and
Ramanathan used global Frobenius splitting to study the global geometry
of Schubert varieties and related objects in algebro-geometric representa-
tion theory. Note also the work of Haboush, and independently, Anderson,
who used similar ideas in characteristic p > 0 to prove vanishing theorems
[Hab80], [And80].

1.2. Detecting global Frobenius splitting. Having established the
utility of global Frobenius splitting, we record some ways to prove a variety is
globally Frobenius split. First, we point out that contractions5 of Frobenius
split varieties are Frobenius split:

Proposition 1.20. Suppose that Y is globally Frobenius split scheme and
Y

π−→ X is a map of schemes such that the induced map OX −→ π∗OY splits
(for instance, we could have π∗OX = OY ). Then X is also globally Frobenius
split.

Proof. Since the Frobenius map OY −→ F∗OY on Y splits, pushing
forward to X, the map of sheaves π∗OY −→ π∗F∗OY splits as well. Hence

5By definition, a contraction is a map π : Y −→ X such that π∗OY = OX .
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the composition

(1.20.1) OX −→ π∗OY −→ π∗F∗OY
is a composition of split maps and hence split. Because Frobenius commutes
with all scheme maps, including π, we know that F∗π∗OY = π∗F∗OY (see
Remark 1.6 in Chapter 1, especially the diagram (1.6.1), or Exercise 1.4).
So the composition (1.20.1) can also be factored as

(1.20.2) OX −→ F∗OX −→ π∗F∗OY .
splits, and in particular OX −→ F∗OX splits. Thus X is globally Frobenius
split. �

Caution 1.21. Proposition 1.20 is wildly false if we replace "globally Frobe-
nius split" by "locally Frobenius split." For example, suppose Y π−→ X is a
resolution of singularities of a normal affine variety X of characteristic p.
Then π∗OY = OX and the variety Y , being non-singular, is locally Frobe-
nius split. But X can be far from Frobenius split.

Example 1.22. Let k be an algebraically closed field of characteristic p >
0. Consider the affine cone X = Spec k[x0, . . . , xn]/(F ) over the projective
hypersurface Proj k[x0, . . . , xn]/(F ) of degree d in Pn. The cone X has an
an isolated singularity at its vertex, which can be resolved by blowing up
the vertex to get a smooth variety Y and proper birational map Y

π−→ X.
The scheme Y is locally Frobenius split (because it is non-singular) and
π∗OY = OX . But the affine scheme X is not Frobenius split at the origin if
d > n (see Example 1.11 in Chapter 4). So Y can not be globally Frobenius
split either, by Proposition 1.20.

Remark 1.23. To adapt Proposition 1.20 to a statement about local Frobe-
nius splitting, we should assume that π is an affine map such that OX −→
π∗OY splits. In this case, local Frobenius splitting of Y does imply local
Frobenius splitting of X. See Exercise 1.10

As a corollary, we see that to check a finite type scheme over a field k is
globally (or locally) Frobenius split, we can always assume k is F -finite or
algebraically closed:

Corollary 1.24. Let X be a scheme of finite type over a field k prime
characteristic, and let L denote any field extension. If L ×k X is globally
(respectively, locally) Frobenius split, then so is X.

Proof. The point is that the natural projection map i : L×k X −→ X
satisfies OX −→ i∗OX is split (respectively, and i is affine). We leave the
details as Exercise 1.3. �

Remark 1.25. The converse of Corollary 1.24 is false in general, but true
with some additional restrictions. See Exercise 1.6 and Exercise 1.7.
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Corollary 1.26. Suppose X is an F -finite normal integral Noetherian scheme
and i : U ↪→ X is an open set whose complement has codimension ≥ 2. Sup-
pose that U is globally F -split, then X is also globally F -split.

Proof. Let i : U ↪→ X denote the inclusion of the open set. Since OX
is S2, i∗OU = OX (see Appendix B Theorem 4.9), and so the result follows
from Proposition 1.20. �

We conclude the section with a variant of Lemma 7.22 in Chapter 1.

Theorem 1.27. Let X be a smooth projective variety of dimension d and
prime characteristic. Then X is globally Frobenius split if and only if the
natural map induced by Frobenius

(1.27.1) Hd(X,ωX)→ Hd(X,ωX ⊗ F∗OX) ∼= Hd(X,F∗ω
p
X)

is injective.

Remark 1.28. The map (1.27.1) in Theorem 1.27 is injective if and only
if it is non-zero. This is because, by Serre duality, Hd(X,ωX) is k-dual to
H0(X,OX), which is a product of copies of k (one for each component of
X).

Before proving Theorem 1.27, let’s apply it to some examples.

Example 1.29. An elliptic curve is globally Frobenius split if and only if
Frobenius acts injectively on H1(X,OX), that is, if and only if X is ordinary,
see [Har77, Chapter IV, Section 4]. Indeed, for an elliptic curve, ωX = OX ,
so this statement is an immediate corollary of Theorem 1.27.

Example 1.30. Generalizing the previous application, assume that X ⊂ Pn
is a smooth hypersurface of degree n+ 1. Then OX ∼= ωX , and X is globally
Frobenius split if and only if the Frobenius map acts injectively on the one
dimensional vector space HdimX(X,OX).

Example 1.31. An Abelian variety X of characteristic p is Frobenius split
if and only if the Frobenius action HdimX(X,OX)

F−→ HdimX(X,OX) is
injective (equivalently, non-zero). The point is that ωX = OX for an Abelian
variety.

Proof of Theorem 1.27. To split the Frobenius map OX → F∗OX ,
we need to find some

φ ∈ Hom(F∗OX ,OX)

such that φ(F∗1X) = 1X . For this, it suffices if the map

(1.31.1) H0(X,H omOX (F∗OX ,OX)) −→ H0(X,OX)
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sending each φ to φ(F∗1) is surjective. By Serre duality [Har77, III, Thm
7.6], this is equivalent to the injectivity of

Extd(OX , ωX) −→ Extd(H omOX (F∗OX ,OX), ωX).

There is a natural isomorphism Extd(OX , ωX) ∼= Hd(X,ωX), so we need
only find another

Extd(H omOX (F∗OX ,OX), ωX) ∼= Hd(X,F∗OX ⊗OX ωX).

But because X is non-singular, the OX -module F∗OX is locally free, and so
there is a natural isomorphism

(1.31.2) F∗OX →H omOX (H omOX (F∗OX ,OX),OX).

Therefore,

(1.31.3) Extd(H omOX (F∗OX ,OX), ωX) ∼= Extd(OX , F∗OX ⊗ ωX)

by [Har77, III, Prop 6.7], which is isomorphic to Hd(X,F∗OX ⊗ ωX) by
[Har77, III, Prop 6.3]. Putting these isomorphisms together we see that
global Frobenius splitting is equivalent to the injectivity of

Hd(X,ωX) −→ Hd(X,F∗OX ⊗ ωX)

as desired. This completes the proof of Theorem 1.27. �

Remark 1.32. Theorem 1.27 holds when X is assumed only normal and
proper over a field; see Theorem 2.16. Our proof goes through because, in
this setting, Serre duality holds "at the top spot" (see Exercise 1.12 ) and
the isomorphism (1.31.3) holds (see Exercise 1.12). Alternatively, for normal
projective varieties, we can see that Theorem 1.27 holds by arguing on an
affine cone over X; see ??.

1.3. Exercises.

Exercise 1.1. LetX be an arbitrary scheme of prime characteristic. For any
point x ∈ X, show that the stalk of the Frobenius map OX,x

F−→ (F∗OX)x is
the Frobenius map of the stalk OX,x

F−→ F∗(OX,x).

Hint: See Lemma 1.11 in Chapter 1.

Exercise 1.2. Prove Example 1.4 in the general case when k is not neces-
sarily perfect.

Hint: You can use the fact that k is Frobenius split to construct an explicit
splitting, or make use of Corollary 1.24.

Exercise 1.3. Prove Corollary 1.24.

Hint: See Proposition 1.20 and Remark 1.23.
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Exercise 1.4. Suppose X π−→ Y is a map of schemes. Show that π∗FXe∗M
is naturally isomorphic to FY e∗π∗M for any sheaf of OX -modules M .

Hint: Revisit Chapter 1 Remark 1.6, especially the diagram (1.6.1).

Exercise 1.5. Suppose that X is a globally Frobenius split scheme over a
field k. Prove that X ×k A1

k is also globally Frobenius split.

Exercise 1.6. Let k be the field Fp(t). Show that finite type k-scheme
X = Spec k[x]/(xp − t) is Frobenius split, but X ⊗ k is not, where k is the
algebraic closure of k. C.f. Remark 1.25.

Exercise 1.7. Suppose that X is an F -split variety proper over an F -finite
field k and k ⊆ H0(X,OX) is a separable field extension. Then for any
algebraic extension L ⊇ k we have that X ×k L is also F -split. For a hint
see [GLP+15, Lemma 2.4].

Exercise 1.8. Show that if a non-singular projective variety has ample
canonical sheaf, then it is not globally Frobenius split.

Exercise 1.9. Suppose k is a field and let X denote the blowup of A2
k at

the origin. Show that X is globally Frobenius split.

Exercise 1.10. Let Y π−→ X be an affinemap of Noetherian F -finite schemes
such that the induced map OX −→ π∗OY splits. Prove that if Y is locally
Frobenius split, then X is too.

Hint: See Proposition 3.5 in Chapter 1.

Exercise 1.11. Suppose thatX is a globally Frobenius split Cohen-Macaulay
variety and L is an invertible sheaf. Prove that if H i(X,ωX ⊗L t) = 0 for
all t� 0 and some fixed i, then H i(X,ωX ⊗L ) = 0.

Exercise 1.12. Suppose that X is a d-dimensional normal proper variety
over a field k. Further suppose that M is coherent OX -module. We will use
Grothendieck duality to prove that there is an natural isomorphism

(1.32.1) H0(X,H om(M ,OX)) ∼= Hd(X,M ⊗ ωX)∨,

where the symbol (−)∨ indicates k-vector space dual. This will prove The-
orem 1.27 in the normal (possibly singular) case.

(a) First verify that we have a natural isomorphism

H0(X,H om(M ,OX)) ∼= Hom(M ,OX).
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(b) Next, recall that X is normal so that ωX is locally free in codimen-
sion one.6 Use this to show that:

Hom(M ,OX) ∼= Hom(M ⊗ ωX , ωX).

(c) Using a spectral sequence of low degree terms, show that

Hom(M⊗ωX , ωX) ∼= H0RHom(M⊗ωX , ω
q
X [−d]) = H−dRHom(M⊗ωX , ω

q
X).

(d) Use Grothendieck duality, Appendix C Theorem 4.1, to show that
for any coherent sheaf F that

H−dRHom(F , ω
q
X) ∼= Hd(X,F )∨

Conclude that (1.32.1) holds.

Exercise 1.13. A sheaf F on a projective variety X is said to be globally
generated at a point p ∈ X if there exist sections s1, . . . , sn ∈ H0(X,F )
such that the restriction of the si to the stalk Fp generate Fp as an OX,p-
module. We say F is globally generated if it is globally generated at all
p ∈ X.

Suppose X is a projective Cohen-Macaulay globally Frobenius split va-
riety of dimension d and L is a globally generated ample line bundle. Prove
that ωX ⊗L d+1 is globally generated.

Hint: Use the following criterion for a coherent sheaf F to be globally gener-
ated: Given a globally generated ample line bundle L , if H i(X,F⊗L −i) =
0 for all i > 0, then F is globally generated.7

2. Global Frobenius splitting along divisors

Globally F -regular varieties are special kinds of Frobenius split varieties
with an abundance of splittings of Frobenius— they are eventually glob-
ally split along every effective divisor. They satisfy even stronger vanishing
theorems, and hence have stronger restrictions on their geometry. For ex-
ample, among smooth projective curves of characteristic p, only the genus
zero curves—those isomorphic to P1—are globally F -regular. Many familiar
classes of varieties are globally F -regular including projective toric varieties,
Grassmannians and other homogeneous spaces, and certain moduli spaces.

6One really only needs that ωX is locally free in codimension 1 and that X is S2 for
this step, so in fact the result holds if the normality hypothesis is weakened to S2 and
Gorenstein in codimension 1.

7This condition is called being Castelnuovo-Mumford 0-regular ; see [Laz04a, Section
1.8].
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2.1. Frobenius Splitting Along Divisors. Let X be a Noetherian
normal scheme of characteristic p > 0. Because Noetherian normal schemes
are a disjoint union of normal components, there is little loss of generality
in assuming X is integral.

Now for a Weil divisor D on X, there is an associated reflexive8 sub-
sheaf OX(D) of the (locally) constant sheaf K(X) of rational functions on
X defined on each open set U by

OX(D)(U) = {f ∈ K(X) | divUf +D|U ≥ 0}.
If D is effective, therefore, there is an inclusion of sheaves

(2.0.1) OX ↪→ OX(D)

which, on each open U , is determined by sending 1 to the section 1 ∈ OX(D).
Thus for all e ∈ N, there is a natural map of OX -modules

(2.0.2) OX
F e−−→ F e∗OX ↪→ F e∗OX(D) 1 7→ F e∗ 1 7→ F e∗ 1

obtained by composing the Frobenius map with the Frobenius pushdown of
the natural inclusion (2.0.1).

Now, if X is globally Frobenius split, we can ask whether a splitting
F e∗OX → OX extends to the larger OX -module F e∗OX(D), or equivalently,
whether the composition map (2.0.2) splits as a map of OX -modules. Such
a splitting would be a map

φ ∈ HomX(F e∗OX(D),OX)

such that φ(F e∗ 1) = 1 on every open set U ⊂ X. This brings us to the
important notion of Frobenius splitting along a divisor:

Definition 2.1. Let X be a normal Noetherian scheme of characteristic
p > 0, and let D be an effective divisor on X. The scheme X is globally
e-Frobenius split along D if the map

OX −→ F e∗OX(D) 1 7→ F e∗ 1

splits as a map of OX -modules.

We say that X is globally eventually Frobenius split along D if
there exists e > 0 such that X is e-Frobenius split along D.

Remark 2.2. Clearly, if X is globally eventually Frobenius split along some
effective divisor D, then X is globally Frobenius split, by restricting the
splitting to the subsheaf F e∗OX .

Remark 2.3. Definition 2.1 generalizes the notion of Frobenius splitting
along an element c from Definition 4.1 in Chapter 1. Indeed, a principal
divisor on an affine scheme X = SpecR is nothing more than a divisor D of

8For background on reflexive sheaves, see [Sta19, Tag 0AVT].

https://stacks.math.columbia.edu/tag/0AVT
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the form div(c) for some nonzerodivisor c of R. Now, the reader will readily
check that X is e-Frobenius split along D if and only if R is e-Frobenius split
along c (Exercise 2.1).

Remark 2.4. Clearly, if X is globally Frobenius e-split along D, then any
open set U ⊂ X is globally Frobenius e-split along D|U .

The following facts generalize analogous statements for rings; Compare
with Proposition 4.6, Lemma 4.7, and Corollary 4.11 in Chapter 1:

Proposition 2.5. Suppose X is a normal Noetherian F -finitescheme of
characteristic p > 0. Let D and D′ be effective divisors on X.

(a) If D′ ≥ D and X is globally e-Frobenius split along D′, then X is
globally e-Frobenius split along D.

(b) If X is globally e0-Frobenius split along D, then X is globally e-
Frobenius split along D for all e ≥ e0.

(c) If X is globally e-Frobenius split along D and globally e′ Frobenius
split along D′, then X is globally (e+ e′) Frobenius split along D +
peD′.

(d) In particular, X is eventually globally Frobenius split along D +D′

if and only if X is eventually globally Frobenius split along D and
along D′.

2.2. Digression on handling divisors on singular varieties. Propo-
sition 2.5 can be proved using the same strategies we used for rings, after we
have sorted out how to work with divisors on singular varieties.

On a non-singular scheme, all divisors are locally principal, so all sheaves
OX(D) are invertible. This is typically not the case on a singular scheme.9
On a normal Noetherian scheme X, however, the sheaves OX(D) are always
rank one and reflexive. We saw this reflexive definition appear in a slightly
different context

Reflexive sheaves on a Noetherian scheme X are those coherent sheaves
F for which the natural map to the double dual

F −→H omOX (H omOX (F ,OX),OX)

is an isomorphism; more generally, the double dual, also denoted F S2 , is
called the reflexive hull of F .

Reflexive sheaves on a normal Noetherian scheme X are uniquely de-
termined by their restrictions to any open set U whose complement has

9The reader mainly interested in non-singular varieties can skip this discussion, and
simply assume X is non-singular for the rest of this section; the theorems in this section
are still interesting in this case.
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codimension two or more: if i : U ↪→ X is the inclusion, then i∗ and i∗ define
an equivalence of categories10 between the reflexive sheaves on X and the
reflexive sheaves on U . Indeed, on a Noetherian integral scheme, a torsion-
free sheaf F being reflexive is equivalent to there being an open set U ⊆ X
whose complement has codimension ≥ 2 and such that F is locally free of
finite rank [Sta19, Tag 0AY6].

We apply this idea mainly when X is a normal variety over a field k (or
an F -finite normal integral scheme, or an excellent normal integral scheme
more generally), in which case we can take U to be the non-singular locus. In
this case every divisor D restricts to a locally principal (or Cartier) divisor
on U , and the sheaf OX(D) is the unique reflexive extension of the invertible
sheaf OU (D|U ). We record some basic facts as a lemma for future reference:

Lemma 2.6. Let X be a normal excellent Noetherian scheme, and let D
and D′ be Weil divisors on X. Then

(a) The reflexive sheaf OX(D + D′) is naturally isomorphic to the re-
flexive hull of the sheaf OX(D)⊗OX(D′);

(b) In prime characteristic, the reflexive hull of OX(D)⊗F e∗OX(D′) is
F e∗OX(D′ + peD).

Proof. Statement (a) follows easily from the discussion above: since
D and D′ are Cartier on the non-singular locus, we have OU (D|U ) ⊗OU
OU (D′|U ) ∼= OU (D|U + D′|U ) which agrees with the restriction of OX(D +

D′) to U . Similarly, (b) follows, using the projection formula [Har77, II,
Exercise 5.1(d)] on U . See also [Sta19, Tag 0AVT] or Appendix B (6.3.1)
for additional discussion. �

Proof of Proposition 2.5. For (a), our hypothesis ensures that the
composition

OX −→ F e∗OX ↪→ F e∗OX(D) ↪→ F e∗OX(D′)

splits for some e > 0. Restricting a splitting to the subsheaf F e∗OX(D), we
get a splitting of the composition OX −→ F e∗OX ↪→ F e∗OX(D) as well.

For (b), it suffices to show that if

OX // F e∗OX(D)

1 � // F e∗ 1

splits, then so does the corresponding map with e+ 1. Applying the functor
F∗, we have a split map

F∗OX −→ F e+1
∗ OX(D).

10See the discussion in Subsection 2.2 of Chapter 2, or Appendix B.

https://stacks.math.columbia.edu/tag/0AY6
https://stacks.math.columbia.edu/tag/0AVT
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Finally, by (a), we know that X is e-Frobenius split along the trivial divisor,
and so globally Frobenius split. Hence composing the split maps

OX −→ F∗OX −→ F e+1
∗ OX(D),

we see that X is also globally (e+ 1)-Frobenius split along D.

For (c), we are given that the natural maps

OX −→ F e∗OX(D) and OX −→ F e
′
∗ OX(D′)

are split. Now, tensoring the second map with OX(D), we have a split map

OX(D) −→ OX(D)⊗ F e′∗ OX(D′).

Taking the reflexive hull of this map11, we get a split map

OX(D) −→ F e
′
∗ OX(pe

′
D +D′),

by Lemma 2.6 and Exercise 2.4. Applying the functor F e∗ , we have a split
map

F e∗OX(D) −→ F e+e
′

∗ OX(pe
′
D +D′).

Therefore, composing the split maps

OX −→ F e∗OX(D)→ F e+e
′

∗ OX(pe
′
D +D′),

we have a split map, completing the proof.

The final statement (d) follows from the previous three. �

2.3. Global F -regularity. We now introduce a global form of strong
F -regularity.

Definition 2.7. A normal Noetherian F -finite scheme is globally F -regular
if it is globally eventually Frobenius split along every effective divisor.

Proposition 2.8. The following are equivalent for an affine scheme X =
SpecR:

(a) The scheme X is globally F -regular;
(b) For all x ∈ X, the local ring OX,x is strongly F -regular;
(c) The ring R is strongly F -regular.

Proof. We may assume X is Noetherian, F -finite and normal since all
three conditions imply these features, see Chapter 1 Theorem 4.30.12 The
equivalence of (b) and (c) were proved in Proposition 4.23 in Chapter 1.

11Equivalently, double dualizing, or equivalently, applying the functor i∗ ◦ i∗ where
i : U ↪→ X is the inclusion of the non-singular set U of X

12Furthermore, we might as well assume R is a domain (equivalently, that X is
integral), since it is a finite product of normal domains (respectively, disjoint union of
normal components) and we can argue on each factor.
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To see (a) implies (c), assume X = SpecR is globally F -regular. Take
any nonzerodivisor c, and consider the principal Cartier D = div(c) on X =
SpecR. By assumption, X is eventually Frobenius split along div(c), which
is equivalent to R being eventually Frobenius split along c (Remark 2.3).

For the converse, assume that R is strongly F -regular and let D be an
effective divisor on X = SpecR. Consider the ideal sheaf OX(−D) of the
subscheme D on X. Taking any nonzerodivisor c ∈ OX(−D), we know that
c vanishes everywhere on D, and so div(c) ≥ D. Now because R is eventually
Frobenius split along div(c), it follows that X is eventually Frobenius split
along D by Proposition 2.5 (a). This completes the proof. �

Corollary 2.9. If X is globally F -regular, then every local ring OX,x is
strongly F -regular, that is, X is locally F -regular.13

Proof. This follows easily from Remark 2.4 and Proposition 2.8, so is
left as an exercise. �

Remark 2.10. It is natural to ask, given Proposition 2.8, whether global
F -regularity is equivalent to eventual Frobenius splitting along all effective
Cartier (that is, locally principal) divisors. This is true for quasi-projective
varieties (see Exercise 2.8) but false in general. Indeed, there are complete
varieties that admit no non-trivial Cartier divisor—some globally F -regular
and some not. See Example 2.12 and Exercise 2.12.

Remark 2.11. Following up with the idea in Remark 2.10, given an invert-
ible sheaf L on a scheme X and a non-zero global section c ∈ H0(X,L ),
we can say that X is globally eventually Frobenius split along the section
c ∈ L (X) if there exists an e ∈ N such that the composition

OX
F e−−→ F e∗OX −→ F e∗L 1 7→ F e∗ 1 7→ F e∗ c

splits as a map of OX -modules. We can ask whether X is globally F -regular
if and only if X is eventually globally split along all non-zero global sections
of all invertible sheaves. Again, this is the case for quasi-projective X (see
Exercise 2.8), but not in general.

Example 2.12.

Remark 2.13. Global F -regularity was first defined in [Smi00a] though
the approach we take here is from [SS10].

2.4. Criterion for global F -regularity. To check a variety is globally
F -regular, it is not necessary to check eventual Frobenius splitting along ev-
ery effective divisor. As in the affine setting,14 it is enough to check eventual
Frobenius splitting along one well-chosen effective divisor:

13Technically, we should say X is locally strongly F -regular, but enough is enough.
14see Theorem 5.1 in Chapter 1
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Theorem 2.14. Suppose X is a normal F -finite scheme and B ⊆ X is an
effective Weil divisor such that the open set X\Supp(B) is globally F -regular.
Then X is globally F -regular if and only if X is eventually globally Frobenius
split along B.

Remark 2.15. If X is a smooth projective variety, we can "test" for global
F -regularity along any ample divisor B on X, since in this case, X \Supp(B)
is affine and regular, hence globally F -regular (Proposition 2.8). More gen-
erally, if X is normal and quasiprojective, we can always find some am-
ple B containing the closed locus of non-strongly F -regular points; again
X \ Supp(B) is globally F -regular. See Exercise 2.7.

Proof of Theorem 2.14. Fix a Weil divisor D ≥ 0 on X. We need
to show that OX −→ F e∗OX(D) splits for some large e. Because X is normal,
it is the disjoint union of its components, and we can check the splitting
separately on each. So there is no loss of generality in assuming X is integral.

Let U = X \ B. Since U is globally F -regular, there exists a splitting
F e1∗ OU (D) −→ OU for some e1 ∈ N. Letting K(X) denote the function field
of X, we have an induced splitting

ψ1 : F e1∗ K(X) −→ K(X)

by taking the stalk at the generic point. Restricting ψ1 to the subsheaf
F e1∗ OX(D), we have a map

ψ : F e1∗ OX(D) −→ K(X).

The image of ψ is coherent, and becomes OU when restricted to U = X \B,
so the image of ψ is contained in OX(nB) for some n� 0. Thus we have a
map

ψ : F e1∗ OX(D) −→ OX(nB).

By hypothesis, X is globally eventually Frobenius split along B, and
hence along nB (by Proposition 2.5). So there exists e > 0 and a map
φ ∈ Hom(F e∗OX(nB),OX) such that φ(F e∗ 1) = 1. The composition φ ◦ F e∗ψ
(or φ ?ψ in the notation of Subsection 4.2 in Chapter 1) is a global (e+ e1)-
Frobenius splitting along D. �

Our next goal is to generalize the criterion for global Frobenius splitting
in Theorem 1.27 to global F -regularity.

Theorem 2.16. Let X be a normal proper variety over a field of positive
characteristic and dimension d. For an effective divisor D on X, the map
OX −→ F e∗OX(D) splits if and only if the map induced by Frobenius

(2.16.1) Hd(X,ωX)→ Hd(X,ωX ⊗ F e∗OX(D))

is injective.
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Proof. Splitting the map OX −→ F e∗OX(D) is equivalent to the surjec-
tivity of the natural map

H0(X,H om(F e∗OX(D),OX)) = Hom(F e∗OX(D),OX) −→ H0(X,OX)

sending φ to φ(1OX(X)). By Serre-Grothendieck duality,15 this is equivalent
to the injectivity of

(2.16.2) Extd(OX , ωX) −→ Extd(H om(F e∗OX(D),OX), ωX).

If X is non-singular, the sheaf H om(F e∗OX(D),OX) is locally free, so the
natural double map

F e∗OX(D) −→H om(H om(F e∗OX(D),OX),OX)

is an isomorphism. In this case, the map (2.16.2) becomes

Extd(OX , ωX) −→ Extd(OX , ωX ⊗ F e∗OX(D))

by [Har77, III, Prop 6.7], which is naturally identified with

Hd(X,ωX) −→ Hd(X,ωX ⊗ F e∗OX(D))

by [Har77, III, Prop 6.3]. This completes the proof when X is non-singular.
More generally, if X is normal, the same argument goes through using Ex-
ercise 1.12. �

To check whether or not a variety X is globally F -regular, therefore, we
can check that the map (2.16.1) is injective for every effective divisor D on
X. Alternatively, rephrasing of Theorem 2.14 we can check injectivity along
one, well-chosen divisor:

Corollary 2.17. Let X be a normal proper variety and let D be an effective
divisor such that X \ Supp(D) is globally F -regular. If

Hd(X,ωX)→ Hd(X,ωX ⊗ F e∗OX(D))

is injective for some e > 0 then X is globally F -regular.

As an application, we see easily that proper varieties with trivial canon-
ical module are never globally F -regular:

Example 2.18. Any proper variety for which ωX is trivial—such as a
Calabi-Yau or Abelian variety—cannot be globally F -regular. Indeed, as-
suming ωX ∼= OX , suppose that X is globally F -regular. For D effective,
then, there is an e such that

k ∼= Hd(X,ωX) −→ Hd(X,ωX ⊗ F e∗OX(D))

15This is proved for projective X in [Har77, Chap III, Thm 7.6], and stated in the
proper case in the remarks there before Lemma 7.3 [Har77, Chap III]. See also REF TO
APPENDIX.
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is injective. This forces Hd(X,F e∗OX(D)), and hence Hd(X,OX(D)), to be
non-zero (the latter because F e is affine). But now, dually,16 H0(X,OX(−D))
is non-zero, a contradiction because D is effective (see Exercise 2.19).

Example 2.19. A hypersurface of degree d in Pn is never globally F -regular
if d > n. Indeed, for d > n+ 1, the hypersurface is not even Frobenius split
(see Example 1.15), but when d = n+1, we have ωX ∼= OX , so is not globally
F -regular by Example 2.18.

Example 2.20. The only smooth projective curves that are globally F -
regular have genus zero. Indeed, we have already seen that curves of genus
two or more are not globally Frobenius split (Corollary 1.13), and a genus
one curve has ωX ∼= OX , so is not globally F -regular by Example 2.18.

2.5. Frobenius splitting and anti-canonical divisors. A canoni-
cal divisor on a normal Noetherian scheme is any divisor KX such that
OX(KX) ∼= ωX , where ωX is a fixed canonical module. Global Frobenius
splittings, and generalizations, are tied closely to canonical divisors.

Theorem 2.21. Let X be a normal proper scheme over an F -finite field
k. If X is Frobenius split along some effective divisor A, then there is an
effective divisor D on X such that A+D is Q-linearly equivalent to −KX .

Proof. Fix a canonical divisor KX . Because X is eventually Frobenius
split along A, by Theorem 2.16, the map

Hd(X,OX(KX)) ↪→ Hd(X,OX(KX)⊗F e∗OX(A)) ∼= Hd(X,F e∗OX(peKX+A))

is a split injection (the isomorphism follows from Exercise 2.9 and Lemma 2.6).
Because Hd(X,OX(KX)) 6= 0, it follows that Hd(X,F e∗OX(peKX+A)) 6= 0,
so also Hd(X,OX(peKX + A)) is non-zero as the Frobenius map is affine.
Now, dualizing over k, also

H0(X,OX((1− pe)KX −A)) 6= 0;

this is simply Serre duality if X is smooth; see Exercise 2.10 for the general
case. This means there is some effective divisor D ∈ |(1 − pe)KX − A|. In
other words, there is an effective D such that A+D ∼ (1− pe)KX . In other
words, −KX is Q-linearly equivalent to A+D. �

Corollary 2.22. A normal globally Frobenius split projective variety has
non-positive Kodaira dimension.

The Kodaira dimension of normal projective variety X over k is the
integer δ such that the function

m 7→ dimkH
0(X,OX(mKX))

mδ

16See Exercise 2.10 for the singular case of this form of Serre duality.
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is bounded away from both zero and∞. In other words, dimkH
0(X,OX(mKX))

grows like a polynomial of degree δ. Equivalently, assume KX is (Q-)Cartier,
the Kodaira dimension is the dimension of the image of the rational map
X 99K Pn given by the global sections of OX(mKX) for m � 0. See
[KM98].

Proof. By Theorem 2.21, if X is globally Frobenius split, then −KX is
Q-linearly equivalent to an effective divisor. But if the Kodaira dimension of
X is positive, then there are m for which H0(X,OX(mKX)) 6= 0, so KX is
also Q-linearly equivalent to an effective divisor. But on a normal projective
variety, a divisor can’t be linearly equivalent to both an effective and an
anti-effective divisor; Exercise 2.19. �

Recall that a divisor D on a normal integral variety is big17 if for some
m > 0, there are global sections s0, . . . , sn ∈ H0(X,OX(mD)) such that
the corresponding rational map X 99K Pn to projective space has image of
dimension equal to dimX. Equivalently, if X is proper over k, this says that
the function m 7→ dimkH

0(X,OX(mD)) grows likes a polynomial of degree
dimX as m goes to infinity.

Corollary 2.23. The anti-canonical divisor of a globally F-regular projective
variety is big.

Proof. Taking A to be ample in Theorem 2.21, we see that −KX is
Q-linearly equivalent to an ample divisor plus an effective divisor, which
implies that −KX is big by [KM98, 2.60]; the extension to non-Cartier D
is carefully checked in [KP17, 4.6]. �

Remark 2.24. The bigness of −KX is akin to positive curvature of the
projective variety X [].

Remark 2.25. Even if X is not projective, but only proper, Theorem 2.21
still produces an abundance of effective Q-divisors Q-linearly equivalent to
−KX : for each choice of effective divisor A, we get some effective D such
that A + D is Q-linearly equivalent to −KX . The union of the supports of
all such divisors clearly covers X.

17While bigness is usually defined in the literature only for Q-Cartier D, the definition
makes sense for any divisor on a normal variety; the map to projective space won’t be
defined at any point where D is not Cartier, but the locus of such points is a closed set of
codimension two or more in any case. Note also that restricting to the non-singular set U ,
whereD is Cartier, H0(X,OX(mD)) = H0(U,OU (mD|U )) for allm, using the equivalence
of categories of reflexive sheaves on U and X given by i∗ and i∗ where i : U ↪→ X in the
inclusion of the non-singular set of X; see also Exercise 2.9. See [KM98] or [KP17, §4]
for more on big divisors.
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The next result makes the relationship between Frobenius splitting and
anti-canonical divisors even more explicit:

Theorem 2.26. Suppose that X is a normal variety, or more generally any
F -finite normal Noetherian scheme. Then there is a natural isomorphism

(2.26.1) H om(F e∗OX ,OX) ∼= F e∗OX((1− pe)KX).

Proof. First, assuming X is non-singular, we observe that this follows
easily from the projection formula and Lemma 2.12 or Definition-Proposition 4.5
from Chapter 2:

H om(F e∗OX ,OX)
∼= H om((F e∗OX)⊗OX(KX),OX(KX))
∼= H om(F e∗OX(peKX),OX(KX))
= H om(F e∗OX(peKX), ωX)
∼= F e∗ H om(OX(peKX), ωX)
∼= F e∗ H om(OX(peKX),OX(KX))
∼= F e∗OX((1− pe)KX).

More generally, when X is singular, the desired isomorphism holds on the
non-singular locus U (whose complement has codimension ≥ 2), and because
the sheaves

H om(F e∗OX ,OX) and F e∗OX((1− pe)KX)

are reflexive (see Exercise 2.14), the isomorphism extends to an isomorphism
on all of X. �

Remark 2.27. Using the same argument as in the proof of Theorem 2.26,
the reader will easily verify that

(2.27.1) H om(F e∗OX(D),OX) = F e∗OX((1− pe)KX −D)

for any divisor D on a normal F -finite Noetherian scheme; see Exercise 2.18.

2.6. Vanishing theorems for globally F -regular varieties. An in-
vertible sheaf L on a variety X proper over some field k is nef 18 if the pull
back of L to each closed irreducible curve in X has non-negative degree.
Alternatively, a Cartier divisor D is nef on X if D · C ≥ 0 for all closed
curves C in X.

Example 2.28. All ample invertible sheaves are nef, as is the trivial sheaf
and all torsion invertible sheaves. More generally, any globally generated
invertible sheaf is nef.

Theorem 2.29. Let X be a globally F -regular projective variety. Then
H i(X,L ) = 0 for any nef invertible sheaf L . In particular, H i(X,OX) = 0
for all i > 0.

18See §1.4 of [Laz04a] for a detailed discussion of nefness.
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Theorem 2.29 follows easily from the following more general vanishing
theorem:

Theorem 2.30. Suppose that a Noetherian normal scheme X is globally
eventually Frobenius split along some effective divisor D. If L is an invert-
ible sheaf on X such that H i(X,L n(D)) = 0 for some fixed i and all n� 0,
then H i(X,L ) = 0.

More generally, for any divisor D′, if H i(X,OX(nD′ + D)) = 0 for
n� 0, then H i(X,OX(D′)) = 0.

Proof. Because X is globally eventually Frobenius split along D, the
map

(2.30.1) OX → F e∗OX(D) 1 7→ F e∗ 1

splits for all large e by Proposition 2.5. Now tensoring with the reflexive
sheaf OX(D′), the induced map

OX(D′)→ OX(D′)⊗ F e∗OX(D)

splits, and so passing to the reflexive hull, also

(2.30.2) OX(D′)→ F e∗ (OX(peD′ +D))

splits (using Lemma 2.6 and Exercise 2.4). This induces a split inclusion of
cohomology groups

H i(X,OX(D′)) ↪→ H i(X,F e∗ (OX(peD′ +D))) ∼= H i(X,OX(peD′ +D))

for all e� 0, with the isomorphism holding because the Frobenius map F e
is affine. Now it is immediate that if H i(X,OX(peD′+D)) vanishes for any
e > 0, then H i(X,OX(D′)) vanishes as well. �

Proof of Theorem 2.29. Suppose L is nef. Fix an ample effective
divisor H. Then L n(H) is ample for all n ≥ 0 [Laz04a, Thm 1.4.10]. Since
X is globally Frobenius split, we know H i(X,L n(H)) = 0 for all n ≥ 0
and all i ≥ 1 by Corollary 1.12. Now it follows from Theorem 2.30 that
H i(X,L ) = 0 for all i ≥ 1. �

Another Corollary of Theorem 2.29 is a version of the Kawamata–Viehweg
Vanishing theorem for globally F -regular varieties.

Corollary 2.31. Let X be a globally F -regular projective variety and let L
be a big and nef invertible sheaf on X. Then H i(X,ωX ⊗ L ) = 0 for all
i > 0.

Proof. Since X is globally F -regular, it is locally F -regular, hence
Cohen-Macaulay, so we can use Serre Duality. By Serre duality [Har77,
III Thm 7.6], it suffices to show H i(X,L −1) = 0 for all i < dimX.
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Because L is big and nef, we can find an effective Cartier divisor D
such that Lm(−D) is ample for all m � 0 [Laz04a, Ex 2.2.19]. But then
H i(X,ωX ⊗ (Lm(−D))n) = 0 for all i > 0 and all n � 0 by Serre Van-
ishing. So by Serre Duality, again, H i(X, (L −m(D))n) = 0 for all large n
and all i < dimX. Since X is Frobenius split, Theorem 1.11 implies that
H i(X,L −m(D)) = 0 for all i < dimX. Now by Theorem 2.30, we conclude
that H i(X,L −1) = 0. �

We now generalize Corollary 1.16 by removing the Cohen-Macaulay hy-
pothesis. For this, we will use the dual-to-Frobenius map discussed in Chap-
ter 2.

Theorem 2.32. Let X be a locally equidimensional and connected globally
Frobenius split projective scheme over an F -finite field of prime characteristic
p > 0. For any ample invertible sheaf L, we have H i(X,ωX ⊗L) = 0 for all
i ≥ 1.

Proof. Choose an embedding i : X −→ Pn. The split injection OX ↪→
F e∗OX induces a split surjection F e∗ωX � ωX . This continues to be a split
surjection after twisting by any ample invertible sheaf L and taking coho-
mology, and so we have surjections

H i(F e∗ (ωX ⊗ Lp
e
)) ∼= H i((F e∗ωX)⊗ L)� H i(ωX ⊗ L).

The left side vanishes by Serre vanishing, [Har77, III, Prop. 5.3], and thus
so does the right as claimed. �

The proof of Theorem 2.32 did not use much about the canonical module
ωX : we just needed a module19 M and a split surjection F e∗M −→ M .
Therefore, we have the following corollary of the proof of Theorem 2.32:

Corollary 2.33. Suppose X is a projective scheme over an F -finite field of
prime characteristic p > 0 and suppose M is any coherent sheaf on X that
admits a split surjective map F e∗M −→M . Then for any ample line bundle
L, we have that H i(X,M ⊗ L) = 0 for i > 0.

As an application, we can take the modules M to be the cohomologies
of the dualizing complex of X. With X as in Theorem 2.32, for every integer
i, we have a map of sheaves on X

F e∗Hiω
q
X −→ Hiω

q
X ,

with the interesting values of i in the range from i = −dimX to i = 0. If X
is globally Frobenius split, these maps are split surjections. We then obtain
the following corollary, which substantially generalizes Corollary 1.16:

19Modules with such a dual Frobenius action, split or not, are called Cartier modules
and will be studied in detail in Chapter 8.
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Corollary 2.34. Let X be an equidimensional projective globally Frobenius
split scheme over an F -finite field of prime characteristic p > 0. Let ω q

X be
the dualizing complex on X as above. For any ample invertible sheaf L, we
have

H i(X,Hj(ω q
X)⊗ L) = 0

for all i ≥ 1 and all j ∈ Z.

Proof. The proof is left as Exercise 2.17. �

2.7. Exercises.

Exercise 2.1. Let c be a nonzerodivisor in the prime characteristic ring R.
Let D = div(c) be the corresponding effective divisor on X = SpecR. Show
that X is e-Frobenius split along D if and only if R is e-Frobenius split along
c.

Hint: Use Exercise 4.11 in Chapter 1.

Exercise 2.2. Show a scheme X is globally F -regular if and only if X is a
disjoint union of finitely many globally F -regular schemes.

Hint: Remember globally F -regular implies Noetherian normal, and Noe-
therian and normal is equivalent to a disjoint union of finitely many Noe-
therian and normal schemes.

Exercise 2.3. Let X be a scheme of finite type over an F -finite field k.
Then if X ×k SpecL is globally (respectively, locally) F -regular, then so is
X.

Hint: You proved a similar statement for Frobenius splitting.

Exercise 2.4. Let X be a normal Noetherian scheme, and letM−→ N be
a split map of coherent OX -modules. Prove that there is a naturally induced
map of reflexive hullsMS2 −→ N S2 which is also split.

Exercise 2.5. Suppose X is Frobenius e-split along a divisor D ≥ 0. Prove
that every coefficient of D is ≤ pe − 1.

Hint: Localize at a generic point of any prime component of D.

Exercise 2.6. Let D be an effective divisor on a normal Noetherian scheme
X of prime characteristic. Prove that X is globally e-Frobenius split along
D if and only if X is globally ne-Frobenius split along pne−1

pe−1 D for some
(equivalently every) integer n > 0.
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Hint: Use Proposition 2.5 (c).

Exercise 2.7. Show that if X is a normal quasi-projective variety, we can
always find B such that X \ SuppB is affine and globally F -regular.

Hint: Show that given a proper closed subset Z of a quasi projective variety
X ⊆ Pn, we can find a hypersurface H whose support contains Z.

Exercise 2.8. Let X be a normal quasi-projective variety over an F -finite
field, and suppose that X is eventually Frobenius split along every effective
Cartier divisor. Prove that X is globally F -regular.

Hint: Use the Hint to Exercise 2.7 and Theorem 2.14.

Exercise 2.9. Let X be a normal Noetherian separated scheme and F a
reflexive sheaf on X. Prove that for all i ≥ 0, there is a natural isomorphism
H i(X,F) ∼= H i(U,F) where U ⊂ X is an open set whose compliment has
codimension two or more.

Hint: Compute cohomology on X using the Cech complex for an affine cover
{Uλ} noting that Uλ ∩U ⊂ Uλ has compliment of codimension two or more.

Exercise 2.10. Let X be a normal proper variety over k with canonical
divisor KX . For any Weil divisor D, show that Hd(X,O(KX +D)) is dual
(over k) to H0(X,O(−D)).

Hint: Use Exercise 2.9 and Exercise 1.12.

Exercise 2.11. Generalize Exercise 1.13 in the following way. Suppose X
is a globally F -regular projective variety of dimension d and L is a globally
generated ample line bundle. Further suppose that H is a big and nef line
bundle. Prove that ωX ⊗L d ⊗H is globally generated.

Exercise 2.12.

Exercise 2.13. Suppose that X is a globally F -regular scheme and that
π : X −→ Y is a map of schemes such that π∗OX = OY . Assuming Y is
quasi-projective, prove that Y is globally F -regular. See Exercise 2.15 for a
stronger statement.

Exercise 2.14. Prove that if X is a normal Noetherian scheme, and F and
G are reflexive coherent sheaves, then H omOX (F ,G) and F e∗F (in the case
X has prime characteristic) are reflexive.

Exercise 2.15. Suppose that π : Y −→ X is a morphism of normal integral
F -finite schemes such that OX −→ π∗OY splits as a map of OX -modules.
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Further assume that X is quasi-projective over an affine scheme. Prove that
if Y is globally F -regular, then so is X.

Hint: We cannot check global F -regularity with Cartier divisors, since X is
not assumed to be quasi-projective, see Remark 2.10. However, we can use
normality to restrict to the non-singular locus of X by a similar argument
to Corollary 1.26.

Exercise 2.16. Suppose k is an F -finite field. Show by direct computation
on charts that

F e∗ωPn ∼= H om(F e∗OPn , ωPn).

Exercise 2.17. Prove Corollary 2.34.

Exercise 2.18. Suppose that X is a normal projective variety over an F -
finite field and D is a Weil divisor on X. Show that the formula,

H om(F e∗OX(D),OX) = F e∗OX((1− pe)KX −D)

of (2.27.1) holds.

Exercise 2.19. Suppose that X is a normal projective variety over an F -
finite field k. Show that there cannot exist a divisor B on X such that
nB ∼ D1 > 0 and −mB ∼ D2 ≥ 0 for some integers n,m > 0. This
completes the proof of Corollary 2.22.

Hint: Replace n,m by multiples so that m = n. One has OX(−D2) ⊆
OX ⊆ OX(D1).

3. Compatibly Frobenius split subschemes and ideals

Sometimes a global Frobenius splitting of a variety X also induces global
Frobenius splittings of a subvariety. We saw this in the local setting in
Chapter 1 Section 6.

We first define compatibility between closed subschemes Y of X and
maps φ ∈ HomOX (F∗OX ,OX):

Definition 3.1. Let X be a scheme of characteristic p. Fix a closed sub-
scheme Y and a map φ ∈ HomOX (F e∗OX ,OX). We say that φ is compati-
ble with Y (or that Y and φ are compatible20) if φ(F e∗IY ) ⊆ IY , where
IY ⊆ OX is the ideal sheaf of Y . In the case that φ is a global Frobenius
splitting, we say that φ compatibly splits Y .

We say that X is compatibly (Frobenius) split with Y if there exists
a globally Frobenius splitting φ : F∗OX −→ OX that is compatible with Y .

20Or that Y is φ-compatible
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Just as in the affine case, to say that X is compatibly split with a sub-
scheme Y means that there is a global Frobenius splitting ofX which restricts
to a global Frobenius splitting for Y . That is, there is some global Frobenius
splitting φ for X and a commutative diagram

0 // F∗IY //

φ|Y
��

F∗OX //

φ
��

i∗F∗OY //

φY
��

0

0 // IY // OX // i∗OY // 0

where the rows are exact and i : Y −→ X is the closed embedding of Y as a
subscheme of X. Since φY (F∗1) = 1 on every open set U ∈ Y , we see that
in particular, Y is globally Frobenius split as well.

Example 3.2. Consider the canonical toric splitting φ on P1
k as described

in the proof of Example 1.4. Consider two points 0,∞ ∈ P1, namely the
“origins” Spec k[t]/(t) in the coordinate charts Spec k[t], where t stands for x1

x0

and x0
x1
, respectively. We claim that these are the only two closed subschemes

compatible with φ.

To see that these points are compatibly Frobenius split for φ, we need to
show that φ(F∗IP ) ⊆ IP , where P stands for either point 0 or ∞. We first
check the affine chart Spec k[t] where IP corresponds to the ideal (t). The
elements of this ideal are k-linear sums of tm for integers m. All of those
monomials are sent to other monomials (or zero) which are in (t). Hence IP
is compatible with φ on our first affine chart. However, on the other affine
chart, IP corresponds to the unit ideal (the whole ring), which is certainly
compatible with φ. Thus IP is compatible with φ globally. We leave it as an
exercise to check that no other closed point of P1 is compatibly Frobenius
split for φ.

Caution 3.3. It can happen that Y ⊆ X are both individually globally
Frobenius split, but they are not compatibly globally Frobenius split. For
example, the only two closed points of P1 that are compatibly split by the
canonical toric splitting of Example 1.4 are 0 and∞. But every closed point
of P1 (being Spec of a field) is Frobenius split in its own right. It can also
happen that some Frobenius splittings on Y are obtained from X as in the
diagram above, while others are not. We’ll return to these issues later.

The subschemes compatible with a particular φ : F e∗OX −→ OX satisfy
some surprising properties.

Lemma 3.4 (cf. Proposition 6.4). Suppose X is a scheme of characteristic
p > 0 and φ : F e∗OX −→ OX is an OX-linear map. Then
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(a) Arbitrary scheme-theoretic intersections of φ-compatible subschemes
are φ-compatible. That is, if {Iγ}γ∈Γ is a collection of φ-compatible
ideal sheaves, then

∑
γ∈Γ Iγ is also φ-compatible.

(b) Finite scheme-theoretic unions of φ-compatible subschemes are φ-
compatible. That is if I1, . . . , It are φ-compatible, so is I1∩ · · ·∩It.

Proof. This is immediate from the definition; alternatively, one can
work locally an apply Chapter 1 Proposition 6.4. �

Remark 3.5. Note infinite intersections of φ-compatible ideal sheaves are
also φ-compatible, but one should note what category one is taking the
intersection in. Indeed, an arbitrary intersection of ideal sheaves in the
category of OX -modules need not be quasi-coherent. Alternately, one could
take the intersection in the category of quasi-coherent sheaves, see [Sta19,
Tag 077P] for some discussion.

Additionally, as a direct application of Chapter 1 Proposition 6.7 (c), we
have the following.

Proposition 3.6. Suppose that X is a Noetherian F -finite scheme and φ ∈
HomOX (F e∗OX ,OX). Let Z ⊆ X be an integral subscheme with generic
point η. Then Z is compatible with φ if and only if the stalk of the ideal
sheaf of Z at η, IZ,η, is compatible with φη : F e∗OX,η −→ OX,η.

3.1. Splitting along a divisor vs compatibly splitting a divisor.
For normal schemes, splitting along a carefully chosen divisor also compatibly
splits a certain divisor.

Lemma 3.7. Suppose that X is a normal Noetherian scheme and D is a
reduced21 divisor on X. Then the following are equivalent:

(a) X is globally Frobenius split along the divisor (p− 1)D;
(b) X is compatibly Frobenius split with SuppD.

Proof. First assume (b). Then there is a map of OX -modules

φ : F∗OX((p− 1)D) −→ OX
sending F∗1 to 1. Tensoring with OX(−D) and reflexifying yields:

F∗OX(−D) ∼= OX(−D)⊗ F∗OX((p− 1)D) −→ OX(−D)⊗OX ∼= OX(−D).

In other words, φ takes F∗OX(−D) to OX(−D). Since OX(−D) is the ideal
sheaf of SuppD, this shows (a).

21Meaning all coefficients are equal to 1

https://stacks.math.columbia.edu/tag/077P
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Conversely, suppose we have a global Frobenius splitting φ : F∗OX −→
OX that restricts to

F∗OX(−D) −→ OX(−D).

Tensoring with OX(D) and taking the reflexive hull yields an OX -module
map

F∗OX((p− 1)D) = F∗OX(pD −D) −→ OX(D −D) = OX .

Since φ sent F∗1 7→ 1, so does this map. Thus we have shown that X is
globally Frobenius split along (p− 1)D. �

For more general results, see Chapter 5 Subsection 2.1.

Remark 3.8 (Affine local interpretation). Interpreting the above proof
affine locally is worth doing. By using the tool of reflexification / S2-ification,
the proof may be performed on the non-singular locus of X. Then, working
on a chart U = SpecR we can write D|U = divU (f) for some f ∈ R. Now
we are simply claiming that R is Frobenius split along fp−1 if and only if it
is compatibly Frobenius split with the ideal (f). But now we notice that a
non-zero map

φ : F∗R −→ R

sends F∗fp−1 7→ 1 if and only if the composition

F∗R
F∗fp−1

−−−−→ F∗R
φ−→ R

sends 1 to 1. But that composition then sends the ideal F∗(f) to the ideal
F∗(f

p) which is then sent into (f) by φ.

In many cases, a splitting of IZ −→ F∗IZ in fact induces a splitting of X
compatible with Z.

Proposition 3.9. Suppose that X is a normal Noetherian scheme and Z ⊆
X is a closed subscheme with ideal sheaf IZ . If the Frobenius map

IZ −→ F e∗IZ

splits in the category of OX-modules, then X is globally Frobenius split com-
patibly with Z.

Proof. We apply the reflexive hull functor to the split map IZ −→
F e∗IZ . One way to understand this is as follows. Let Z ′ denote the union
of components of Z that have codimension ≥ 2 in X. Let U = X \ Z ′ with
i : U −→ X the inclusion. Then i∗IZ |U is an ideal sheaf of pure height 1,
that is i∗IZ |U = OX(−D) for some divisor D. In particular, applying this
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to our splitting we obtain the following commutative diagram whose rows
compose to be the identity:

IZ //
� _

��

F e∗IZ� _

��

φZ
// IZ

��

OX(−D) // F e∗OX(−D)
φD

// OX(−D)

In particular, there exists φ : F e∗OX(−D) −→ OX(−D) which is surjective
(and which sends F e∗ 1 7→ 1 at the generic point ofX). Arguing as in the proof
of Lemma 3.7 we see that tensoring with OX(D) and reflexifying produces
a splitting of OX −→ F e∗OX(−D + peD) = F e∗OX((pe − 1)D) and hence a
global Frobenius splitting of X compatible with both D and Z. �

3.2. Compatible Frobenius splittings and vanishing theorems.

Theorem 3.10. Suppose X is a projective variety of prime characteristic
and L is an ample line bundle on X. Let Z ⊆ X be a closed subscheme of
X that is globally compatibly Frobenius split in X. If IZ is the corresponding
ideal sheaf, then

H i(X, IZ ⊗L ) = 0

for all i > 0.

Proof. IZ −→ F e∗IZ splits for every e > 0 and so we see that

H i(X, IZ ⊗L ) −→ H i(X,F e∗ (IZ ⊗L pe))

splits as well, and hence is injective. But H i(X, IZ ⊗L pe) is zero for e� 0
by Serre vanishing. The result follows. �

We show how this can be used in an example.

Example 3.11 (Compatibly splitting points in Pn). Let k = k be an alge-
braically closed field and suppose Z ⊆ X = Pnk is a finite set of closed points.
Suppose Z is globally compatibly Frobenius split in X. We will show that
the number of points m in Z is ≤ n+ 1.

Consider the exact sequence

H0(X,L ) −→ H0(X,OZ ⊗L ) −→ H1(X, IZ ⊗L ) = 0

where the last term is zero by Theorem 3.10. Since OZ is supported at
finitely many points OZ ⊗ L ∼= OZ , and in particular H0(X,OZ ⊗ L ) is
a vector space of dimension m = |Z|. But H0(X,L ) = H0(X,OX(1)) the
vector space spanned by x0, x1, . . . , xn, and so has dimension n+ 1. In other
words we have a surjection from an (n + 1)-dimensional vector space to an
m-dimensional vector space and so m ≤ n+ 1.
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3.3. Exercises.

Exercise 3.1. Suppose that φ : F e∗OX −→ OX is surjective as a map of
sheaves (and not necessarily surjective on global sections) and that Y ⊆ X
is a φ-compatible subscheme. Prove that Y is reduced (or equivalently that
IY is radical).

Hint: Restrict to an affine subscheme and suppose I ⊆ R is the correspond-
ing ideal. Use the fact that there exists c ∈ R such that φ(F e∗ c) = 1. What
happens with xpe · c?

Exercise 3.2. Show that if k is an algebraically closed field of characteristic
p, then the only two closed points of P1

k that are globally compatibly split
for the canonical toric Frobenius splitting are 0 and ∞.

Exercise 3.3. Show that the coordinate linear spaces22 in Pn are globally
compatibly Frobenius split by the canonical toric Frobenius splitting we in-
troduced in the proof of Example 1.4.

Exercise 3.4. Suppose that X is a globally F -regular scheme (for instance a
strongly F -regular affine scheme). For each closed subscheme Z ⊆ X, show
that there exists a global Frobenius splitting φ : F e∗OX −→ OX such that
φ(F e∗IZ) 6⊆ IZ , in other words so that Z is not compatible with φ.

Hint: This is easier in the case that X is quasi-projective when one
can choose D Cartier. In that case choose D such that 1 ∈ OX(D) ⊗ IZ .
Now apply the compatibility condition of the global Frobenius splitting and
obtain a contradiction. In the general case, fix an affine open set U ⊆ X and
find a global D which is Cartier on U and has a property similar to the one
that worked in the quasi-projective case.

Exercise 3.5. Show that n+ 1 closed points is the most that can be com-
patibly Frobenius split in Pnk .

Hint: Let Z be a set of n points. Apply the previous exercise to an appro-
priately twisting of the short exact sequence: 0 −→ IZ −→ OX −→ OZ −→ 0.

Exercise 3.6. Suppose that a Cohen-Macaulay projective varietyX is Frobe-
nius split by φ : F∗OX −→ OX . Suppose that φ compatibly splits a Cartier
divisor D ⊆ X with ideal sheaf OX(−D). Suppose further that L is any
ample line bundle. Prove that

H i(X,ωX ⊗OX(D)⊗L ) = 0

for i > 0.

22The coordinate linear spaces of Pn = Proj k[x0, . . . , xn] are those defined as the
vanishing of the homogeneous monomial prime ideals, like (x0, x2, x3).
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Hint: First use Serre duality. Next observe that OX(−D) −→ F e∗OX(−D)
is split injective and hence stays injective after tensoring with line bundles
and taking cohomology.

Exercise 3.7. Suppose that X is globally Frobenius split combatibly with
a subscheme Z ⊆ X. Prove that every irreducible component of Z is also
globally Frobenius split compatibly with X.

Hint: This can be checked locally on affine charts, then use Exercise 4.12 in
Chapter 1.

Exercise 3.8. Suppose that X is a non-singular projective variety and D is
a Cartier divisor on X. Further suppose that for some closed point x ∈ X,
we can write D = D1 + · · ·+DdimX + E where the Di are Cartier divisors
which are smooth at x and intersect transversally at x, and E is a divisor
that does not contain x.

With notation as above, if X is compatibly F -split with D, then show
that for any ample line bundle L on X, that

ωX ⊗OX(D)⊗L

is globally generated at x ∈ X.

Hint: Verify the statement first for a curve. Then restrict to some Di

and proceed by induction on dimension using (and twisting) the short exact
“adjunction” sequence:

0 −→ ωX −→ ωX(Di) −→ ωDi −→ 0

4. Projective varieties and their affine cones

In this section, we connect global and local Frobenius splitting for pro-
jective varieties by showing that global Frobenius splitting of a projective
variety X is essentially equivalent to local Frobenius splitting at the vertex
of an affine cone over X. Specifically, we will see that for a finitely generated
N-graded ring S, if SpecS is Frobenius split, then ProjS is globally Frobe-
nius split; furthermore, the converse holds if S is a section ring. Similar
statements hold for Frobenius splitting along divisors and F -regularity.

4.1. From cones to projective varieties. Consider an N-graded ring

S =
⊕
m≥0

Sm
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of characteristic p > 0, assumed to be finitely generated over its degree
zero subring S0. The scheme ProjS is the associated projective scheme over
SpecS0 whose points are the homogeneous prime ideals of S not contained
in the irrelevant ideal

⊕
m≥1 Sm. The scheme ProjS is covered by affine

charts D+(f) := Spec
[
S[ 1

f ]
]
0
, where f ranges through homogeneous ele-

ments of positive degree, and
[
S[ 1

f ]
]
0
denotes the degree zero subring of the

Z-graded ring obtained by inverting f . For background on this Proj con-
struction, the reader should consult [Gro61, §2], [Har77, II §5], or [Sta19,
Tag 01M3].

Quite generally, Frobenius splitting for a graded ring S implies Frobenius
splitting for the projective scheme ProjS it defines:

Theorem 4.1. Let S be an N-graded F -finite ring of characteristic p, finitely
generated over its degree zero subring S0.

(i) If S is locally Frobenius split, then the projective scheme ProjS is
globally Frobenius split.

(ii) If S is strongly F -regular, then ProjS is globally F -regular.

Example 4.2. Theorem 4.1 gives a new way to see that projective space
Pn (over an F -finite field k) is globally F -regular: the polynomial ring
k[x0, . . . , xn] is strongly F -regular, so Proj k[x0, . . . , xn] = Pnk is globally
F -regular by Theorem 4.1.

Example 4.3. Let G be a finite group whose order is not divisible by p, and
suppose G acts linearly on the projective space Pnk , where k is an F -finite field
of characteristic p. Then the quotient scheme Pn/G := Proj k[x0, . . . , xn]G,
where k[x0, . . . , xn]G is the ring of invariants for this action is globally F -
regular. This is immediate from Theorem 4.1 and Chapter 1 Example 3.7.

The converse of Theorem 4.1 fails:

Example 4.4. Consider Veronese embedding of P1 into P4. Its homoge-
neous coordinate ring is S = k[s4, s3t, s2t2, st3, t4]. Now project from the
point [0 : 0 : 1 : 0 : 0] ∈ P4 to embed P1 in P3 with coordinate ring
S′ = k[s4, s3t, st3, t4]. The inclusion S′ ↪→ S of graded rings induces an
isomorphism P1 ∼= ProjS → ProjS′, so ProjS′ is globally F -regular. But
S′ is not normal; indeed, its normalization is S. Therefore the ring S′ is not
strongly F -regular even though ProjS′ is globally F -regular.

Theorem 4.1 does have a converse if we restrict ourselves to the most
natural rings defining the projective scheme X, the section rings with respect
to ample invertible sheaves; see Subsection 4.3.

https://stacks.math.columbia.edu/tag/01M3
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4.2. Frobenius and graded rings. To prove Theorem 4.1, we examine
Serre’s correspondence between finitely generated Z-graded S-modules and
coherent sheaves on ProjS in the context of Frobenius.

Fix an N-graded ring
S =

⊕
m≥0

Sm

of characteristic p > 0. The S-module F e∗S has a natural grading by 1
peN:

namely,

degF e∗ s =
1

pe
deg s

for homogeneous s ∈ S. With this grading, the Frobenius map

S → F e∗S s 7→ F e∗ s
pe

is a degree-preserving map of rings. For any Z-graded S-module M , we can
define a natural 1

peZ grading on F e∗M in the same way:

degF e∗m =
1

pe
degm

for homogeneous m ∈M. This grading is compatible with the natural action
of S on F e∗M : s ∈ Si acts on F e∗m ∈ [F e∗M ] n

pe
to produce

sF e∗ (m) = F e∗ (sp
e
m) ∈ [F e∗M ] n

pe
+i,

so deg(sF e∗m) = deg s+ deg(F e∗m).

Each Z-graded S-moduleM determines a unique quasi-coherent sheaf M̃
on ProjS whose sections over the affine chart D+(f) are the elements of the[
S[ 1

f ]
]
0
-module

[
M [ 1

f ]
]
0
, where

[
M [ 1

f ]
]
0
denotes the degree zero submodule

of the Z-graded module M ⊗S S[ 1
f ]. Furthermore, every coherent sheaf M

on X = ProjS is determined in this way by some finitely generated Z-graded
S-module M . A natural question arises: what graded Z-module determines
F e∗OX , or more generally, F e∗M , for a coherent sheaf M on ProjS?

To answer this question, fix a graded S-moduleM = ⊕n∈ZMn. Consider
the graded S-submodule of F e∗M formed by elements of integral degrees:

(4.4.1) F e∗M
(pe) =

⊕
n∈Z

F e∗Mpen ⊂ F e∗M,

where M (pe) denotes the "Veronese submodule" M (pe) =
⊕

n∈ZMpen of M .
The homogeneous elements of F e∗M (pe) are precisely those elements of F e∗M
that happen to have integral degrees:

{F e∗m | degF e∗m ∈ Z} = {F e∗m | pe divides degm}.
Since the elements of S have integer degree, the usual action of S on elements
of F e∗M induces a natural S-module action on F e∗M (pe).
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Lemma 4.5. Let S be an N-graded ring of characteristic p and let M be a
Z-graded S-module. Let F e∗M (pe) be the graded submodule of F e∗M defined
in (4.4.1). Then, as quasicoherent sheaves on ProjS,

˜F e∗M (pe) = F e∗ (M̃).

In particular, the sheaf F e∗OX on X = ProjS is determined by the graded
S-module F e∗S(pe).

Proof of Lemma. We compute the sections of ˜F e∗M (pe) over a basic
open affine D+(f) ⊂ ProjS:

˜F e∗M (pe)(D+(f)) =
[
F e∗M

(pe)[ 1
f ]
]

0

=
[
F e∗ (M [ 1

fpe
])
]

0

=
[
F e∗ (M [ 1

f ])
]

0

= F e∗

([
M [ 1

f ]
]

0

)
,

which is precisely F e∗ M̃(D+(f)). �

Lemma 4.6. With notation as in Lemma 4.5, the module inclusion

F e∗M
(pe) ⊂ F e∗M

splits as a map of F e∗S(pe)-modules, and hence as a map of S-modules.

Proof. The inclusion M (pe) ↪→ M splits as a map of S(pe)-modules
(by degree considerations). Thus F e∗M (pe) ↪→ F e∗M splits as a map of
F e∗S

(pe)−modules, and as hence a map of S-modules via map S → F e∗S
(pe)

sending s 7→ F e∗ s
pe . �

Proof of Theorem 4.1. Let S be an F -finite Frobenius split graded
ring, and let φ ∈ HomS(F∗S, S) be a splitting of Frobenius. Because F∗S
is a finitely generated 1

pN-graded S-module, the module HomS(F∗S, S) is
finitely generated over S and 1

pZ-graded. So taking φ ∈ HomS(F∗S, S) such
that φ(F∗1) = 1, and writing φ as a finite sum of homogenous components∑
φi, we see that we may replace φ by its degree zero component φ0 so as to

assume with out loss of generality that φ(F∗1) = 1 where φ is homogeneous
and degree preserving.

Restrict φ to the Z- graded submodule F e∗S(pe) whose homogeneous ele-
ments have integer degrees. Now, the composition of degree-preserving maps
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of N-graded S-modules

S
F−→ F e∗S

(pe) φ−→ S

is the identity map, and so the corresponding map of sheaves on ProjS

S̃
F−→ F̃ e∗S

(pe) φ̃−→ S̃

is the identity map as well. Invoking Lemma 4.5, we thus have a splitting of
Frobenius on ProjS:

OX
F−→ F∗OX

φ̃−→ OX .
Thus ProjS is globally Frobenius split.

For (ii), assume the N-graded ring S is strongly F -regular. In particular,
S is a normal ring, and so X = ProjS is a normal scheme (Exercise 4.1).

Take any homogeneous nonzerodivisor c ∈ S of positive degree, and let
B be the divisor23 on X determined by c. Specifically, the prime divisors
of B are the codimension one integral subschemes B1, . . . , Bt defined by the
minimal primes P1, . . . , Pt of c, and the coefficient on each is the order of c
in the discrete valuation ring SPi . Put differently, if (c) = P

(n1)
1 ∩ P (n2)

2 ∩
· · · ∩ P (nt)

t is an irreducible primary decomposition24 of the principal ideal
c in S, then B =

∑t
i=1 niBi, where Bi is the closed integral subscheme of

codimension one V(Pi) in ProjS.

We claim that scheme X \ SuppB is globally F -regular. Indeed, X \
SuppB is the affine scheme

X \ V(c) = D+(c) = Spec
[
S[

1

c
]
]
0
,

which is globally F -regular if and only if the ring
[
S[1

c ]
]
0
is strongly F-regular

(Proposition 2.8). But
[
S[1

c ]
]
0
is strongly F -regular because it is a direct

summand of the strongly F -regular ring S[1
c ].

Now to show that X is globally F -regular, it suffices to show that X is
eventually globally Frobenius split along B (Theorem 2.14). Because S is
strongly F -regular, there exists e ∈ N and φ ∈ HomS(F e∗ (1

cS), S) such that
the composition

S ↪→ F e∗ (
1

c
S)

φ−→ S 1 7→ F e∗ 1 7→ 1

is the identity map on S; see Exercise 2.1. Again, without loss of generality,
we can assume that the splitting φ ∈ HomS(F e∗ (1

cS), S) is homogeneous and

23Caution! B need not be Cartier. See Exercise 4.5.
24Here, P (n) denotes the P -primary ideal PnSP ∩ S, the n-th symbolic power of P .
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degree preserving. So the map φ restricts to a splitting of the submodule
F e∗ (1

cS)(pe) of integer-degree elements to give a composition

(4.6.1) S ↪→ F e∗ (
1

c
S)(pe) φ−→ S

which is the identity map on S. Applying the Serre functor (̃−) to (4.6.1)
induces the identity composition of OX -modules

(4.6.2) OX −→ F e∗OX(B)
φ̃−→ OX

since 1̃
cS = OX(B) (by Lemma 4.5 and Exercise 4.3). This shows that

X is eventually globally Frobenius split along B, completing the proof of
Theorem 4.1. �

4.3. Section rings. We next prove a converse for Theorem 4.1. As we
have seen in Example 4.4, it is necessary to restrict the rings S.

Definition 4.7. Let X be a projective variety and let L be any (typically
ample) invertible sheaf on X. The section ring of X with respect to L is
the N-graded ring

S(X,L ) :=
⊕
n≥0

H0(X,L n).

Equivalently, the section ring is the global sections of the sheaf of algebras
⊕n∈NL n on X.

Proposition 4.8. Let S = S(X,L ) be the section ring on a projective
variety X as defined in Definition 4.7. Then

(i) The section ring S is a finitely generated algebra over its degree zero
subring, which is the field k = H0(X,L);

(ii) The projective scheme ProjS recovers X and S̃(1) ∼= L ;
(iii) The variety X is normal if and only if S(X,L ) is normal;
(iv) The natural map

SpecS \ {m} π−→ X

is a k×-bundle over X: every point x ∈ X has a neighborhood U
such that π−1(U) ∼= U ×Spec k Spec k[t, t−1].

Example 4.9. In the simplest example, the varietyX ↪→ Pnk is a projectively
normal closed subscheme of Pn, and we can take L to beOX(1), the standard
hyperplane bundle on X. In this case, the section ring

S = S(X,OX(1)) :=
⊕
n∈N

H0(X,OX(n)),

is precisely the homogenous coordinate ring R = k[x0, . . . , xn]/IX where IX
is the homogeneous ideal of polynomials vanishing on X.
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Caution 4.10. If X ↪→ Pnk is not normally embedded, the section ring S
built from OX(1) is not the homogeneous coordinate ring R: it is some
finite integral extension S of R such that Sn = Rn for all n � 0 [Har77,
II Ex 5.14]. If X is normal, the section ring with respect to OX(1) is the
normalization of the homogeneous coordinate ring R.

Caution 4.11. Section rings can be built from non-ample L , but they are
much worse behaved and we will not do this in this book. We use the term
section ring exclusively for section rings of ample invertible sheaves on X.

Theorem 4.12. Let X be a projective variety of prime characteristic, and
let L be any ample invertible sheaf on X. Then X is globally Frobenius split
(respectively, globally F -regular) if and only if the section ring S(X,L ) is
locally Frobenius split (respectively, strongly F -regular).

Theorem 4.12 says that the global versions of Frobenius splitting and F -
regularity for a projective variety X = ProjS amount to the corresponding
local properties at the vertex m of the affine cone SpecS over X. A much
weaker fact is that the corresponding local properties of X amount to the
same local properties on the punctured cone over X:

Proposition 4.13. Let X be a projective variety and S = S(X,L ) a section
ring for some ample L on X. The variety X = ProjS has property P if
and only if the punctured cone SpecS \ {m} has property P, where P can
be any of the following local properties: reduced, normal, Cohen-Macaulay,
locally F -regular, locally Frobenius split, non-singular.

Proof of Proposition 4.13. Because property P can be checked lo-
cally, Proposition 4.8(iv) tells us that Proposition 4.13 amounts to saying
that a Noetherian ring R has property P if and only if R[t, t−1] has property
P. We leave as an exercise to check this directly for each property. �

4.4. Saturated graded modules of coherent sheaves on Proj. If
S = S(X,L ) is a section ring for some ample L on a projective variety X,
then for any coherent sheaf M on X, we can construct a finitely generated
Z-graded S-module

M =
⊕
n∈Z

H0(X,M ⊗L n)

such that M̃ recovers M on X. This graded S-module M is the "largest"
(or unique saturated) S-module which determines M . Any other graded S-
module which eventually agrees with M in large degree will also determine
M . For example, S̃(d) recovers25 L d.

25Caution: If S is not a section ring, then the sheaves S̃(d) need not be invertible!
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Proof of Theorem 4.12. One direction has already been proved in
Theorem 4.1. It remains to prove that if a projective variety X is globally
Frobenius split (or globally F -regular), then any section ring S is locally
Frobenius split (respectively strongly F -regular).

First assume that X is globally Frobenius split. So there exists φ such
that the composition

OX
F−→ F∗OX

φ−→ OX
is the identity. Now tensor with the sheaf of algebras ⊕n∈NL n and use the
projection formula to get⊕

n∈N
L n F−→ F∗(

⊕
n∈N

L pn)
φ−→
⊕
n∈N

L n.

Taking global sections, we have the identity composition of S-modules

S
F−→ F∗(S

(p))
φ−→ S,

where S(p) denotes the pth Veronese subring of S. Since the Veronese subrings
split off S, let π ∈ HomS(p)(S, S(p)) be a splitting of S(p) ↪→ S. Now define
ψ to be the composition

F∗S
F∗π−→ F∗S

(p) φ−→ S.

It is easy to check that ψ is a splitting of the Frobenius map S → F∗S. This
completes the proof that if a projective variety X is globally Frobenius split,
so are all its section rings.

Now assume that X is globally F-regular. In particular, because X is re-
duced, there exists a basic open affine D+(c) ⊂ X which is regular, where c is
some homogeneous non-zerodivisor of S of positive degree. This means that[
S[1

c ]
]
0
is regular; thus the ring S[1

c ] is regular as well by Proposition 4.13.
Thus c can be used to test F -regularity for S by Theorem 5.1 in Chapter 1.

Let D be the effective divisor on X defined by the homogeneous ideal (c)
of S. In this case, the graded module corresponding to the coherent sheaf
OX(D) is precisely 1

cS (which is isomorphic as a graded S-module to the
shifted module S(deg c)). By Lemma 4.5, the graded module corresponding
to F e∗OX(D) is F e∗ (1

cS)p
e .

Since X is globally F -regular, there is an e such that the natural map

OX → F e∗OX(D) 1 7→ F e∗ 1

splits. Tensoring with the sheaf of OX -algebras ⊕L n, we have that⊕
n∈N

L n −→
⊕
n∈N

L n ⊗OX F
e
∗OX(D) 1 7→ F e∗ 1,
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splits as well. Taking global sections, we have that

S −→ F e∗ (
1

c
S)(pe) 1 7→ F e∗ 1

splits, as well, where we’ve used Serre’s correspondence and Lemma 4.5
to identify the graded S-module module corresponding to F e∗OX(D). Let
φ ∈ HomS(F e∗ (1

cS)(pe), S) be a splitting. The natural inclusion F e∗ (1
cS)(pe) ↪→

F e∗
1
cS also splits (Lemma 4.6); let ψ ∈ HomS(F e∗

1
cS, F

e
∗ (1

cS)(pe)) be a split-
ting. Then the map S −→ F e∗ (1

cS) is split by the composition

F e∗
1

c
S

ψ
� F e∗ (

1

c
S)p

e φ
� S F e∗ 1 7→ F e∗ 1 7→ 1.

Restricting to the submodule F e∗S, we see that the S-module map

S
F e−→ F e∗

1

c
S 1 7→ F e∗ 1

splits as well. This proves that S is strongly F -regular, by Theorem 5.1 in
Chapter 1. �

Remark 4.14. We remind the reader that Hochster and Huneke introduced
three flavors of F -regularity, all conjectured to be equivalent: strong F -
regularity Definition 2.7, weak F -regularity (all ideals are tightly closed)
and F -regularity (all ideals tightly closed in all localizations). For finitely
generated graded rings over a field, these are known to be equivalent [LS99],
so we can drop the "strongly" in referring to strongly F -regular graded rings.

4.5. Exercises.

Exercise 4.1. Let S be an N-graded ring. Prove that S is normal (re-
spectively, Frobenius split; respectively strongly F -regular), then ProjS is
normal (respectively, locally Frobenius split; respectively, locally F -regular)

Hint: On D+(f), the sections
[
S[ 1

f ]
]

0
are a direct sumnand of the Z-graded

ring S[ 1
f ].

Exercise 4.2. Let S be a finitely generated N-graded algebra over a field
k. Let P be one of the following local properties: normal, Cohen-Macaulay,
reduced, Frobenius split (in the case k is F -finite), or strongly F -regular (in
the case k is F -finite). Prove that S has property P if and only if Sm, where
m is the unique homogeneous maximal ideal of S.

Hint: Reduce to the case where k is infinite field; then show the locus of
points in SpecS that do not have property P is defined by a homogeneous
ideal of S.
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Exercise 4.3. Let S be a normal N-graded ring finitely generated over a
field S0, and let X = ProjS. Let c ∈ S be a homogeneous element of positive
degree. Show that the subscheme of X defined by the homogeneous ideal cS
determines a Weil divisor B, and that OX(B) = 1̃

cS.

Hint: Caution: B need not be Cartier!

Exercise 4.4. Prove Proposition 4.13.

Hint: Observe that R is a direct summand of R[t, t−1] while R[t, t−1] is a
faithfully flat extension of R.

Exercise 4.5. Let S = k[x, y, z] be the polynomial ring with non-standard
grading given by deg(x) = 3,deg(y) = 2, deg(z) = 1. Prove that ProjS is
singular. Show also that the coherent module on ProjS given by the graded
module 1

zS is not invertible. In particular, show that the divisor on ProjS
given by the vanishing of z is a prime Weil (non-Cartier) divisor.

Hint: Compute on the chart D+(y).

Exercise 4.6. Suppose thatX is a globally Frobenius split projective variety
with splitting φ : F∗OX −→ OX and Z ⊆ X is a subscheme compatibly split
by φ. Fix an ample line bundle L on X. Suppose that S is the section ring
of X and with respect to L and

IZ =
⊕
n∈Z

H0(X, IZ ⊗L n) ⊆ S,

where IZ is the ideal sheaf of Z. Show that the ideal IZ is compatible with
the map φS : F∗S −→ S induced as in the proof of Theorem 4.12.

Exercise 4.7. Prove the converse to Exercise 4.6. In particular, suppose
that IZ is compatible with the induced φS : F∗S −→ S. Prove that Z is
compatible with φ.

Exercise 4.8. With notation as in the previous problem, let SZ denote
the section ring with respect to L |Z . Now assume that the base field k is
algebraically closed and Z is a variety, so in particular Z is connected. Show
that the map S −→ SZ is surjective. In particular, any normal projective
variety that is globally compatibly Frobenius split in projective space is
projectively normally embedded.

Hint: It suffices to show that H0(X,OX ⊗ L n) −→ H0(Z,OZ ⊗ L n)
surjects for all n > 0. See Theorem 3.10.

Exercise 4.9. Let S be an N-graded domain finitely generated by its degree
one elements over its degree zero piece S0 = k, an F -finite field. Show that
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ProjS is globally Frobenius split (respectively, globally F -regular) if and
only if the normalization SN is locally Frobenius split (respectively, strongly
F -regular).

Hint: Show that the normalization SN is the section ring S(X,OX(1)); see
[Har77, Exercise 5.14].

Exercise 4.10. Suppose that X is a projective variety of dimension > 0.
Let (S,m) denote the section ring with irrelevant ideal m. Prove that
HdimX+1

m (S) is zero in all non-negative degrees if X is globally F -regular
and zero in all positive degrees if X is globally Frobenius split.

Exercise 4.11. Suppose X is a projective variety and L is an ample line
bundle. Suppose that the section ring of L is Cohen-Macaulay. Prove that
H i(X,L n) = 0 for every 0 < i < dimX and every n ∈ Z.

5. Local cohomology and section rings

Warning, this section is mostly not yet written. Proceed with caution. It should also
eventually contain a number of example.

We have seen that the global geometry of a projective variety X is closely
related to the local properties at the vertex of an affine cone overX. This can
be understood more deeply by connecting the cohomology groups of coherent
sheaves on X to the local cohomology modules of the corresponding graded
modules at the vertex of the cone. Using this idea, we reprove Theorem 2.16
for projective varieties, and develop a useful criterion for global F -rationality
for projective varieties.

Proposition 5.1. Let X be a projective variety with section ring S =
S(X,L ) with respect to a fixed ample invertible sheaf L , and let m denote
its unique homogeneous maximal ideal. Let F be a coherent OX-module, and
let

M =
⊕
n∈Z

H0(X,F ⊗L n)

be the corresponding graded S-module. Then there is a natural degree-preserving
isomorphism of S-modules

H i+1
m (M) ∼=

⊕
n∈Z

H i(X,F ⊗L n)

for each i ≥ 1.

Proof. The local cohomology modules describe the obstruction to ex-
tending sections of the sheaf M̃ on the affine scheme SpecS from the open
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set U = SpecS \ {m} to SpecS. That is, we have an exact sequence where
the map labeled ρ is simply restriction:

0 // H0
m(M) // H0(SpecS, M̃)

ρ
// H0(U , M̃) // H1

m(M) //

H1(SpecS, M̃) // H1(U , M̃) // H2
m(M) // H2(SpecS, M̃) // . . .

This long exact sequence shows that there are natural isomorphisms

H i(SpecS \ {m}, M̃)→ H i+1
m (M)

for all i ≥ 1, because the higher cohomologies of quasi-coherent sheaves
vanish on an affine scheme.

Now letM be a graded S-module corresponding to the sheaf F . Consider
a homogeneous system of parameters f0, . . . , fd. The open setsD(f0), . . . , D(fd)
form an open affine cover for U = SpecS\{m}, and the open setsD+(f0), . . . , D+(fd)
form an open affine cover for X. Writing down the Čech complex that com-
putes the cohomology H i(SpecS \ {m}, M̃) from the cover {D(fi)} we ob-
serve that its zero graded piece is precisely the Čech complex from the cover
{D+(fi)} of ProjS computing H i−1(X,F). Similarly, its n-graded piece
is the Čech complex that computes H i−1(X,F ⊗ L n). This complete the
proof. �

5.1. Graded Matlis Duality. Let X be a normal projective variety
with canonical module ωX . Fix any ample invertible sheaf L on X and let
S be the corresponding section ring S(X,L).

5.2. F -rationality and the a-invariant.

5.3. Examples of graded rings.





CHAPTER 4

Frobenius Splitting for embedded schemes

We now turn to criteria for identifying Frobenius splitting, as well as
ways to measure “how far" a given variety is from being Frobenius split. In
this chapter, we are primarily interested in affine schemes embedded as closed
schemes in F -finite regular schemes—that is, rings that are a homomorphic
image of a regular ring.1

We begin with a useful criterion for Frobenius splitting due to Richard
Fedder (Theorem 1.1), which allows us to identity many examples of Frobe-
nius split and non-Frobenius split schemes embedded in a non-singular scheme.
Similarly, Glassbrenner’s Theorem (Theorem 1.8) provides an analogous
criterion for strong F -regularity. The proof of Fedder’s Criterion, under-
taken in Section 2, requires developing a careful understanding the R-module
HomR(F∗R,R) for rings that are quotients of F -finite regular rings. This
naturally leads to several important ideas, including the F -pure threshold as
well as F -singularities and test ideals for pairs.

In Section 3, we introduce the F -pure threshold in the special case of
a hypersurface defined by some element f in a regular local ring S. This
numerical invariant of the singularities of the pair (S, f) can be viewed as a
measurement of how far the hypersurface SpecS/f is from being Frobenius
split. The F -pure threshold is a prime characteristic analog of the log canon-
ical threshold in complex algebraic geometry, as we explain in Chapter 6.

In Section 4, we introduce Frobenius splitting and strong F -regularity
for pairs (R, at), where R is a ring of prime characteristic, a ⊆ R is an ideal
and t ≥ 0 is a real number. This natural generalization of the material in
sections 4 and 3 in Chapter 1 is analogous to the use of pairs in birational
algebraic geometry, and reflects not only the singularities of SpecR, but also
the singularities of the closed embedded scheme defined by the ideal a.

In Chapter 5, we develop a theory of test ideals τ(R, at) for pairs (R, at),
generalizing the theory of test ideals from Section 5 of Chapter 1 (which can
be viewed as the special case where the ideal a is the unit ideal). The theory

1Recall, every F -finite Noetherian ring is a quotient of an F -finite regular ring by
[Gab04].
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will pushed further in more geometric setting in Chapter 5. In this chapter,
we stick to the affine setting, focusing first on the rich case where the ambient
scheme SpecR is regular. This provides a powerful way to study ideals in
R and highlights the analogy with the multiplier ideal in complex geometry.
For example, we introduce Frobenius jumping numbers in Section 6, a spec-
trum of numerical invariants of a (prime characteristic) pair (R, at), which
can be interpreted as characteristic p analogs of the jumping coefficients for
multiplier ideal sheaves on smooth complex varieties. Finally, in Section 7,
we use the test ideal to prove a theorem on the behavior of symbolic pow-
ers of ideals in prime characteristic, following the original multiplier ideal
proof of Ein-Lazarsfeld-Smith [ELS01] (cf. [HH02]). The formal relation-
ship between the test ideal and multiplier ideal will be discussed later in
Chapter 6.

Studying the test ideal in this case highlights the many ways in which
the test ideal is analogous to the multiplier ideal in complex geometry. For
example, we introduce Frobenius jumping numbers in Section 6, a spectrum
of numerical invariants of a (prime characteristic) pair (R, at), which can be
interpreted as characteristic p analogs of the jumping coefficients for multi-
plier ideal sheaves on smooth complex varieties. And in Section 7, we use
the test ideal to prove the Ein-Lazarsfeld-Smith [ELS01] theorem on the
behavior of symbolic powers of ideals in prime characteristic, following the
original multiplier ideal proof. The formal relationship between the test ideal
and multiplier ideal will be discussed later in Chapter 6.

1. Fedder’s criterion: statement and applications

The most useful test for Frobenius splitting is due to Fedder:

Theorem 1.1 (Fedder’s Criterion, [Fed83]). Let R = S/I be a quotient of
a regular local F -finite ring (S,m). Then R is Frobenius split if and only if

(I [pe] : I) * m[pe]

for some (or equivalently, for every) natural number e. Here, the notation
(I [pe] : I) denotes the ideal of elements in S which multiply I into I [pe].

Fedder’s Criterion is especially convenient to apply for hypersurfaces:

Corollary 1.2. Let R = S/(f), where (S,m) is an F -finite regular local ring
and f is a non-zero element in m. Then R is Frobenius split if and only if

fp
e−1 /∈ m[pe]

for some (or equivalently, for every) e > 0.
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Proof. If I = (f) ⊆ S is a principal ideal, then (I [pe] : I) = (fp
e−1),

and the corollary follows. �

There is an analogous statement for complete intersections; see Exer-
cise 1.3.

We explore some applications.

Example 1.3. A reduced normal crossing divisor D on a non-singular va-
riety X is locally Frobenius split. To see this, choose local parameters
x1, . . . , xd at a closed point P , so that the maximal ideal m of the local
ring OX,P is generated by x1, . . . , xd and the divisor D is defined by the
principal ideal (x1x2 · · ·xn) for some n ≤ d. By Corollary 1.2, the local ring
OD,P = OX,P /(x1x2 · · ·xn) is Frobenius split if (x1x2 · · ·xn)p−1 6∈ m[p]. But
if (x1x2 · · ·xn)p−1 ∈ (xp1, x

p
2, . . . , x

p
d), then 1 ∈ (x1, . . . , xn, x

p
n+1, . . . , x

p
d) ⊆ m

(see Exercise 1.2). This contradiction allows us to conclude that D is Frobe-
nius split at P .

Example 1.4. Consider the complete local ring R = kJx, y, zK/(xy − z2),
where k is a F -finite field of characteristic p. In the power series ring
kJx, y, zK,

(xy − z2)p−1 ≡ xp−1yp−1 modulo (xp, yp, z2),

so (xy − z2)p−1 /∈ (xp, yp, zp) ⊆ (xp, yp, z2) (again, using Exercise 1.2). This
implies R is Frobenius split by Corollary 1.2.

Example 1.5. Consider a hypersurface in Pn defined by a homogeneous
polynomial f of degree d over an F -finite field of characteristic p. Fedder’s
Criterion easily implies that:

(a) The hypersurface is never (globally) Frobenius split if d > n+ 1;
(b) If d = n + 1, then the hypersurface is (globally) Frobenius split

if and only if the monomial (x0x1 · · ·xn)p−1 appears in fp−1 with
non-zero coefficient.

To prove this, first note that we can check Frobenius splitting at the unique
homogeneous maximal ideal of the homogeneous coordinate ring k[x0, . . . , xn]/(f)
(Theorem 4.12 in Chapter 3). So applying Fedder’s criterion, we consider
whether or not fp−1 is in the ideal m[p] = (xp0, x

p
1, . . . , x

p
n).

Expanding out fp−1 as a k-linear combination of monomials, we observe
that each monomial xa0

0 x
a1
1 · · · xann appearing fp−1 is in m[p] unless all

ai ≤ p−1, which can happen only when deg fp−1 =
∑n

i=0 ai ≤ (n+1)(p−1).
This implies (a) immediately, by Fedder’s criterion. Statement (b) follows
as well, since when deg f = n+ 1, all monomials of fp−1 are in m[p] with the
possible exception of the term (x0x1 · · ·xn)p−1, which is in m[p] if and only if
its coefficient is zero.
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See also Example 1.11 for a generalization to global F -regularity.

Example 1.6. Let us consider some cubic surfaces of characteristic two. Let

f = x3 + y3 + z3 + w3 and g = xyz + x3 + y3 + z3 + w3

be two polynomials over an algebraically closed field k of characteristic two.
Both define smooth cubic surfaces in P3, but the surface defined by g is
globally Frobenius split while the surface defined by f is not. Indeed, re-
membering that p = 2, we have

fp−1 = x3 + y3 + z3 + w3 ∈ (x2, y2, z2, w2) = m[p]

whereas,

gp−1 = xyz + x3 + y3 + z3 + w3 6∈ (x2, y2, z2, w2) = m[p],

so this follows immediately from Corollary 1.2. Non-singular cubic surfaces
in P3 that are not Frobenius split, it turns out, exist only in characteristic
two, and they have extremely special geometry. For example, there are no
"triangles" on a non-Frobenius split cubic: every triple of coplanar lines meet
at a point. Put differently, there are 45 Eckardt points on a non-Frobenius
split cubic surface. See [KKP+21].

1.1. Elliptic curves. As a special case of Example 1.5, we again see
that Frobenius splitting for elliptic curves is the same as ordinarity (compare
with Chapter 3 Example 1.29):

Corollary 1.7. An elliptic curve over an F -finite field is (globally) Frobenius
split if and only if it is ordinary.

Proof. An elliptic curve E can be embedded as a cubic curve in P2,
say, defined by f ∈ k[x, y, z]. But now using Example 1.5, the curve E is
Frobenius split if and only if the term (xyz)p−1 appears in fp−1 with non-zero
coefficient. This condition is one of the many characterizations of ordinarity
for elliptic curves [Har77, IV Prop 4.21]. �

1.1.1. The Fermat cubic. Let us examine more closely a particular ellip-
tic curve, say with equation f = x3 + y3 + z3 in characteristic p 6= 3. Using
the trinomial expansion, we compute

(1.7.1) fp−1 =
∑

i+j+k=p−1

(
p− 1

i, j, k

)
x3iy3jz3k.

All terms of (1.7.1) are in (xp, yp, zp) with the possible exception of the
(xyz)p−1 term. This term appears if and only if 3i = 3j = 3k = p− 1, as its
coefficient (

p− 1
p−1

3
p−1

3
p−1

3

)
=

(p− 1)!(
p−1

3

)
!
(
p−1

3

)
!
(
p−1

3

)
!
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is clearly non-zero modulo p. So k[x, y, z]/(x3 + y3 + z3) is Frobenius split if
and only if p ≡ 1 (mod 3). Put differently, the elliptic curve in P2 defined by
x3 + y3 + z3 is ordinary when p ≡ 1 mod 3 and supersingular2 when p ≡ 2
mod 3. For more on elliptic curves, see Exercise 1.5.

1.2. Glassbrenner’s criterion for strong F -regularity. Donna Glass-
brenner proved an analogous criterion for strong F -regularity:

Theorem 1.8 ([Gla96]). Let R = S/I be a quotient of an F -finite regular
local ring (S,m) by some non-zero prime ideal I. Then R is strongly F -
regular if and only if for every c ∈ S \ I, there exists e > 0 so that

(1.8.1) c (I [pe] : I) * m[pe].

Remark 1.9. Glassbrenner’s theorem can be stated using just one "test
c" as we did in Chapter 1 Section 5. That is, to check that R is strongly
F -regular, it suffices to check (1.8.1) for just one c ∈ S \ I such that the
localization Sc/ISc is strongly F -regular (for example, regular).

Remark 1.10. Theorem 1.8 (and Remark 1.9) adapt easily to the case I is
not prime, but in this case, we should take c not in any minimal prime of I.

Glassbrenner’s Criterion tells us that hypersurface singularities of high
multiplicity are never strongly F -regular.

Example 1.11. If R = S/(f) where (S,m) is an F -finite regular local ring
of dimension n and f is a non-zero element in mn, then R is never strongly
F -regular. To check this, observe that the ideal (I [pe] : I) is generated by
fp

e−1, so (I [pe] : I) ⊆ m(pe−1)n for all e. In particular,

c(I [pe] : I) = cfp
e−1S ⊆ m(pe−1)n+1 ⊆ m[pe]

for all c ∈ m and every e ∈ N. Glassbrenner’s criterion therefore tells us that
the hypersurface defined by f is not strongly F -regular. Interpreted as a
statement in the graded case, this example says that the degree of a globally
F -regular hypersurface in Pn is at most n; See also Example 1.5.

Hypersurfaces of low multiplicity can be strongly F -regular or not, even
in fixed degree, depending on the specific example; see Exercise 1.6. However,
quadrics are always strongly F -regular:

Example 1.12. LetR = k[x1, . . . , xn]/(f) be a quotient of a polynomial ring
in at least three variables over an F -finite field by an irreducible homogeneous
element f of degree two. Then R is strongly F -regular. To see this, recall

2In this context, supersingular means simply “not ordinary.”
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that changing coordinates, we can assume3 that f = x1x2 + g where g is a
homogeneous degree two polynomial in x3, . . . , xn. In this case, R[x−1

1 ] is
regular. Applying Glassbrenner’s criterion (as modified by Remark 1.9), we
examine

x1f
pe−1 = x1

pe−1∑
i=0

(
pe − 1

i

)
(x1x2)igp

e−1−i.

Note that each summand x1(x1x2)igp
e−1−i has degree 1 + i in x1, so that no

cancellation can occur among them. Furthermore, each binomial coefficient(
pe−1
i

)
is non-zero by Lucas’s theorem (see Exercise 1.4). So thinking about

degrees, we see the x1f
p−1 ∈ m[pe] if and only if each term x1(x1x2)igp

e−1−i

is in m[pe]. In particular, when i = pe − 2, this says

x1(x1x2)p
e−2g = xp

e−1
1 xp

e−2
2 g ∈ (xp

e

1 , . . . , x
pe

n ),

which forces

g ∈ (xp
e

1 , . . . , x
pe

n ) : xp
e−1

1 xp
e−2

2 = (x1, x
2
2, x

pe

3 . . . , xp
e

n )

(see, e.g., Exercise 1.2). As g has degree two in x3, . . . , xn, this is clearly
impossible for e� 0.

Fedder’s criterion will be proved in the next section after developing a
thorough understanding of the module HomR(F e∗R,R). The proof of Glass-
brenner’s theorem is similar, and left to the reader in Exercise 2.4.

1.3. Exercises.

Exercise 1.1. Describe all f ∈ (x, y, z) ⊆ F2[x, y, z] such that F2[x, y, z]/(f)
is Frobenius split in a neighborhood of (x, y, z).

Exercise 1.2. Let y1, . . . , yn be a regular sequence in a commutative ring.
For natural numbers 0 ≤ ai ≤ Ni, prove that

(yN1
1 , yN2

2 , . . . , yNnn ) : (ya1
1 ya2

2 . . . yann ) ⊆ (yN1−a1
1 , yN2−a2

2 , . . . , yNn−ann ).

Hint: Induction on the sum of the Ni works well.

Exercise 1.3. Let (S,m) be an F -finite regular local ring, and suppose that
R = S/(f1, . . . , fr) is a complete intersection.4 Prove that R is Frobenius

3This follows from the classification theory for quadratic forms. We can extend scalars
by Corollary 1.24 in Chapter 3 so as to assume k is quadratically closed. When p 6= 2, this
classification is well-known and can be found in any advanced linear algebra textbook.
Because the characteristic two case can be hard to find, we refer the reader to [KPS+21,
Prop 3.4].

4Complete intersection means that dimR = dimS−r, or equivalently, that f1, . . . , fr
form a regular sequence.
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split if and only if
(f1 · · · fr)p−1 /∈ m[p].

Hint: Prove that I [p] : I = I [p] + (f1 · · · fr)p−1.

Exercise 1.4 (Lucas’s Theorem). Let p be a prime number. Given two
positive integers, m and n, let m = mkp

k + · · ·+m0 and n = nkp
k + · · ·+n0

be their base p expansions. Prove that
(
m
n

)
≡
∏k
i=0

(
mi
ni

)
(mod p).

Exercise 1.5 (Elliptic curves in Legendre normal form). Assuming k is al-
gebraically closed and of characteristic p 6= 2, a smooth elliptic curve E can
be defined by a polynomial of the form zy2 − h(x, z), where h is a homoge-
neous cubic. Show that E is Frobenius split if and only if the dehomogenized
polynomial h(x, 1)

(p−1)
2 has a non-zero xp−1 term. Again, this is equivalent

to ordinarity of E by [Sil09, Chapter V, Theorem 4.1(a)].

Exercise 1.6. Use Glassbrenner’s criterion to show that the smooth cubic
surface in P3 defined by xyz + x3 + y3 + z3 +w3 is globally F -regular in all
characteristics p 6= 3, and the cubic surface defined by x3 + y3 + z3 + w3 is
globally F -regular if and only if the characteristic p ≥ 5.

Exercise 1.7. Suppose that R is a regular Noetherian ring of characteristic
p > 0 and that q is a prime ideal. Prove that q[pe] is q-primary.

Hint: Show that if f /∈ q, then the “multiplication by f ” map R/q[pe] f−→
R/q[pe] is injective.

Exercise 1.8. Suppose that S is an F -finite regular ring that is not necessar-
ily local and R = S/I. Fix a prime ideal q ∈ SpecR = V(I) ⊆ SpecS. Show
that SpecR is Frobenius split at q if and only if for some fixed (equivalently,
all) e ∈ N,

(I [pe] : I) * q[pe].

Hint: Reduce to the case where q is the maximal ideal of a regular local ring
using Exercise 1.7 to show that q[pe]Rq ∩R = q[pe].

Exercise 1.9. State and prove an analog of Exercise 1.8 for strong F -
regularity.

2. The proof of Fedder’s Criterion

To prove Fedder’s Criterion, we examine HomR(F∗R,R), where Frobe-
nius splittings, if they exist, must live. We have already looked carefully
at the structure of HomS(F∗S, S) as an F∗S-module, in Chapter 2, in the
case where S is a polynomial ring, and seen that this module is free of
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rank one over F∗S. In this section, in the case where R is a quotient of
an F -finite regular local ring S, Fedder proved a concrete description of the
module HomR(F∗R,R) in terms of the F∗S-module HomS(F∗S, S) ∼= F∗S,
from which his criterion follows easily. This description of HomR(F∗R,R)
has other applications, including to computing the defining ideal for the
non-Frobenius split locus explicitly; see Subsection 2.3.

2.1. Fedder’s Lemma. Recall that in general, whenever A −→ B is
a map of commutative rings, there is a natural (right) B-module structure
on HomA(B,A), where b ∈ B acts on φ ∈ HomA(B,A) to produce the map
φ◦b ∈ HomA(B,A); see Subsection 1.1 of Chapter 2. In this section, we freely
use this idea for the Frobenius mapR −→ F e∗R. In particular, for all e ∈ N, we
consider the natural F e∗R-module structure on HomR(F e∗R,R) given by pre-
multiplication by elements of F e∗R. The action of F e∗ r on φ ∈ HomR(F e∗R,R)
produces the map5 φ ? r ∈ HomR(F e∗R,R).

Theorem 2.1 (Fedder’s Lemma, [Fed83]). Let S be an F -finite regular
ring, and let R = S/I. Then there is a natural F e∗S-module map

(2.1.1) F e∗
(
I [pe] : I

)
·HomS(F e∗S, S) −→ HomR(F e∗R,R)

which is surjective with kernel F e∗ I [pe] ·HomS(F e∗S, S).

The map (2.1.1) is the natural one discussed in Section 6 of Chapter 1—
namely, the image of a map F e∗S

ψ−→ S is the map on the quotient defined
by

F e∗ (S/I)
ψ−→ S/I F e∗ (xmod I) 7−→ ψ(x) mod I.

The theorem asserts, in particular, that all maps ψ in F e∗
(
I [pe] : I

)
·HomS(F e∗S, S)

are compatible with I in the sense of Definition 6.1 in Chapter 1 (that is,
ψ(F e∗ I) ⊆ I).

Remark 2.2. We pause to clarify the notation F e∗J · HomS(F e∗S, S) in
Fedder’s Lemma6, as it has been known to cause some confusion. In this
chapter, for an arbitrary ring R of positive characteristic and ideal b ⊆ R,
we will always use the notation

F e∗ b ·HomR(F e∗R,R),

to denote the F e∗R-submodule of HomR(F e∗R,R) generated by

{φ ◦ F e∗ b | ∀F e∗ b ∈ F e∗ b, ∀φ ∈ HomR(F e∗R,R)}.
The · alerts us that we are working with the F e∗R module structure (and
not the R module structure). This module should not be confused with
bHomR(F e∗R,R), which refers to the R-module structure on HomR(F e∗R,R),

5φ ? r := φ ◦ F e∗ r, Subsection 4.2 in Chapter 1.
6which appears twice, once for J = (I [pe] : I) and once for J = I [pe]
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nor with F∗(bHomR(F e∗R,R)), which is its image under the functor F∗. Yet
another potential notation for F e∗ b · HomR(F e∗R,R) is HomR(F e∗R,R) ? b,
using the operation ? in the Cartier algebra; see Subsection 4.2 in Chapter 1.

2.2. The Proofs. When S is an F -finite polynomial ring, we saw in
Proposition 1.3 of Chapter 2 that there is some Φe ∈ HomS(F e∗S, S) such
that the natural map

F e∗S −→ HomS(F e∗S, S) F e∗ s 7→ Φe ? s

is an isomorphism of F e∗S-modules. Recall that such a map Φe is called
a generating map (see Definition 1.5). The existence of such Φe holds
beyond the polynomial ring case, as we will recall below.

We recall that we already studied this. Indeed for any (quasi-)Gorenstein
(for instance regular) F -finite local ring S, we have that we have an isomor-
phism of F e∗S-modules:

(2.2.1) HomS(F e∗S, S) ∼= F e∗S.

In other words, HomS(F e∗S, S) is a free of rank-1 as an F e∗S-module. See
Chapter 2 Corollary 3.16. Hence, there exists Φe ∈ HomS(F e∗S, S) which
generates the Hom-set as an F e∗S-module, a generating map. Note the e is a
simple index here (however, in many cases it can be treated as a composition,
see Appendix A Proposition 5.3). In what follows, for most cases of interest,
it is easy to reduce to the case that HomS(F e∗S, S) = Φe · F e∗S.

In addition to generating maps, we also need the following lemma:

Lemma 2.3. Let S be an F -finite regular ring. Let I and J be arbitrary
ideals of S. Then

(2.3.1) φ(F e∗J) ⊆ I for all φ ∈ HomS(F e∗S, S)

if and only if J ⊆ I [pe]. In particular, if Φe generates HomS(F e∗S, S) as an
F e∗S-module, then

(2.3.2) J ⊆ I [pe] if and only if Φe(F e∗J) ⊆ I.

Proof of Lemma 2.3. First note that if Φe generates HomS(F e∗S, S)
as an F e∗S-module, then regardless of whether or not S is regular or F-finite,

φ(F e∗J) ⊆ I ∀φ ∈ HomS(F e∗S, S) if and only if Φe(F e∗J) ⊆ I.
So the second statement follows from the first.

To prove (2.3.1), first assume J ⊆ I [pe]. So F e∗J ⊆ F e∗ I [pe] = IF e∗S. Now
applying any φ ∈ HomS(F e∗S, S), we see that

φ(F e∗J) ⊆ φ(IF e∗S) ⊆ I,
whether or not S is regular and F-finite.
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Conversely, assume that φ(F e∗J) ⊆ I for all φ ∈ HomS(F e∗S, S). Then
the same holds locally since the formation of the Hom-set commutes with
localization, and because an inclusion of ideals can be checked locally, there
is no loss of generality in assuming that S is local. So we may assume that
F e∗S is free over S (by Kunz’s theorem), and let

{F e∗ e1, F
e
∗ e2, . . . , F

e
∗ en}

be a finite set of free generators, where each ei ∈ S.

Take arbitrary f ∈ J . We want to show that f ∈ I [pe]. We can write

F e∗ f = a1F
e
∗ e1 + · · ·+ anF

e
∗ en

for some (unique) ai ∈ S. Because φ(F e∗J) ⊆ I for all φ ∈ HomS(F e∗S, S),
we see that πi(F e∗J) ⊆ I for the projections πi ∈ HomS(F e∗S, S) onto the
free summands spanned by F e∗ ei. Thus for each i,

ai = a1πi(F
e
∗ e1) + · · ·+ anπi(F

e
∗ en) = πi(F

e
∗ f) ∈ I.

This means that

F e∗ f = F e∗a
pe

1 e1 + · · ·+ F e∗a
pe

n en ∈ F e∗ I [pe],

or in other words, f ∈ I [pe]. This proves that J ⊆ I [pe]. �

Proof of Theorem 2.1. The existence of the map (2.1.1) is a conse-
quence of the following claim.

Claim 2.4. Every ψ ∈ F e∗
(
I [pe] : I

)
· HomS(F e∗S, S) is compatible with the

ideal I.

Proof of claim. To check this claim, we verify that ψ(F e∗ I) ⊆ I. For
this, we may assume that ψ = φ ? s for some φ ∈ HomS(F e∗S, S) and s ∈(
I [pe] : I

)
. Now since sI ⊆ I [pe], it follows that

ψ(F e∗ I) = (φ ◦ F e∗ s)(F e∗ I) = φ(F e∗ (sI)) ⊆ φ(F e∗ I
[pe]) ⊆ Iφ(F e∗S) ⊆ I,

so that ψ is compatible with I, proving the claim. �

We now have a well-defined map (2.1.1), which is clearly additive and
F e∗S-linear. It remains only to check it is surjective and has the desired ker-
nel. Because the formation of the quotient S/I, the modules HomS(F e∗S, S)

and HomR(F e∗R,R), and the ideal (I [pe] : I) all commute with localization,
there is no loss of generality in assuming that S is local.

To check the map (2.1.1) is surjective, we use the fact that F e∗S is a
projective S-module by Kunz’s Theorem (Corollary 2.2 in Chapter 1). For
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an arbitrary R-module map F e∗R
ψ→ R, the projectivity of F e∗S allows us to

fill in the dotted arrow at the top of the commutative diagram of S-modules

(2.4.1) F e∗S

����

ψ̃
// S

����

F e∗R ψ
// R

where the vertical arrows are the natural quotient maps by F e∗ I and I, re-
spectively. The lifted map ψ̃ is compatible with I by construction; we must
show that ψ̃ lies in the submodule F e∗

(
I [pe] : I

)
·HomS(F e∗S, S). For this, fix

an F e∗S-module generator Φe for HomS(F e∗S, S) and write

ψ̃ = Φe ◦ F e∗ y

for some y ∈ S. It now suffices to show that y ∈ (I [pe] : I). The compatibility
of ψ̃ and I implies that

ψ̃(F e∗ I) = (Φe ? y)(F e∗ I) = Φe(F e∗ (yI)) ⊆ I.

So by Lemma 2.3, we can conclude that yI ⊆ I [pe], or equivalently, that
y ∈

(
I [pe] : I

)
, as needed. We have shown that, when S is regular, the map

(2.1.1) is surjective.

Finally, we consider the kernel of (2.1.1). Take an arbitrary

φ = Φe ? y ∈ F e∗
(
I [pe] : I

)
·HomS(F e∗S, S)

in the kernel (2.1.1). Since φ induces the zero map on F e∗R, the image of φ
is

φ(F e∗S) = (Φe ? y)(F e∗S) = Φe(F e − ∗yS) ⊆ I.
In particular, Φe(F e∗ y) ∈ I. Thus y ∈ I [pe] by Lemma 2.3, showing the kernel
is (F e∗ I

[pe]) HomS(F e∗S, S). The theorem is proved. �

We are ready to deduce Fedder’s Criterion from Theorem 2.1:

Proof of Theorem 1.1. Recall that R is Frobenius split if and only
if the iterated Frobenius map F e splits for some (equivalently, every) e ∈ N
(Proposition 3.9 in Chapter 1). Thus it suffices to prove, for fixed e ∈ N,
that F e splits if and only if (I [pe] : I) 6⊆ m[pe].

The map F e : R −→ F e∗R splits if and only if there is φ ∈ HomR(F e∗R,R)
such that φ(F e∗ 1R) is a unit in R. Such a splitting φ would be induced by
some Φe ◦ F e∗ y ∈ HomS(F e∗S, S), where y ∈ (I [pe] : I) by Theorem 2.1.
Therefore, F e splits if and only if there exists some y ∈ (I [pe] : I) such that

(Φe ◦ F e∗ y)(F e∗ 1S) = Φe(F e∗ y) 6∈ m,
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where Φe is an F e∗S-module generator for HomS(F e∗S, S). By Lemma 2.3,
we conclude that R is Frobenius split if and only if (I [pe] : I) 6⊆ m[pe]. �

Remark 2.5. Theorem 2.1 is false in general for non-regular S, even if S
has very mild singularities; see Example 2.12 and Chapter 5 Example 4.4.
On the other hand, a generalization to the case where S is Gorenstein and
I has finite projective dimension can be found in [GMS20, Section 3].

Glassbrenner’s criterion is proved similarly, so is left as Exercise 2.4.

2.3. Computing the non-Frobenius split locus. Our proof of Fed-
der’s Lemma suggests an explicit defining ideal for the (closed) loci of non-
Frobenius split and non-strongly F -regular points. In practice, this ideal can
be computed by machine quite easily.

Corollary 2.6. Let S be an F -finite regular ring and assume that HomS(F e∗S, S)
is generated by Φe as an F e∗S-module.

Let R = S/I, and consider SpecR as the closed set V(I) of SpecS. Then

(a) For any fixed e, the closed locus of non-Frobenius split points of
SpecR is defined by the ideal Φe(F e∗ (I [pe] : I)) ⊆ S.

(b) The closed locus of non-strongly F -regular points of SpecR is defined
by the ideal Φe(F e∗ c(I

[pe] : I)) ⊆ S for e� 0, where c is any element
of S not in any minimal prime of I such that Sc/ISc is strongly F -
regular.

The ideals described in (a) and (b) contain I, so they cut out closed sets of
V(I) = SpecR.

Proof. Left as Exercise 2.7. �

Remark 2.7. While we already saw the closedness of these loci in Chapter 1,
Corollary 2.6 is important in practice, because computing the image of an
ideal F e∗J under Φe is straightforward, for example with a computer, when
S is a polynomial ring. See Exercises 2.1 and 2.2.

Remark 2.8. The ideals Φe(F e∗ (I [pe] : I)) and Φe(F e∗ c(I
[pe] : I)) in Corol-

lary 2.6 depend on the choice of e (and c), although the loci they define
do not, as they coincide with non-Frobenius split locus and non-strongly
F -regular locus, respectively. Up to radical, the latter ideal is the test ideal
τ(R) (when R is F -finite and reduced).

Question 2.9 (Open question). The ideals Φe(F e∗ (I [pe] : I)) defined in
Corollary 2.6 form a descending chain of ideals in R (see Exercise 2.6). Does
this chain stabilize? This is known to be true if R is a hypersurface or more
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generally Q-Gorenstein (see [CEMS18]). Those results are a corollary of
a key step in a famous result of Hartshorne and Speiser [HS77], general-
ized in certain ways by Lyubeznik [Lyu97] and also independently proven
in greater generality by Gabber [Gab04]. We prove a version of this result
in Theorem 6.18 later in this chapter, see also Exercise 6.11. This result,
and its applications, also plays a staring role later in Chapter 8 Section 2.

2.4. The submodule of compatible maps. We isolate an interest-
ing fact proved about compatibility of ideals and maps from our proof of
Theorem 2.1:

Corollary 2.10. Suppose S is an F -finite regular ring and I ⊆ R is an
ideal. Then the set of maps in HomS(F e∗S, S) that are compatible with I is
exactly (

F e∗
(
I [pe] : I

))
·HomS(F e∗S, S).

More generally, fixing any ring R of prime characteristic and ideal J of
R, we might try to identify the maps in HomR(F e∗R,R) compatible with J .
Such maps form an F e∗R submodule

MJ = {φ | φ(F e∗J) ⊆ J} ⊆ HomR(F e∗R,R),

and can be interpreted as the maps which descend to maps in HomT (F e∗T, T ),
where T = R/J . An interesting problem is to try to understand when the
natural homomorphism

(2.10.1) MJ −→ HomT (F e∗T, T ) φ 7→ φ

is surjective. For example, the following consequence of surjectivity is imme-
diate:

Proposition 2.11. Let R be an arbitrary ring of characteristic p > 0 and
T = R/J an arbitrary quotient. If the natural map (2.10.1) is surjective and
T is Frobenius split, then also R is Frobenius split.

We just showed that Fedder’s Lemma guarantees the map (2.10.1) is
always surjective when R is regular. When J = (f) is principal R is quasi-
Gorenstein, and T is S2 (for instance if R is Gorenstein) the map (2.10.1) is
also surjective as you will show in Exercise 2.15 (one can see this by analyzing
the diagram (5.20.2) in Chapter 2).

However, (2.10.1) is not surjective in general:

Example 2.12. Let R = Fp[x, y, z]/I = S/I where I = (x2 − yz), and con-
sider the ideal J/I ⊆ R where J = (x, y). The map (2.10.1) is not surjective
in this case. Indeed, working in the polynomial ring Fp[x, y, z], we compute

I [p] : I = ((x2 − yz)p−1) and J [p] : J = ((xy)p−1, xp, yp).
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So the element (xy)p−1 is in (J [p] : J) but not (I [p] : I). This means that the
map φ ∈ HomT (F∗T, T ) (where T = R/J) induced by the map7 Φ ? (xy)p−1

does not lift to any map in HomR(F∗R,R). The example is studied in more
detail in Chapter 5 Example 4.4.

For more discussions on quantifying the failure of surjectivity for height
one primes, see Chapter 6 Section 6 and [Das15].

We can give a nice description of the submoduleMJ of compatible maps
for quotients of regular rings using Fedder’s Lemma:

Corollary 2.13. Let R = S/I be a quotient of an F -finite regular ring S.
For an arbitrary ideal J = J/I of R, the submodule

MJ := {φ | φ(F∗J) ⊆ J} ⊆ HomR(F e∗R,R)

of all φ compatible with J is the image of the natural map

F e∗
(
(I [pe] : I) ∩ (J [pe] : J)

)
·HomS(F e∗S, S) −→ HomR(F e∗R,R)

obtained by sending φ in the source to the map φ ∈ HomR(F e∗R,R) defined
by φ(F e∗ (x mod I)) = φ(F e∗x) mod I.

Proof. This follows from Theorem 2.1 by simply unravelling notation.
�

Corollary 2.14. With notation as in Corollary 2.13, J is compatible with
every map φ ∈ HomR(F e∗R,R) if and only if

(2.14.1) (I [pe] : I) ⊆ (J [pe] : J).

Equivalently, the inclusion (2.14.1) holds if and only if there is a naturally
induced map HomR(F e∗R,R)→ HomT (F e∗T, T ) where T = R/J .

Taking J to be the maximal ideal of a regular local ring (S,m), we can
use Corollary 2.14 to show certain rings are not strongly F -regular:

Example 2.15. Consider the ideals I = (xy) ⊆ J = (x, y) in the polynomial
ring Fp[x, y]. Then

I [pe] : I = ((xy)p
e−1) and J [pe] : J = ((xy)p

e−1, xp
e
, yp

e
),

in Fp[x, y], so that
(I [pe] : I) ⊆ (J [pe] : J).

SettingR = Fp[x, y]/(xy), then Corollary 2.14 implies that every map F e∗R −→
R sends the maximal ideal (x, y) back into itself. In particular, R can not
be strongly F -regular: no map in HomR(F e∗R,R) can send F e∗ c to 1 for
c ∈ (x, y).

7Here, Φ denotes a generating map for HomS(F∗S, S) where S is the polynomial ring
Fp[x, y, z].
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We conclude with some examples.

Example 2.16 (F -injective but not F -split). Suppose that S = F3Jy, z, u, vK,
consider the ideal

I = (uv, zu, y4z − zv)

and set R = S/I. In Chapter 4 Exercise 2.14 we saw that R/(y) is Frobenius
split and hence F -injective. Since y is a regular element of R and R/(y) is
Cohen-Macaulay (since it is 1-dimensional and reduced), we see that R is
also Cohen-Macaulay. Thus R is F -injective. But now by Exercise 2.14 we
see that R is not F -pure (use Fedder’s criterion).

Example 2.17 (F -rational but not F -split). If S = F11[a, b, c, d, t] with

I = (a2t5 + a4 − bc, b2t5 − dt5 + a2b2 − a2d− cd, b3 − a2d− bd)

and set R = S/I. Since R/(t) is F -regular (by Glassbrenner’s criterion), we
see that R is F -rational by Chapter 1 Exercise 7.19.

2.5. Exercises.

Exercise 2.1. Suppose S is an F -finite regular ring and F e∗S has an S-basis
F e∗ b1, . . . , F

e
∗ bm. Further suppose that Φe ∈ HomS(F e∗S, S) is a generating

map. Suppose f ∈ S and write

F e∗ f =
m∑
i=1

aiF
e
∗ bi = F e∗

m∑
i=1

ap
e

i bi.

Then
Φe(F e∗ fS) = (a1, . . . , am).

Exercise 2.2. Suppose S = F3[x, y] and let f = yx3 + x2y4 − y12. Prove
that Φ(F∗fS) = (x, y, y4) = (x, y).

Hint: Write F∗f = xF∗y + yF∗x
2y + y4F∗1, and apply Exercise 2.1.

Exercise 2.3. Let S be an F -finite regular ring, and R = S/I some proper
quotient. Show that R is e-Frobenius split along c ∈ R if and only if the
“evaluation at c map”

(2.17.1)
F e∗ (I [pe] : I) ·HomS(F e∗S, S) −→ S

φ 7→ φ(F e∗ c)

is surjective.

Exercise 2.4. Prove Glassbrenner’s theorem, Theorem 1.8, and the remark
following it about testing along just one c.

Hint: Use Exercise 2.3 and Lemma 2.3.
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Exercise 2.5. Let S be an F -finite regular ring and let I be an ideal in S.
Assume that Φe ∈ HomS(F e∗S, S) is a generator as an F e∗S-module. Show
that for any non-zerodivisor c ∈ S,

(2.17.2) I ⊆ Φe
(
F e∗ c(I

[pe] : I)
)

for all e� 0. Furthermore, if c is a unit, prove (2.17.2) for all e > 0.

Hint: For e � 0, find d ∈ S so that Φe(F e∗ cd) = 1. Now given y ∈ I, apply
Φe ◦ F e∗ yp

e
c to the element F e∗ d.

Exercise 2.6. With notation as in the previous exercise, show that

Φe
(
F e∗ (I [pe] : I)

)
⊇ Φe+1(F e+1

∗ (I [pe+1] : I)).

Hint: Let R = S/I and use the fact that Φe(F e∗ (I [pe] : I)) ·R is the same as
the image of the “evaluation at F e∗ 1” map HomR(F e∗R,R) −→ R.

Exercise 2.7. Prove Corollary 2.6.

Hint: Study the proof of Theorem 5.12 in Chapter 1 in light of Theorem 2.1.

Exercise 2.8. Suppose (R,m) is an F -finite DVR with m = (t). Show that a
map φ : F e∗R −→ R generates HomR(F e∗R,R) if and only if φ(F e∗ (tp

e−1)) = R.

Exercise 2.9. More generally, suppose (R,m) is an F -finite d-dimensional
regular local ring with regular system of parameters x1, . . . , xd (that is,
(x1, . . . , xd) = m). Show that φ : F e∗R −→ R generates HomR(F e∗R,R)

as an F e∗R-module if and only if φ(F e∗ (xp
e−1

1 · · ·xp
e−1
d )) = R.

Hint: Complete at the maximal ideal and use the Cohen-Structure Theorem.
A map will generate that Hom-set if and only if it generates after completion.

Exercise 2.10. Consider the ring R = F3[x, y]/(x2 + y5). Let Je be the
image of “evaluation at F e∗ 1” map HomR(F e∗R,R) −→ R. Compute the ideals
J1 and J2, and show they are not equal, but do define the same locus.

Exercise 2.11. Suppose that S is an F -finite regular ring and let I and J
be arbitrary ideals of S. Show that

Image
(

(F e∗J) ·Hom(F e∗S, S)
eval at Fe

∗1−−−−−−→ S
)
⊆ I ⇐⇒ J ⊆ I [pe].

This gives an alternate interpretation of Lemma 2.3.

Exercise 2.12. Prove that the ring Fp[x,y,z]
(x3+y3+z3)

is not Frobenius split along
any element of m = (x, y, z) (a non-unit that vanishes at the origin). Prove
that it is Frobenius split along every unit if and only if p ≡ 1 (mod 3).
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Exercise 2.13. Let k be an F -finite field, and let f be a homogeneous
polynomial of degree d in the local ring S = k[x1, . . . , xn]m where m =

(x1, x2, . . . , xn). Show that if fpe−1 ∈ (xp
e

1 , x
pe

2 , . . . , x
pe
n , (x1x2 · · ·xn)p

e−1),
then S/(f) is not strongly F -regular.

Hint: See Example 2.15.

Exercise 2.14. Suppose that S = F3Jy, z, u, vK, consider the ideal

I = (uv, zu, y4z − zv)

Prove that R = S/I is not F -split even though R/(y) is F -split.

Hint: A program like Macaulay2 can help compute I [3] : I.

Exercise 2.15. Suppose that R is an F -finite quasi-Gorenstein local ring
and f ∈ R is a regular element such that R/(f) is also S2, for instance
normal. Show there is a natural map

(2.17.3) (F e∗ f
pe−1) ·HomR(F e∗R,R) −→ HomR/(f)(F

e
∗R/(f), R/(f))

which is surjective.

Exercise 2.16. Suppose that R is an F -finite quasi-Gorenstein local ring
and f ∈ R is a regular element. Then if the quotient R/(f) is S2 and
Frobenius split (respectively, strongly F -regular), then so is R. In fact (f)
is compatibly Frobenius split in R.

Exercise 2.17. Let S be an F -finite regular local ring, and suppose R = S/I
is some Gorenstein quotient. Let f ∈ S be such that its image in R is a
regular element. Prove that

(I [p] + (fp)) : (I + (f)) ⊆ fp−1(I [p] : I) + I [p] + (fp).

Hint: Use the ideas behind Corollary 2.13 and Chapter 2 Corollary 3.16, see
also Lemma 5.20 in Chapter 2.

Exercise 2.18. Let R = Fp[x, y]/(x, y)n for some n > 0. Explain why c is
a strong test element if and only c is a height test element in the sense of
Chapter 1 Exercise 5.17. Show that the ideal of all strong test elements is
(x, y)n−1.

Exercise 2.19. Let R = Fp[x, y]/(xy, xn) for some n > 1. Show that the
ideal of all strong test elements is (xn−1, y). Show also that the ideal of all
height test elements is (xn−1, y) (as defined in Exercise 5.17).

Hint: Fedder’s Lemma is useful for understanding HomR(F e∗R,R).
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Exercise 2.20 (An algorithm to compute τ(ωR)). Suppose that S is a
polynomial ring over an F -finite ring (or a regular local ring) and write
R = S/I for some ideal I. Assume R is S2. Choose J ⊇ I an ideal such
that J = J/I ∼= ωR. Consider T e : F e∗ωR −→ ωR and view this as a map
T e
J

: F e∗J −→ J , see Chapter 2.

(a) Show that T eJ : F e∗J −→ J extends to a φ : F e∗R −→ R by applying
the functor HomR(−, J) to T e

J
.

(b) Let φ : F e∗S −→ S be a map inducing φ, which exists by Chapter 4
Theorem 2.1. Show that φ(F e∗J) ⊆ J .

(c) Show that

(J [pe] : J) ∩ (I [pe] : I)

I [pe]
∼= HomR(F e∗ωR, ωR)

and hence we may represent T e as an element of the numerator of
the left side.

(d) Let c be a strong test element for R and consider the submodules

Mm :=
m∑
e=0

T e(F e∗ c ωR)

whose sum is τ(ωR) by Proposition 5.6. Show that

T (F∗Mm) + c ωR = Mm+1

and use this to deduce that if Mm = Mm+1, then Mm = τ(ωR).
(e) Use what you’ve done in this exercise to describe an algorithm to

compute τ(ωR).

This algorithm essentially appears in [Kat08].

3. F -pure thresholds of hypersurfaces

The F -pure threshold of a hypersurface is a numerical measurement of
“how far” a characteristic p singularity is from being Frobenius split at a
given point.8

The F -pure threshold is an analog of the log canonical threshold, a com-
plex singularity invariant. The F -pure threshold is more subtle, however,
as it accounts for some of the ways singularities can be “worse” in prime
characteristic. These connections with complex singularity invariants will
be discussed in Chapter 6.

8The F -pure threshold could just as well be called the “Frobenius splitting threshold”,
but the term F -pure threshold is universal throughout the literature. Recall that for F -
finite rings, Frobenius splitting is equivalent to F -purity; see Chapter 1 Proposition 7.20.
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3.1. The Definition. Let (S,m) denote an F -finite regular local ring,
and fix some non-zero f ∈ m. We are interested in measuring how far the
hypersurface S/(f) is from being Frobenius split at m.

Because f ∈ m, of course also fpe ∈ m[pe] for all e ∈ N. Thus, in general,
the largest possible integer ν such that fν 6∈ m[pe] is ν = pe − 1; by Fedder’s
criterion, this happens if and only if S/(f) is Frobenius split. For "more
singular" hypersurfaces, we might expect the largest ν with fν 6∈ m[pe] to be
much smaller. This naturally motivates the following:

Definition 3.1 ([TW04, MTW05]). Let (S,m) be a regular local ring of
characteristic p > 0. For any non-zero f ∈ m, the F -pure threshold of f
(at m) is the supremum of the set

(3.1.1)
{
ν

pe
∈ Q≥0 | fν 6∈ m[pe]

}
.

We denote the F -pure threshold by fptm(f).

It is immediate from the definition that fptm(f) exists and is bounded
above by one. When the hypersurface defined by f is Frobenius split, Fed-
der’s Criterion implies that the set (3.1.1) includes all rational numbers of
the form pe−1

pe , so its F -pure threshold is precisely 1. In fact, the F -pure
threshold being one characterizes Frobenius splitting:

Theorem 3.2. Let (S,m) is an F -finite regular local ring, and let f be any
non-zero element of m. Then the quotient S/(f) is Frobenius split if and
only if fptm(f) = 1.

Theorem 3.2 follows easily from the following technical lemma:

Lemma 3.3. Let f ∈ m be a non-zero element in a regular local ring (S,m).
Let ν(e) ∈ N be maximal such that fν(e) 6∈ m[pe]. Then

(3.3.1)
ν(e)

pe
≤ fptm(f) ≤ ν(e) + 1

pe

for all e ∈ N. In particular, the limit

(3.3.2) lim
e−→∞

ν(e)

pe

exists and is equal to fptm(f).

Proof. We repeatedly use the fact that, for any ideal J ⊆ S and any e ∈
N, we have zpe ∈ J [pe] if and only if z ∈ J (Lemma 3.11 in Chapter 1). Using
this fact, we see that whether or not a rational number ν

pe is in the set (3.1.1)
is independent of what power of p we use to represent the denominator.
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First, we claim that the sequence
{
ν(e)
pe

}
is a non-decreasing sequence,

bounded above by fpt(f). Indeed, given e, we have fν(e) 6∈ m[pe], so raising
to the p-th power, also fpν(e) 6∈ m[pe+1]. By definition of ν(e + 1), this says
that pν(e) ≤ ν(e+ 1). Dividing by pe+1, we have ν(e)

pe ≤
ν(e+1)
pe+1 , so that the

sequence is non-decreasing, as claimed. Furthermore, because each ν(e)
pe is

in the set
{
ν
pe ∈ Q≥0 | fν 6∈ m[pe]

}
, clearly the sequence {ν(e)

pe } is bounded

above by the supremum, fptm(f), and so the sequence {ν(e)
pe } has a limit.

Likewise, the sequence {ν(e)+1
pe } is a non-increasing sequence. Indeed,

fν(e)+1 ∈ m[pe] implies that fp(ν(e)+1) ∈ m[pe+1], so by definition of ν(e+ 1),
we see p(ν(e) + 1) ≥ ν(e+ 1) + 1. Dividing by pe+1, we have

ν(e) + 1

pe
≥ ν(e+ 1) + 1

pe+1
,

which shows the sequence is {ν(e)+1
pe } non-increasing.

Since

lim
e−→∞

ν(e) + 1

pe
= lim

e−→∞

(ν(e)

pe
+

1

pe

)
= lim

e−→∞
ν(e)

pe

it immediately follows that

sup
{ν(e)

pe

}
= lim

e−→∞
ν(e)

pe
= lim

e−→∞
ν(e) + 1

pe
= inf

{ν(e) + 1

pe

}
.

The result follows. �

Example 3.4. Suppose that S/(f) is a non-Frobenius split hypersurface
of characteristic p, where S is a regular local ring. In this case, Fedder’s
Criterion tells us that fp−1 6∈ m[p], so ν(1) ≤ p − 2 (with ν(e) as defined in
Lemma 3.3). Therefore, Lemma 3.3 produces the bound

fptm(f) ≤ ν(1) + 1

p
≤ p− 2 + 1

p
= 1− 1

p
.

This bound is sharp in general. For example, the F -pure threshold of the
homogenous cubic defining a supersingular elliptic plane curve is precisely
1 − 1

p ; see Example 3.11 and [BS15]. In particular, for such cubics, the

non-increasing sequence ν(e)+1
pe is constant.

Another useful description of the F -pure threshold follows easily from
Lemma 3.3:



3. F -PURE THRESHOLDS OF HYPERSURFACES 203

Corollary 3.5. Let f ∈ m be a non-zero element of regular local ring (S,m).
Then the F -pure threshold of f at m is

fptm(f) = inf

{
a

pe
| fa ∈ m[pe]

}
.

Example 3.6. Suppose that f = xa1
1 · · ·xann is a monomial in k[x1, . . . , xn],

where k has characteristic p. Let m = (x1, . . . , xn). Then

fptm(f) = min

{
1

ai
| i = 1, 2, . . . , n

}
.

Indeed, the containment

f b = xba1
1 · · ·xbann ∈ m[pe] = (xp

e

1 , . . . , x
pe

n )

holds exactly when bai ≥ pe for some i, or equivalently, when b
pe ≥

1
ai

for
some i. By Corollary 3.5, it follows that the F -pure threshold is

inf

{
b

pe
| b

pe
≥ 1

ai
i = 1, 2, . . . , n

}
.

Finally, since each fraction 1
ai

can be approximated arbitrarily closely from
above by rational numbers of the form b

pe—for example, by rounding up base

p truncations—we conclude that fptm(f) = min
{

1
ai
| i = 1, 2, . . . , n

}
.

Remark 3.7. While not obvious, the F -pure threshold fptm(f) of any non-
zero element in a regular local ring is rational, see Theorem 6.14.

3.2. Computing the F -pure threshold. Even very simple polyno-
mials can have F -pure thresholds that depend on the characteristic in non-
obvious ways, as the next example shows:

Example 3.8. Consider the cubic f = x2y − xy2 ∈ k[x, y], defining a con-
figuration of three lines in the plane meeting at the origin. We compute
the F -pure threshold of this line arrangement at the point of concurrency
m = (x, y).

Characteristic p = 2 : In this case, fptm(f) = 1/2. Indeed, notice fpe/2 =

fp
e−1

= xp
e
yp

e−1
+ xp

e−1
yp

e ∈ m[pe]. So the F -pure threshold is at most
pe−1

pe = 1
2 . On the other hand, f

pe

2
−1 has a term

(x2)
pe

2
−1y

pe

2
−1 = xp

e−2y
pe

2
−1 /∈ m[pe].

So the F -pure threshold is bounded below by the supremum of
pe

2
−1

pe = 1
2−

1
pe ,

which is 1
2 . So indeed, fpt(f) = 1/2.

Characteristic p = 3 : In this case, fpt = 2/3. Notice that

f2pe/3 = f2pe−1
= (x2y − xy2)2pe−1

= (x4y2 − 2x3y3 + x2y4)p
e−1
,
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which is contained in (xp
e
, yp

e
) since p = 3. Thus fptm(f) ≤ 2/3. On the

other hand,
f2(pe−1−1) = (x4y2 − 2x3y3 + x2y4)p

e−1−1,

which we leave to the reader to prove is not contained in (xp
e
, yp

e
); see

Exercise 3.5. Thus the F -pure threshold is bounded below by the supremum
of the rational numbers 2pe−1−1

pe = 2
3 −

1
pe , which means that fptm(f) ≥ 2/3.

Characteristic p ≡ 2 (mod 3) : In this case, fpt(f) = 2
3 −

1
3p = 2p−1

3p .

Before computing, note that 2p−1 is divisible by 3. Furthermore, 2p−1
is odd and hence so is 2p−1

3 .

Expanding out (x2y− xy2)
2p−1

3 using the binomial theorem, we see that
all terms involve either xp or yp with the possible exception of the two “middle
terms”

Nx2l1+l2yl1+2l2 + Nxl1+2l2y2l1+l2

where l1 = b(2p − 1)/6c and l2 = 2p−1
3 − l1 = d(2p − 1)/6e, and N is the

appropriate binomial coefficient. However, since

l1 + 2l2 = b(2p− 1)/6c+ 2d(2p− 1)/6e = p

both these terms are in fact in (xp, yp). So (x2y − xy2)
2p−1

3 ∈ m[p], which
implies that fpt(f) ≤ 2p−1

3p .

For the other inequality, it suffices to show that

(3.8.1) (x2y − xy2)
(2p−1)pe−1

3
−1 /∈ (xp

e
, yp

e
)

for e ≥ 2. Set m = 2p−1
3 , and observe that 2 < m < p. Then

mpe−1 − 1 = (m− 1)pe−1 + (p− 1)pe−2 + · · ·+ (p− 1)p0,

via base-p arithmetic. It follows from Lucas’ theorem (see Exercise 1.4) that
every binomial coefficient of fmpe−1−1 is nonzero. Hence it is easy to see that
(3.8.1) holds.

Characteristic p ≡ 1 (mod 3) : In this case, fptm(f) = 2/3. We leave this
final case as Exercise 3.6.

Example 3.9. Consider the plane cusp singularity defined by f = y2−x3 ∈
Fp[x, y]. Computing similarly to the Example 3.8, one computes:

fptm(f) =


1/2 p = 2
2/3 p = 3

5/6− 1/(6p) p ≡ 5 (mod 6)
5/6 p ≡ 1 (mod 6)
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Adopting the philosophy that smaller F -pure thresholds indicate worse sin-
gularities, we see that the cusp is “most singular” in characteristic two, a
statement we can confirm in other ways, such as by considering the Jacobian
ideal. We also see that the cusp is “more singular” in characteristics con-
gruent to −1 modulo 6 than those congruent to 1 modulo 6, but as p gets
very large, this difference is less significant. Finally, we see that the F -pure
thresholds approach 5/6 as p gets large, which is precisely the log canonical
threshold of this cusp over C. We will return to this idea in Chapter 6.

Remark 3.10. A general formula for the F -pure threshold of ym + λxn ∈
k[x, y] (where λ is any scalar in the field k of characteristic p > 0) can be
found in [Her15, Thm 3.4].

Example 3.11. The F -pure threshold need not depend on congruence classes
of p in general, as it does in the previous examples. For example, given a
homogeneous cubic f ∈ Z[x, y, z] defining a smooth elliptic curve E in P2

C,

fpt(f) =

{
1 if E is ordinary

1− 1
p if E is supersingular.

See [BS15, Pag18]. Indeed an elliptic curve in characteristic zero reduces to
an ordinary elliptic curve for infinitely many p > 0 [Ser81] [Sil09, Exercise
5.11] but also reduces to a super singular elliptic curve for infinitely many
p > 0, but these need not always form an arithmetic progression as they can
have density zero among all primes [Ser81, Elk87], [Sil09, Theorem 4.7].

Remark 3.12. There are numerous papers that compute the F -pure thresh-
old in special cases. We mention a small set of these here.

(a) For homogeneous polynomials, see [HNnBWZ16, M1̈8].
(b) In k[x, y], see [Har06, Pag22].
(c) For binomials, see [ST09, Her14].
(d) For sums of polynomials in distinct variables, including diagonal

hypersurfaces, see [Her15, GVJVNnB22].

For lower bounds on the F -pure threshold, see [KKP+22].

Remark 3.13. Note the set of all possible F -pure thresholds in a fixed ring
(but varying f) satisfies the ascending chain condition (there is no infinite
ascending chain) by work of Sato [Sat19, Sat21].

Remark 3.14. In the next section, we will define the F -pure threshold more
generally for f ∈ m ⊆ R, where the ambient ring R is non-regular, and even
more generally for pairs (R, f t) where t ∈ R>0 is some formal real exponent
and even replacing f with an ideal and so defining it for (R, at). Later we will
extend these ideas naturally to pairs (X,∆) where X is a normal Noetherian
F -finite scheme and ∆ is a Q-divisor, and still more general situations.
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3.3. Approximating F -pure threshold. Lemma 3.3 can be used to
produce a good approximation of the F -pure threshold. Specifically, if we
can find ν(e) as defined in Lemma 3.3 for some e, then

(3.14.1)
ν(e)

pe
≤ fptm(f) ≤ ν(e)

pe
+

1

pe
,

and so we know the F -pure threshold within a margin of error of 1
pe .

Example 3.15. Consider the plane curve defined by f = y2 − x5 in the
polynomial ring S = Fp[x, y]. The following tables, computed using the func-
tion “frobeniusNu” in the FrobeniusThresholds package for Macaulay2
[HSTW21], show ν(e) at the maximal ideal (x, y) in two different charac-
teristics:

p = 11
e ν(e) ν(e)/pe, estimate of fpt error
1 7 .636364 ≤ 1/11
2 84 .694215 ≤ 1/112

3 931 .699474 ≤ 1/113

4 10248 .699952 ≤ 1/114

5 112735 .699996 ≤ 1/115

6 1240092 ∼ .7 < .0000006

p = 7
e ν(e) ν(e)/pe, estimate of fpt error
1 4 .571429 ≤ 1/7
2 33 .673469 ≤ 1/72

3 237 .690962 ≤ 1/73

4 1665 .693461 ≤ 1/74

5 11661 .693818 ≤ 1/75

6 81633 .693869 ≤ 1/76

7 571437 .693876 ≤ 1/77

8 4000065 .693877 ≤ 1/78

9 28000461 .693878 ≤ 1/79

10 196003233 .693878 < .000000004

Table 1. Estimates of FPT of y2 − x5 in distinct characteristics

In characteristic 11, the ratios ν(e)/pe appear to converge to 0.7 = 7/10,
and indeed the F -pure threshold is 7/10 in this case. In characteristic 7 how-
ever, the table is slightly different; in this case, the ratios ν(e)/pe converge
to 34/49 (which is just shy of 7/10).
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3.4. Exercises.

Exercise 3.1. Let k be a prime characteristic field, and S the localization of
k[x1, . . . , xn] at the maximal ideal m = (x1, . . . , xn). For any field extension
k′ of k, let S′ = S ⊗k k′, and let m′ be its maximal ideal. For f ∈ m, we
can consider f as an element of m′ ⊆ S′ under the natural inclusion S ⊆ S′.
Prove that F -pure threshold of f at m is the same as the F -pure threshold
of f at m′ in S′. Do the same for a regular local ring S essentially of finite
type over a field k isomorphic to its residue field.

Exercise 3.2. Prove Theorem 3.2.

Hint: Use Lemma 3.3 and Fedder’s criterion.

Exercise 3.3. Let S = F2[x, y, z]. Show that fpt(x3 + y3 + z3) = 1
2 .

Hint: Use Corollary 3.5 to show fpt f ≤ 1
2 . For the reverse inequality, show

fpt f ≥ 1
2 −

1
2e by considering which monomial terms in f2e−1−1 are in

(x2e , y2e , z2e).

Exercise 3.4. Verify the computations asserted in Example 3.9.

Exercise 3.5. Verify that the f2(pe−1−1) in Example 3.8 is not in (xp
e
, yp

e
)

in the case that p = 3. Conclude that fpt(f) = 2/3 in this case.

Exercise 3.6. Show that fpt(x2y− xy2) = 2/3 if p ≡ 1 (mod 3), completing
Example 3.8.

Exercise 3.7. Let (S,m) be an F -finite regular local ring (S,m). For f ∈ m,

let ν(e) be the largest integer a such that fa 6∈ m[pe]. Show that

ν(e) (p(n−1)e + · · ·+ pe + 1) ≤ ν(ne)

for every n > 0. Conclude that

ν(e)

pe − 1
≤ fptm(f) ≤ ν(e) + 1

pe
.

This improves the bounds on the F -pure threshold given by (3.14.1).

Hint: Observe S is e-Frobenius split along fν(e). Now use Corollary 4.11
from Chapter 1.

Exercise 3.8. Suppose S is a regular domain and J is any non-zero proper
ideal of S. Given a non-zero f in the radical of J , let νJf (e) denote the largest
integer such that fν(e) /∈ J [pe]. Prove that the limit

lim
e−→∞

νJf (e)

pe
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exists. This limit is called the F -threshold of f with respect to J , see
[MTW05, HMTW08].

Hint: The proof is essentially the same as the proof of Lemma 3.3.

Exercise 3.9. Suppose R is a regular ring and J, a ⊆ R are ideals with
J ⊆
√
a. Set ν = νJa (pe) to be the largest integer such that

aν 6⊆ J [pe].

Show that the limit

lim
e−→∞

νJa (pe)

pe

exists. We call the F -threshold of a with respect to J . The case where J is
the maximal ideal in a local ring can be called the F -pure threshold of the
ideal a; see Exercise 4.19 and also [HMTW08].

Hint: Revisit the proof of Lemma 3.3.

4. Frobenius splitting for pairs

Consider a pair (R, f t) consisting of an local ring (R,m), a non-zero
f ∈ m, and a real number t ≥ 0, considered as formal exponent. Our goal
in this section is to define a meaningful notion of Frobenius splitting for the
pair (R, f t) so that the following hold:

(a) For regular R, the pair (R, f1) is Frobenius split if and only if the
ring R/(f) is Frobenius split. More generally, Frobenius splitting
for the pair (R, f t) should imply that R is Frobenius split as well as
some restriction on the hypersurface cut out by f ;

(b) If (R, f t) is Frobenius split, then also (R, f s) is Frobenius split for
all non-negative s ≤ t.

(c) The pair (R, f
1
p ) is Frobenius split if and only if R is Frobenius split

along f ;
(d) The F -pure threshold9 of an element f in a regular local ring R is

the “threshold” at which the pair (R, f t) becomes Frobenius split:

fptm(f) = sup{t ∈ R | (R, f t) is Frobenius split}.

(e) Frobenius splitting for pairs behaves like Frobenius splitting for rings
in other ways10 as well as like log canonicity for pairs in complex
geometry.

9as defined in Section 3
10We will get more precise about this soon; see, for example, Remark 4.18



4. FROBENIUS SPLITTING FOR PAIRS 209

As we will see, there are several different ways to define Frobenius split-
ting for the pair (R, f t) that will make some of these items hold, each depend-
ing on slightly different ways to approximate the real number t by rational
numbers whose denominator is a power of p. But among these, one—which
we call sharp Frobenius splitting—stands out as the “best behaved” way to
define Frobenius splitting of pairs, because it makes the properties above
hold, and otherwise has nice properties that mirror the properties of log
canonical pairs in complex algebraic geometry. We will also define a natural
extension of strong F -regularity to pairs which will have properties similar
to Kawamata log terminal pairs.

Frobenius splitting can also be defined for pairs (R, at) where the ideal
a is not necessarily principal; see Subsection 4.4. In this case, Frobenius
splitting of the pair will imply Frobenius splitting for R as well as imposing
a restriction on the subscheme defined by a. In later chapters, we extend
Frobenius splitting to pairs of schemes and divisors (Section 3 of Chapter 5),
and to the general setting of Cartier algebras (Section 3 of Chapter 8).

4.1. Formal real exponents. Consider an element f in a ring R of
prime characteristic p. In Definition 4.1 of Chapter 1, we defined R to be
e-Frobenius split along f when the R-linear map

(4.0.1) R −→ F e∗R 1 7→ F e∗ f

splits in the category of R-modules. Interpreting the map (4.0.1) as the map
R → R1/pe sending 1 to f1/pe (see Subsection 1.5 in Chapter 1), we can
think of this as saying that R is Frobenius split along the “fractional power”
f1/pe , or that the pair (R, f

1
pe ) is Frobenius split.

Likewise, for rational numbers t of the form n
pe where n is a positive

integer, we can say that R is Frobenius split along f
n
pe if the map

(4.0.2) R −→ F e∗R
∼= R1/pe 1 7→ F e∗ f

n ∼= fn/p
e

splits. Because (4.0.2) splits if and only if

(4.0.3) R −→ F e+1
∗ R ∼= R1/pe+1

1 7→ F e+1
∗ fpn ∼= fnp/p

e+1

splits (Exercise 4.2 in Chapter 1), no ambiguity arises from writing the ex-
ponent t as np

pe+1 or some other fraction whose denominator is a power of p.

When these maps split, we say the pair (R, f
n
pe ) is Frobenius split.

Now, given any real t > 0, we can approximate t in various ways by
rational numbers of the form ne

pe . One simple way is to think of t as a limit

of the sequence of successive truncations of its base p expansion,
{
bpetc
pe

}
e∈N

.
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Other possibilities include sequences of the form{
dpete
pe

}
e∈N

,

{
b(pe − 1)tc

pe

}
e∈N

, or
{
d(pe − 1)te

pe

}
e∈N

,

all of which converge to t as e goes to infinity. The last of these options turns
out to work well for defining a notion of Frobenius splitting for pairs:

Definition 4.1. Let R be a ring of characteristic p > 0, f ∈ R, and t a non-
negative real number. The pair (R, f t) is said to be sharply Frobenius
split if there exists some e > 0, such that the R-module map

(4.1.1) R −→ F e∗R sending 1 7→ F e∗ f
dt(pe−1)e

splits in the category of R-modules. Put differently, (R, f t) is sharply Frobe-
nius split if there exists an e such that R is e-Frobenius split along f dt(pe−1)e.

Remark 4.2. Sharp Frobenius splitting of the pair (R, f t) immediately
forces restrictions on R and f . Namely, the ring R must be Frobenius split,
and if t > 0, then f must be a non-zerodivisor. See Propositions 4.5 and 4.6
in Chapter 1, respectively.

In studying Frobenius splitting of pairs, we will repeatedly use the fact
that if R is e-Frobenius split along some c, then R is e-Frobenius split along
any c′ dividing c (Proposition 4.6 in Chapter 1). For example, this fact
immediately implies:

Proposition 4.3. If (R, f t) is sharply Frobenius split and 0 ≤ s ≤ t, then
(R, f s) is also sharply Frobenius split.

The next lemma highlights an important feature of our choice of approx-
imating sequence for t in Definition 4.1:

Lemma 4.4. Fix a pair (R, f t) where R is a prime characteristic ring and
f ∈ R. If the R-module map (4.1.1) splits for one value of e > 0, then it
splits for infinitely many values of e.

Proof of Lemma 4.4. The map (4.1.1) splits if and only if R is e-
Frobenius split along f dt(pe−1)e. By Corollary 4.11 in Chapter 1, this implies

that R is ne-Frobenius split along (f dt(p
e−1)e)

pne−1
pe−1 . Now because

(4.4.1) (dt(pe − 1)e)(p
ne − 1

pe − 1
) ≥ dt(pne − 1)e,

we conclude that R is ne-Frobenius split along f dt(pne−1)e as well (Proposi-
tion 4.6 in Chapter 1). That is, the map (4.1.1) splits when e is replaced by
any ne with n ∈ N. The lemma is proved. �
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Remembering that "F -purity" is essentially another word for Frobenius
splitting,11 we can now explain the sense in which the F -pure threshold really
is a "threshold" for Frobenius splitting:

Theorem 4.5. Let (S,m) be an F -finite regular local ring, and let f ∈ m be
a non-zero element. Then the F -pure threshold of f is the supremum of the
set

{t | (S, f t) is sharply Frobenius split}.

Theorem 4.5 suggests a definition of F -pure threshold for an element
in a ring even if that ring is not necessarily regular; this is discussed in
Subsection 4.5.

The proof of Theorem 4.5 uses the following straightforward lemma:

Lemma 4.6. Let (S,m) be an F -finite regular local ring. For any non-zero
f ∈ m, and any natural number e > 0, the ring S is e-Frobenius split along fa
if and only if fa 6∈ m[pe]. In particular, for t > 0, (S, f t) is sharply Frobenius
split if and only if

f dt(p
e−1)e /∈ m[pe]

for some (equivalently, infinitely many) e > 0.

Proof. Because F e∗S is a finitely generated free S-module, any element
that is part of a minimal S-module generating set can be assumed part of a
free S-module basis for F e∗S, and hence will split off F e∗S. By Nakayama’s
lemma, an element F e∗ g is part of a minimal generating set if and only if
F e∗ g 6∈ mF e∗S or equivalently, g /∈ m[pe]. Applying this to fa, the first state-
ment of the lemma follows. Taking a = dt(pe − 1)e, the second does too,
(invoking Lemma 4.4 to get infinitely many e). �

Proof of Theorem 4.5. Lemma 4.6 says that the pair (S, f t) is sharply
Frobenius split if and only if

(4.6.1)
dt(pe − 1)e

pe
∈
{
a

pE
| fa 6∈ m[pE ]

}
for infinitely many e. So, if (S, f t) is sharply Frobenius split, then because
the sequence { dt(p

e−1)e
pe | e ∈ N} converges to t, t is bounded above by the

supremum of { a
pE
| fa 6∈ m[pE ]}—that is, t ≤ fpt(f). This shows that

sup{t | (S, f t) is sharply Frobenius split} ≤ fpt(f).

For the reverse inequality, observe that if t > fpt(f), then the conver-
gence of { dt(p

e−1)e
pe }e to t implies that, for sufficiently large e, dt(p

e−1)e
pe >

11the two notions coincide for F -finite rings; see Chapter 1 Subsection 7.6.
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fpt(f) = sup{ a
pE
| fa 6∈ m[pE ]}. By Lemma 4.6, this means that S fails to

be e-Frobenius split along f dt(pe−1)e for all e� 0, so that (S, f t) can be not
sharply Frobenius split. This proves Theorem 4.5. �

Remark 4.7. When S is regular, local and F -finite, the pair (S, f1) is
sharply Frobenius split if and only if the quotient ring S/(f) is Frobenius
split. Indeed, taking t = 1 in Lemma 4.6, we have (S, f1) is sharply Frobenius
split if and only if f (pe−1) /∈ m[pe] for some e. By Fedder’s Criterion, this is
equivalent to S/(f) being Frobenius split.

Caution 4.8. Confusion can arise because of an ambiguity in our notation:
it is not the case that the pair (R, fnt) is sharply Frobenius split if and only
if (R, gt) is sharply Frobenius split for g = fn. See Exercise 4.7. However,
this issue is easily fixed by working with Q-divisors, which formally identifies
the pairs (SpecR, t div(fn)) and (SpecR,nt div(f)); we will adopt this point
of view in Chapter 5.

Remark 4.9. Alternative ways to define Frobenius splitting of pairs will be
discussed in Subsection 4.3.

4.2. Strong F -regularity of a pair. There is a natural generalization
to strong F -regularity:

Definition 4.10 ([HW02]). Let R be a ring of characteristic p > 0, f ∈ R,
and t a non-negative real number. The pair (R, f t) is strongly F -regular
if for all non-zerodivisors c ∈ R, there exists e ∈ N such that the map

(4.10.1) R −→ F e∗R 1 7→ F e∗ cf
d(pe−1)te

splits as a map of R-modules.

Example 4.11. Clearly the pair (R, 1t) (for any t), as well as the pair (R, f0)
(for any f), is strongly F -regular if and only if R is strongly F -regular (as
defined in Chapter 1).

The following basic facts follow straightforwardly from the definitions
(and Proposition 4.6 in Chapter 1):

Proposition 4.12. Let R be a ring of positive characteristic, f ∈ R, and t
a non-negative real number.

(a) If the pair (R, f t) is strongly F -regular, then it is sharply Frobenius
split;

(b) If the pair (R, f t) is strongly F -regular, then so is (R, f s) for all
non-negative s ≤ t;

(c) If (R, f t) is a strongly F -regular pair with t > 0, then R is strongly
F -regular and f is a non-zerodivisor.
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The next lemma (and especially its proof) will be useful:

Lemma 4.13. Let R be a ring of characteristic p > 0, f ∈ R, and t a
non-negative real number.

(i) If the map (4.10.1) splits for one value of e, then it splits for infin-
itely many values of e;

(ii) If the pair (R, f t) is strongly F -regular, then for any non-zerodivisor
c, the map (4.10.1) splits for all e� 0.

Proof of Lemma 4.13. Note that (i) follows as did Lemma 4.4: if
R is e-Frobenius split along cf d(pe−1)te, then R is ne-Frobenius split along

(cf (d(pe−1)te)
pen−1
pe−1 , hence also ne-Frobenius split along cf d(pne−1)te (by Propo-

sition 4.6 in Chapter 1).

For (ii), fix a non-zerodivisor c. Consider the non-zerodivisor c′ =

cf dte. Because (R, f t) is strongly F -regular, there exists e such that R is
e-Frobenius split along c′f dt(pe−1)e. We claim that R is e′-Frobenius split
along cf dt(pe

′−1)e for all e′ ≥ e. To see this, note that

dt(pe − 1)e+ dte ≥ dtpee,

so, using Proposition 4.6 in Chapter 1, we have that R is e-Frobenius split
along c′f dtpee−dte = cf dtp

ee. In particular, R is e-Frobenius split along the
factor cf dt(pe−1)e. But also, R is (e+ 1)-Frobenius split along (cf dtp

ee)p (by
Exercise 4.2 in Chapter 1); so because

pdtpee ≥ d(t(pe+1 − 1)e,

we can conclude also that R is (e + 1)-Frobenius split along the factor
cf dt(p

e+1−1)e. In other words, the map (4.10.1) splits with e + 1 in place
of e, and by induction, for all e� 0. �

While the definition of strongly F -regularity for the pair (R, f t) de-
mands that we check infinitely many splitting conditions—one for each non-
zerodivisor c— analogously to Theorem 5.1 in Chapter 1, it is enough to test
for splitting only for one “test element” c:

Theorem 4.14. Let R be a Noetherian F -finite ring, f ∈ R, and t ≥ 0 a
real number. Suppose that d ∈ R is such that the pair (R[1

d ], (f1 )t) is strongly
F -regular. Then the pair (R, f t) is strongly F -regular if and only if the R-
module map R→ F e∗R sending 1 7→ F e∗ df

d(pe−1)te splits for some e.

To prove Theorem 4.14, we recall the following special case of a result
from Chapter 1.
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Lemma 4.15 (Chapter 1 Corollary 4.11). Let d and f be arbitrary elements
of a ring R of characteristic p > 0. Fix a non-negative real number t, and
suppose that R is e-Frobenius split along df d(pe−1)te. Then for all N ∈ N,
there exists E ∈ N such that R is E-Frobenius split along dNf d(pE−1)te.

Proof of Lemma 4.15. FixN ∈ N. Choose n so that p(n−1)e > N . By

Corollary 4.11 in Chapter 1, R is ne-Frobenius split along (df d(p
e−1)te)

pne−1
pe−1 .

Because
pen − 1

pe − 1
d(pe − 1)te ≥ d(pne − 1)te,

setting E = ne, the result follows from Proposition 4.6 in Chapter 1. �

Proof of Theorem 4.14. Fix a non-zerodivisor c. We need to show
that there exists b such that the R-module map

(4.15.1) R→ F b∗R 1 7→ F b∗cf
d(pb−1)te

splits. Localizing at d, we know that there exists e such that R[d−1] is e-
Frobenius split along cfd(p

e−1)te

1 . So there exists φ ∈ HomR(F e∗R,R) such
that

(4.15.2) φ(F e∗ cf
d(pe−1)te) = dN

for some N ∈ N (this follows exactly as in the proof of Theorem 5.1 in
Chapter 1, and uses the finiteness conditions on R).

Now Lemma 4.15 implies that there existsE > 0 and ψ ∈ HomR(FE∗ R,R)
such that

(4.15.3) ψ(FE∗ d
Nf d(p

E−1)te) = 1.

We define Ψ ∈ HomR(FE+e
∗ R,R) to be the composition Ψ = ψ ?φ using the

Cartier algebra notation. Is is easy to verify that

Ψ(FE+e
∗ cfp

ed(pE−1)te+d(pe−1)te) = 1.

This shows that R is (E + e)-Frobenius split along

(4.15.4) cfp
ed(pE−1)te+d(pe−1)te,

and hence along cf d(pE+e−1)te since d(pE+e−1)te ≤ ped(pE−1)te+d(pe−1)te
(again, Proposition 4.6 in Chapter 1). This establishes (4.15.1) with b =
E + e, completing the proof of Theorem 4.14. �
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4.3. Variants of sharp Frobenius splitting. Our definition of (sharp)
Frobenius splitting for pairs (R, f t) depended on a particular choice of se-
quence of rational numbers whose denominators are powers of p converging
to t. Other choices can and have been made:

Definition 4.16 ([HW02, Tak04a]). Let R be a ring of characteristic
p > 0, f ∈ R and t ≥ 0.

(a) The pair (R, f t) is weakly Frobenius split if the R-module map

(4.16.1) R −→ F e∗R 1 7→ F e∗ f
bt(pe−1)c

splits for all e� 0.
(b) The pair (R, f t) is strongly Frobenius split if the R-module map

(4.16.2) R −→ F e∗R 1 7→ F e∗ f
dtpee

splits for all e� 0.

The sequences approximating t used to define weak, sharp and strong
Frobenius splitting are related as follows: for each e,

bt(pe − 1)c
pe

≤ dt(p
e − 1)e
pe

≤ dtp
ee

pe
.

This leads to the following comparison result:

Proposition 4.17. Let R be a ring of characteristic p > 0, f ∈ R and t ≥ 0.

(a) If the pair (R, f t) is strongly Frobenius split, then it is sharply Frobe-
nius split.

(b) If the pair (R, f t) is sharply F -split, then it is weakly Frobenius split.
(c) If the pair (R, f t) is weakly Frobenius split with t > 0, then for

every ε ∈ (0, t], the pair (R, f t−ε) is strongly (and hence sharply)
Frobenius split.

See Exercise 4.13 for a fourth variant of Frobenius splitting that arises
by approximating t by the sequence of its base p truncations { bp

etc
pe }.

Proof. We leave (a) and (b) as exercises, and focus on (c). Given that
(R, f t) is weakly Frobenius split, we have some e0 > 0 such that R is e-
Frobenius split along f bt(pe−1)c for all e ≥ e0. Now for any ε ∈ (0, t], we
have

bt(pe − 1)c ≥ d(t− ε)pee
for all e� 0. So R is e-Frobenius split along f d(t−ε)pee for all sufficiently large
e (Proposition 4.6 in Chapter 1). That is, (R, f t−ε) is strongly Frobenius
split. �
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Remark 4.18. Despite their similarities, the different variants of Frobenius
splitting for pairs are not the same (see Exercises 4.8 and 4.9). For example,
it is not true that if the map (4.16.1) in the definition of weak F -splitting
splits for some e, then it splits for infinitely many e. This is unlike the
situation for sharp Frobenius splitting (see Lemma 4.4). Later, we’ll see
examples of weakly Frobenius split pairs that do not have radical test ideals
[MY09], as we would expect from an analog of log-canonicity in complex
geometry.

Remark 4.19. One could attempt to similarly define variants for strong
F -regularity by choosing a different way to approximate t, but they all lead
to the same notion. See Remark 4.26.

Remark 4.20. Our terminology differs slightly from the literature. Hara
and Watanabe first defined weak Frobenius splitting for pairs in the local
case (using a different approach), but called it F -purity of the pair. Likewise,
strong Frobenius splitting for pairs was first defined by Takagi andWatanabe,
who called it strong F -purity. Similarly, sharp Frobenius splitting was first
called sharp F -purity when introduced by Schwede12 [Sch10b]. The terms
strong, weak and sharp F -splitting can also be found in the literature.

4.4. Frobenius splitting for higher codimension pairs. We now
generalize Frobenius splitting to pairs (R, at) where a is an arbitrary ideal
of R. When a is principal— say generated by f— Frobenius splitting of the
pair (R, at) is the same as Frobenius splitting of (R, f t) (Exercise 4.10).

To take all the elements of a into account, we use the module

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R)

encountered in Section 2. As an R-submodule of HomR(F e∗R,R), this is gen-
erated by all compositions φ?g, where g ∈ adt(p

e−1)e and φ ∈ HomR(F e∗R,R).
There is a natural R-module map

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R)

eval at F e∗ 1
// R

given by evaluation at F e∗ 1. Its image is the ideal of R generated by all
elements of the form φ(F e∗ g) where φ ∈ HomR(F e∗R,R) and g ∈ adt(p

e−1)e.

Definition 4.21 ([HW02, Tak04a]). Let R be a Noetherian F -finite ring
of characteristic p > 0, a an ideal of R, and t ≥ 0 a real number.

(a) The pair (R, at) is sharply Frobenius split if there exists e > 0
such that the map

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R) −→ R φ 7→ φ(F e∗ 1)

12although his definition there is slightly different from the one here for non-principal
ideals in non-local case, which we will study shortly
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is surjective;
(b) The pair (R, at) is strongly F -regular if for every non-zerodivisor

c ∈ R, there exists e > 0 such that the map

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R) −→ R φ 7→ φ(F e∗ c)

is surjective.

Remark 4.22. If there exists e > 0 such that the map in (a) (or (b)) is sur-
jective, then infinitely many such e exist. We leave the proof as Exercise 4.16,
as it is similar to Lemma 4.4.

Remark 4.23. Clearly a strongly F -regular pair (R, at) is sharply Frobenius
split. Also, if the pair (R, at) is strongly F -regular (or sharply Frobenius
split), then so is the pair (R, as) for all non-negative s ≤ t.

Theorem 4.24. Let R be a Noetherian, F -finite ring, a an ideal of R, and
t ≥ 0 a real number. Then the locus of points of SpecR where the pair (R, at)
is sharply Frobenius split (respectively, strongly F -regular) is open.

Proof. We prove the statement for strong F -regularity; the statement
for sharp Frobenius splitting is proved similarly and left to the reader. We
assume t > 0, since when t = 0, this is simply Theorem 5.12 in Chapter 1.

Suppose that Q ∈ SpecR is such that (RQ, a
t
Q) is strongly F -regular.

We need to find an open neighborhood U of Q such that for each P ∈ U , the
pair (RP , a

t
P ) is strongly F -regular. Because (RQ, a

t
Q) is strongly F -regular,

the ambient ring RQ is strongly F -regular, and hence a normal domain
(Chapter 1 Theorem 4.30), and the ideal aRQ is not the zero ideal. So we
can choose c ∈ a such that the pair (Rc, a

t
c) (which is the same as the pair

(Rc, 1
t)) is strongly F -regular because Rc = R[1

c ] is regular. Now, we can
test for strong F -regularity of the pair (R, at) by checking whether there is
some e ∈ N such that the map

(4.24.1) F e∗ a
dt(pe−1)e ·HomR(F e∗R,R)

eval at F e∗ c−−−−−−−→ R

φ 7→ φ(F e∗ c)

is surjective (Exercise 4.17). Since (RQ, aR
t
Q) is strongly F -regular, there is

some e such that (4.24.1) becomes surjective when we localize at Q. This
means there is an open neighborhood U ⊆ SpecR of Q for which the map
(4.24.1) becomes surjective when localizing at each point P ∈ U . Each of
these points P , therefore, is such that (RP , aR

t
P ) is strongly F -regular, and

we have found the needed open neighborhood of Q contained in the strongly
F -regular locus of the pair (R, at). �

Remark 4.25. Weak and strong Frobenius splitting of the pair (R, at) can
be defined analogously, and many nice properties hold. For instance, we can



218 4. FROBENIUS SPLITTING FOR EMBEDDED SCHEMES

define a pair (R, at) to be strongly F -split if for some e > 0 so that the
map

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R) −→ R φ 7→ φ(F e∗ 1)

is surjective. For instance, it is not difficult to see that if (R, at) is sharply
F -split, then (R, at−ε) is strongly F -split for each t ≥ ε > 0 (the argument
is essentially identical to that in Proposition 4.17 (c)).

Remark 4.26. One might define variants of strong F -regularity by choosing
different roundings to approximate t, analogously to the variants of Frobenius
splitting above. However, it turns out that they are all equivalent. Indeed,
assuming a contains a non-zerodivisor, we can find a non-zerodivisor d such
that dabt(pe−1)c ⊆ adtp

ee for every e. Then replacing any c that appears in
the definition of a strongly F -regular pair with c′ = cd is enough to absorb
any difference in roundings that might occur; see Exercise 4.11. We saw a
similar trick, which might be loosely called absorbing differences in rounding
into the test element, in the proof of Lemma 4.13 (ii).

On the other hand, if a contains no non-zerodivisor, the pair (R, at) for
t > 0 does not satisfy any of the variants of Frobenius splitting.

Remark 4.27. One might wonder13 whether in general the pair (R, at) is
sharply Frobenius split if and only if there exists e > 0 and g ∈ ad(p

e−1)te

such that R is e-Frobenius split along g. This is not known in general,
unless a is principal, R is local, or HomR(F e∗R,R) is a cyclic F e∗R-module.
See Exercises 4.10, 4.14, and 4.15, respectively.

4.5. F -pure threshold. Our definition of Frobenius splitting for pairs
suggests the following definition of the F -pure threshold:

Definition 4.28 ([TW04, MTW05]). Let R be a Frobenius split ring, a
a proper ideal of R, and t ≥ 0 a real number. The F -pure threshold of
the pair (R, at) is the supremum of the set

(4.28.1) {s ≥ 0 | (R, at) is sharply Frobenius split}.

By F -pure threshold of the ideal a in R, we mean the F -pure threshold of
the pair (R, a1).

When a contains a non-zerodivisor and is contained within a maximal
ideal generated by m elements, the set (4.28.1) is bounded above by dmt e
(Exercise 4.18), so the F -pure threshold is a finite real number for all proper
ideals in a Noetherian Frobenius split ring, provided the set (4.28.1) is non-
empty.

13indeed, sharp F -purity was first defined this way in [Sch10b].
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Remark 4.29. The set (4.28.1) can be empty—for example, when a consists
only of zerodivisors (or if R is not Frobenius split). In this case, we can make
the convention that the F -pure threshold is −∞.

Remark 4.30. The F -pure threshold of a pair (R, at) can be computed using
any of the three variants of Frobenius splitting for pairs. That is, replac-
ing the word "sharply" with "weakly" or with "strongly" in Definition 4.28
produces the same number. This follows from Proposition 4.17.

The F -pure threshold is a local invariant:

Proposition 4.31. Let R be a Noetherian F -finite ring, a an ideal of R and
t ≥ 0 a real number. Then the F -pure threshold of the pair (R, at) is equal
to

inf
{

fpt(RQ, a
t
Q) | Q ∈ SpecR

}
= inf

{
fpt(Rm, a

t
m) | m ∈ m- SpecR

}
.

Proof. This follows as Frobenius splitting of a pair (R, at) can be
checked locally, as the formation of

(F e∗ a
dtpee) HomR(F e∗R,R)

eval@1−−−−→ R

commutes with localization. �

Lemma 4.32. Suppose (S,m) is a Noetherian F -finite regular local ring and
a ⊆ S is an ideal. For each e > 0, define ν(e) to be the largest integer such
that aν(e) 6⊆ m[pe]. Then

fptm(a) = lim
e−→∞

ν(e)

pe
.

Proof. Left to the reader in Exercise 4.20, cf. Exercise 4.19. �

Remark 4.33. It is natural to form other similar ratios. Indeed, for any
ideals a, J in an arbitrary Noetherian ring R of prime characteristic, set νJa
to be the largest natural number n with an 6⊆ J [pe]. The the lim sup and
lim inf of νJa

pe were considered in [HMTW08] where they were called the
F -threshold of a with respect to J if they coincided. Indeed, they do
coincide and so the limit

fptm(a) = lim
e−→∞

νJa
pe
.

exists thanks to [NnBS20]. Also see [?] in the case of a regular ring.



220 4. FROBENIUS SPLITTING FOR EMBEDDED SCHEMES

4.6. Singularities at the F -pure threshold. Let R be a Frobenius
split ring, and let f ∈ R. Then the pair (R, f t) is always sharply Frobenius
split for t < fpt(f), and never sharply Frobenius split for t > fpt(f). This
leaves open, however, what happens for t = fpt(f).

If t is a rational number whose denominator is not divisible by p, then
one can check that (R, f t) is sharply Frobenius split when t = fpt(f). How-
ever, there are examples where (R, f fpt(f)) is not sharply Frobenius split; see
Exercise 4.8.

A result of Hernández clarifies the situation:

Theorem 4.34 ([Her12, Theorem 4.9]). Let (R,m) be a Noetherian F -finite
Frobenius split ring, f ∈ R a non-zerodivisor, and λ = fptm(f). Then:

(a) (R, fλ) is sharply Frobenius split if and only if λ = a/b where p does
not divide b.

(b) (R, fλ) is weakly Frobenius split.
(c) (R, fλ) is not strongly Frobenius split.

Proof. We sketch one direction of (a) in 4.4. The others are left to the
reader. �

Caution 4.35. For non-principal a, it is not true that if λ = fptm(a) and
t = a/b is a rational number without p in its denominator, then (R, aλ) is
sharply Frobenius split, in contrast to the principal case, Theorem 4.34.

For instance, if R = F2[x, y] and a = (x2, y2) it is not difficult to see that
fptm(a) = 1 which has no p = 2 in its denominator. On the other hand since
x2e−1y2e−1 /∈ a2e−1, and because is the only monomial of degree 2(2e − 1)
not in (x2e, y2e), we see that a2e−1 ⊆ (x2e , y2e) for all e. This shows that
(R, a1) is not sharply F -split.

4.7. Exercises.

Exercise 4.1. Let (R,m) be a local ring, and f ∈ m. Show that the pair
(R, f t) is not sharply Frobenius split if t > 1.

Exercise 4.2. LetR be an F -finite Noetherian ring. Prove thatR is strongly
F -regular if and only if for all non-zerodivisors c ∈ R, there exists an e > 0

such that the pair (R, c
1

pe−1 ) is sharply Frobenius split.

Exercise 4.3. Let R be an F -finite Noetherian ring, f ∈ R. Let t = a
pe−1 ,

where a ∈ N. Show that (R, f t) is sharply Frobenius split if and only if

R
17→F e∗ fa−−−−−→ F e∗R splits.

Hint: Use that t(pe − 1) = a is an integer.
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Exercise 4.4. Let (R,m) be a Frobenius split local ring of characteristic
p > 0. Let f ∈ m be such that λ = fptm(f) is a rational number whose
denominator is not divisible by p. Show that (R, fλ) is sharply Frobenius
split.

Conversely, if λ = fptm(f) and (R, fλ) is sharply F -split, show that we
may write λ as a rational number without p in the denominator.

Hint: Suppose that a = λ(pe − 1) is an integer. To show that R is e-
Frobenius split along fa, it suffices to show it is e+ d-Frobenius split along
fap

d . Compare apd with (λ − ε)(pe+d − 1). For the converse, suppose we
cannot write λ = a

pe−1 . Deduce that (R, f t) is also sharply F -split for some
t > λ contradicting the maximality of the F -pure threshold.

Exercise 4.5. Fix a non-zerodivisor f in a Frobenius split local ring R.
Show that there exists a t > 0 such that (R, f t) is sharply Frobenius split
if and only if R is eventually Frobenius split along f . Use this to find an
example where the set

(4.35.1) {t | (R, f t) is sharply Frobenius split}
has supremum zero.

Exercise 4.6. Prove parts (a) and (b) of Proposition 4.17.

Hint: Both statements follow from Proposition 4.6 in Chapter 1. Note that
if e > d, then pe−dbt(pd − 1)c ≤ d(pe − 1)te.
Exercise 4.7. Consider R = F2[x] and set f = x2. Show that (R, f1/2) is
not sharply Frobenius split even though (R, x1) is sharply Frobenius split.
This emphasizes that we must be cautious interpreting the formal exponents
in discussing strongly Frobenius split pairs.

Exercise 4.8. Let S be the localization of the polynomial ring F2[x, y, z] at
the maximal ideal (x, y, z), and let f be the polynomial x3 + y3 + z3. Show
that the pair (S, f

1
2 ) is weakly but not sharply Frobenius split. [Note also

that fpt(f) = 1
2 by Exercise 3.3.]

Exercise 4.9. Let (S,m) be an F -finite regular local ring, and suppose that
the quotient ring S/(f) is Frobenius split. Show that the pair (S, f1) is not
strongly Frobenius split. Use this to find an example of a pair that is sharply
but not strongly Frobenius split.

Exercise 4.10. Suppose R is a ring and (f) = a ⊆ R is a principal ideal.
Show that (R, at) is sharply Frobenius split (Definition 4.21) if and only if
(R, f t) is sharply Frobenius split (Definition 4.1). In other words, show that
Definition 4.1 and Definition 4.21 agree.

Exercise 4.11. Let R be an F -finite Noetherian ring, a ⊆ R an ideal, and
t ≤ 0 a real number. Show that the following are equivalent:
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(a) The pair (R, at) is strongly F -regular;
(b) For every non-zerodivisor c ∈ R, the evaluation-at-c map

F e∗ a
bt(pe−1)c ·HomR(F e∗R,R)

φ 7→φ(F e∗ c)−−−−−−→ R is surjective;
(c) For every non-zerodivisor c ∈ R, the evaluation-at-c map

F e∗ a
btpec ·HomR(F e∗R,R)

φ 7→φ(F e∗ c)−−−−−−→ R is surjective;
(d) For every non-zerodivisor c ∈ R, the evaluation-at-c map

F e∗ a
dtpee ·HomR(F e∗R,R)

φ 7→φ(F e∗ c)−−−−−−→ R is surjective.

Hint: Use the trick that test elements can absorb differences in rounding as
in the proof of Lemma 4.13 (ii).

Exercise 4.12. Suppose that the R-module map

(4.35.2) R −→ F e∗R, 1 7→ F e∗ f
btpec

splits for some value e0 of e. Show that (4.35.2) splits for all positive e < e0.

Exercise 4.13 (Keen Frobenius Splitting). Let R be an F -finite Noetherian
ring, a ⊆ R an ideal, and t ≥ 0 a real number. Define the pair (R, f t) to be
keenly Frobenius split14 if the R-module map

R −→ F e∗R 1 7→ F e∗ f
btpec

splits for all e > 0 (equivalently, for infinitely many e > 0 by Exercise 4.12).
Prove the following.

(a) For t < 1, a sharply F -split pair (R, f t) is keenly F -split.
(b) The pair (Fp[x], x1) is sharply F -split but not keenly F -split.
(c) Propositions 4.3 and 4.17, and 4.30 all hold with the word keenly in

place of sharply.
(d) Keen and sharp Frobenius splitting are equivalent for rational t < 1

whose denominator is not divisible by p.

Exercise 4.14. Suppose (R,m) is a local ring and a ⊆ R. Show that (R, at)
is sharply Frobenius split if and only if for some e > 0 there exists g ∈
adt(p

e−1)e and φ ∈ HomR(F e∗R,R) such that φ(F e∗ g) = 1.

Exercise 4.15. Let a ⊆ R be an ideal in a ring R of characteristic p > 0.
Suppose that HomR(F e∗R,R) is a cyclic F e∗R-module. Show that for any
t ≥ 0, the pair (R, at) is sharply Frobenius split if and only if for some e > 0

there exists g ∈ adt(p
e−1)e and φ ∈ HomR(F e∗R,R) such that φ(F e∗ g) = 1.

14Keenly Frobenius split pairs first appeared implicitly as early as [Wat91]; this
rounding choice has been used in several other papers but does not appear to have been
given a name.
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Exercise 4.16. Let R be an F -finite Noetherian ring, a an ideal in R, and
t ≥ 0 a real number. Fix any c ∈ R. Show that if

(4.35.3) F e∗ a
dt(pe−1)e ·HomR(F e∗R,R)

eval at F e∗ c−−−−−−−→ R sending φ 7→ φ(F e∗ c)

is surjective for some e ∈ N, then also
(4.35.4)

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R)

eval at Fne∗ c−−−−−−−→ R sending φ 7→ φ(Fne∗ c)

is surjective for all integers n > 0.

Hint: Look at the proof of Lemma 4.4.

Exercise 4.17. Let R be a Noetherian F -finite ring, a an ideal in R,
and t ≥ 0 a real number. Suppose there exists d ∈ R such that the pair
(R[1

d ], (aR[1
d ])t) is strongly F -regular. Prove that the pair (R, at) is strongly

F -regular if and only if there exists e > 0 such that the map

F e∗ a
dt(pe−1)e ·HomR(F e∗R,R) −→ R sending φ 7→ φ(F e∗ d)

is surjective for some e.

Exercise 4.18. Suppose that R is a ring of characteristic p > 0 and a ⊆ R
is an ideal which can be generated by m elements. Show that

(a) ap
e(m−1) a[pe] = ap

em;
(b) The F -pure threshold of a is bounded above by m.

Exercise 4.19. Suppose a is an ideal in an F -finite regular local ring (S,m).
Prove that

fptm(a) = sup{ ν
pe
| aν 6⊆ m[pe]}.

Hint: The proof of the first part is similar to Theorem 4.5.

Exercise 4.20. More generally, if a is an ideal in an F -finite regular local
ring (S,m), show that

fptm(a) = lim
e−→∞

νe
pe

where νe is the largest integer such that aνe 6⊆ m[pe].

5. Test ideals for pairs: a first look

We begin this first look at test ideals for pairs (S, at) by studying the
case where the ambient ring S is an F -finite regular ring. We will move
beyond this case shortly, but we start by emphasizing this important and
classical case where many of the keys ideas are more transparent.
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Like the F -pure threshold, the test ideal of the pair (S, f t) measures the
failure of Frobenius splitting. For rational numbers t of the form ν

pe , we saw

that the pair (S, f
ν
pe ) is Frobenius split if and only if the “evaluation at f

ν
pe ”

map

(5.0.1) HomS(F e∗S, S) −→ S sending φ 7→ φ(F e∗ f
ν)

is surjective, see Subsection 4.1. This suggests that the image of the “eval-
uation at f t” map —which is an ideal of S determined by f t— can be
considered a natural obstruction to Frobenius splitting for the pair (S, f t).
This is the test ideal of the pair (S, f t) in this special case where t ∈ Q has
denominator15 a power of p and the ambient ring S is regular.

For arbitrary positive real numbers t, we approximate t by rational num-
bers {te}e∈N whose denominators are powers of p, although, as before, there
are several different ways to do so. For defining the test ideal, it turns out
that the sequence { dtp

ee
pe }e∈N works well because it descends to t and so gives

rise to an ascending chain of image ideals in (5.0.1), which stabilizes by
Noetherianity:

Definition 5.1 ([HY03, Tak06]). Let S be an F -finite regular domain, a
an ideal of S, and t ≥ 0 a real number. The test ideal τ(S, at) is the image
of the map

(5.1.1) F e∗ a
dpete ·HomS(F e∗S, S)

eval at F e∗ 1−−−−−−−→ S sending ψ 7→ ψ(F e∗ 1)

for sufficiently large e.

In order to be sure Definition 5.1 makes sense, we must check that the
images of the maps (5.1.1) form an ascending chain of ideals. In fact, this is
true more generally:

Lemma 5.2. Let R be a Frobenius split ring, a ⊆ R an ideal of R and t ≥ 0
a real number. For each e ∈ N, let Je(R, at) be the image of the R-module
map

(5.2.1)
F e∗ a

dpete ·HomR(F e∗R,R)
eval at 1−−−−−→ R

ψ 7→ ψ(F e∗ 1).

Then the Je(R, at) form an ascending chain of ideals

J1(R, at) ⊆ J2(R, at) ⊆ J3(R, at) ⊆ · · · .

Proof. The ideal Je(R, at) is generated by all φ(F e∗ g) where g ∈ adp
ete

and φ ∈ HomR(F e∗R,R). It suffices to show such φ(F e∗ g) are in Je+1(R, at).

15There is no ambiguity if we represent t = ν
pe

by a different fraction with denominator
a power of p, such as pν

pe+1 . See Exercise 5.1.
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Let ψ = φ ? π = φ ◦ F e∗π ∈ HomR(F e+1
∗ R,R), where π ∈ HomR(F∗R,R) is

a splitting of Frobenius. Then since π ◦ F is the identity on R, we have

φ(F e∗ g) = φ(F e∗π(F (g))) = ψ(F e+1
∗ gp).

But apdp
ete ⊆ adp

e+1te for all e, so gp ∈ adp
e+1te. This means ψ(F e+1

∗ gp) ∈
Je+1(R, at) as needed. �

Because the images of (5.1.1) play such an important role, it is helpful
to name them:

Definition 5.3 ([BMS08], cf. [KLZ09]). Let S be an F -finite regular ring.
For any ideal b ⊆ S, the image of the map

F e∗ b ·HomS(F e∗S, S)
ψ 7→ψ(F e∗ 1)−−−−−−−→ S

is denoted by b[1/pe] = Je(R, b) and called the e-th Frobenius root of b.
In particular, the test ideal of a pair (S, at) is (adtp

ee)[1/pe] for e� 0.

Remark 5.4. The Frobenius root b[1/pe] of an ideal b in an F -finite regular
ring S can also be described as the unique smallest ideal J such that b ⊆ J [pe].
See Exercise 5.6. This idea of Frobenius roots and using it as an approach
to the test ideal was first described in [BMS08].

Caution 5.5. Lemma 5.2 produces a stable ideal J(R, at) associated to any
pair (R, at) where R a Noetherian Frobenius split ring—this ideal, unfortu-
nately, is not the test ideal in general. However, in the special case that R
is strongly F -regular (instead of being split), Je(R, at) is the test ideal for
e� 0. See Subsection 5.2 below for how to correct for this issue.

5.1. Computation of test ideals in regular rings. The following
useful tool lets us compute many test ideals.

Proposition 5.6 (Key computational tool). Suppose that S is an F -finite
regular ring such that F e∗S has free S-basis F e∗ b1, . . . , F e∗ bm. For f ∈ S, write

F e∗ f =

m∑
i=1

aiF
e
∗ bi = F e∗

m∑
i=1

ap
e

i bi.

Then
(f)[1/pe] = (a1, . . . , am).

Furthermore, if an ideal J is generated by f1, . . . , ft, then for all e ∈ N
J [1/pe] = (f1)[1/pe] + · · ·+ (ft)

[1/pe].

Proof. The first statement was proven in Exercise 2.1, for the second
statement, observe that by linearity,

φ(F e∗ (f1, . . . , ft)) = φ(F e∗ f1S) + · · ·+ φ(F e∗ ftS)

for all φ ∈ HomS(F e∗S, S). So (f1, . . . , ft)
[1/pe] = (f1)[1/pe]+· · ·+(ft)

[1/pe]. �
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Corollary 5.7. Let S be an F -finite regular ring, and a = (f) ⊆ S a
principal ideal of S. Then then τ(S, a

1
pe ) = (a)[1/pe].

Proof. This follows immediately from Exercise 5.1 and Proposition 5.6.
�

Example 5.8. Suppose S = F3[x, y] and let f = yx3 + x2y4 − y12. Then

(f)[1/3] = (x, y, y4) = (x, y).

This follows immediately from Proposition 5.6, after writing

F∗f = xF∗y + yF∗x
2y − y4F∗1.

Finally, by Corollary 5.7, the test ideal is

τ(S, f1/3) = (x, y).

Caution 5.9. Corollary 5.7 is not true if a is not (at least locally) principal.
For instance, in R = F2[x, y] with a = (x2, y2), we easily see that a[1/2] =
(x, y), but

(a2)[1/4] = (x4, x2y2, y4)[1/4] = R.

It follows that τ(R, a1) = R 6= a[1/2].

Remark 5.10. If a = S with S still regular, then τ(S, at) = S for all t ≥ 0.
If a = (0), then τ(S, at) = 0 for all t > 0. We make the convention that
(0)0 = S so that τ(S, (0)0) = S.

5.2. Test ideals of pairs in reduced rings. If R is F -finite and reg-
ular, it turns out that for any fixed non-zerodivisor c, the test ideal τ(S, at)
is the image of the “evaluation at F e∗ c” map

(5.10.1) F e∗ a
dpete ·HomS(F e∗S, S) −→ S sending φ 7→ φ(F e∗ c)

for all sufficiently large e. We will show this immediately below in Lemma 5.12.
However, this perspective also leads us to an alternate definition of the test
ideal of pairs even when the ring is non-regular.

Definition 5.11 ([HY03, Tak04b]). Let R be a Noetherian F -finite re-
duced ring, a ⊆ R an ideal, and t ≥ 0 a real number.
(5.11.1)

τ(R, at) =
∑
e∈N

image
[(
F e∗ (adtp

eeτ(R))
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
.

In particular, since in a regular ring τ(R) = R, we see our definition of
a test ideal agrees with the one we gave before in Definition 5.1.

If instead of computing τ(R), you know a single strong test element c
that is a non-zerodivisor, we can still compute τ(R, at).
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Lemma 5.12. With notation as in Definition 5.11,

(•) suppose c ∈ R is a strong test element and a non-zerodivisor.

Then for any integer e0 > 0

(5.12.1)

∑
e≥e0 image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ c)−−−−−−→ R

]
=
∑

e≥e0 image

[(
F e∗ (c adtp

ee)
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
= τ(R, at).

In particular, the formula for the test ideal in (5.10.1) holds in a regular ring
for any non-zerodivisor c.

Remark 5.13. Assuming t > 0 and a has height 0, we can weaken the hy-
pothesis that c ∈ τ(R) is a non-zerodivisor in Lemma 5.12. Those primarily
interested in the domain setting (or the setting where a has positive height)
are invited to skip what follows straight to the proof of Lemma 5.12.

Suppose R is reduced with minimal primes Q1, . . . , Qt, . . . , Qm with 0 6=
aQi ⊆ RQi for i = 1, . . . , t and with aQi = 0 for i = t + 1, . . . ,m. In the
statement of Lemma 5.12, it then suffices to instead assume instead that:

(•′) c is a strong test element which is not contained in any of the min-
imals primes Q1, . . . , Qt.

We make some preliminary remarks. Recall by Exercise 6.25 in Chapter 1
that τ(R) = τ6⊆Q1,...,Qt(R)+τ6⊆Qt+1,...Qm(R)16. Therefore, since a τ6⊆Qt+1,...Qm =
0, we see that

τ(R, at) =
∑
e∈N

image
[(
F e∗ (adtp

eeτ6⊆Q1,...,Qt(R))
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
.

Since τ6⊆Q1,...,Qt(R) ∩ τ6⊆Qt+1,...Qm(R) = 0 any c ∈ τ(R) can be written
uniquely as c = c1 + c2 with c1 ∈ τ6⊆Q1,...,Qt(R) ⊆ Qt+1 ∩ · · · ∩ Qm and

16Here τ6⊆Q1,...,Qm(R) is the smallest uniformly compatible ideal not contained in
Q1, . . . , Qt; it is contained in Qt+1 ∩ · · · ∩Qm however. Indeed, it is the set of strong test
elements contained in Qt+1 ∩ · · · ∩ Qm. For details, see the exercises in Subsection 5.6.1
and Subsection 6.5.1 in Chapter 1
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c2 ∈ τ6⊆Qt+1,...Qm(R). It immediately follows that

∑
e≥e0 image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ c)−−−−−−→ R

]
=
∑

e≥e0 image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ c1)−−−−−−−→ R

]
.

Hence, instead of assuming c is a non-zerodivisor, we may assume that

(•′′) c ∈ Qt+1 ∩ · · · ∩Qm is a strong test element which is not contained
in any of the minimals primes Q1, . . . , Qt.

Under this latter assumption, we will add footnotes to the proof below to
explain where modification is necessary to obtain our desired generalization.

Proof of Lemma 5.12. Since c ∈ τ(R), the containment . . . ⊆ τ(R, at)
is clear from the definition.

Next, fix another non-zerodivisor17 d ∈ τ(R) and corresponding integer
f0. The sum in (5.12.1) is generated by elements φ(F e∗ cg) as we range over all
g ∈ adtp

ee and all φ ∈ HomR(F e∗R,R) (for all e ≥ e0). We claim that φ(F e∗ cg)

can be written as φ′(F e′∗ dh) where h ∈ adtp
e′e and φ′ ∈ HomR(F e

′
∗ R,R) for

e′ ≥ e′0. Indeed, because d is a non-zerodivisor18 and c is a strong test
element, there exists19 ψ ∈ HomR(F f∗ R,R) such that ψ(F f∗ d) = c for some
f � 0 (in particular, we may assume f ≥ f0). Now let e′ = e + f ≥ f0,
φ′ = φ ? ψ ∈ HomR(F e

′
∗ R,R), and h = gp

f ∈ (adtp
ee)[pf ] ⊂ adtp

e+f e. One
easily checks that

φ(F e∗ cg) = φ′(F e
′
∗ dh).

This implies that

(5.13.1)

∑
e≥e0

image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ c)−−−−−−→ R

]

⊆
∑
e≥f0

image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ d)−−−−−−→ R

]
Taking d = c shows that these sums are independent of the choice of e0 (and
so we may assume e0 = f0 = 1 and our sums are over e ∈ N).

17Respectively, d ∈ Qt+1, . . . , Qm, d ∈ τ(R) is not contained in any Q1, . . . , Qt from
Remark 5.13 if doing the more general statement.

18Respectively, not contained in any of Q1, . . . , Qt.
19by Exercise 6.27 from Chapter 1
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On the other hand, reversing the roles of d and c shows the sums in
(5.13.1) are equal. Finally, notice that the double sum

∑
c∈τ(R)

∑
e∈N

image

[(
F e∗ a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ c)−−−−−−→ R

]

is equal20 to τ(R, at). Furthermore, we may restrict to non-zerodivisor c’s in
that sum since τ(R) is generated by non-zerodivisors by Corollary 5.2321 in
Chapter 1. Thus by our work immediately above, the outer sum

∑
c∈τ(R) is

superfluous and the result follows. �

Note, our proof also shows that for any e0 ≥ 0,
(5.13.2)

τ(R, at) =
∑
e≥e0

image

[(
F e∗ (adtp

eeτ(R))
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
.

When a is the unit ideal (or when t = 0), the test ideal τ(R, at) recovers
the test ideal τ(R) defined in Chapter 1; this follows from the characteriza-
tion in Corollary 6.16 in Chapter 1.

Another application of this formula is that it lets us address the ambi-
guity of notation problem mentioned earlier.

Proposition 5.14. Suppose R is a Noetherian F -finite reduced ring, a ⊆ R
is an ideal, t ∈ R≥0 and n ∈ N. Then

τ(R, ant) = τ(R, (an)t).

Proof. Since ndtpee ≥ dtnpee we have the containment τ(R, (an)t) ⊆
τ(R, ant).

On the other hand, dtnpee + n ≥ ndtpee and so if we choose c ∈ an a
non-zerodivisor (or, if a does not have positive height, choose c not contained
in Q1, . . . , Qt using the notation of Remark 5.13), then

c adtnp
ee ⊆ andtp

ee.

20respectively, in the double sum take c ∈ τ 6⊆Q1,...,Qt(R) = τ(R) ∩ Qt+1 ∩ · · · ∩ Qm,
see Exercise 6.26 in Chapter 1.

21respectively generated by elements not in Q1, . . . , Qt by Chapter 1 Exercise 5.16
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Now, if d ∈ τ(R) is a non-zerodivisor (or not in Q1, . . . , Qt), so is cd ∈ τ(R),
and so we have by Lemma 5.12 (or Remark 5.13) that

τ(R, ant) =
∑

e∈N image

[(
F e∗ (dc adntp

ee)
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
⊆

∑
e∈N image

[(
F e∗ (d andtp

ee)
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
= τ(R, (an)t),

as desired. �

Via a similar argument, we can prove another basic property of test
ideals:

Proposition 5.15. Suppose S is a Noetherian F -finite domain and a ⊆ S
is an ideal. Then for all t ≥ 0,

τ(S, at) = τ(S, at)

where a denotes the integral closure of a.

Proof. Wemay assume that a 6= 0. Since a ⊆ a, the inclusion τ(S, at) ⊆
τ(S, at) follows from Proposition 5.17. For the other inclusion, we use the
following fact22 about integral closure: there exists ` ∈ N such that for all n,
an+` ⊆ an. So taking a non-zerodivisor c ∈ a`, we have

cadtp
ee ⊆ adtpee,

for all e ≥ 0. The result then follows from Lemma 5.12 via an argument
quite similar to the one in Proposition 5.14 above. �

5.3. Basic properties of test ideals and Skoda-type theorems.
Several basic properties of test ideals follow straightforwardly from the defi-
nition:

Proposition 5.16. Let a be an ideal in a Noetherian F -finite reduced ring
S, and t ≥ 0 a real number. For any multiplicative set W ⊆ S,

τ(S, at)W−1S = τ(W−1S, (aW−1S)t).

Furthermore, if S is local and Ŝ denotes completion at any ideal, then

τ(S, at)Ŝ = τ(Ŝ, ât).

Proof. The proof follows easily from the fact that all relevant objects
commute with localization and completion, so we leave it as Exercise 5.2. �

Proposition 5.17. Let a and b be ideals in a Noetherian F -finite reduced
ring.

22See, e.g. [SH06, Proposition 1.1.7], cf. Chapter 7 Theorem 1.15.
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(a) If b ⊆ a, then τ(S, bt) ⊆ τ(S, at) for all t ≥ 0.
(b) If s ≥ t, then τ(S, bs) ⊆ τ(S, bt) for all t ≥ 0.

Proof. See Exercise 5.4. �

Proposition 5.18. Suppose R is a Noetherian F -finite reduced ring and
a ⊆ R is an ideal. Then for all 1� ε > 0 we have that

τ(R, at) = τ(R, at+ε).

Proof. Note we always have the containment ⊇ by Proposition 5.17,
so we we prove the reverse. Choose c ∈ τ(R) and x ∈ a non-zerodivisors
(or not in Q1, . . . , Qt if a, as in Remark 5.13, does not have positive height).
By Noetherianity and Lemma 5.12, we know that the test ideal is the finite
sum:

τ(R, at) =
N∑
e=1

image

[(
F e∗ cx a

dtpee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ 1)−−−−−−→ R

]
for some integer N . Observe that x adtpee ⊆ adtp

e+1e ⊆ ad(t+1/N)pee for all
1 ≤ e ≤ N . Thus,

τ(R, at) ⊆
∑N

e=1 image

[(
F e∗ c a

d(t+1/N)pee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ 1)−−−−−−→ R

]
⊆

∑∞
e=1 image

[(
F e∗ c a

d(t+1/N)pee) ·HomR(F e∗R,R)
φ 7→φ(F e∗ 1)−−−−−−→ R

]
= τ(R, at+1/N )

which completes the proof. �

The skew commutativity23 of the Cartier Algebra can sometimes be help-
ful in computing test ideals:

Example 5.19. Let S = F2[x, y] and f = xy(x− y) = x2y − xy2 ∈ S, and
let Φ ∈ HomS(F∗S, S) be the standard monomial generating map (defined
in Proposition 1.3 in Chapter 2). Then

τ(S, f1/2) = Φ(F∗fS) = (x, y)

using Corollary 5.7 and Proposition 5.6. Letting φ = Φ ? f = Φ ◦F∗f , recall
that

φ?n = Φ?n ◦ Fn∗ f1+2+···+2n−1

for all n (Proposition 4.13 in Chapter 1). This means that

τ(S, f1/2) = Φ(F∗fS) = φ(F∗S)

τ(S, f3/4) = Φ?2(F 2
∗ f

1+2S) = φ?2(F 2
∗ S)

τ(S, f7/8) = Φ?3(F 3
∗ f

1+2+4S) = φ?3(F 3
∗ S)

23Proposition 4.13 in Chapter 1
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and more generally τ(S, f
2n−1

2n ) = φn(Fn∗ S) for all n > 0. So the test ideals
τ(S, f

2n−1
2n ) form a decreasing sequence of ideals, which stabilizes immedi-

ately because φ(F∗S) = φ?2(F∗S) = (x, y) (Exercise 5.8). It follows that

τ(S, f
2n−1

2n ) = (x, y)

for all n. So τ(S, f t) = (x, y) for all t ∈ [1/2, 1) by Proposition 5.17.

Theorem 5.20 (Skoda’s theorem for test ideals, [HY03, Theorem 2.1],
[HT04, Theorem 4.2]). Suppose R is a Noetherian F -finite reduced ring and
a ⊆ S is an ideal generated by m elements. For any t ≥ m,

τ(S, at) = a τ(S, at−1).

Proof. The trick is the following simple fact (Exercise 4.18 (a)), which
holds for any ideal a generated by m elements in any ring:

(5.20.1) ap
em = a[pe]ap

e(m−1).

It follows that for any real t ≥ m and any e ∈ N

adp
ete = adp

e(t−m)+peme = ap
emadp

e(t−m)e = a[pe]ap
e(m−1)adp

e(t−m)e = a[pe]adp
e(t−1)e.

So also

F e∗ a
dpete = F e∗ (a[pe]adp

e(t−1)e) = aF e∗ a
dpe(t−1)e.

Now applying any φ ∈ HomR(F e∗R,R), we see that

φ(F e∗ a
dpeteτ(R)) = aφ(F e∗ a

dpe(t−1)eτ(R)).

We then see that

τ(R, at) =
∑
e∈N

image

[(
F e∗ a

dtpeeτ(R)
)
·HomR(F e∗R,R)

φ 7→φ(F e∗ 1)−−−−−−→ R

]
=
∑
e∈N

∑
φ∈

HomR(F e∗R,R)

φ
(
F e∗ a

dtpeeτ(R)
)

=
∑
e∈N

∑
φ∈

HomR(F e∗R,R)

aφ
(
F e∗ a

dpe(t−1)eτ(R)
)

= aτ(R, at−1)

which is what we wanted to show. �
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5.4. The test ideal via generating maps. Any time there exists a
generating map Φ ∈ HomR(F∗R,R), we may define the test ideal by taking
images of under Φe := Φ?e. This relatively straightforward observations has
several important consequences.

Indeed, the following general fact, whose proof is a straightforward exer-
cise in unravelling notation, holds for any ring for which HomR(F e∗R,R) is
a cyclic F e∗R-module:

Lemma 5.21. Let R be an arbitrary ring of characteristic p > 0 such
that HomR(F e∗R,R) is generated by some Φe ∈ HomR(F e∗R,R) as an F e∗R-
module. Then for any ideal b ⊆ R, image of the map

(5.21.1) F e∗ b ·HomR(F e∗R,R)
eval at F e∗ 1−−−−−−−→ R

is precisely the image Φe(F e∗ b) of the R-module F e∗ b ⊆ F e∗R under Φe.

Remark 5.22. We note some facts related to generating maps.

(a) If Φd ∈ HomR(F d∗R,R) is a generating map, so is Φde := (Φd)?e ∈
HomS(F de∗ S, S) by Proposition 5.3 in Appendix A (justifying the
notation Φde).

(b) Note that if Ψe and Φe are both generators for HomR(F e∗R,R), then
Ψe and Φe agree up to pre-multiplication by a unit. Such multipli-
cation doesn’t change the image of any submodule—in particular,
Ψe(F e∗ b) = Φe(F e∗ b) for all ideals b in R.

(c) Although, in general, an F -finite regular (or quasi-Gorenstein) ring
S need not admit a generating map Φe ∈ HomS(F e∗S, S), it always
does locally by (2.2.1).

Generating maps even makes working with τ(R) easier, so we record a
fact we will need shortly.

Lemma 5.23. Suppose R is a Noetherian F -finite reduced ring and Φ ∈
HomR(F e∗R,R) is a generating map. Then

Φ(F e∗ τ(R)) = τ(R).

Proof. Note the containment ⊆ follows from the fact that τ(R) is com-
patible with all maps, by Theorem 6.15 in Chapter 1. Since Φ(F e∗ τ(R)) is
also easily seen to be compatible with all maps, the result follows since τ(R)
is the smallest such ideal nonzero at each minimal prime. �

In the regular case, we defined the test ideal via an ascending chain of
ideals from Lemma 5.2. The same result holds in the presence of a generating
map (so for instance in the quasi-Gorenstein and sufficiently local case).
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Corollary 5.24. Suppose R is a Noetherian F -finite reduced ring and Φ ∈
HomR(F∗R,R) is a generating map. Then the ideals

Φ(F∗a
dtpeτ(R)) ⊆ Φ2(F 2

∗ a
dtp2eτ(R)) ⊆ · · · ⊆ Φe(F e∗ a

dtpeeτ(R)) ⊆ . . .

form an ascending chain which stabilizes to the test ideal τ(R, at).

Proof. The proof is in essence the same as that of Lemma 5.2. Using
Lemma 5.23 we see that

Φe(F e∗ a
dtpeeτ(R)) = Φe(F e∗ a

dtpeeΦ(F∗τ(R)))

= Φe+1(F e+1
∗ (adtp

ee)[p]τ(R)))

⊆ Φe+1(F e+1
∗ adtp

e+1eτ(R))

as desired. That these stabilize to the test ideal follows from the fact that

τ(R, at) =
∑
e∈N

Φe(F e∗ a
dtpeeτ(R)).

by Lemma 5.21. �

We immediately obtain the following corollary describing a transforma-
tion rule for test ideals under a generating map Φ.

Corollary 5.25. Suppose R is a Noetherian F -finite reduced ring and Φ ∈
HomR(F∗R,R) is a generating map. Then for any ideal a ⊆ R and any
e > 0, we have that

Φe(F e∗ τ(R, at)) = τ(R, at/p
e
).

Remark 5.26. We will see later in Chapter 5 Section 7 that Corollary 5.29
is a special case of a formula for test ideals under finite ring extensions.

Frobenius roots can also be described using a generating map.

Corollary 5.27. If S is an F -finite regular ring and Φe ∈ HomS(F e∗S, S) is
a generating map, then for any ideal b ⊆ S,

b[1/pe] = Φe(F e∗ b).

Using Corollary 5.27, we see that Frobenius roots behave very much like
Frobenius powers:

Proposition 5.28. If J is an ideal in an F -finite regular ring S, then
(J [1/pe])[1/pd] = J [1/pe+d] for all d, e ∈ N.

Proof. Equality of ideals can be checked locally, and the formation of
J [1/pe] commutes with localization, so by Remark 5.22 we may assume there
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is a generating map Φ ∈ HomS(F∗S, S). In this case Φf is a generating map
for HomS(F f∗ S, S), so that

J [1/pf ] = Φf (F f∗ J)

for all f > 0 (Corollary 5.27). Since Φd ? Φe = Φd ◦ F d∗Φe is a generating
map for HomS(F d+e

∗ S, S), Corollary 5.27 again gives

J [1/pd+e] = Φd ? Φe(F d+e
∗ J) = Φd(F d∗Φe(F e∗J)) = (J [1/pe])[1/pd].

�

In the regular case, Corollary 5.25 becomes the following:

Corollary 5.29. Let S be an F -finite regular ring, a ⊆ S an ideal and t ≥ 0
a real number. Then

τ(S, at)[1/pe] = τ(S, at/p
e
)

for all e > 0.

5.5. The defining property of the test ideal. In Theorem 6.15 from
Chapter 1, we saw that the test ideal was characterized as the unique smallest
ideal, containing a nonzero divisor. An analogous result is true here.

For each integer e ≥ 0 set

(C at

R )e := (F e∗ a
dt(pe−1)e) ·HomR(F e∗R,R) ⊆ HomR(F e∗R,R) =: (CR)e

and form the subring of the Cartier algebra:

C at

R :=
⊕
e≥0

(C at

R )e ⊆
⊕
e≥0

(CR)e =: CR.

The fact that this forms a ring (under composition), is essentially the argu-
ment in Lemma 4.4, with the key inequality (4.4.1). This is done in detail
later in Chapter 8 Example 3.2.

Proposition 5.30. Let R be a Noetherian F -finite reduced ring. Suppose
a ⊆ R is an ideal containing a non-zerodivisor. Then the test ideal τ(R, at)
is the unique smallest ideal in R

(a) compatible with every element of (C at

R )e (for each e ≥ 0), and
(b) containing a non-zerodivisor (i.e. not contained in any minimal

prime).

Proof. We first must show that τ(R, at) is compatible with each el-
ement of (C at

R )e. It suffices to check this on the generators of C (R, at):
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ψ ? cg = ψ ◦ F e∗ g, with ψ ∈ HomR(F e∗R,R) and g ∈ adt(p
e−1)e. Consider

Jf = φ(F f∗ a
dtpf e τ(R)) ⊆ τ(R, at) where φ ∈ HomR(F f∗ R,R). Observe that

(ψ ? g)Jf = (ψ ? g)φ(F f∗ a
dtpf e τ(R))

= (ψ ? φ)
(
F e+f∗ (gp

f
adtp

f e τ(R))
)

⊆ (ψ ? φ)
(
F e+f∗ (ap

f dt(pe−1)eadtp
f e τ(R))

)
⊆ (ψ ? φ)

(
F e+f∗ (adt(p

e+f ) τ(R))
)

⊆ τ(R, at).

Since τ(R, at) is the sum of such Jf , we have proven that τ(R, at) is com-
patible with all maps in (C at

R )e.

Now suppose that J is an ideal containing a non-zerodivisor and com-
patible with all φ ∈ (C at

R )e for all e > 0. We need to show that τ(R, at) ⊆ J .
Since both are ideals containing non-zerodivisor, there must exist a non-
zerodivisor x ∈ τ(R, at) ∩ J ⊆ τ(R). Picking y ∈ adte a non-zerodivisor, and
since adtp

ee ⊆ adt(p
e−1)e, we see from Lemma 5.12 that:

τ(R, at) =
∑

e

∑
φ∈(CR)e

φ(F e∗ (xy adtp
ee))

⊆
∑

e

∑
φ∈(CR)e

φ(F e∗ (xy adt(p
e−1)e))

=
∑

e

∑
ψ∈(C at

R )e
ψ(F e∗ (xyR)) (this is ⊆ J since x ∈ J)

⊆
∑

e

∑
φ∈(CR)e

φ(F e∗ (x adte adt(p
e−1)e))

⊆
∑

e

∑
φ∈(CR)e

φ(F e∗ (xadtp
ee))

= τ(R, at).

Since the third line is a subset of J , our result is proven. �

Remark 5.31. By a similar argument, one can also show that τ(R, at) is
the smallest ideal containing a non-zerodivisor compatible with all elements
of (F e∗ a

t) · HomR(F e∗R,R) (for all e > 0). One can also show that τ(R, at)

is set made up of all strong test elements for the Cartier algebra C at

R , see
Chapter 8 Example 3.2 and ??.
Remark 5.32. If a does not have positive height but R has minimal primes
Q1, . . . , Qt, . . . , Qm and aQ1 , . . . , aQt 6= 0 but aQt+1 , . . . , aQm = 0, then
τ(R, at) is the smallest

(a) compatible with every element of CR(at)e (for each e ≥ 0), and
(b’) not contained in Q1, . . . , Qt.

The proof is unchanged in view of Remark 5.13.
Corollary 5.33. Suppose R is a Noetherian F -finite reduced ring and a ⊆ R
is an ideal containing a non-zerodivisor. Then for any c ∈ τ(R, at) a non-
zerodivisor, we have that

τ(R, at) =
∑
e

∑
φ∈(C at

R )e

φ(F e∗ cR).
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Proof. The sum is by definition the smallest compatible ideal contain-
ing c. It thus must equal τ(R, at) by Proposition 5.30. �

Corollary 5.34 (cf. [Vas98, Sch08]). Suppose R is a Noetherian F -finite
ring and (R, at) is a sharply F -split pair. Then R/τ(R, at) is F -pure.

Proof. Note since the pair is sharply F -split, we see that a contains a
non-zerodivisor and that R is reduced. We see that τ(R, at) is compatible
with some Frobenius splitting by Proposition 5.30. The result follows. �

5.6. Triviality of the test ideal and strong F -regularity. As in the
non-pair setting, the test ideal defines the locus of non-strongly F -regular
points:

Theorem 5.35. Let R be an F -finite Noetherian reduced ring, a ⊆ R an
ideal, and t ≥ 0. The test ideal τ(R, at) defines the closed locus of SpecR
where the pair (R, at) fails to be strongly F -regular. In particular, the pair
(R, at) is strongly F -regular if and only if τ(R, at) = R.

Proof of Theorem 5.35. Without loss of generality, we may assume
t > 0, since the case where t = 0 follows from Corollary 5.25 in Chapter 1.
Note also that the first statement follows immediately from the second, be-
cause both strong F -regularity and the test ideal behave well under local-
ization (Theorem 4.24 and Exercise 5.13). To prove the second statement,
we may assume that R is local and that a contains a non-zerodivisor, for
otherwise (R, at) is never strongly F -regular and τ(R, at) 6= R.

Assume (R, at) is strongly F -regular and pick c ∈ τ(R, at) a non-zerodivisor.
We know that the map

C at

R = (F e∗ a
dt(pe−1)e) ·HomR(F e∗R,R)

φ 7→φ(F e∗ c)−−−−−−→ R

is surjective for some e. This implies that 1 = φ(F e∗ c) ⊆ φ(F e∗ τ(R, at)) ⊆
τ(R, at) for some φ ∈ (C at

R )e proving that τ(R, at) = R.

Conversely, suppose τ(R, at) = R and pick c ∈ R a non-zerodivisor. We
want to show that φ(F e∗ c) = 1 for some φ ∈ C at

R . It suffices to show that
ψ(F e∗ cd) = 1 for some d ∈ R (since we can set φ = ψ ? d). Thus we may
assume that cd ∈ τ(R, at). By Corollary 5.33, we have that 1 ∈ τ(R, at) =∑

e

∑
φ∈(C at

R )e
φ(F e∗ cdR). But R is local so this means one of the terms in

the sum contains 1. The result follows. �
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5.7. Exercises.

Exercise 5.1. Let S be a Frobenius split ring, f ∈ S, and t = ν
pe where

ν ∈ N. Show that the image of the map

(5.35.1) HomS(F e∗S, S)
eval at fν−−−−−−→ S sending φ 7→ φ(F e∗ f

ν)

is the same as the image of

(5.35.2) HomS(F e+1
∗ S, S)

eval at fpν−−−−−−−→ S sending φ 7→ φ(F e+1
∗ fpν).

In particular, conclude that τ(S, f
ν
pe ) is the image of the map (5.35.1).

Hint: Examine the proof of Lemma 5.2.

Exercise 5.2. Prove Proposition 5.16.

Exercise 5.3. Let S = Fp[x1, . . . , xn] and suppose that Φ : F e∗S −→ S

is a generating map for HomS(F e∗S, S). Let φ = Φ ◦ F e∗x
pe−1
1 · · ·xp

e−1
n =

Φ ? xp
e−1

1 · · ·xp
e−1
n . Show that φ is compatible to every ideal of the form

(xi1 , . . . , xit). Conclude that every ideal generated by square free monomial
ideals24 is compatible with φ.

Hint: Use Exercise 2.1 and Chapter 1 Proposition 6.4. For the statement
that these are the only compatible ideals, see Chapter 5 Proposition 2.9 and
Corollary 2.10.

Exercise 5.4. Prove Proposition 5.17.

Exercise 5.5. Let f ∈ m be an element in a regular local F -finite ring
(S,m). Suppose that F e∗S is freely generated by F e∗ e1, F

e
∗ e2, . . . , F

e
∗ en for

some elements ei ∈ S. Expressing F e∗ f uniquely as a1F
e
∗ e1 + a2F

e
∗ e2 +

. . . + anF
e
∗ en, show that (a1, a2, . . . , an) is the smallest ideal J of S such

that f ∈ J [pe].

Hint: Show that f ∈ J [pe] if and only if F e∗ f ∈ JF e∗S.

Exercise 5.6. Let S be an F -finite regular ring.

(a) For an arbitrary collection {Jλ} of ideals in S, show that⋂
λ

J
[pe]
λ = (

⋂
λ

Jλ)[pe].

(b) For any ideal b in S, show that there exists a smallest ideal J such
that b ⊆ J [pe].

(c) Prove that b[1/pe] is the smallest ideal J ⊆ S such that b ⊆ J [pe].

24Those more geometrically minded might observe that these ideals are the strata of
div(x1 . . . xn), see Appendix B Definition 7.3.
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Hint: For (a), reduce to the local case and use the fact that F∗S is free over
S. For (b), consider the intersection of all such J .

Exercise 5.7. Show that if a = a1 × a2 is an ideal in a regular F -finite
product ring S = S1×S2, then for all t ≥ 0, τ(S, at) = τ(S1, a

t
1)× τ(S2, a

t
2).

Exercise 5.8. Let S = Fp[x, y] and a = (xy(x − y)). Compute τ(S, at) for
t = 3/4 and p = 2.

Exercise 5.9. Let R be a strongly F -regular ring. For any ideal a ⊆ and
t ≥ 0, show that (R, at) is strongly F -regular if and only if (R, at) is strongly
Frobenius split.

Hint: Use the test ideal.

Exercise 5.10. Let R be a Frobenius split ring, a ⊆ R an ideal in R, and
t ≥ 0 a real number. Fix any c ∈ R, let Je denote the image of the map

adtp
ee · HomR(F e∗R,R)

φ 7→φ(F e∗ c)−−−−−−→ R. Prove that the Je are an increasing
sequence of ideals.

Hint: Adapt the proof of Lemma 5.2.

Exercise 5.11. Suppose S is an F -finite regular ring. Show that there exists
c ∈ S so that the test ideal τ(S, at) is equal to each of the following for some
e� 0:

(cadtp
ee)[1/pe], (cabtp

ec)[1/pe], (cadt(p
e−1)e)[1/pe], (cabt(p

e−1)c)[1/pe].

Exercise 5.12. Suppose that R is an F -finite ring and that gn = f ∈ R.
Show that (R, f t) is strongly F -regular if and only if (R, gnt) is strongly F -
regular. Thus we avoid the ambiguity issues that plagued sharp Frobenius
splitting; see Exercise 4.7.

Exercise 5.13. Let R be an F -finite Noetherian reduced ring, a ⊆ R an
ideal, and t ≥ 0. Prove that for any multiplicative set W ⊆ R,

τ(W−1R, (aW−1R)t) = τ(R, at)W−1R.

Exercise 5.14. Consider the ring R = Fp[u, x, y, z]/(x2− y2z) where p 6= 2.
Verify that R is Frobenius split but not strongly F -regular. Use this fact
to show that τ(R, at) is proper for all non-negative t ∈ R. Compute the F -
pure threshold of the pair (R, u) to find an example showing that the strong
F -regularity hypothesis in Theorem 6.1 can not be weakened to Frobenius
split.

Hint: For the first statement, use Fedder’s criterion and the fact that strongly
F -regular rings are normal.
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Exercise 5.15 (Mixed Test Ideals). Suppose that S is an F -finite regular
ring and a1, . . . , am ⊆ R are ideals. For any t1, . . . , tm ∈ R≥0 Define

τ(S, at11 · · · a
tm
m ) = (a

dt1pee
1 · · · adtmpeem )[1/pe]

for e� 0. Show that this definition is indeed independent of e� 0. This is
sometimes called a mixed test ideal.

Exercise 5.16 (Skoda’s theorem for mixed test ideals). Suppose S is an
F -finite regular ring, and a ⊆ S is an ideal generated by m elements and
b ⊆ S an arbitrary ideal. Show that for all t ≥ m and s ≥ 0,

τ(S, atbs) = a · τ(S, at−1bs).

Exercise 5.17. With the notion of mixed test ideals as defined in Exer-
cise 5.15, show that

τ(R, asat) = τ(R, as+t).

This avoids any ambiguity when a = b.

Exercise 5.18. The analytic spread of an ideal a in a Noetherian ring
R is the smallest integer ` such that a is integral over an ideal gener-
ated by ` elements. Prove the following version of the Skoda theorem: for
a Noetherian F -finite reduced ring R and ideal a with analytic spread `,
τ(R, at) = aτ(R, at−1) for all t ≥ `. .

6. Frobenius jumping numbers

We now discuss Frobenius jumping numbers, or F -jumping numbers for
short, a whole spectrum of numbers generalizing the F -pure threshold. We
take a moment to connect the F -pure threshold to the behavior of the test
ideal.

Let R be an F -finite ring, and a ⊆ R an ideal of R. We know that

τ(R) = τ(R, aε)

for 1� ε > 0 by Proposition 5.18. If R is strongly F -regular, this also equals
R.

Theorem 6.1. Let R be a strongly F -regular ring, and a ⊆ R a proper ideal
of positive height. Then for each t ≥ 0, τ(R, at) = R if and only if t < fpt(a).
That is, fpt(a) is the minimum value of t such that τ(R, at) is proper.

Remark 6.2. If a does not have positive height, then it consists of zerodi-
visors and fpt(a) = −∞; in this case, the first statement in Theorem 6.1 is
vacuous and the second meaningless.
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Remark 6.3. The hypothesis that R is strongly F -regular in Theorem 6.1
is necessary: if R is not strongly F -regular, then τ(R, at) ⊆ τ(R) is a proper
ideal of R for all t ≥ 0. It is not hard to find examples of Frobenius split rings
that are not strongly F -regular and admit ideals of positive F -pure threshold;
such pairs never satisfy the conclusion of Theorem 6.1. See Exercise 5.14.

To prove Theorem 6.1 we use the following lemma.

Lemma 6.4. Suppose R is strongly F -regular, a ⊆ R is an ideal and (R, at)
is sharply F -split for some t > 0. Then (R, as) is strongly F -regular for all
0 ≤ s < t.

Proof. Since adt(p
e−1)e ⊆ adsp

ee (cf. Proposition 4.17 (c)) we notice
that

(F e∗ a
dspee) ·HomR(F e∗R,R)

eval at F e∗ 1−−−−−−−→ R

surjects for some e > 0. In other words, we just showed that Je(R, at) = R
for some e > 0 (and hence for all e� 0). But since R is strongly F -regular,
τ(R) = R and so τ(R, at) = Je(R, a

t) for e� 0. The result follows. �

Proof of Theorem 6.1. If τ(R, at) = R, then (R, at) is strongly F -
regular. It follows that (R, at+ε) is strongly F -regular by Proposition 5.18
and hence also sharply F -split, and so t < t+ ε ≤ fpt(a).

Conversely, if t < t′ < fpt(a), then we know that (R, at
′
) is sharply

F -split by definition, and so by Lemma 6.4 we see that (R, at) is strongly
F -regular, the result follows. �

Corollary 6.5. Let a be an ideal in a strongly F -regular ring R. Then
fpt(a) = sup

{
t | (R, at) is strongly F -regular

}
= min

{
t | (R, at) is not strongly F -regular

}
.

6.1. The definition of F -jumping numbers. We have seen that
τ(R, at) = R for very small (positive) t, and that the "first" value of t where
τ(R, at) "jumps" to a proper ideal occurs when t = fpt(a) (Theorem 6.1).
More generally, we know that

τ(R, as) ⊇ τ(R, at) whenever s < t,

so we can consider other values of t for which the test ideal "jumps":

Definition 6.6. Let a be an ideal in an F -finite Noetherian ring R. A
positive real number t is an F -jumping number for the pair (R, a) if

τ(R, at−ε) ) τ(R, at)

for all 0 < ε ≤ t. In the case that a = (f) is principal, we say that t is an
F -jumping number for f .
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Example 6.7. (Compare with Example 3.6) Let S = Fp[x, y] and a = (x2y).
The jumping numbers of a are the positive half-integers:

• For 0 ≤ t < 1/2, we have τ(S, at) = S. To see this, observe that for t in
this range, dpete ≤ bp

e−1
2 c for all e � 0. This implies that F e∗ (x2y)dtp

ee is
part of a free basis for F e∗S over S, so by Proposition 5.6,

1 ∈ ((x2y)dtp
ee)[1/pe] ⊆ τ(S, at).

• For 1/2 ≤ t < 1, we have τ(S, at) = (x). Indeed, in this case,

pe > dtpee ≥ pe

2
,

so that the monomial (x2y)dtp
ee factors as xpexµ1yµ2 where 0 ≤ µ1, µ2 ≤

pe− 1. In particular, F e∗ (x2y)dtp
ee = xp

e
F e∗x

µ1yµ2 where F e∗xµ1yµ2 is part of
a free basis for F e∗S over S. By Proposition 5.6, for e� 0,

τ(S, at) = ((x2y)dtp
ee)[1/pe] = (x).

Similar computations give:

• For t ∈ [n, n+ 1
2) with n ∈ N, τ(S, at) = (x2nyn).

• For t ∈ [n+ 1
2 , n+ 1), τ(S, at) = (x2n+1yn).

Example 6.8. Example 6.7 can be generalized to show that for a monomial
xa1

1 x
a2
2 · · · xann in a polynomial ring S,

τ(S, (xa1
1 x

a2
2 · · · x

an
n )t) = (x

bta1c
1 x

bta2c
2 · · · xbtancn ).

Thus the test ideal in this case is constant on half-open intervals with
"jumps" as we pass from t = n

ai
(where n ∈ N) to a slightly smaller real

number t− ε. The jumping numbers for the principal ideal (xa1
1 x

a2
2 · · · xann )

are all rational numbers of the form ai
n for some n ∈ N.

Example 6.9. If S is an F -finite regular ring and f ∈ S is a non-zero
element such that S/(f) is also regular, then the jumping numbers of (S, f)
are precisely the positive integers. See Exercise 6.3.

Example 6.10. Let S = F5[x, y], and consider the element f = x2y−xy2 ∈
S. We saw in Example 3.8 that fpt(f) = 2p−1

3p = 3
5 . Thus τ(R, f t) = R

for all t < 3/5. For t = 3/5, test ideal can be computed explicitly using
Corollary 5.7 and Proposition 5.14:

τ(S, f3/5) = τ(S, (f3)1/5) = (f3)[1/5] = (x6y3 − 3x5y4 + 3x4y5 − x3y6)[1/5].

By Proposition 5.6, therefore, writing

F∗(x
6y3 − 3x5y4 + 3x4y5 − x3y6) = xF∗xy

3 − 3xF∗y
4 + 3yF∗x

4 − yF∗x3y,
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we see that
τ(S, f3/5) = (f3)[1/5] = (x, y).

In summary, we have

τ(S, f t) =

{
S 0 ≤ t < 3/5

(x, y) t = 3/5.

In fact, τ(S, f t) = (x, y) for all 3/5 ≤ t < 1; see Example 6.21.

6.2. First properties of jumping numbers. In example Example 6.7,
larger jumping numbers were all integer shifts of smaller ones. This is a
general property of jumping numbers following from Skoda’s theorem, The-
orem 5.20.

Corollary 6.11. Let R be an F -finite Noetherian reduced ring, and let a ⊆ R
be an ideal generated by m elements. For any t ≥ m, let t′ be the unique real
number in the interval [m− 1,m) such that t− t′ ∈ Z. If t is an F -jumping
number for a, then also t′ is an F -jumping number of a.

Proof. This is an immediate consequence of Theorem 5.20. Indeed,
suppose that t ≥ m, and write t = t′ + n where n ∈ Z and t′ ∈ [m − 1,m).
Since

an τ(R, at−n) = τ(R, at)

we see that if t is a F -jumping number, so is t′. �

Another important property of jumping numbers follows immediately
from the nice behavior of the test ideal.

Corollary 6.12. Suppose S is an F -finite ring such that HomR(F e∗R,R) has
a generating map Φ (or more generally if the Hom-set is locally principal,
for instance if R is regular or quasi-Gorenstein), that a ⊆ S is an ideal and
t ≥ 0 is a real number. Then if t is a jumping number of a, then so is pet
for every e ∈ N.

Proof. This follows immediately from the fact that

τ(S, at/p
e
) = Φ(τ(S, at))

for all e > 0 (Corollary 5.25). The more general statement follows since the
test ideal can be computed locally. �

Example 6.13. Consider the polynomial y2 − x3 ∈ Fp[x, y], where p ≡
5 (mod 6). We claim that 5

6 can not be its F -pure threshold (compare with
Example 3.9). Indeed, if 5

6 were its F -pure threshold, then 5
6 would be a

jumping number, and so 5p
6 would be a jumping number as well (by Corol-

lary 6.12). But p ≡ 5 (mod 6) implies that 5p
6 = 1

6 + k for some positive inte-
ger k, and so 1

6 would have to be an F -jumping number (by Corollary 6.11).
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This contradicts the fact that the F -pure threshold is the smallest F -jumping
number (Theorem 6.1).

6.3. Discreteness and rationality of F -jumping numbers. We
now discuss a deeper property of Frobenius jumping numbers:

Theorem 6.14. Let S be an F -finite quasi-Gorenstein (for instance regular)
ring, and a an ideal of S. The set of all F -jumping numbers of (S, a) is a
discrete set of rational numbers.

Remark 6.15. Even without the principal hypothesis, Theorem 6.14 was
first proved in [BMS08] in the case where S is a regular ring essentially
of finite type over a field (see [KLZ09] where the F -finite hypothesis was
replaced with excellent local). Later, this was done when R is Q-Gorenstein
in [ST14] (with various intermediate and related results, see [BSTZ10,
STZ12, GS18, CEMS18], including results in the non-F -finite case).

We will prove Theorem 6.14 in this section ONLY for principal ideals
in quasi-Gorenstein rings, although the Q-Gorenstein generalization is not
much more difficult. We will obtain the non-principal case as a corollary in
Chapter 10 (essentially following the argument of [GS18]). It is an open
question if the set of F -jumping numbers form a discrete set in general.
Based on the multiplier ideal case, we expect that rationality fails [Urb12].

We already know from Proposition 5.18 that τ(R, a) = τ(R, at+ε) for
all 1 � ε > 0. Since F -jumping numbers are bounded below by zero, we
immediately obtain the following.

Corollary 6.16. Let a be an ideal in an F -finite Noetherian reduced ring
R. There is no infinite strictly decreasing sequence of F -jumping numbers
for the pair (R, a).

In other words, we have no accumulations of jumping numbers from
above.

We can also see in general that the set of jumping numbers is closed:

Proposition 6.17. Let a be an ideal in an F -finite Noetherian reduced ring
R. Then the set of F -jumping numbers of (R, a) is a closed subset of R. In
particular, a limit of F -jumping numbers is an F -jumping number.

Proof. Let C denote the set all F -jumping numbers of (R, a). Suppose
that t ∈ R>0 is the limit of some sequence tn ∈ C. We must show that
t ∈ C. By Proposition 5.18, we may assume that {tn} is strictly increasing
to t. In this case, for any ε > 0, there exists N such that t− ε < tn < t for
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all n ≥ N . But then

τ(R, at−ε) ) τ(R, atN ) ⊇ τ(R, at),

showing that t is an F -jumping number as well. �

In order to prove Theorem 6.14, we also need to prove that no F -jumping
number is a limit of F -jumping numbers from below. We will do this here
only for principal ideals in a regular ring, making use of the following theorem
due to Hartshorne-Speiser, Lyubeznik, and Gabber:

Theorem 6.18 ([HS77, Lyu97, Gab04]). Suppose that R is a Noetherian
ring, M is a finite generated R-module (for us, typically M = R) and φ ∈
HomR(F e∗M,M) (we do not assume that R is F -finite). Then the descending
chain of ideals of submodules

(6.18.1) M ⊇ φ(F e∗M) ⊇ φ2(F 2e
∗ M) ⊇ φ3(F 3e

∗ M) ⊇ . . .

eventually stabilizes (again, φn = φ?n).

Remark 6.19. Theorem 6.18 is a variant of an important result due to
Hartshorne-Speiser, Lyubeznik, and Gabber, in different guises [HS77, Lyu97,
Gab04]. We will revisit a more general version later in Chapter 8 Theo-
rem 2.1.

Before proving Theorem 6.18, we use it to prove a critical step in the
proof of the discreteness of the set of jumping numbers:

Corollary 6.20. Let f be an element in an F -finite quasi-Gorenstein ring
R. Then no rational number is an accumulation point of F -jumping numbers
for (R, f).

Proof. Suppose that t ∈ Q is an accumulation point of F -jumping
numbers. Then there is a strictly increasing sequence of jumping numbers
converging to t (Proposition 5.18). In this case, there is also a strictly in-
creasing sequence of jumping number converging to pdt for every d by Corol-
lary 6.12. So replacing t by tpd for suitable d, we may assume the rational
number t has denominator not divisible by p.

Now, we can write t = a/(pe − 1) for some a, e ∈ N (see Exercise 6.7).
Consider the sequence {tn | n ∈ N} where

tn = t
pne − 1

pne
=

a

pe − 1

pne − 1

pne
=
a(1 + pe + p2e + · · ·+ p(n−1)e)

pne
.

Clearly {tn} is an increasing sequence converging to t. We will show that the
ideals τ(R, f tn) are constant for n� 0. This will contradict the assumption
that t is an accumulation point of jumping numbers from below.
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Indeed, consider the descending chain of (test) ideals τ(R, f tn)

τ(R, f t1) ⊇ τ(R, f t2) ⊇ τ(R, f t3) ⊇ . . .

It suffices to show that this chain eventually stabilizes on each open set of
a finite affine cover of SpecR. In particular, without loss of generality, we
assume that there exists Φ ∈ HomR(F∗R,R) which is a generating map.
Recall that Φe is also a generating map by Appendix A Proposition 5.3, and
so by Corollary 5.24, our chain becomes

Φe(F e∗ f
aτ(R)) ⊇ Φ2e(F 2e

∗ f
a(1+pe)τ(R)) ⊇ Φ3e(F 3e

∗ f
a(1+pe+p2e)τ(R)) ⊇ . . .

Since SpecR has a finite cover by open affine sets with generating maps,
if we can show the stabilization in the presence of a generating map, the
general case also follows.

Let φ = Φe ? fa. Then it follows from Chapter 1 Proposition 4.13
that φn(Fne∗ τ(R)) = Φne(Fne∗ fa(1+pe+···+p(n−1)e)τ(R)) and so our descend-
ing chain of test ideals can be rewritten as

φ(F e∗S) ⊇ φ2(F 2e
∗ S) ⊇ φe(F 3e

∗ S) ⊇ . . .

But now Theorem 6.18 precisely says that these ideals are constant for n� 0.
This completes the proof of Corollary 6.20. �

Example 6.21. Building on Example 6.10, we let S = F5[x, y] and f =
x2y − xy2. We have seen that 3/5 is a jumping number for f (the smallest
jumping number, or F -pure threshold). We claim the next smallest jumping
number is 1. For this, we should show that τ(S, f t) is constant for 3/5 ≤
t < 1, with τ(S, f1) is strictly smaller.

Using the idea in the proof of Corollary 6.20, it suffices to show that
τ(S, f

5n−1
5n ) = (x, y) for all n, but that τ(S, f1) ( (x, y). We have

τ(S, f
5n−1

5n ) = Φn(Fn∗ f
5n−1S) = Φn(Fn∗ (f5−1)1+5+52+···+5n−1

S).

Using the relation Φn ? (f4)1+5+52+···+5n−1
= (Φn ? f4)?n, in the Cartier

algebra, this becomes

τ(S, f
5n−1

5n ) = (Φn ? f4)?n(Fn∗ S),

so that setting φ = Φ ? f4, we have τ(S, f
5n−1

5n ) = φn(Fn∗ S).

When n = 1, we compute τ(S, f
4
5 ) = Φ(F∗(f

4)) = (x, y), using Proposi-
tion 5.6. When n = 2, we compute

τ(S, f24/25) = φ2(F 2
∗ S) = φ(F∗(x, y)) =

(
(f4)(x, y)

)[1/5]
,

which again
τ(S, f24/25) = (x, y)
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by Proposition 5.6. So the descending chain

φ1(F 1
∗ S) ⊇ φ2(F 2

∗ S) ⊇ φ3(F 3
∗ S) ⊇ . . .

stabilizes immediately at the first step, and all

τ(S, f
pn−1
pn ) = φn(Fn∗ S) = (x, y).

This proves that

τ(S, f t) =

{
S 0 ≤ t < 3/5

(x, y) 3/5 ≤ t < 1,

Finally, when t = 1, τ(S, f1) ⊆ (f), which strictly smaller that (x, y). So 1
is a jumping number,

We complete the story by proving the Hartshorne-Speiser-Lyubeznik-
Gabber result:

Proof of Theorem 6.18. First note that if φn(Fne∗ M) = φn+1(F
(n+1)e
∗ M),

then applying φ(F e∗−) yields φn+1(F
(n+1)e
∗ M) = φn+2(F

(n+2)e
∗ M). It follows

that if there is an open set U ⊆ SpecR such that φn(M) and φn+1(M) agree
(after localizing) at all points of U , then φn(Fne∗ M) agrees with φn+i(F

(n+i)e
∗ M)

for all i ≥ 0 again at all points for U .

For each integer n let Zn = Supp
(
φn(Fne∗ M)/φn+1(F

(n+1)e
∗ M)

)
. By our

initial observation, we see that Z0 ⊇ Z1 ⊇ Z2 . . . is a descending chain of
closed subsets of SpecR. Hence Zi = Zi+1 = . . . for i � 0 since SpecR
is Noetherian. By replacing M by φi(Fne∗ M), we can assume that Z0 =
Z1 = Z2 = . . .. We assume for a contradiction that Zi 6= ∅ for any i >
0. We let η be a generic point of the now constant Zi (in other words, a
minimal prime of the ideal defining Zi) and replace R by Rη, now a local
ring with maximal ideal m. With our current assumptions, we now see that
Supp

(
φn(Fne∗ M)/φn+1(F

(n+1)e
∗ M)

)
= {m} for all n.

Write m = (x1, . . . , xt). Choose N such that xNi M ⊆ φ(M) for each
i = 1, . . . , t. We claim for all n ≥ 0 that

x2N
i M ⊆ φn(Fne∗ M).

We argue by induction on n, the base case is clear so suppose it is true for
n. Now observe that

x2N
i M ⊆ xNi φ(F e∗M)

= φ(F e∗x
peN
i M)

⊆ φ(F e∗x
2N
i M)

⊆ φ(F e∗φ
n(Fne∗ M))

= φn+1(F
(n+1)e
∗ M)
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as desired.

It follows that (x2N
1 , . . . , x2N

t )M ⊆ φn(Fne∗ M) for all n. But observe that
M/(x2N

1 , . . . , x2N
t )M is a module of finite length and that we have a sequence

of properly descending submodules {φn(Fne∗ M)/(x2N
1 , . . . , x2N

t )M}n. This
is a contradiction. �

We conclude the section by completing the proof of Theorem 6.14 in the
case where a is principal:

Proof of Theorem 6.14 assuming Theorem 6.18. We assume a =
(f) is principal. In light of Corollary 6.20 and Proposition 6.17, in order to
show discreteness of F -jumping numbers, it suffices to show that there are
no irrational F -jumping numbers.

In view of Corollary 6.11, we may restrict ourselves to F -jumping num-
bers in [0, 1]. The set X of irrational jumping numbers in [0, 1] is closed,
since any point in its closure would be an accumulation point of F -jumping
numbers, hence an F -jumping number (by Proposition 6.17), but not ratio-
nal (by Corollary 6.20). In addition, X has no accumulation points from
above by Proposition 5.18. Furthermore, for each e > 0, the fractional parts
pet − btpec of pet for all e > 0 are all in X, by Corollary 6.12 and Corol-
lary 6.11. Such a closed set X of irrational numbers can be shown to be
empty with an argument in real analysis; see Exercise 6.8. �

6.4. Exercises.

Exercise 6.1. Complete the computation in Example 6.7.

Exercise 6.2. Suppose that S = Fp[x1, . . . , xn] and a = (xa1
1 . . . xann ). Show

that
τ(S, at) = (x

bta1c
1 . . . xbtancn ).

Exercise 6.3. If S is an F -finite regular ring and f ∈ S is a non-zero
element such that S/(f) is also regular, show that the jumping numbers of
(S, f) are precisely the positive integers. More generally, suppose that S is
quasi-Gorenstein and S/(f) is quasi-Gorenstein and strong F -regular. Prove
the same result.

Exercise 6.4. Let R be an F -finite regular local ring of characteristic p > 0.
Suppose some f ∈ R has fpt(f) = (b−1)/b. Use the method of Example 6.13
to deduce what you can about the relationship between b and p.

Exercise 6.5. Suppose that R is regular. Show that τ(R, fa/p
d
) = (fa)[1/pd].

Generalize this statement and proof to when R is strongly F -regular quasi-
Gorenstein.
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Exercise 6.6. Prove the following result of Mustaţă-Yoshida [MY09]. Sup-
pose that k is an F -finite field and S = k[x1, . . . , xn]. For every ideal J ⊆ S
show that there exists f ∈ S such that τ(S, f1/p) = J . That is, show that
every ideal is a test ideal.

Hint: Use generators of J to construct f . Then use Exercise 2.1.

Exercise 6.7. Suppose p is prime. Prove that every rational number t ≥ 0
can be written as t = a

pd(pe−1)
for some integers a, d ≥ 0 and e > 0.

Hint: If n is relatively prime to p, then the class of p is in the group of
units (Z/nZ)×.

Exercise 6.8. Suppose p is a prime number and let D ⊆ [0, 1] be a closed
set of irrational numbers such that the following two properties are satisfied.

(1) If t ∈ D, then there exists an ε > 0 such that D ∩ (t, t+ ε) = ∅.
(2) The fractional part {pet} of pet is in D for all integers e > 0.

Then D = ∅.

Hint: If you are stuck, you can find a full solution in [KLZ09].

Exercise 6.9. Let R be an F -finite regular ring, (f) = a ⊆ R is a principal
ideal and t = a

pe−1 . Suppose that for ome n:

(6.21.1)
(
a
a(pne−1)
pe−1

)[1/pne]
=
(
a
a(p(n+1)e−1)

pe−1

)[1/p(n+1)e]

Prove that the ideal (6.21.1) is equal to τ(R, at−ε) for 1� ε > 0.

Hint: Use φ = Φe ◦ F e∗ fa where f is a generator for a.

Exercise 6.10. Let R = Fp[x, y] and a = (xy(x−y)). Compute τ(R, at) for
all t and p = 2, 3, 4, 5.

Hint: This work was started in Example 5.19 for p = 2.

Exercise 6.11. Suppose that S is an F -finite regular ring, and R = S/I is
quasi-Gorenstein, then show that the ideals of R

Je = (I [pe] : I)[1/pe]
/
I

are descending as e increases, stabilizes for e � 0, and cuts out the locus
where R/I is not F -split.

Hint: After localizing if necessary, show that these ideals are images of some
appropriate φe as in Theorem 6.18. See also Corollary 2.6.
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6.4.1. Exercises on parameter test modules. We begin with a definition.

Definition 6.22. Suppose R is an F -finite locally equidimensional ring with
test module ωR. For any ideal a ⊆ R and t ≥ 0, we define the parameter
test module of the pair (R, at) to be T e(F e∗ adtp

eeτ(ωR)) for e� 0 where
T e : F e∗ωR −→ ωR is the dual to Frobenius from Chapter 2. The resulting
object is denoted by τ(ωR, a

t). Note, when a = (f) is principal, we denote
τ(ωR, a

t) by τ(ωR, g
t).

Exercise 6.12. Show that T e(F e∗ adtp
ee) ⊆ T e+1(F e+1

∗ adtp
e+1e) to conclude

that τ(ωR, a
t) is well defined.

Hint: We know that T (F∗τ(ωR)) = ωR by Exercise 5.1 in Chapter 2.

Exercise 6.13. With notation as in Definition 6.22, show that T (F∗τ(ωR, a
t)) =

τ(ωR, a
t/p).

Exercise 6.14. Assume R is a Noetherian F -finite domain (the domain
assumption is for simplicity). Suppose a ⊆ R is an ideal. Prove that

τ(ωR, a
t) = τ(ωR, a

t+ε)

for all 1� ε > 0.

Hint: Mimic the proof of Proposition 5.18.

Definition 6.23. With notation as in Definition 6.22, we say that t > 0
is a test module F -jumping number if τ(ωR, a

t) 6= τ(ωR, a
t−ε) for all

1� ε > 0.

Exercise 6.15. Show that an accumulation point of test module F -jumping
numbers is a test module F -jumping number.

Exercise 6.16. Suppose that a = (f) is principal. Show that no rational
number of the form a/(pe − 1) can be a test module F -jumping number.

Hint: Use Theorem 6.18 with M = τ(ωR) and φ = T ? fa.

Exercise 6.17. Use the preceding exercises and the strategy of this section
to show that, in the case that a = (f) is principal, the test module F -jumping
numbers are rational numbers with no accumulations points. In the case that
R is quasi-Gorenstein, this coincides with what we already showed in this
section since R ∼= ωR and so τ(ωR, a

t) ∼= τ(R, at).

7. Restriction, subadditivity, and symbolic powers

Test ideals can be viewed as a "prime characteristic analog" of the mul-
tiplier ideals in complex algebraic geometry. Variants of multiplier ideals
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appeared in several different guises in the work Grauert-Riemenschneider,
Kohn, Esnault-Viehweg, Kollár, Lipman, Nadel, also see for instance work of
Siu and Demailly, [GR70, Koh79, EV83, Kol86, Lip94, Nad90, Siu01,
DEL00]. For an algebraic perspective, we recommend [Laz04b, Chapter
9]. The connection has inspired a great deal of work on test ideals. In par-
ticular, test ideals enjoy many of the same features and applications, such as
the Skoda theorem, as we saw in Theorem 5.20. In this section, we discuss
two properties of test ideals—subadditivity and the restriction theorem—
and one application—the Ein-Lazarsfeld-Smith theorem on symbolic powers
of ideals, all of which were first proven in the complex setting with multi-
plier ideals. We will return to how and why the test ideal is related to the
multiplier ideal later in Chapter 6.

7.1. The restriction theorem. The original restriction theorem con-
cerned the behavior of multiplier ideals on a smooth ambient variety under
restriction to a smooth divisor, or by induction, to any smooth subvariety.
Here we do the same for test ideals in regular F -finite rings. We’ll later study
the behavior of test ideals under restriction in much greater generality when
we get to F -adjunction Chapter 5 Section 4. Note we proved a variant of
this in the non-pair setting in Theorem 5.21 in Chapter 2. For now we have:

Theorem 7.1 (The restriction theorem for test ideals). Consider a surjective
homomorphism S −→ S of F -finite regular rings. Then for every e > 0, we
have that

(7.1.1) (bS)[1/pe] ⊆ (b[1/pe])S.

In particular, for any ideal a ⊆ S and any t ≥ 0,

(7.1.2) τ(S, at) ⊆ τ(S, at)S.

Equation (7.1.2) also holds as long as S −→ S is a map of quasi-Gorenstein
rings which has a kernel generated by a regular sequence (we leave this as
an exercise in Exercise 7.2).

Proof. Both statements may be checked locally, so we assume the reg-
ular ring (S,m) is local, in which case the surjection S −→ S factors as a
succession of quotients by a single regular element. So by induction, we can
assume S = S/(f), where f ∈ m \m2.

Fix e > 0, and let Φe
S ∈ HomS(F e∗S, S) be an F e∗S-module generator.

By Theorem 2.1, the map

Φe
S ? f

pe−1 = Φe
S ◦ F e∗ fp

e−1 ∈ HomS(F e∗S, S)
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descends to a map Φe
S

: F e∗S −→ S, which is a F e∗S-module generator for
HomS(F e∗S, S) (this also follows from Chapter 2 Lemma 5.20). Thus

Φe
S

(F e∗ b) = Φe
S(F e∗ f

pe−1b)S.

So by Remark 5.4 and the fact that fpe−1b ⊆ b, we can conclude that

b
[1/pe]

= (fp
e−1b)[1/pe]S ⊆ b[1/pe]S,

proving (7.1.1).

To deduce the result for test ideals, recall that τ(S, at) = Φe(F e∗ (adtp
ee)

for e � 0 (Corollary 5.24). So the desired statement follows by setting
b = adtp

ee and by observing that anS = (aS)n for all n > 0. �

Remark 7.2. We can view Theorem 7.1 as an instance of a familiar intuition
about singularities: they can only get worse, never better, when restricted
to (or intersected with) a divisor. Thinking of the test ideals τ(S, at) as
a measurement of the singularities of the subscheme V(a) ⊆ SpecS, we
have argued that τ(S, at) is a deeper (in other words smaller) ideal when
the scheme V(a) is more singular. The restriction theorem says that, as
measured by test ideals, the singularities of the intersection V(a) ∩ SpecS
can only be as bad or worse, never better than those of V(a) at points of
SpecS, as the corresponding test ideals are deeper.

7.2. Subadditivity. Subadditivity is a property of mixed test ideals:

Definition 7.3. Let a1, a2, . . . , am be ideals in an F -finite regular ring S.
For any non-negative real numbers t1, t2 . . . , tm, the mixed test ideal can
be defined as

τ(S, at11 · · · a
tm
m ) = (a

dt1pee
1 · · · adtmpeem )[1/pe]

for e� 0.

We can now state and prove the subadditivity theorem.

Theorem 7.4 (Subadditivity, [HY03, Theorem 4.5], [Tak06]). Let a and
b be ideals in an F -finite regular ring S. For all real numbers s, t ≥ 0,

τ(S, asbt) ⊆ τ(S, as)τ(S, bt).

An important special case is where all ideals ai are the same and the ti
are all 1:

Corollary 7.5. Let a be an ideal in an F -finite regular ring S. Then

τ(S, an) ⊆ τ(S, a)n

for all n ∈ N.
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Proof of Theorem 7.4. Fix e� 0. Then

(7.5.1) τ(S, asbt) =
(
adsp

eebdtp
ee
)[1/pe]

⊆
(

(τ(S, as))[pe]bdtp
ee
)[1/pe]

with the inclusion following from the fact that if I [ 1
pe

] ⊆ J for any ideals I
and J , then I ⊆ J [pe] (applied with I = adsp

ee and J = τ(S, at)). Now, the
ideals in (7.5.1) are contained in

τ(S, as)(bdtp
ee)[1/pe] = τ(S, as)τ(S, bt)

using the fact that for any ideals I and J , and any e > 0, (I [pe]J)
[ 1
pe

]
= IJ

[ 1
pe

].
The result follows. �

Remark 7.6. The proof of subadditivity provided above is from [BMS08].
It is essentially (Matlis) dual to a proof of Takagi [Tak06], who extended
the idea to prove variants of subadditivity for non-regular rings.

Remark 7.7. There is another proof of subadditivity via the restriction
theorem combined restricting to the diagonal. This strategy was first de-
ployed by Demailly, Ein and Lazarsfeld to prove the subadditivity property
for multiplier ideals in the complex setting. A Matlis dual version for test
ideals was first proved in [HY03]. A explanation of that proof can also be
found in [SZ15]. We sketch that proof in Exercise 7.5 below.

7.3. Application to symbolic powers. The symbolic power Q(n) of
a prime ideal Q in an arbitrary commutative ring R consists of the elements
that vanish to order n along Q. More precisely,

Q(n) = QnRQ ∩R,
where Qn is the ordinary power and RQ is the localization at Q. For radical
ideals, the symbolic power I(n) can be described as the intersection of the
minimal primary components in a primary decomposition of In. See the
excellent survey [DDSG+18] or Appendix A for background on symbolic
powers.

While is it clear that Qn ⊆ Q(n), the reverse inclusion is false in general
(unless Q is maximal). In fact, it is not obvious whether or not, given n,
we can find any m such that Q(m) ⊆ Qn. Irena Swanson proved that quite
generally, there is a linear bound k such that Q(kn) ⊆ Qn for all n, but her k
depends on Q and may be very large [Swa00].

Remarkably, for regular rings, there is a very nice uniform bound de-
pending only on the dimension of the ring that works for all prime ideals:

Theorem 7.8 ([HH02], cf. [ELS01]). Suppose that S is an F -finite regular
ring of dimension d. Then for all radical ideals I,

I((d−1)n) ⊆ In
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for every n > 0. More precisely, if h is the maximal height (codimension) of
the minimal primes of I, then I(hn) ⊆ In for every n > 0.

Example 7.9. Let S = k[x, y, z] and I = (x, y)∩(x, z)∩(y, z) = (xy, xz, yz).
Theorem 7.8 says in this case that

I(2n) ⊆ In

for all n.

Remark 7.10. Theorem 7.8 was originally proven by Ein, Lazarsfeld and
Smith, for finite type C-algebras, using multiplier ideals [ELS01]. At the
time it was proven, Theorem 7.8 was quite surprising, and hadn’t been sus-
pected even in simple cases, like Example 7.9 above. Soon after, Hochster
and Huneke found a tight closure proof for the characteristic p case [HH02].
Theorem 7.8 has now been generalized to mixed characteristic, with proofs
mimicking the ideas of Ein-Lazarsfeld-Smith presented here; see [MS18]
for excellent regular rings and [Mur22b] for the generalization to the non-
excellent case. Many authors have investigated generalizations, for exam-
ple, to non-regular rings [HKV09, HK19, Wal18, CRS20, BJNnB19,
GMS22].

Our proof of Theorem 7.8 closely follows the Ein-Lazarsfeld-Smith proof,
using test ideals in place of multiplier ideals.

Proof of Theorem 7.8. Since (I(hn))m ⊆ I(hmn) (Exercise 7.9) we
have that

τ(R, I(hn)) ⊆ τ(R, I(hnm)
1
m ) ⊆ τ(R, (I(hmm′n))

1
mm′ )

for all n,m,m′ ∈ N. In particular, by the Noetherian property, for m suffi-
ciently large and divisible, τ(R, (I(hmn))

1
m ) stabilizes. We denote this stable

value by
τ∞(R, I(hn)).

Now observe that a ⊆ τ(R, a) for any ideal a (see Exercise 7.1), so

I(hn) ⊆ τ(R, I(hn)) ⊆ τ∞(R, I(hn)).

Now, for m sufficiently divisible,

τ∞(R, I(hn)) = τ(R, (I(hnm)
n
nm )) = τ(R, I(hnm)

1
nm · · · I(hnm)

1
nm︸ ︷︷ ︸

n-times

)

where the second equality is Exercise 5.17. But by repeated applications of
subadditivity, Theorem 7.4, this is contained in

τ(R, (I(hnm))
1
nm ) . . . τ(R, (I(hnm))

1
nm )︸ ︷︷ ︸

n times

.
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Therefore, to complete the proof, it suffices to show that

(7.10.1) τ(R, (I(hnm))
1
nm ) ⊆ I.

Because I is radical, it is the intersection of its minimal primes, and the
inclusion (7.10.1) may be checked locally at each of its minimal primes (Ex-
ercise 7.6). Furthermore, since the formation of the test ideal commutes with
localization, we may localize at a minimal prime of I to assume that R is
local and I = m is maximal.

Suppose m = (x1, . . . , xd) where d = dimR ≤ h. Since m is maxi-
mal, its symbolic and ordinary powers are the same. But now notice that
τ(R, (mhnm)

1
nm ) = τ(R,mh) ⊆ τ(R,md) by Proposition 5.14. For e � 0,

τ(R,md) = (mdpe)[1/pe] and we must show that this is contained in m.

Note that mdpe is generated by monomials xa1
1 x

a2
2 · · ·x

ad
d in the xi of de-

gree dpe and so must have ai ≥ pe for some i. Therefore Φe(F e∗x
a1
1 x

a2
2 · · ·x

ad
d )

is divisible by xi. So

(mdpe)[1/pe] = Φe(F e∗m
dpe) ⊆ m

as desired. This completes the proof. �

7.4. Exercises.

Exercise 7.1. For any ideal a in a regular F -finite ring R, prove that a ⊆
τ(R, a).

Hint: Use the fact that a[pe] ⊆ ap
e for all e > 0.

Exercise 7.2. Consider a surjective homomorphism π : S −→ R of F -finite
quasi-Gorenstein rings where ker(π) is generated by a regular sequence. For
any ideal a ⊆ S and any t ≥ 0, show that

τ(R, (aR)t) ⊆ τ(S, at)R.

Hint: Suppose kerπ = (f1, . . . , ft) with the fi’s form a regular sequence.
Deduce that each R/(f1, . . . , fm) is S2 and hence quasi-Gorenstein, see Ap-
pendix C Lemma 6.10.

Exercise 7.3. Formulate and prove the Restriction Theorem, Theorem 7.1,
for mixed test ideals in regular rings defined as in Exercise 5.15.

Exercise 7.4. Suppose k is a perfect field, A and B are finitely generated
k-algebras and ΦA ∈ HomA(F e∗A,A) and ΦB ∈ HomB(F e∗B,B) generate
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their respective Hom-sets. Let S = A⊗k B and consider the map ΦS

F e∗S
ΦS // S

F e∗ (a⊗ b) � // ΦA(a)⊗ ΦB(b).

Prove that ΦS generates HomS(F e∗S, S) as an F e∗S-module.

Hint: If you are stuck, you can find a proof in [Smo20, Corollary 3.10].

Exercise 7.5. This exercise gives another proof of subadditivity Theo-
rem 7.4 under a certain hypothesis. Suppose that S is Noetherian F -finite
and regular is a localization of a finite type k-algebra where k is a perfect
field of characteristic p > 0. We let T = S ⊗k S.

(a) To prove subadditivity, show that we may assume S is a smooth
k-algebra (in particular, that S is finite type over k).

(b) Consider the diagonal surjection

S ⊗k S
∆ // S

a⊗ b � // ab.

Let a′ = a⊗kS ⊆ T and b′ = S⊗kb ⊆ T . Show that ∆(a′) = a′S = a
and ∆(b′) = b′S = b, and more generally that ∆(a′b′) = ab.

(c) Complete the proof by showing that τ(T, a′sb′t) = τ(T, a′s)τ(T, b′t)
and then using the restriction theorem Theorem 7.1.

Exercise 7.6. Suppose Q is a P -primary ideal in a Noetherian domain.
Show that I ⊆ Q if and only if IRP ⊆ QRP .

More generally, if J = Q1∩· · ·∩Qm is an ideal where all of its associated
primes Pi =

√
Qi are minimal, then I ⊆ J if and only if IRPi ⊆ JRPi for all

i.

Exercise 7.7. Suppose R is a Noetherian ring, I ⊆ R is a radical ideal
and n > 0 is an integer. Suppose that In = Q1 ∩ · · · ∩Qm ∩Qm+1 ∩ . . . Ql
is a primary decomposition of In where Q1, . . . , Qm are the primary ideals
associated to the minimal primes. Show that

I(n) = Q1 ∩ · · · ∩Qm.

Exercise 7.8. Suppose R is a normal Noetherian domain and Q ⊆ R is a
height one prime ideal. Prove that Q(n) = (Qn)§2 where here (−)§2 means
reflexification (applying HomR(•, R) twice) or S2-ification.

Exercise 7.9. Suppose R is a Noetherian ring and I is a radical ideal. Show
that

(I(a))b ⊆ I(ab).



CHAPTER 5

Anti-canonical Divisors and Maps in
Hom(F e

∗OX ,OX)

For a normal variety X of prime characteristic p, there is a correspon-
dence between maps of OX -modules F e∗OX −→ OX and certain effective
anti-canonical divisors on X. This chapter develops this point of view, deep-
ening our understanding of Frobenius splitting and test ideal for pairs (X,∆)
where ∆ is a Q-divisor on X.

At the heart of our story is the natural isomorphism of sheaves of F e∗OX -
modules

(0.0.1) H om(F e∗OX ,OX) ∼= F e∗ω
(1−pe)
X

∼= F e∗OX((1− pe)KX).

proved in Theorem 2.26 in Chapter 3. Using this isomorphism we will see
that each global section φ ∈ HomX(F e∗OX ,OX) determines an effective Weil
divisor Dφ on X in the linear system |(1− pe)KX |, where KX is a canonical
divisor. Normalizing Dφ appropriately, we associate to each such φ some
effective anti-canonical Q-divisor ∆φ, which turns out to be—in the case
where φ is a splitting of Frobenius— the maximal effective divisor ∆ such
that the pair (X,∆) is Frobenius split by φ. More generally, we’ll show that
the divisor ∆φ, an in particular the singularities of that divisor, govern the
subschemes of X compatible with φ.

We also revisit, in Section 3, the subject of vanishing theorems for pro-
jective varieties, using our new theory of F -singularities for pairs to prove
a version of the Kawamata-Viehweg vanishing theorem for Frobenius split
varieties. In Section 3, we’ll show that the divisors associated to maps enjoy
an adjunction-type property we call "F -adjunction," and use this to develop
new tools to establish Frobenius splitting. In Section 5, we develop the test
ideal for pairs, with applications in...

Setting 0.1. Throughout this chapter, the reader is invited to assume that
X is a normal variety over an algebraically closed field k of characteristic
p > 0, so that the canonical sheaf can be taken to be the unique reflexive
sheaf ωX = (∧dimXΩX/k)

S2 that agrees with the top exterior power of the
sheaf of Kähler differentials ∧dimXΩU/k on the non-singular locus U of X;
see Chapter 2. However, the natural generality for this chapter is the setting
of an arbitrary normal integral Noetherian F -finite scheme X, so we will

257
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work in this setting. In this case, we always take ωX to be the canonical
canonical module as defined in Chapter 2 Section 4. In particular,

H om(F e∗OX , ωX) ∼= F e∗ωX

for all e ∈ N.

1. The Divisor of a map in Hom(F e∗OX ,OX)

Let X be a normal Noetherian F -finite integral scheme. The sheaf

H omOX (F e∗OX ,OX)

is a reflexive OX -module (Lemma 4.3 in Appendix B) and hence it is tor-
sion free and satisfies Serre’s S2 condition (Lemma 4.4 in Appendix B).
In particular, it also satisfies Serre’s S2 condition when considered as an
F e∗OX -module (Corollary 4.6 in Appendix B), and so it is a rank one reflex-
ive F e∗OX -module on the normal scheme SpecF e∗OX ∼= X. In particular,
every non-zero global section

φ ∈ HomOX (F e∗OX ,OX) = Γ
(
X,H omOX (F e∗OX ,OX)

)
determines1 a unique divisor Dφ on X such that

(1.0.1) F e∗OX(Dφ) ∼= H omOX (F e∗OX ,OX).

Our goal in this section is to reinterpret the right side of (1.0.1), and un-
derstand what Dφ tells us about Frobenius splitting when φ is a splitting of
Frobenius.

Recall that by Theorem 2.26 in Chapter 3, there is a natural isomorphism
of sheaves of F e∗OX -modules:

(1.0.2) H om(F e∗OX ,OX) ∼= F e∗ω
(1−pe)
X ,

where the notation ω(1−pe)
X = OX((1− pe)KX) denotes the unique reflexive

sheaf on X which agrees with ω⊗1−pe
X on the non-singular locus2 of X. In

particular, each non-zero map F e∗OX
φ−→ OX is identified with a non-zero

global section of the sheaf F e∗ω
(1−pe)
X , and so— because F e is affine— φ is

identified with a non-zero section of the rank one reflexive sheaf ω1−pe
X on X.

Its corresponding divisor of zeros is the divisor Dφ from (1.0.1). We package
this idea into the following:

Definition 1.1 ([MR85]). Fix a non-zero map F e∗OX
φ−→ OX , where X

is a normal integral Noetherian F -finite scheme. The divisor associated
to φ is the divisor Dφ of zeros of the global section of the sheaf F e∗ω

(1−pe)
X

obtained from φ via the isomorphism (1.0.2).

1by Appendix B Proposition 4.15
2Alternatively, ω(1−pe)

X can be defined as the reflexive hull (ω⊗1−pe
X )S2 of ω⊗1−pe

X
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The following properties of Dφ are immediate from the definition:

Proposition 1.2. Let X be a normal integral Noetherian F -finite scheme,
and fix a canonical divisor3 KX for X. For any non-zero map F e∗OX

φ−→ OX
of coherent OX-modules, the associated divisor Dφ is an effective Weil divisor
on X linearly equivalent to (1− pe)KX , that is,

Dφ ≥ 0 and Dφ ∼ (1− pe)KX .

Furthermore, two maps φ, φ′ ∈ Hom(F e∗OX ,OX) determine the same divisor
if and only if they differ by a unit—that is, Dφ = Dφ′ if and only if φ =
φ′ ◦ F e∗ s for some s ∈ Γ(X,OX)×.

The divisor of a map commutes with localization; this follows from gen-
eral properties of the divisor of zeros of a non-zero section of any rank-one
reflexive sheaf on a normal integral scheme X:

Lemma 1.3. Let Dφ be the divisor of a non-zero map F e∗OX
φ−→ OX , with

notation as in Definition 1.1. For any open set U ⊂ X, the restriction
φ|U : F e∗OU −→ OU determines the divisor (Dφ)|U . That is,

(Dφ)|U = Dφ|U .

Example 1.4. Let R be a normal Noetherian F -finite domain, and sup-
pose that Φ ∈ HomR(F e∗R,R) generates HomR(F e∗R,R) as an F e∗R-module
(for example, R could be a regular local ring). Then each non-zero φ ∈
HomR(F e∗R,R) can be written as φ = Φ ◦ F e∗ g for some non-zero g ∈ R.
In this case, letting X denote SpecR, the divisor Dφ on X is the divisor
divX(g), whose support is precisely V(g) ⊂ X.

Example 1.5. As a special case of Example 1.4, let V be an F -finite discrete
valuation ring, and suppose t is a generator for its maximal ideal m. Then
every φ ∈ HomV (F e∗V, V ) is, up to precomposition with a unit, of the form
φ = Φe ? utn for some non-negative integer n, some unit u, and where
Φ ∈ HomV (F∗V, V ) is a generating map. The corresponding divisor Dφ is
the divisor n[m] ∈ Div(V ) ∼= Z.

A global consequence of the previous example follows.

Corollary 1.6. Let X be a normal integral Noetherian F -finite scheme.
Fix a non-zero map φ : F e∗OX −→ OX and let Dφ be the divisor of φ.
Then Dφ = 0 if and only if φ globally generates H omOX (F e∗OX ,OX) as an
F e∗OX-module.

Proof of Corollary 1.6. Since H omOX (F e∗OX ,OX) and its F e∗OX -
module generated by φ are both reflexive, we can check that they agree by

3meaning, any Weil divisor KX such that OX(KX) ∼= ωX
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checking on the non-singular locus, which has codimension at least two. So
we assume that H omOX (F e∗OX ,OX) is an invertible F e∗OX -module. In gen-
eral, an invertible sheaf is generated by some global section s at precisely
the points where s is not zero. In particular, φ ∈H omOX (F e∗OX ,OX) gen-
erates as an F e∗OX -module at any point outside the divisor Dφ. This means
H omOX (F e∗OX ,OX) is globally generated by φ if and only if Dφ = 0. �

Example 1.7. Let Pn be the projective space over a perfect field k of prime
characteristic. Consider the canonical toric Frobenius splitting π of Pn con-
structed in Example 1.4 of Chapter 3. We claim that the associated divisor
is

Dπ = (pe − 1)

n∑
i=0

Hi,

where theHi are the torus invariant hyperplanes V(xi) in Proj k[x0, x1, . . . , xn].
Note that Dπ is an effective divisor in the linear system |(1− pe)KPn |, as
expected.

To check this, recall that π can be described on each torus invariant chart
D+(xi) = Spec k[x0

xi
, . . . , xnxi ] as the map which send the free basis elements{
F e∗

(
x0

xi

)a0

. . .

(
xn
xi

)an}
0≤aj≤pe−1

to zero except for F e∗ 1, which it sends to 1. One readily checks that

(1.7.1) π = Φe ◦ F e∗
(
x0

xi

)pe−1

. . .

(
xn
xi

)pe−1

as maps in

Homk[
x0
xi
,...,xn

xi
](F

e
∗ k[

x0

xi
, . . . ,

xn
xi

], k[
x0

xi
, . . . ,

xn
xi

]),

where Φe is the standard monomial F e∗R-module generator for HomR(F e∗R,R)
(see Proposition 1.3 in Chapter 2). So in the affine chart D+(xi) ⊆ Pn, the
divisor

Dπ |D+(xi) = (pe − 1)(H0 +H1 + · · ·+ Ĥi + · · ·Hn)|D+(xi),

where each Hi is coordinate plane V(xi) and the notation Ĥi means that the
ith hyperplane is omitted. Putting these together, we see that

Dπ = (pe − 1)
n∑
i=0

Hi,

as claimed.
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1.1. Divisors and factorization of maps. The divisor Dφ can be
characterized as the largest effective divisor D such that the map φ extends
to F e∗OX(D):

Theorem 1.8. Let X be a normal integral Noetherian F -finite scheme, and
let D be an effective divisor on X. For any non-zero map F e∗OX

φ−→ OX ,

the map φ extends to a map F e∗OX(D)
φ̃−→ OX if and only if D ≤ Dφ. In

other words, the diagram

(1.8.1) F e∗OX
φ

//
� s

&&

OX

F e∗OX(D),
φ̃

99

can be completed to a commutative diagram of OX-module maps with a map
φ̃ if and only if D ≤ Dφ.

Theorem 1.8 implies that if φ ∈ Hom(F e∗OX ,OX) is a splitting of Frobe-
nius, then X is Frobenius e-split along Dφ, and Dφ is the largest effective
divisor with this property.

Remark 1.9. The inclusion OX ↪→ OX(D) becomes the identity map at the
generic point of X, so the map φ in Theorem 1.8 becomes a map F e∗K(X)→
K(X) at the generic point of X. Thus φ̃ in diagram (1.8.1), when it exists, is
the restriction of the generic point of φ to F e∗OX(D), and hence the unique
extension of φ to the sheaf F e∗OX(D). For this reason, we usually use the
notation φ instead of φ̃ to denote this extension (when it exists).

To prove the theorem, we will use the following characterization, in terms
of Dφ, of the subsheaf of H omOX (F e∗OX ,OX) generated by φ:

Proposition 1.10. Fix a non-zero global section φ of H omOX (F e∗OX ,OX),
where X is as in Theorem 1.8. Then the coherent F e∗OX-subsheaf of the sheaf
H omOX (F e∗OX ,OX) generated by φ is precisely H omOX (F e∗OX(Dφ),OX).

Proof of Proposition 1.10. Since both H omOX (F e∗OX(Dφ),OX) and
the subsheaf of H omOX (F e∗OX ,OX) generated by the global section φ are
reflexive F e∗OX -subsheaves of H omOX (F e∗OX ,OX), we may check that they
are the same in codimension 1, that is at the generic point of each prime
divisor on X. So without loss of generality, we may assume that X = SpecR
where R is an F -finite discrete valuation ring. Now the statement follows
from Example 1.5. �

Proof of Theorem 1.8. Assume that D ≤ Dφ. Since

OX ⊆ OX(D) ⊆ OX(Dφ),
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it suffices to show that the arrow φ̃ can be filled in when D = Dφ. This
follows immediately from Proposition 1.10.

Conversely, assume that φ extends to a map F e∗OX(D)
φ−→ OX . We

need to show that D ≤ Dφ. Since φ generates H omOX (F e∗OX(Dφ),OX),
every section ψ ∈H omOX (F e∗OX(Dφ),OX) (on any open set) can be writ-
ten as ψ = φ ? g for some section g of OX (over that open set). In
particular, ψ ∈ H omOX (F e∗OX(D),OX), since φ is in the F e∗OX -module
H omOX (F e∗OX(D),OX). In other words,

H omOX (F e∗OX(Dφ),OX) ⊆H omOX (F e∗OX(D),OX).

Applying H omOX (−,OX), we obtain an inclusion of reflexive sheaves (Ap-
pendix B Section 4)

F e∗OX(D) ⊆ F e∗OX(Dφ),

and conclude that OX(D) ⊆ OX(Dφ). Since these inclusions are the identity
at the generic point, this says that D ≤ Dφ. The theorem is proved. �

2. Maps in Hom(F e∗OX ,OX) and anti-canonical Q-divisors

Fix a non-zero map φ ∈ Hom(F e∗OX ,OX). Scaling appropriately, we
produce an effective anti-canonical Q-divisor on X associated to φ:

Definition 2.1. LetX be a normal integral F -finite Noetherian scheme. For
any non-zero map F e∗OX

φ−→ OX of OX -modules, define the anti-canonical
Q-divisor of φ to be the Q-divisor

∆φ =
1

pe − 1
Dφ,

where Dφ is the divisor of φ (as in Definition 1.1).

By construction, the divisor ∆φ is an effective Q-divisor, with the prop-
erty that (pe − 1)(∆φ + KX) is an Weil divisor linearly equivalent to the
trivial divisor. In particular, ∆φ is Q-linearly equivalent4 to −KX .

We have the following important correspondence between maps and anti-
canonical effective Q-divisors:

4Given two Q-divisors Γ1,Γ2, we say that Γ1 and Γ2 are Q-linearly equivalent (written
Γ1 ∼Q Γ2) if there exists an n > 0 such that nΓ1 and nΓ2 are linearly equivalent Weil
divisors.
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Theorem 2.2. Let X be a normal integral Noetherian F -finite scheme, with
fixed canonical divisor KX . There is a bijection{

non-zero OX-linear maps
φ : F e∗OX −→ OX

}/
≡
→

 Effective Q-divisors ∆
such that for some e > 0
(pe − 1)(KX + ∆) ∼ 0


induced by sending φ 7→ ∆φ. Here the equivalence relation ≡ on maps is
generated by the relations φ ≡ φn and φ ≡ φ ? u where u ∈ H0(X,OX) is
a unit. Again, φn := φ?n denotes the n-fold self-composition of φ in the
Cartier Algebra.5

To prove this, we use the following

Lemma 2.3 (cf. Chapter 3 Proposition 2.5 (c)). Let X be a normal F -
finite Noetherian scheme. Assuming that φ ∈ Hom(F e∗OX ,OX) and ψ ∈
Hom(F d∗OX ,OX) are non-zero maps, then the divisor of the map φ ? ψ ∈
Hom(F e+d∗ OX ,OX) is

(2.3.1) Dφ?ψ = pdDφ +Dψ.

In particular, for any natural number n,

Dφn = (1 + pe + · · ·+ pe(n−1))Dφ.

Proof. Because divisors are determined in codimension 1, we may as-
sume thatX = SpecR where R is a discrete valuation ring. In this case fix an
F∗R-module generator Φ for HomR(F∗R,R). By Proposition 5.3 in Appen-
dix A, we know that the compositions Φe, Φd, and Φe+d generate the modules
HomR(F e∗R,R), HomR(F d∗R,R), and HomR(F e+d∗ R,R), respectively. Write

φ = Φe ◦ F e∗ c = Φe ? c and ψ = Φd ◦ F d∗ c′ = Φd ? c′

for some c, c′ ∈ R, where ? denotes the product in the Cartier algebra as
discussed in Subsection 4.2 of Chapter 1. Then

φ ? ψ = (Φe ? c) ? (Φd ? c′)) = (Φe ? Φd ? cp
e
c′) = Φe+d ◦ F e+d∗ cp

e
c′.

Here, we are using only the relation c ? Φd = Φd ? cp
e (see (4.12.4) in Chap-

ter 1). Now the desired statements follow immediately from Example 1.4. �

Proof of Theorem 2.2. We have already seen that the association
φ 7→ ∆φ produces a Q-divisor with the desired properties, and that φ and
φ ? u, where u is a unit, determine the same ∆. We must also check that for
any non-zero map F e∗OX

φ−→ OX ,

(2.3.2) ∆φ = ∆φn

5See Subsection 4.2 of Chapter 1.
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for all n ≥ 0. This follows easily from Lemma 2.3:

∆φn =
1

pen − 1
Dφn =

1 + pe + · · ·+ pe(n−1)

pen − 1
Dφ =

1

pe − 1
Dφ = ∆φ.

This proves that [φ] 7→ ∆φ is well defined.

Finally, for φ, ψ ∈ Hom(F e∗OX ,OX), we know that ∆φ = ∆ψ if and only
if φ and ψ differ by pre-multiplication by a unit in H0(X,F e∗OX) (Proposi-
tion 1.2). Thus the assignment [φ] 7→ ∆φ is a well-defined injective mapping.

To see this mapping is bijective, take a Q-divisor ∆ ≥ 0 such that (pe −
1)(KX + ∆) is a Weil divisor linearly equivalent to zero. In particular,
(pe − 1)∆ is some effective Weil divisor D. Now use the isomorphism of
coherent F e∗OX -modules

(2.3.3) F e∗OX((1− pe)(KX + ∆)) ∼= H omOX (F e∗OX(D),OX)

(Exercise 2.5) to conclude that the sheaf H omOX (F e∗OX(D),OX) is isomor-
phic to the trival sheaf F e∗OX , and hence globally generated as an F e∗OX -
module by some non-vanishing global section (F e∗OX is globally generated
by F e∗ 1); in particular, there is a non-zero map

F e∗OX(D)
φ−→ OX .

Because D ≥ 0, the map φ restricts to a map F e∗OX
φ−→ OX . Finally, we

leave it to the reader to verify that the assignment ∆ 7→ [φ] is inverse to the
assignment [φ] 7→ ∆φ. �

Another basic property of ∆φ is the following restriction on the index6

of ∆φ +KX whose proof we omit.

Proposition 2.4. With notation as in Definition 2.1, the index of the Q-
Cartier divisor KX + ∆φ divides pe−1. In particular, the index of KX + ∆φ

is not divisible by p.

As a corollary, we get the following special version of Theorem 2.2 in the
local case where Cartier divisors all become principal:

Corollary 2.5. Let R be an F -finite Noetherian normal local ring, and let
X = SpecR. The assignment φ 7→ ∆φ defines a bijection: non-zero OX-linear maps

φ : F e∗OX −→ OX
(ranging over all e > 0)

/
≡

−→


Q-divisors ∆ ≥ 0

such that
KX + ∆ is Q-Cartier

with index not divisible by p


6Recall that the index of a Q-Cartier divisor Γ is the smallest positive integer n such

that nΓ is a Cartier divisor (with integer coefficients).
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where the equivalence relation on the maps is as in Theorem 2.2.

Proof. A divisor on the spectrum of a local ring is Cartier if and only
if it linearly equivalent to zero. On the other hand, the prime number p fails
to divide n if and only if n divides pe − 1 for some e > 0 (by Fermat’s Little
Theorem). The corollary follows by putting these two facts together with
Theorem 2.2. �

We make one more useful observation.

Proposition 2.6. Suppose that φ1 : F e1∗ OX −→ OX and φ2 : F e2∗ OX −→ OX
are nonzero maps on an F -finite normal scheme. Then

∆φ1?φ2 =
pe1 − 1

pe1+e2 − 1
∆φ1 +

pe1(pe2 − 1)

pe1+e2 − 1
∆φ2 .

Proof. This is a straightforward consequence of Lemma 2.3. �

2.1. The geometry of ∆φ and compatible subschemes. The ge-
ometry of ∆φ has interesting implications for φ. For example, ∆φ easily
determines the codimension one integral subschemes compatible with φ:

Proposition 2.7 (cf. Chapter 3 Lemma 3.7). Fix a non-zero map F e∗OX
φ−→

OX , where X is a normal Noetherian integral F -finite scheme, and let ∆φ

be the associated anti-canonical Q-divisor. Then an effective divisor G on X
is φ-compatible7 if and only if G ≤ b∆φc.

Proof. To check that G =
∑
aiGi is φ-compatible, where the Gi are

the irreducible components of suppG, it suffices to check this generically
along each Gi by Chapter 1 Proposition 6.7 and Chapter 3 Lemma 3.4. So
without loss of generality, we may assume that X = SpecV , where V is a
discrete valuation ring, and G = adiv(t), where a ≥ 0 and t is a uniformizing
parameter for V In this case, we can write φ = Φe ◦ F e∗utn for some n > 0,
u is a unit, and where Φe is an F e∗V -module generator for HomV (F e∗V, V ).
So φ is compatible with G if and only if it sends F e∗OX(−G) into OX(−G).
In other words, if and only if

φ(F e∗ (ta)) ⊆ (ta) or equivalently, Φe(F e∗ (tn+a)) ⊆ (ta).

But this happens if and only if n + a ≥ ape (Lemma 2.3 in Chapter 4),
or equivalently, if and only if n

pe−1 ≥ a. Finally, since ∆φ = n
pe−1 div(t)

(Example 1.4), we conclude that G is φ-compatible if and only if G ≤ b∆φc.
�

7meaning that the underlying subscheme of G is compatible with φ in the sense of
Chapter 3 Definition 3.1
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Proposition 2.8. Let X be a normal Noetherian integral F -finite scheme.
Consider a non-zero map F e∗OX

φ−→ OX , and let ∆φ be the associated anti-
canonical Q-divisor. If X \ Supp ∆φ is locally F -regular8, then there are no
proper φ-compatible subschemes contained in X \ Supp(∆φ).

Proof. Because compatibility is a local issue and we are only interested
in X \ Supp(∆φ), we can assume that X = SpecR for some strongly F -
regular domain R and Dφ = 0, which implies that φ globally generates
HomR(F e∗R,R) (Corollary 1.6). Now consider an arbitrary proper non-zero
ideal I ⊆ R, and take any non-zero c ∈ I. Because R is strongly F -regular,
we can find ψ ∈ HomR(F en∗ R,R) such that ψ(F en∗ c) = 1 (see Lemma 4.7
in Chapter 1), and because φn generates HomR(F en∗ R,R) (Proposition 5.3
in Appendix A), we can write ψ = φn ◦ F en∗ s for some s ∈ S. It follows
that 1 ∈ φn(Fne∗ I). So I is not φn compatible, and hence neither can I be
φ-compatible (Exercise 2.6). This completes the proof. �

In some cases, we can completely determine all the compatible sub-
schemes of φ in terms of ∆φ:

Proposition 2.9. Let X be a regular integral F -finite scheme. For a fixed
non-zero map F e∗OX

φ−→ OX , suppose that the corresponding anti-canonical
Q-divisor has the following properties:

(i). d∆φe is reduced;
(ii.) Supp ∆φ is a simple normal crossing divisor.

Then the irreducible φ-compatible subschemes are precisely the strata9 of
the Weil divisor b∆φc—that is, the irreducible subschemes of X obtained
as arbitrary intersections of those components of ∆φ with coefficient exactly
one.

Before proving Proposition 2.9, we point out the following corollary,
whose proof is left as an exercise:

Corollary 2.10. With hypothesis as in Proposition 2.9, the compatible sub-
schemes of X are precisely the unions of strata of b∆φc

Proof of Proposition 2.9. Compatibility is a local issue, so localiz-
ing along the generic point of an arbitrary integral closed subscheme, we
may assume that X = SpecR, where (R,m) is a d-dimensional regular local

8meaning the local ring at each point is strongly F -regular; see Chapter 1 Defini-
tion 4.27.

9See Appendix B Definition 7.3.
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ring (Proposition 6.7). It suffices to show that m is compatible if and only if
V(m) is among the strata of b∆φc.

Indeed, we already showed that the ideals of the strata are compatible
in Chapter 4 Exercise 5.3 so suppose conversely that V(m) is not among the
strata. We can again write

φ = Φe ◦ F e∗ux
a1
1 · · ·x

ad
d

where 0 ≤ ai ≤ pe − 1 and the xi generate m. The condition that m is not a
stratum of b∆φc ensures that at least one of the ai—say, a1— is strictly less
than pe − 1. Passing to the completion R̂ ∼= kJx1, . . . , xdK, we may choose a
generator Φe for Hom

R̂
(F e∗ R̂, R̂) sending xp

e−1
1 . . . xp

e−1
d to 1 and all other ba-

sis monomials to 0. It follows that φ(F e∗ (x1)) = Φe(F e∗ (xa1+1
1 xa2

2 · · ·x
ad
d )) =

R and hence m is not compatible (Proposition 6.7 in Chapter 1). �

2.2. Exercises.

Exercise 2.1. Consider R = Fp[x, y], fix 0 ≤ a, b,≤ p−1 and let φ : F∗R −→
R be the map that sends F∗xayb 7→ 1 and the other basis monomials to zero.
Compute Dφ.

Exercise 2.2. Suppose that X = SpecR is a normal F -finite domain. Sup-
pose that ψ, φ ∈ Hom(F e∗R,R) satisfy the relation ψ = φ ? c.Prove that
Dψ = divX(c) +Dφ.

Exercise 2.3. Consider R = Fp[x, y], fix 0 ≤ a, a′, b, b′ ≤ p − 1 and let
φ : F∗R −→ R be the map that sends F∗xayb 7→ 1 and F∗x

a′yb
′ 7→ 1 and

sends the other basis monomials to zero. Compute Dφ.

Exercise 2.4. Consider the ring

R = Fp[x, y, z]/(xy − zp−1) ∼= Fp[up−1, vp−1, uv] ⊆ Fp[u, v].

Let D = div(x, z). Verify that (p − 1)D ∼ 0 and find a map φ : F∗R −→ R
with Dφ = D.

Exercise 2.5. Let X be a normal F -finite integral scheme. Prove that for
any Weil divisor D,

(2.10.1) H om(F e∗OX(D),OX) ∼= F e∗OX((1− pe)KX −D).

Exercise 2.6. Suppose that R is a normal Noetherian F -finite ring. Show
that an ideal I is φ-compatible, then I is φn := φ?n-compatible for all n ≥ 1.

Exercise 2.7. Suppose φ : F e∗R −→ R is surjective. Prove that every coeffi-
cient of ∆φ is ≤ 1.
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3. Local and global Frobenius splitting for pairs (X,∆)

The anti-canonical Q-divisors associated to maps in Hom(F e∗OX ,OX)
shed new light on the subject of Frobenius splitting. Indeed, if X is a normal
Frobenius split variety, we will see that the Q-divisors of the form ∆φ are
"extremal" for the property that the pair (X,∆) is Frobenius split.

We have already defined sharp Frobenius splitting and strong F -regularity
for pairs of the form (R, f t) for t ≥ 0 in Definition 4.1 within Chapter 4.
The definitions easily adapt to arbitrary real divisors ∆ ≥ 0 on normal
schemes; in fact, by working with divisors, we produce a slightly "better"
definition without the ambiguity discussed in Caution 4.8 of Chapter 4. See
Caution 3.5 below.

3.1. Sharp Frobenius Splitting of pairs (X,∆). For any effective
Weil divisor D on a normal scheme X, there is a natural inclusion of sub-
sheaves of K(X)

OX ↪→ OX(D),

and hence in characteristic p > 0, an inclusion

F e∗OX ↪→ F e∗OX(D)

for all e > 0. Thus we can define:

Definition 3.1 ([HW02, SS10]). Let X be a normal integral Noetherian
F -finite scheme, and let ∆ be an effective R-divisor on X. Consider the
composition map

(3.1.1) OX
F e−−→ F e∗OX ↪→ F e∗OX(d(pe − 1)∆e),

where the first map is Frobenius and the second is induced by the natural
inclusion OX ⊆ OX(d(pe− 1)∆e) of subsheaves of K(X). The pair (X,∆) is
said to be globally sharply Frobenius split (or simply F -split10) if there
exists some e > 0 such that (3.1.1) splits in the category of OX -modules.

Likewise, (X,∆) is said to be locally (sharply) Frobenius split if
there exists some e > 0 such that the composition map (3.1.1) splits at each
point x ∈ X.

Remark 3.2. Note that (X,∆) is Frobenius split if and only if X is e-
Frobenius split along the Weil divisor d(pe − 1)∆e.
Remark 3.3. Global Frobenius splitting obviously implies local Frobenius
splitting for a pair (X,∆), but the converse is false, even in the case where
∆ = 0 (see, e.g., Example 1.7 in Chapter 3). On the other hand, for affine X,

10We usually drop the adverb "sharply" from the terminology, as we will not consider
any other variant in this context, as well as the adverb "globally" which we include only
for emphasis when confusion might arise.
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local and global Frobenius splitting of (X,∆) are equivalent, since splitting
for a map of coherent sheaves on a Noetherian affine scheme can be checked
locally. In particular, for an arbitrary scheme X, the pair (X,∆) is locally
Frobenius split if and only if X has a cover by open affine sets Ui with
(Ui,∆|Ui) Frobenius split. See Exercise 3.1.

Remark 3.4. A pair (X,∆) is (locally or globally) Frobenius split if and
only if the map (3.1.1) splits (locally or globally, respectively) for infinitely
many e; see Exercise 3.3.

Caution 3.5. When X = SpecR and ∆ = tdiv f , it is worth comparing
Definition 3.1 to Definition 4.1 in Chapter 4 for sharp Frobenius splitting of
(R, f t). They are not quite equivalent! Indeed, if the pair (R, f t) is sharply
Frobenius split in the sense of Chapter 4 Definition 4.1, then (X,∆) sat-
isfies Definition 3.1, but the converse does not quite hold. While almost
equivalent, Definition 3.1 is slightly more robust: it eliminates the inconve-
nient ambiguity we encountered earlier in Caution 4.8 of Chapter 4 when
comparing (R, f t) and (R, (fn)

t
n ). See Exercises 3.6 and 3.7.

We can characterize Frobenius splitting for pairs using the anti-canonical
Q-divisors associated to maps as follows:

Proposition 3.6. Let (X,∆) be a globally Frobenius split pair, where X is
a normal F -finite integral scheme, and ∆ ≥ 0 is an R-divisor on X. Then
there exists a Frobenius splitting φ : F e∗OX −→ OX such that

(a) ∆ ≤ ∆φ;
(b) (X,∆φ) is globally Frobenius split; and
(c) There is an integer n, not divisible by p, such that the Q-divisor

n(KX + ∆φ) is linearly equivalent to the trivial divisor (that is, ∆φ

is an anticanonical Q-divisor).

In this case, both (X,∆) and the pair (X,∆φ) are globally Frobenius split by
a map φ corresponding to ∆φ under the correspondence in Theorem 2.2.

Proof. We know there exists φ : F e∗OX ⊆ F e∗OX(d(pe − 1)∆e) −→ OX
splitting OX ⊆ F e∗OX(d(pe − 1)∆e) where ∆φ ≥ ∆. By Theorem 1.8 we
see that OX −→ F e∗OX(Dφ) = F e∗OX((pe − 1) 1

pe−1∆φ) splits and therefore
(X,∆φ) is globally Frobenius split by φ as well. �

3.2. Local and global F -regularity for (X,∆). Eventual Frobenius
splitting along effective divisors generalizes naturally to pairs:

Definition 3.7. Let (X,∆) be a pair, whereX is normal integral Noetherian
F -finite scheme and ∆ ≥ 0 is an R-divisor onX. For an effective Weil-divisor
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D, we say that (X,∆) is (globally sharply) e-Frobenius split along D
if the composition

(3.7.1) OX −→ F e∗OX ↪→ F e∗OX(d(pe − 1)∆e+D)

splits in the category of OX -modules. The pair (X,∆) is said to be even-
tually (globally sharply) Frobenius split along D if it is e-Frobenius
split along D for some e.

Likewise, local e-Frobenius splitting along D and local eventual Frobe-
nius splitting along D are defined analogously as the splitting of (3.7.1) on
an affine cover of X, or equivalently, at the stalk of each point of X.

Eventually globally Frobenius split along D can also be rephrased as
follows.

Lemma 3.8. A pair (X,∆) is eventually globally Frobenius split along D if
and only if the pair (X,∆ + εD) is globally Frobenius split for some ε > 0.

Proof. This is a direct consequence of the definition. Indeed, note
that if OX −→ F e∗OX ↪→ F e∗OX(d(pe − 1)∆e + D) splits, then the pair
(X, 1

(pe−1)d(p
e− 1)∆e+ 1

pe−1D) is also Frobenius split. Hence, so is (X,∆ +

εD) for ε = 1
pe−1 . Conversely, if (X,∆+ εD) is globally Frobenius split, then

OX −→ F e∗OX(d(pe − 1)(∆ + εD)e)

splits for e > 0 sufficiently divisible. But for large enough e > 0, we have
that

d(pe − 1)(∆ + εD)e ≥ d(pe − 1)∆e+D.

This completes the proof. �

Frobenius splitting along D is easily characterized using anti-canonical
Q-divisors of maps:

Proposition 3.9. Let X be normal F -finite integral scheme, with effective
R-divisor ∆. Then the pair (X,∆) is (globally) e-Frobenius split along D
if and only if there exists a splitting of Frobenius φ ∈ HomOX (F e∗OX ,OX)
such that ∆φ ≥ ∆ + 1

pe−1D.

Proof. This is an easy consequence of Theorem 1.8. �

Definition 3.10 ([HW02, SS10]). Let (X,∆) be a pair, where X is nor-
mal integral Noetherian F -finite scheme and ∆ ≥ 0 is an R-divisor on X.
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The pair (X,∆) is globally F -regular11 if (X,∆) is eventually (globally)
Frobenius split along every effective Weil divisor D on X.

Remark 3.11. When X is a quasi-projective (over an affine base) normal
integral Noetherian F -finite scheme, then (X,∆) is globally F -regular if and
only if the pair (X,∆) is eventually (globally) Frobenius split along every
effective Cartier divisor D, see Remark 2.10 in Chapter 3. However, the
reader is cautioned that an arbitrary variety may not have any non-zero
Cartier divisors, so this is not an appropriate definition in general.

Fortunately, to prove a pair (X,∆) is globally F -regular, we do not have
to check eventual splitting along all divisors, only one well-chosen divisor:

Theorem 3.12. Let (X,∆) be a pair, where X is a normal F -finite integral
scheme and ∆ is an effective R-divisor. Suppose that there exists an effective
Weil divisor B ⊆ X such that:

(i). The pair (X,∆) is eventually globally Frobenius split along B (equiv-
alently, (X,∆ + εB) is globally Frobenius split for some ε > 0); and

(ii). The pair (U ,∆|U ) is globally F -regular, where U := X \B.

Then (X,∆) is globally F -regular.

Proof. We have seen versions of this theorem already in Theorem 5.1
in Chapter 1, Theorem 2.14 in Chapter 3, and Theorem 4.14 in Chapter 4,
so we leave the proof as Exercise 3.13. �

3.3. Perturbing real divisors ∆. A natural question is the extent to
which the singularities of a pair (X,∆) remain nice under small perturbations
of ∆. First note that shrinking ∆ preserves Frobenius splitting:

Proposition 3.13. Let X be normal integral Noetherian F -finite scheme.
Suppose ∆ and ∆′ are effective R-divisors such that ∆′ ≤ ∆. Then

(a) If (X,∆) is (locally or globally) Frobenius split, then so is (X,∆′);
(b) If (X,∆) is (locally or globally) F -regular, then so is (X,∆′).

We can also slightly increase ∆ in the direction of any effective divisor
without affecting strong F -regularity:

11We drop the adverb "strongly" from the terminology, although we may sometimes
include it for emphasis. Likewise, we always mean globally F -regular if we do not explicitly
modify with the word "locally".
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Proposition 3.14. Suppose that (X,∆) is (locally or globally) F -regular
and D > 0 is an effective divisor. Then for all sufficiently small positive ε,
the pair (X,∆ + εD) is (locally or globally, respectively) F -regular as well.

Proof. Because (X,∆) is F-regular, there exists e > 0 such that the
Frobenius map

(3.14.1) OX −→ F e∗OX(d(pe − 1)∆e+ 2D)

splits. We claim that the pair (X,∆ + 1
pe−1D) is globally F -regular, whence

it will follow from Proposition 3.13 that (X,∆ + εD) is F-regular for all
ε ≤ 1

pe−1 , completing the proof.

To prove the claim, we apply Theorem 3.12 to the pair (X,∆ + 1
pe−1D),

using D as the "test divisor" B. To check that condition (a) in Theorem 3.12
holds, observe that

d(pe − 1)∆e+ 2D = d(pe − 1)(∆ +
1

pe − 1
D)e+D.

So the splitting of (3.14.1) implies that the pair (X,∆+ 1
pe−1D) is eventually

globally Frobenius split along D, and (a) holds. To check condition (b), note
that (X,∆ + 1

pe−1D) restricts to (X,∆) on U = X \ D, so (b) holds by
hypothesis. This completes the proof. �

Next we prove a convexity-type result for the space of R-divisors ∆ such
that the pair (X,∆) has good properties with respect to Frobenius splitting.
The first part of what follows is simply a rescaling of Chapter 3 Proposi-
tion 2.5 (c) which itself is a global restatement of Chapter 1 Proposition 4.9

Proposition 3.15. Let ∆1 and ∆2 be effective R-divisors on a normal F -
finite integral scheme X. Assume that both (X,∆1) and (X,∆2) are globally
Frobenius split. Then there exists arbitrarily small rational ε > 0 such that
the pair

(X, (1− ε)∆1 + ε∆2)

is globally Frobenius split. Additionally, if either (X,∆1) or (X,∆2) is glob-
ally F -regular, then so is the pair

(X, (1− ε)∆1 + ε∆2).

Finally, writing ε as a fraction of integers, we may assume its denominator
is not divisible by p.

Proof. The first statement follows either from Proposition 2.6 (replac-
ing ∆i by ∆φi ≥ ∆i) or from Chapter 3 Proposition 2.5 (c) since (X,∆) is
F -split if and only if X is e-Frobenius split along d(pe−1)∆e for some e > 0.
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Next suppose that either (X,∆2) or (X,∆1) is globally F -regular. We
can choose an effective Weil divisor C whose support contains both ∆1 and
∆2 and such that, if we set U = X \ C, then the pairs (U ,∆i|U ) = (U , 0)
are globally F -regular. For some 1 � δ > 0, either the pair (X,∆1 + δC)
or (X,∆2 + δC) is globally F -regular (Proposition 3.14) and hence globally
Frobenius split. Now by the globally Frobenius split case, there exists ε > 0
such that either

(3.15.1)
(
X, (1− ε)(∆1 + δC) + ε∆2

)
or
(
X, (1− ε)∆1 + ε(∆2 + δC)

)
is globally Frobenius split, either one of which implies that

(
X, (1− ε)∆1 +

ε∆2

)
is eventually globally Frobenius split along C by Lemma 3.8. Notice

that the pair (3.15.1) restricts to (U , 0) which is globally F -regular. Thus(
X, (1−ε)∆1 +ε∆2

)
is globally F -regular (by Theorem 3.12), as desired. �

Remark 3.16. It is natural to ask that if (X,∆1) and (X,∆1) are F -
split, whether (X, s∆1 + t∆2) is F -split for every s, t ≥ 0 with s + t = 1.
Unfortunately this is false, see for instance [P1́3].

Corollary 3.17. Suppose (X,∆) is globally F -regular and (X,∆ + tD) is
globally Frobenius split for some t > 0 and effective Weil divisor D. Then
(X,∆ + t′D) is globally F -regular for every t′ ∈ [0, t).

Proof. This is left to the reader in Exercise 3.16. �

3.4. More vanishing theorems. We can now generalize the vanishing
theorems of Chapter 3 to globally Frobenius split and F -regular pairs.

We know from Theorem 2.32 in Chapter 3 that if L−KX is ample and
X is F -split, then H i(X,OX(L)) = 0. The value of pairs in this context is
that yields the same vanishing even though L−KX is only “close to ample”
(as measured by a pair).

Theorem 3.18. Let L be a Weil divisor on a normal integral projective
scheme X over an F -finite field. Suppose there exists some effective Weil
divisor ∆ ≥ 0 on X such that

(i). The pair (X,∆) is globally Frobenius split; and
(ii). The Q-divisor L−KX −∆ is ample.

Then

H i(X,OX(L)) = 0

for all i > 0.
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Proof. Since (X,∆) is globally Frobenius split, there exists e > 0 (and
hence, there are infinitely many e) such that the map

(3.18.1) H omOX (F e∗OX(d(pe − 1)∆e),OX)
eval at F e∗ 1−−−−−−−→ OX

is a surjection on global sections. Since OX is free, this is a split surjection.
Making use of the isomorphism from Exercise 2.5, we obtain a split surjection
of sheaves

(3.18.2) F e∗OX(b(1− pe)(KX + ∆)c)� OX .

Twisting by L (and reflexifying if L is not Cartier), we have a split surjective
map

F e∗OX(b(1− pe)(KX + ∆)c+ peL)� OX(L).

Now, let A denote the ample Q-divisor L−KX −∆, and fix n such that
nA is an ample Cartier divisor. For each e, use the division algorithm to
write pe − 1 = nqe + re with qe ∈ Z and 0 ≤ re < n. Next observe that

b(1− pe)(KX + ∆)c+ peL = nqeA+ (re + 1)L+ b−re(KX + ∆)c.

As we range over infinitely many e for which (3.18.2) splits, there are only
finitely many possible modules Mre = OX((re + 1)L + b−re(KX + ∆)c),
since there are only finitely many possible remainders re when dividing by
n. Hence, if e is large enough,

H i
(
X,F e∗OX(b(1− pe)(KX + ∆)c+ peL)

) ∼= H i
(
X,F e∗ (Mre ⊗OX(nA)qe)

)
vanishes for all i > 0 by Serre vanishing. Finally, the split surjectivity of
(3.18.2) implies that H i(X,OX(L)) = 0 as well. �

Under the stronger hypothesis that (X,∆) is globally F -regular, we can
weaken the ample hypothesis to big and nef:

Corollary 3.19. Let L be a Weil divisor on a normal integral projective
scheme X over an F -finite field. Suppose there exists some effective Q-
divisor ∆ ≥ 0 on X such that

(i). The pair (X,∆) is globally F -regular; and
(ii). The Q-divisor L−KX −∆ is nef and big.

Then

H i(X,OX(L)) = 0

for all i > 0.
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Proof. Since L−KX−∆ is big and nef, there exists an effective divisor
D so that for sufficiently small ε > 0, L − KX − ∆ − εD is ample.12 Fur-
thermore, we may assume that (X,∆ + εD) is globally F -regular and hence
globally F -split. But now we can directly apply Theorem 3.18. �

3.5. Global F -regularity and log Fano varieties. Global Frobenius
splitting has significant consequences for the geometry of a normal projective
variety of characteristic p. For example, we have essentially alreasdy proved
that globally Frobenius split pairs (X,∆) are log Calabi-Yau in Proposi-
tion 3.6. If the pair (X,∆) is globally F -regular, we get even stronger con-
sequences on the global geometry of X:

Theorem 3.20 (Globally F -regular is log Fano, [SS10]). Let (X,∆′) be a
globally F -regular pair where X is projective and finite type over an F -finite
affine scheme. Then there exists an effective Q-divisor ∆ ≥ ∆′ such that

(a) The pair (X,∆) is globally F -regular.
(b) The Q-divisor −KX −∆ is ample and has Q-Cartier index not di-

visible by p.

In fact, for every ample Cartier divisor A, there exists ∆ satisfying (a) and
such that −KX − ∆ is Q-linearly equivalent to a multiple of A with index
not divisible by p > 0.

Proof of Theorem 3.20. By Proposition 3.6, there exists ∆1 = ∆′+
Γ1 ≥ ∆′ such that (X,∆1) is globally Frobenius split and such that KX +
∆1 ∼Q 0.

Next choose H > 0 an ample effective Cartier divisor such that H ∼ nA
for some integer n > 0 and where Supp ∆1 ⊆ SuppH. By Proposition 3.14
(X,∆′ + εH) is globally F -regular and so by Proposition 3.6 we can find a
∆2 + εH = ∆′ + +Γ2 + εH with (X,∆2 + εH) Frobenius split and (pe −
1)(KX + ∆2 + εH) ∼ 0 for infinitely many e.

At this point the solution seems at hand, KX+∆2 ∼Q −εH is anti-ample
and (X,∆2) is Frobenius split, and we will perturb it to make it globally F -
regular. We do this by “averaging” with (X,∆1). Let us recall what we know
so far.

(a) (X,∆1) is globally Frobenius split and KX + ∆1 ∼Q 0.
(b) (X,∆2) is globally Frobenius split and KX + ∆2 ∼Q −εH is anti-

ample.
(c) (X,∆2 + δH) is globally Frobenius split for ε ≥ δ > 0.

12Add reference
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Applying Proposition 3.15 we have s, t ≥ 0 with s + t = 1 and 1 � t > 0
such that

(X, s∆1 + t(∆2 + δH)) = (X,∆′ + sΓ1 + tΓ2 + tδH)

is globally Frobenius split. Now, for sufficiently small r, rΓ1 < tδH (since
H contains the support of ∆1 which contains the support of Γ1) and so

(X,∆′ + (s+ r)Γ1 + tΓ2)

is also globally Frobenius split. Furthermore, since t is sufficiently small,
(X,∆′ + tΓ2) is also globally F -regular either by Proposition 3.14 or Corol-
lary 3.17.

Now, apply Corollary 3.17 to the globally F -regular pair (X,∆′ + tΓ2)
and the globally Frobenius split pair (X,∆′ + (s + r)Γ1 + tΓ2) and we see
that

(X,∆′ + sΓ1 + tΓ2)

is globally F -regular.

Finally, observe that

KX + ∆′ + sΓ1 + tΓ2

= s(KX + ∆′ + Γ1) + t(KX + ∆′ + Γ2)
= s(KX + ∆1) + t(KX + ∆2)
∼Q −tεH

We set ∆ = ∆′ + sΓ1 + tΓ2.

Finally, we address the Q-Cartier index assertion. By construction, we
may assume that (pe− 1)(KX + ∆1) ∼ 0 for e sufficiently divisible. Likewise
(pe − 1)(KX + ∆2 + εH) ∼ 0 for such divisible e. Furthermore, ε, s and t
maybe chosen without p in their denominator. Hence for sufficiently divisible
e, (pe − 1)(KX + ∆) ∼ −(pe − 1)tεH is linearly equivalent to an anti-ample
Cartier divisor (a negative multiple of H). This completes the proof. �

Even in the case that X is local, the previous result says something
interesting.

Corollary 3.21. Suppose that R is an F -finite normal domain, X = SpecR
and ∆′ ≥ 0 is an R-divisor such that (X,∆′) is strongly F -regular. Then
there exists ∆φ ≥ ∆′ for some φ : F e∗R −→ R such that (X,∆φ) is strongly
F -regular.

Proof. Choose A ∼ 0 which is ample since X is affine, then there exists
∆ ≥ ∆′ where (X,∆) is strongly F -regular and such that (pe− 1)(KX + ∆)
is linearly equivalent to a multiple of A, and hence linearly equivalent to
zero. Now apply Theorem 2.2. �
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3.6. Exercises.

Exercise 3.1. Prove local and global Frobenius splitting (respectively
strong F -regularity) of (X,∆) are equivalent when X = SpecR and R is
a normal Noetherian F -finite domain.

In particular, show for that an arbitrary normal Noetherian F -finite
scheme X, the pair (X,∆) is locally Frobenius split (respectively strongly
F -regular) if and only if X has a cover by open sets Ui with (Ui,∆Ui) globally
Frobenius split (respectively globally F -regular).

Exercise 3.2. Suppose (X,∆) is globally e-Frobenius split along D > 0.
Prove it is also globally ne-Frobenius split along D for each integer n ≥ 1.

Exercise 3.3. Prove the statements in Remark 3.4.

Hint: See the proof of Lemma 4.4 in Chapter 4.

Exercise 3.4. Show that the evaluation-at-F e∗ 1 map HomR(F e∗R(D), R) −→
R is surjective if and only if there exists φ ∈ HomR(F e∗R,R) surjective such
that Dφ ≥ D. Here R(D) := Γ(SpecR,OSpecR(D)).

Exercise 3.5. Find an example of a ring R, and a map φ ∈ HomR(F e∗R,R)
such that the extension of φ to F e∗R(Dφ) is surjective but φ is not.

Exercise 3.6. Consider R = F2[x], set X = SpecR and set f = x2. Re-
call from Chapter 4 Exercise 4.7 that (R, f1/2) is not sharply Frobenius
split even though (R, x1) is sharply Frobenius split. Furthermore, show that
(X, 1

2 div(f)) is sharply Frobenius split. Because of this, the divisorial ver-
sion of sharp F -purity is preferred as it does not have these ambiguities; also
see the next exercise.

Exercise 3.7. Let R = F2[x, y, z]/(xy − z2) and let X = SpecR. Notice
that div(x) = 2D for the prime divisor D corresponding to the height-one
prime ideal (x, z). Prove that (X,D) = (X, 1

2 div(x)) is sharply Frobenius
split even though (R, x1/2) is not.

Exercise 3.8. Let R be a normal F -finite Noetherian domain, and let ∆φ be
an effective R-divisor onX = SpecR associated to some φ ∈ HomR(F e∗R,R).
Prove that

(a) The pair (X,∆φ) is sharply Frobenius split if and only if there exists
d > 0 and r ∈ R such that φd(F de∗ r) = 1.

(b) The pair (X,∆φ) is strongly F -regular if and only if for every non-
zero c ∈ R, there exists a d > 0 and r ∈ R such that φd(F de∗ cr) = 1.

Exercise 3.9. Let R be a normal Noetherian F -finite domain. Let X =
SpecR. Then (X,∆) is strongly F -regular if and only if for every non-zero
c ∈ R there exists e > 0 and φ ∈ HomR(F e∗R,R) such that
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(a) ∆φ ≥ ∆ and,
(b) φ(F e∗ (c)) = R.

Exercise 3.10. Let R be a normal Noetherian F -finite domain, and let
X = SpecR, with ∆ some effective R-divisor. We say that (X,∆) is weakly
Frobenius split if for all e � 0, we there exists φ ∈ HomR(F e∗R(b(pe −
1)∆c), R) such that φ(F e∗R) = R. Prove that any sharply Frobenius split
pair is weakly Frobenius split.

Exercise 3.11. Let R be a normal Noetherian F -finite domain, and let
X = SpecR, with ∆ some effective R-divisor. Suppose that there is some
φ ∈ HomR(F e∗R(bpe∆c), R) with φ(F e∗R) = R. Show that for every 0 ≤ a ≤
e, there exists φa ∈ HomR(F a∗R(bpa∆c), R) with φa(F a∗R) = R.

Exercise 3.12. Suppose that (X,∆) is globally Frobenius split and projec-
tive over an F -finite field. Prove that −KX −∆ is pseudo-effective. In fact,
show the stronger statement that multiple of it is effective. In particular,
the Kodaira dimension of (X,∆) is non-positive.

Exercise 3.13. Prove Theorem 3.12.

Hint: Use the same idea as Chapter 3 Theorem 2.14.

Exercise 3.14. Prove Proposition 3.13.

Hint: The issue for the equivalence of global F -regularity and strong F -
regularity in the affine case X = SpecR is the distinction between a Weil
divisor D ≥ 0 and a non-zero c ∈ R. See Chapter 3 Proposition 2.8 for the
proof in the non-pair setting.

Exercise 3.15. Suppose that (X,∆) is globally F -regular where ∆ ≥ 0 is
an R-divisor. Use Theorem 3.12 (and do not use Theorem 3.20) to show that
there exists ∆′ ≥ ∆ such that (X,∆′) is globally F -regular and such that ∆′

is a Q-divisor where p is not a factor of the denominator of any component
(in other words, ∆′ is a Z(p)-divisor).

Hint: Choose C containing the support of ∆ and set ∆′ = 1
pe−1d(p

e − 1)∆e
for appropriately large e.

Exercise 3.16. Use Proposition 3.15 to directly show Corollary 3.17.

4. Compatible subschemes and F -adjunction

We begin with an important and useful method for checking whether a
scheme is globally Frobenius split.
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4.1. A global criteria for Frobenius splitting. We recall the fol-
lowing implicit in [MR85, Proposition 6].

Proposition 4.1. Suppose X is normal proper variety over an F -finite field
k with H0(X,OX) = k, and pick non-zero φ ∈ HomOX (F e∗OX ,OX) with
associated ∆ = ∆φ. Further suppose that x ∈ X is a closed k-rational point
that is compatible with φ and such that the induced φ : F e∗OX/mx −→ OX/mx

is nonzero. Then (X,∆) is globally Frobenius split.

Proof. We have the following diagram:

(4.1.1) H0(X,F e∗OX)

H0(X,φ)
��

// H0(X,F e∗OX/mx) = F e∗ k

��

H0(X,OX) // H0(X,OX/mx) = k

It suffices to prove that φ is surjective on global sections (ie, that H0(X,φ)
surjects), since we can then replace φ by a unit-multiple that sends F e∗ 1 to
1. That property will descend to every open subset of X.

Back to the diagram, the horizontal arrows are isomorphisms since k =
H0(X,OX) = k(x). But now the result follows as our right vertical map is
surjective by hypothesis. �

We will see later that x need not be k-rational, we need only that k ⊆
k(x) is separable, see Corollary 7.5.

The value of the previous proposition is that it can show that X is
globally Frobenius split by proving a statement about a single closed point.

It can sometimes be straightforward to identify such x. Indeed, the
following corollary has been used many times in the literature (again, see
[MR85]).

Corollary 4.2. Suppose X is a d-dimensional normal proper variety over an
F -finite field k = H0(X,OX). Consider some non-zero φ ∈ HomOX (F e∗OX ,OX)
with associated ∆ = ∆φ. Further suppose that q ∈ X is a closed k-rational
point such that ∆ = D1 + · · ·+Dd + Γ where Di are distinct prime divisors
that are in normal crossings at q and such that q /∈ Γ. Then X is globally
Frobenius split.

Proof. We only need to show that φ is surjective at q and compatible
with q. But we can check that after passing to the completion R of OX,q. In
that case, we may write R = kJy1, . . . , ydK where div(yi) = Di|SpecR. The
result follows since the induced φ : F e∗R −→ R is essentially the canonical
toric splitting up to pre-multiplication by a unit. �
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Corollary 4.3. Suppose that X is a d-dimensional proper variety over a
field k = H0(X,OX) and there exists an effective Weil divisor D ∼ −KX

such that, for some closed k-rational point q ∈ X, D has normal crossings
with d distinct directions at q. Then X is globally Frobenius split.

Proof. Left to the reader in Exercise 4.4. �

Of course, there are other divisorial arrangements that might occur that
also imply the same global F -splitting. Suppose for instance p ≡6 1, q ∈ X is
a k-rational point, and R ∼= kJx, yK is the completion of OX,q. If ∆|SpecR

∼=
5
6 div(x2 − y3), then we also can show that X is globally Frobenius split.
Indeed, by Chapter 4 Example 3.9 5

6 is the F -purethreshold of the cusp in
our situation. Fedder’s Lemma can be applied in a straightforward way to
prove that (SpecR,∆|SpecR) is sharply Frobenius split and compatible with
the maximal ideal. It the follows from Proposition 4.1 that X is globally
F -split.

4.2. A local example. In the above, we used a non-zero map at a
compatible point to deduce global F -splitting. For the rest of the section we
will work in the local case, but we won’t think about what happens if we
are compatible with a point. Instead we’ll study what happens when we are
conmpatible with a subscheme of higher dimension.

Indeed, if ∆ is a divisor on X, corresponding to φ : F e∗OX −→ OX ,
and φ is compatible with Z ⊆ X and Z is normal, then the induced map
φZ : F e∗OZ −→ OX has an associated divisor ∆Z as well. In particular, ∆
induces a Q-divisor ∆Z on Z. This sort of behavior we call F -adjunction.
Note, this doesn’t occur when Z is a point because points can’t support
divisors.

We begin with an explicit example.

Example 4.4 (cf. Chapter 4 Example 2.12). Suppose p 6= 2, R = Fp[x, y, z]/(xy−
z2) = S/(xy − z2) and set ∆ = V (x, z) = 1

2 div(x). We will first show that
(X = SpecR,∆) is Frobenius split. We see that φ∆(F∗−) = ΦR(F∗x

(p−1) 1
2 ·

−) where ΦR generates HomR(F∗R,R). Now, using Fedder’s Lemma Chap-
ter 4 Theorem 2.1, we see that ΦR is obtained from ΦS(F∗(xy − z2)p−1 · −)
(in this case I = (xy − z2)). Hence, φ∆ is induced from

ΦS(F∗(xy − z2)p−1x(p−1) 1
2 · −).
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We next observe that h = (xy − z2)p−1x(p−1) 1
2 has a non-zero term( p−1

(p−1)/2

)
(xyz2)(p−1)/2x(p−1)/2

=
( p−1

(p−1)/2

)
xp−1y(p−1)/2z(p−1)

/∈ (xp, yp, zp).

Furthermore all other terms are in (xp, zp). Hence (SpecR,∆) is Frobenius
split at the origin, and since X and ∆ are both non-singular away from the
origin, we see that (X,∆) is Frobenius split.

Now, notice that ∆ is compatible with φ∆ by Proposition 2.7 (or since
h · (x, z) ⊆ (xp, zp)). Therefore φ∆ also induces surjective map on O∆ itself,
that is a map

φ∆ : F∗R/(x, z) −→ R/(x, z).

Setting T = Γ(∆,O∆) = R/(x, z) = S/(x, z) ∼= Fp[y], we see that the
generating map ΦT is induced from ΦS(F∗x

p−1zp−1 · −). If we expand out
(xy − z2)p−1x(p−1) 1

2 =
( p

(p−1)/2

)
xp−1y(p−1)/2z(p−1) + g we see that

φ∆(F∗−) = ΦS

(
F∗

(
p

(p− 1)/2

)
xp−1y(p−1)/2z(p−1) · −

)
+ ΦS(F∗g · −).

Both maps are compatible with (x, z) but in the second case we are pre-
multiplying by g ∈ (xp, zp), hence when inducing the map on T , we need
only concern ourselves with the first map by Theorem 2.1. In particular, we
now see that

φ∆ = ΦT ?
(( p

(p− 1)/2

)
y(p−1)/2

)
.

Therefore
∆φ∆

=
1

p− 1
div(y(p−1)/2) =

1

2
div(y).

A more algebraic way to interpret this example is that we have just shown
that not every map ψ : F∗T −→ T comes from a map ψ : F∗R −→ R.
However, every pre-multiple of φ∆ does, compare with Chapter 4 Remark 2.5
and Example 2.12. The divisorial notation can be viewed as a quick way of
telling us how far off φ∆ is from generating HomT (F∗T, T ).

4.3. The local F -different. We now define the F -different . For other
interpretations of the F -different, see [DS17].

Definition 4.5. Suppose thatR is an F -finite normal domain, φ : F e∗R −→ R
is non-zero and ∆ = ∆φ is the induced divisor. Suppose that V (J) = Z ⊆
SpecR = X is a φ-compatible normal13 subscheme such that φ is surjective
at the generic points of Z (that is, φ : F e∗Rη −→ Rη surjects for each minimal
prime of J). Then the F -different of (X,∆) along Z (or along J)

13Some results on the F -different can be generalized to the non-normal case by nor-
malizing Z, we will mostly avoid this however.



282 5. ANTI-CANONICAL DIVISORS AND MAPS IN Hom(F e∗OX ,OX)

is defined to be ∆φZ . Frequently the F -different ∆φZ will be denoted by
FDiffZ(∆).

Remark 4.6. By [Das15], our F -different is closely related to Shokurov’s
different [Sho92] from birational algebraic geometry, also see [Kaw98].

In the case that R = Fp[x, y, z]/(xy − z2), X = SpecR and D = V (x, z)
and Z = V (x, z) = D, Example 4.4 says that the F -different of (X,D) along
D = Z is 1

2 divZ(y).

Recall that a pair (X = SpecR,∆φ) is locally sharply Frobenius split
if and only if φ : F e∗R −→ R is surjective. Therefore, arguing just as in
the proof of Fedder’s Lemma, we see that if φ is compatible with a closed
subscheme Z ⊆ X, then φ : F e∗OX −→ OX is surjective near points of Z if
and only if φ : F e∗OZ −→ OZ is surjective. Hence, we have just shown the
following.

Theorem 4.7 (Affine F -adjunction I). Suppose that (X,∆ = ∆φ) is a pair
and Z ⊆ X is a normal subscheme compatible with φ. Then (X,∆) is locally
sharply Frobenius split in a neighborhood of Z if and only if (Z,FDiffZ(∆))
is locally sharply Frobenius split.

One can use this method to prove that (X,∆) is locally sharply Frobenius
split. Indeed, Z is lower dimensional so it may be easier to work with. If Z
is a normal curve for instance, then checking F -splitting is simply making
sure the coefficients of ∆Z are ≤ 1.

4.3.1. What to do if Z is not normal. In everything we have done so far,
we have assumed that the compatible scheme Z is normal. This hypothesis
can be weakened substantially in two ways we now describe.

There is a theory of divisors on non-normal schemes that so far we have
left untouched. Instead of requiring that an integral scheme is normal (in
other words R1+S2), we can require that integral scheme to be G1+S2 (where
G1 means Gorenstein in codimension 1). In this case, one good way to replace
divisors is with reflexive subsheaves F of K(X) (here K(X) is the sheaf of
fractions of X) such that F is a line bundle when localized at all height one
points of X. See [Har94], [Kc92, Chapter 16] or [Kol13, Chapter 1] where
such sheaves are called Weil-divisorial sheaves or almost Cartier divisors, one
can also work with Q-divisorial version of them although extreme care must
be taken when rounding as it can happen that two distinct “divisors” D1 and
D2 satisfy nD1 = nD2. Regardless, if X or Z is G1+S2, then there is still
an associated DφZ and ∆φZ for any map φ : F e∗OX −→ OX . It still follows
that (X,∆φ) is locally sharply Frobenius split near Z if and only if (Z,∆φZ )
is locally sharply Frobenius split.
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Alternately, and much more simply, if Z is not normal then we may
normalize it using the following.

Theorem 4.8 (cf. [BK05, Exercise 1.2.E(4)]). Suppose that R is a reduced
Noetherian ring, φ : F e∗R −→ R is an R-linear map. Let ν : R −→ RN

denote the normalization. Then there exists φN : F e∗R
N −→ RN such that the

following diagram commutes.

F e∗R� _

��

φ
// R� _

��

F e∗R
N

φN
// RN

Proof. This is left to a series of exercises, see Exercise 6.28, Exer-
cise 6.30 in Chapter 1 and Exercise 4.2 in this chapter. �

It follows immediately that if R is Frobenius split then so is RN. How-
ever, the converse is false. In fact, there are examples of rings R where
φ : F e∗R −→ R is not surjective but where φN : F e∗R

N −→ RN is surjec-
tive (and so (RN,∆φN)) is locally sharply Frobenius split, see Exercise 4.3.
Therefore, we obtain the following.

Theorem 4.9 (Affine F -adjunction II). Suppose that (X,∆ = ∆φ) is a
pair and Z ⊆ X is a reduced subscheme compatible with φ. Then (X,∆) is
locally sharply Frobenius split in a neighborhood of Z then (ZN, FDiffZN(∆))
is locally sharply Frobenius split.

4.4. F -adjunction along a Cartier divisor. We now discuss what
happens when Z = V (f) is a Cartier divisor. In fact, this is a case we
secretly studied before in Chapter 4 Exercise 2.15.

Lemma 4.10. Suppose (R,m) is an F -finite normal quasi-Gorenstein local
ring, f ∈ R is a regular element, J = (f), and T = R/J is also normal. Let
D = div(f), then the F -different of (SpecR,D) along J is 0.

Proof. SinceR is quasi-Gorenstein and local, there exists ΦR ∈ HomR(F e∗R,R)
generating it as Hom-set. Set

φ = Φ ? fp
e−1

and observe that ∆Φ = 1
pe−1(pe − 1) div(f) = D. We have seen in Proposi-

tion 2.7 that V (f) is compatible with φ. By Chapter 4 Exercise 2.15 we see
that φ induces a generating map φ = ΦT ∈ HomT (F e∗T, T ), and so ∆φ = 0
as claimed. �
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Indeed, without a quasi-Gorenstein hypothesis, or more generally a Q-
Gorenstein hypothesis with index not divisible by p > 0 (see [Sch09]), this
result is false. You are asked to use a computer algebra system compute this
in an example in Exercise 4.6, which is really a special case of an example of
Anurag K. Singh [Sin99b]. Of course, we re-obtain the following result.

Corollary 4.11 (cf. Chapter 1 Corollary 7.24). Suppose (R,m) is an F -
finite normal quasi-Gorenstein local ring, f ∈ R is a regular element, and
R/(f) is normal. If R/(f) is F -split, then so is R.

See [PS22] for a generalization to the Q-Gorenstein case.

4.5. Exercises.

Exercise 4.1. With notation as in Chapter 1 Definition 6.24 and Exer-
cise 6.28, find an example R ⊆ R′ that shows that cR′/R is not necessarily
compatible with every ψ ∈ HomR′(F

e
∗R
′, R′).

Exercise 4.2. Prove Theorem 4.8 by showing that the induced φ : F e∗K(R) −→
K(R) sends F e∗RN into RN. We thus obtain a map φN : F e∗R

N −→ RN.

Hint: Use the following characterization of RN. An element x ∈ K(R) is
in RN if and only if there exists c ∈ R (which we may assume is in c), not
in any minimal prime of R, such that cxn ∈ R for all n ≥ 0, see [SH06,
Exercise 2.26].

Exercise 4.3. ConsiderR = F2[x, y, z]/(xy2−z2) ∼= F2[a2, b, ab] ⊆ F2[a, b] ∼=
RN and let φ = ΦR be a map generating HomR(F∗R,R) as an F∗R-module.
Use Fedder’s lemma to prove that φ is not surjective but show that φN :
F∗R

N −→ RN is surjective.

Exercise 4.4. Prove Corollary 4.3.

Exercise 4.5. Use Proposition 4.1 or its corollaries to give a different proof
that projective space, or more generally any toric variety, is globally Frobe-
nius split.

Exercise 4.6. Consider the following ring S = F11[a, b, c, d, t] with

I = (a2t5 + a4 − bc, b2t5 − dt5 + a2b2 − a2d− cd, b3 − a2d− bd)

and set J = (t) + I with Z = V (J). Set R = S/I. Use a computer algebra
system such as Macaulay2 [GS] to show that we have a strict containment

tp−1 · (I [p] : I) + J [p] ( J [p] : J.

and then explain why this shows that for any ∆φ ≥ div(t) on SpecR, that
FDiffZ(∆φ) 6= 0. Also verify that R = S/I is not Frobenius split even
though R/(t) is Frobenius split.
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5. Test ideals for pairs (R,φ) and (SpecR,∆)

In an F -finite regular ring S, we introduced the notion of a test ideal
τ(S, at) in Chapter 4 §4. In that case, we defined

τ(S, at) = Image
(
F e∗ a

dtpee ·HomR(F e∗S, S)
eval at F e∗ 1−−−−−−−→ S

)
for e� 0. We saw, for example, that this ideal is the same as

Image
(
F e∗ a

dtpee ·HomS(F e∗S, S)
eval at F e∗ d−−−−−−−→ S

)
where d is any non-zerodivisor and again e � 0. Instead of viewing this
as an operation on the ideal a, we could instead consider this as a failure
of Frobenius splitting when we restrict which maps in HomS(F e∗S, S) we
utilize. In this section, we will introduce the test ideal of pairs (R,φ) where
φ ∈ HomR(F e∗R,R) is nondegenerate in a certain sense. Analogous to the
case of the full test ideal τ(R), it turns out that, assuming a nondegeneracy
condition on φ, the test ideal τ(R,φ) can be viewed as the smallest ideal of
positive height compatible with just φ. Eventually, we will define test ideals
for pairs (R,∆) where ∆ is a R-divisor on SpecR, and later in Chapter 8 we
will define test ideals associated to more general Cartier algebras.

In the case that R is normal, the test ideal τ(R,φ) measures the singu-
larities of both R and ∆φ. In particular, the more singular R and ∆φ are,
the smaller or deeper the associated test ideal is. On the other hand, when
φ generates HomR(F e∗R,R) as an F e∗R-module, then ∆φ = 0, and τ(R,φ)
only measures the singularities of R.

5.1. Test ideals τ(R,φ) of a map φ. We’ll start by studying test
ideals associated with a single fixed φ, a case that is in some sense easier
than what we did in Chapter 1.

Definition 5.1. Let R be a Noetherian F -finite reduced ring. For some
e > 0, fix some φ ∈ HomR(F e∗R,R). A strong test element for (R,φ) is
an element c with the property that for all non-zerodivisors d, there exists
n0 > 0 such that for all n ≥ n0

c ∈ φn(Fne∗ (dR)),

the image under φn of the ideal of Fne∗ R generated by Fne∗ d.

Lemma 5.2. The set of all strong test elements for a pair (R,φ), as in
Definition 5.1, is an ideal of R.

Proof. The set of all strong test elements for (R,φ) is closed under
multiplication by elements of R, because if c = φn(Fne∗ rd), then for any
g ∈ R,

gc = gφn(Fne∗ rd) = φn(Fne∗ gnerd) ∈ φn(Fne∗ (dR))
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by (4.12.4) in Chapter 1. To see the set of all strong test elements for (R,φ)
is closed under addition, let c1 and c2 be strong test elements for (R,φ). Fix
a non-zerodivisor d. By definition of strong test element, there exist n1 and
n2 such for all n ≥ max(n1, n2),

φn(Fn∗ (r1d)) = c1 and φn(Fn∗ (r2d)) = c2

for some r1, r2 ∈ R (depending on n). Thus

c1 + c2 = φn(Fn∗ (r1 + r2)d) ∈ φn(Fn∗ (dR))

for all n� 0, showing that c1 + c2 is a strong test element as well. �

Definition 5.3. Let (R,φ) be a pair, where R is a Noetherian F -finite
reduced ring and φ ∈ HomR(F e∗R,R) is some fixed map. The test ideal
of the pair (R,φ), denoted τ(R,φ), is the set of all strong test elements for
(R,φ).

The proof of the following analog of Chapter 1 Theorem 6.15 is left as
an exercise:

Proposition 5.4. Let (R,φ) be a pair, where R is a Noetherian F -finite
reduced ring and φ ∈ HomR(F e∗R,R) is some fixed map.

(i). The test ideal τ(R,φ) is φ-compatible.
(ii). The test ideal τ(R,φ) is contained in every φ-compatible ideal J of

positive height.

Definition 5.5. A map φ ∈ HomR(F e∗R,R) is called non-degenerate if
for each minimal prime Q ⊆ R we have that φQ : F e∗RQ −→ RQ is not the
zero map. A φ which is not non-degenerate is called degenerate.

The test ideal of a map τ(R,φ) can be contained in a minimal prime of
R if φ is degenerate, unlike the situation for the absolute test ideal τ(R).
See Exercise 5.3.

On the other hand, if all stalks of φ at the generic points of SpecR are
non-zero, then the test ideal τ(R,φ) has positive height:

Theorem 5.6. . Let R be a Noetherian F -finite reduced ring (R,φ) be a
pair, let φ ∈ HomR(F e∗R,R) be nondegenerate. Then τ(R,φ) contains a
non-zerodivisor.

This follows from the following analog of Chapter 1 Theorem 5.21

Lemma 5.7. Suppose R is a Noetherian F -finite reduced ring and that b ∈ R
is such that:

(a) Rb = R[b−1] is strongly F -regular (for example regular) and
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(b) Dφ|SpecR\V (b) = 0, in other words if

φ

1
∈ R[b−1]⊗R HomR(F e∗R,R) ∼= HomR[b−1](F

e
∗R[b−1], R[b−1])

generates as an F e∗R[b−1]-module.

Then b has a power that is a strong test element.

Proof. First observe that we have 1 ∈ φnb (Fne∗ Rb) for all n ≥ 0 since Rb
is F -split and φb is a generating map (a statement which does not involve
any d). It follows that bm ∈ φ(F e∗R) for some m ≥ 0. We then see that

b2m ∈ φn(Fne∗ bmp
ne
R)

for all n. We now pick c := b2m+1.

Fix an arbitrary d a non-zerodivisor. SinceRb is strongly F -regular, there
exists ψn′ ∈ HomR(Fn

′e
∗ Rb, Rb) so that 1 ∈ ψn′(Fn

′e
∗ dRb) for all n� 0. But

since φn′b generates that Hom-set, we also have that 1 ∈ φn′b (Fn
′e
∗ dRb) for all

n′ � 0. It follows that for some fixed n′ � 0, there exists l ≥ 0 such that
bl ∈ φn

′
(Fn

′e
∗ dR). The idea is to decrease this l. Choose n1 > 0 so that

pn1e > l. We then obtain that

c = b2m+1 ∈ φn1(Fn1e
∗ bp

n1e ·R) ⊆ φn1(Fn1e
∗ bl ·R) ⊆ φn1+n′(F

(n1+n′)e
∗ (d)).

Taking n0 = n1 + n′ completes the proof. �

Corollary 5.8. Let R be a Noetherian F -finite reduced ring, and let φ ∈
HomR(F e∗R,R) be nondegenerate. Then τ(R,φ) is the unique smallest φ-
compatible ideal containing a non-zerodivisor.

As a consequence, we see that the test ideal τ(R,φ) is generated, in a
certain sense, by any non-zerodivisor strong test element for (R,φ):

Corollary 5.9. With notation as above and assuming that φ is nondegen-
erate, we have that

τ(R,φ) =
∑
n≥0

φn(Fne∗ (cR))

for any non-zerodivisor c that is a strong test element for the pair (R,φ).

Proof. Choose a non-zerodivisor c ∈ τ(R,φ). The ideal

J =
∑
n≥0

φn(Fne∗ (c))

is clearly the smallest φ-compatible ideal containing c. Thus J is the test
ideal. �



288 5. ANTI-CANONICAL DIVISORS AND MAPS IN Hom(F e∗OX ,OX)

We don’t even need the summation to define the test ideal, we just need
a φn for some n� 0.

Corollary 5.10. For any c a non-zerodivisor strong test element for (R,φ),
we have that

τ(R,φ) = φn(Fne∗ (cR))

for all n� 0.

Proof. The right side is contained in τ(R,φ) by Corollary 5.9. On the
other hand, picking f1, . . . , ft generators for τ(R,φ), we see that for each
fi, there exists ni so that fi ∈ φn(Fne∗ (c)) for n ≥ ni. Thus if we choose
n ≥ max{n1, . . . , nt} we are done. �

5.2. Properties of test ideal. We now list some basic properties of
test ideals τ(R,φ).

Proposition 5.11. Suppose that R is F -finite, Noetherian, and reduced and
φ ∈ HomR(F e∗R,R) is nondegenerate. Then the following hold:

(a) For any multiplicative set W ⊆ R, we have that τ(W−1R,W−1φ) =
W−1τ(R,φ).

(b) If R is local with maximal ideal m and −̂ denotes the m-adic com-
pletion, then ̂τ(R,φ) = τ(R̂, φ̂).

(c) If a ∈ R, and we define ψ = φ?a, then τ(R,ψ) ⊆ τ(R,φ). Further-
more, if a is a unit, then τ(R,ψ) = τ(R,φ)

(d) τ(R,φ) = τ(R,φm) for all integers m > 0.

Proof. We leave parts (a), (b) and (c) to the exercises, and prove (d).

By Lemma 5.7 we may choose a non-zerodivisor c ∈ R that is a strong
test element for both (R,φ) and (R,φm). But then for n� 0, we see that

τ(R,φ) = φnm(Fnme∗ (cR)) = τ(R,φm)

using Corollary 5.10. �

At this point we lack examples, however the following provides plenty
as it connects this test ideal with the one we introduced back in Chapter 4
Section 5.

Theorem 5.12. Suppose that R is an F -finite regular domain with Φe ∈
HomR(F e∗R,R) a F e∗R-module generator. Suppose that 0 6= x ∈ R, and
t = a

pe−1 for some a, e ∈ Z≥0. Set φ = Φe ? xa. Then

τ(R, (x)t) = τ(R,φ).
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Proof. Observe that Supp div(x) = Supp ∆φ. Hence by Lemma 5.7,
for n� dte, we know that xn−dte of x is a strong test element for (R,φ). On
the other hand, by Chapter 4 Lemma 5.12,

τ(R, (x)t) = Φme(Fme∗ (xn−dtexdtp
mee))

for all m� 0.We see that

dtpmee =
⌈ a

pe − 1
(pme − 1 + 1)

⌉
=
⌈
a
pme − 1

pe − 1
+ t
⌉

= a
pme − 1

pe − 1
+ dte.

Therefore, using that φm(Fme∗ −) = Φme(Fme∗ x
a p
me−1
pe−1 · −), we obtain that

τ(R, (x)t) = Φme(Fme∗ (xn−dte · xdte · xda
pme−1
pe−1

e
)) = φm(Fme∗ (xn)).

Applying Corollary 5.10 completes the proof. �

Likewise we have the following connection with the test ideal we intro-
duced in Chapter 1.

Theorem 5.13. Suppose that R is an F -finite reduced Noetherian ring and
Φ ∈ HomR(F∗R,R) is a generating map. Then

τ(R,Φ) = τ(R).

Proof. This follows from the fact that an ideal J is uniformly compat-
ible if and only if it is compatible with Φ. �

We conclude with one more variant of strong F -regularity.

Definition 5.14. Suppose R is F -finite, Noetherian and reduced and φ ∈
HomR(F e∗R,R) is nondegenerate. We say that (R,φ) is strongly F -regular
if τ(R,φ) = R.

It easily follows that if (R,φ) is strongly F -regular, then R is normal by
Chapter 1 Theorem 4.30. We then obtain that:

Lemma 5.15. (R,φ) is strongly F -regular if and only if (SpecR,∆φ) is
strongly F -regular.

Proof. Left to the reader in Exercise 5.7, or see Subsection 5.3 below.
�
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5.3. Test ideals of pairs (R,∆). We consider test ideals associated to
R-divisors ∆ ≥ 0. Note that since we are working with divisors, we assume
that R is normal. Once we assume R is normal, it is harmless to assume
that R is a domain as well. We also note that we will frequently use the
following notation.

Notation 5.16. Suppose R is a normal domain and D is a Weil divisor on
R. By R(D) we mean the fractional ideal

R(D) := Γ(SpecR,OSpecR(D)).

Setting 5.17. Suppose R is an F -finite normal Noetherian domain. Fix
∆ ≥ 0 an R-divisor. We set

C ∆,e := HomR(F e∗R(d(pe − 1)∆e), R) ⊆ HomR(F e∗R,R).

In other words, C ∆,e ⊆ HomR(F e∗R,R) is the set of φ with ∆φ ≥ ∆.

The idea is to use the maps C ∆,e to define the test ideal, instead of all
the maps. Note we also could have defined the test ideal of the pair (R, at)

via the maps (F e∗ a
dt(pe−1)e) ·HomR(F e∗R,R), see Chapter 4 Proposition 5.30.

Definition 5.18. Suppose that (R,∆) is as in Setting 5.17. A strong test
element for (R,∆) is a c ∈ R that satisfies for the following condition. For
every non-zerodivisor d ∈ R there exists an e0 > 0 so that for every e ≥ e0

there exists some φe ∈ C ∆,e such that c ∈ φe(F e∗ (dR)).

Before we start working with these pairs, we need the following result.

Lemma 5.19. With notation as in Setting 5.17, suppose that φ ∈ C ∆,e and
ψ ∈ C ∆,f . Then φ ? ψ ∈ C e+f (∆).

Proof. By Proposition 2.6

∆φ?ψ =
pe − 1

pe+f − 1
∆φ +

pe(pf − 1)

pe+f − 1
∆ψ.

In this case, since ∆φ,∆ψ ≥ ∆ and

pe − 1

pe+f − 1
+
pe(pf − 1)

pe+f − 1
= 1.

we see that ∆φ?ψ ≥ ∆ as well. The result follows. �

Again, we have the following result on the existence of test elements.

Lemma 5.20 (Strong test elements exist for divisor pairs). Suppose (R,∆)
is as in Setting 5.17. Then there exist a non-zerodivisor c ∈ R that is a strong
test element for (R,∆). Furthermore, if b ∈ R is such that Rb is strongly
F -regular and such that Supp(∆) ⊆ Supp(div(b)), then we may take c to be
a power of b.
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Proof. This is left to the reader in Exercise 5.14. �

Definition 5.21 ([Tak04b]). Suppose (R,∆) is as in Setting 5.17. The
test ideal of (R,∆), denoted τ(R,∆), is the set of strong test elements for
(R,∆).

Theorem 5.22 (cf. [Tak04b] [HT04, Lemma 2.1]). Suppose that (R,∆) is
as in Setting 5.17. Furthermore, if a non-zerodivisor c ∈ R is a strong test
element for (R,∆), then

τ(R,∆) =
∑
e≥0

∑
φ

φ(F e∗ (c)).

Here φ runs over all elements of C e(∆). As a consequence, τ(R,∆) is the
smallest ideal, nonzero at every minimal prime, and which is compatible with
all φ ∈ C e(∆).

It is straightforward to see that the right side of the displayed equation
above is also equal to∑

e≥0

Image
(
C e(∆)

φ 7→φ(F e∗ c)−−−−−−→ R
)
.

Proof. Let J denote the sum in the theorem. Using Lemma 5.19, we
see that φ(F e∗J) ⊆ J for any φ ∈ C ∆,e for any e. Thus, any ideal compatible
with all φ ∈ C ∆,e for all e, which contains c, must also contain J . But
by Lemma 5.20, any non-zero ideal compatible with all elements of C ∆,e

contains c. The result follows. �

We note the following, whose proof is left as an exercise.

Lemma 5.23. Suppose that (R,∆) is defined as in Setting 5.17.

(a) For any multiplicative setW ⊆ R,W−1τ(R,∆) = (W−1R,∆|SpecW−1R).
(b) For any ideal J ⊆ R with R̂ the J-adic completion, τ(R,∆)R̂ =

(R̂,∆|
Spec R̂

).

Proof. Left to the reader in Exercise 5.15. �

However, we point out the following very useful result.

Theorem 5.24. Suppose (R,∆) is as in Setting 5.17. Suppose further that
∆ = ∆φ for some φ ∈ HomR(F e∗R,R). Then

τ(R,∆) = τ(R,φ).
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Proof. We can pick c a strong test element for both (R,φ) and for
(R,∆). Since φn ∈ C ne(∆) for all n, we note that

τ(R,φ) =
∑
n

φn(Fne∗ (c)) ⊆
∑
f≥0

∑
ψ∈C ∆,f

ψ(F f∗ (c)) = τ(R,∆).

In other words, the right side sums over those ψ with ∆ψ ≥ ∆. But observe
that ∆φn ≥ ∆ (since it is equality), and so the left sum is a subset of the
right.

We need to prove the reverse containment (⊇). Suppose first that f = ne
for some integer n. In that case if ∆ψ ≥ ∆φn then ψ = φn ? r. We thus have
that

φn(Fne∗ (c)) =
∑

ψ∈C ∆,f

ψ(F f∗ (c)).

We must deal with the f that are not divisible by e. Now, set c′ = cp
e−1 and

note it is also a strong test element for (R,φ) and (R,∆).

Fix an f > 0, and ψ ∈ C ∆,f and write f = ne+ r where 0 ≤ r < e.

Claim 5.25. The map

C ∆,r // C ∆,f

γ � // φn ? γ

is surjective.

Proof of claim. The idea of the proof is the same as that of Appen-
dix A Lemma 5.1. Indeed, our surjectivity is equivalent to the assertion
that

C ne(∆)⊗Fne∗ R F
ne
∗ C ∆,r // C ∆,f

θ ⊗ Fne∗ γ � // θ ? Fne∗ γ.

is an isomorphism. Note C ne(∆) is generated by φn as an Fne∗ R-module, thus
the tensor product on the left side of the above is simply the F f∗ R-module
Fne∗ C ∆,r. But now we have a map between two reflexive F f∗ R-modules
of rank 1, and so it suffices to show it is an isomorphism in codimension
1. Hence from here out, we may assume that (R, (xR)) is a DVR with
uniformizer x.

In this case, we may write ∆ = a
pe−1 div(x). Suppose we have ψ ∈ C ∆,f ,

in other words ψ = Φf ? uxb for some unit u and integer b ≥ 0 such that
b

pf−1
≥ a

pe−1 . Thus

b ≥ (pne+r − 1)
a

pe − 1
=
apr(pne − 1)

pe − 1
+
a(pr − 1)

pe − 1
.
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Set c = b− apr(pne−1)
pe−1 and fix γ = Φr ? uxc. Notice that ∆γ = c

pr−1 div(x) ≥
∆. We then have that

ψ = Φne ? x
a p
ne−1
pe−1 ? Φr ? uxc = φn ? γ

which completes the proof of the claim. �

With the claim in hand, for a fixed f = ne+ r, we have that∑
ψ∈C ∆,f

ψ(F f∗ (c′)) =
∑

γ∈C ∆,r

φn(Fne∗ γ(F r∗ (cp
e−1

))) ⊆ φn(Fne∗ (c)).

We then obtain that ∑
f≥0

∑
ψ∈C ∆,f

ψ(F f∗ (c)) ⊆ τ(R,φ),

which completes the proof. �

We record the following basic properties, compare with various properties
from Chapter 4, such as Proposition 5.18.

Proposition 5.26. Suppose R is a Noetherian F -finite normal domain and
Γ ≥ 0 is a Q-divisor. Then:

(a) If ∆′ ≥ Γ then τ(R,∆′) ⊆ τ(R,∆).
(b) τ(R,∆ + div(f)) = fτ(R,∆) for any 0 6= f ∈ R.
(c) If D ≥ 0 is any other divisor, then τ(ωR,Γ) = τ(ω,Γ + εD) for all

1� ε > 0.

Proof. The first part is immediate from the definition. Part (b) is left
to the reader in Exercise 5.11.

For (c), the containment ⊇ is immediate and so we must prove ⊆. Choose
a non-zerodivisor c ∈ R which is a strong test element for (R,∆). Let d ∈ R
be a non-zerodivisor such that div(d) ≥ H. Using Theorem 5.22 and the
fact that R is Noetherian, we can choose e0 so that

τ(R,∆) =

e0∑
e=0

∑
φ

φ(F e∗ (dc)).

where φ runs over all elements of C e(∆). For any e ≤ e0, notice that if
φ ∈ C e(∆), then if we define ψ = φ ? d, we have that

ψ ∈ C e(∆ +
1

pe − 1
div(d)) ⊆ C e(∆ +

1

pe0 − 1
div(d)).
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In particular, we see that
e0∑
e=0

∑
φ

φ(F e∗ (dc)) ⊆ τ(R,∆ +
1

pe0
div(d)) ⊆ τ(R,∆ +

1

pe0
H)

�

5.4. Exercises.

Exercise 5.1. Suppose R is an F -finite reduced ring. Show that there exists
some φ ∈ HomR(F e∗R,R) that is non-zero when localized at any minimal
prime of R.

Exercise 5.2. Suppose that c ∈ R is a strong test element of (R,φ). Show
for any multiplicative set W , that c/1 ∈ W−1R is a strong test element of
(W−1R,W−1φ).

Exercise 5.3. Consider the ring R = Fp[x, y]/(xy).

(a) Show that F∗R is generated as an R-module by the elements:

F∗1, F∗x, . . . , F∗x
p−1, F∗y, . . . , F∗y

p−1.

(b) Show that there is a well-defined R-linear map that sends F∗x 7→ x
and the other generators from (a) to 0. (One way to do this is to
use Fedder’s Lemma).

(c) Compute the test ideal of (R,φ) and prove that it is contained in
(x).

Exercise 5.4. Suppose that (R,m) is an F -finite local ring and that c ∈ R
is a strong test element of (R,φ). Show that the image of c ∈ R̂, the m-adic
completion of R is a strong test element of (R̂, φ̂).

Hint: Recall since F -finite rings are excellent (and so have geometrically
regular fibers), that if R is F -finite and b ∈ R is such that Rb is regular, then
we also have that R̂b is regular.

Exercise 5.5. Prove Proposition 5.11 parts (a) and (b) by using the previous
exercises and the description of the test ideal in Corollary 5.9.

Exercise 5.6. Prove Proposition 5.11 (c).

Exercise 5.7. Prove Lemma 5.15.

Exercise 5.8. Suppose that R is an F -finite reduced ring with normalization
RN. Suppose φ : F e∗R −→ R extends to φN : F e∗R

N −→ R via in Chapter 5
Theorem 4.8. Prove that

τ(R,φ) = τ(RN, φN).
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Hint: We can pick c ∈ c ∩ R a strong test element and non-zerodivisor
for both (R,φ) and for (RN, φN). Notice that c2 is also such a strong test
element.

Exercise 5.9. Suppose that (R,φ) with φ non-degenerate. Further suppose
that Q ⊆ R is a compatible prime ideal with φ and that the induced φQ :
F e∗RQ −→ RQ is surjective. Prove that there exists a smallest ideal J , not
contained inQ, such that φ(F e∗J) ⊆ J . It is sometimes denoted by τ6⊆Q(R,φ).

Exercise 5.10. With notation as in Exercise 5.9, let φ : F e∗R/Q −→ R/Q
denote the induced map. Prove that

τ6⊆Q(R,φ) · (R/Q) = τ(R/Q, φ).

Exercise 5.11. Suppose that R is an F -finite normal domain ∆ ≥ 0 is a
Q-divisor and D = div(f) is a principal divisor. Show that

τ(R,∆ +D) = f · τ(R,∆).

This should be viewed as a variant of the Skoda-type theorem we saw in
Chapter 4 Theorem 5.20.

Hint: For an idea of the argument, see the proof of Proposition 6.15 in the
next section.

Exercise 5.12. Suppose that (R,∆) is as in Setting 5.17. Prove that
τ(R,∆) ⊆ R(−b∆c) = Ib∆c.

Hint: If φ ∈ C ∆,e, prove that φ is compatible with the ideal Ib∆c.

Exercise 5.13. Suppose that (R,∆) is as in Setting 5.17 and that ∆ = D+Γ
where D is a prime divisor and the coefficient of D in Γ is zero. Show
that there exists a smallest ideal J , not contained in ID = R(−D), that is
compatible with all φ ∈ C ∆,e for all e ≥ 0.

Exercise 5.14. Prove Lemma 5.20.

Exercise 5.15. Suppose that (R,∆) is defined as in Setting 5.17.

(a) For any multiplicative set W ⊆ R, show that W−1τ(R,∆) is the
test ideal for (W−1R,∆|SpecW−1R).

(b) For any ideal J ⊆ R with R̂ the J-adic completion, show that
τ(R,∆)R̂ is the test ideal of (R̂,∆|

Spec R̂
).

Exercise 5.16. Suppose that (R,∆) is as in Setting 5.17, that a ⊆ R is an
ideal, and t ≥ 0 is a real number. Define the test ideal of the triple (R,∆, at),
denoted τ(R,∆, at) to be the smallest non-zero ideal J ⊆ R compatible with
every element of (F e∗ a

dt(pe−1)e) · C ∆,e. Show that this ideal exists.
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Exercise 5.17. With notation as in Exercise 5.16, suppose that a = (f) is
a principal ideal. Prove that

τ(R,∆, at) = τ(R,∆ + t div(f)).

6. The splitting prime and other compatible ideals

We’ve defined the test ideal as the smallest non-zero compatible ideal.
We have also constructed some other ideals that are compatible, see Exer-
cise 5.9. It is natural then to ask what all the other compatible ideals are?
Is there a biggest one (besides the ring itself)?

Before continuing, we need the following simple observation.

Lemma 6.1. Suppose R is a ring of characteristic p and φ ∈ HomR(F e∗R,R).
Suppose that J is φ-compatible and φ : F e∗R/J −→ R/J is the induced map.
Then the set of φ-compatible ideals that contain J are in bijection with the
φ-compatible ideals of R/J .

Proof. The bijection is given by I 7→ I/J . �

6.1. The splitting prime, the biggest compatible ideal. We begin
our work in the following setting.

Setting 6.2 (Setting for the splitting prime of single map). Suppose that
(R,m) is a an F -finite local ring. Further suppose that φ ∈ HomR(F e∗R,R)
is surjective.

We now define the splitting prime of [AE05].

Definition 6.3 (Splitting prime of a single map). With notation as in Set-
ting 6.2, we define the splitting prime of (R,φ) as

P(R,φ) = {x ∈ R | φn(Fne∗ (x)) ⊆ m for all n.}.

It satisfies the following properties.

Proposition 6.4. Suppose (R,φ) is as in Setting 6.2 and set Q = P(R,φ).

(a) Q is the unique largest proper φ-compatible ideal of R.
(b) Q is prime.
(c) (R/Q, φ) is strongly F -regular and hence normal and Cohen-Macaulay.
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Proof. First we must show that Q = P(R,φ) is an ideal. If x1, x2 ∈ Q,
then since φn(Fne∗ (xiR)) ⊆ m, we have that φn(Fne∗ (x1 + x2)R) ⊆ m. If
a ∈ R, then φn(Fne∗ (axR)) ⊆ φn(Fne∗ (xR)) ⊆ m. Hence Q is an ideal.

We claim that Q is φ-compatible. We see that x ∈ Q if and only if
φn(Fne∗ rx) ∈ m for every n and r ∈ R. But now if y = φ(F e∗x) then

φn(Fne∗ ry) = φn(Fne∗ (rφ(F e∗x))) = φn+1(F
(n+1)e
∗ rp

e
x) ∈ m.

Thus y ∈ Q as well and Q is φ-compatible.

If J is φ-compatible and proper (and so contained in m), we see that
φ(F e∗J) ⊆ J ⊆ m. Thus J ⊆ Q = P(R,φ). This shows (a).

At this point we see that Q is radical by Chapter 3 Exercise 3.1, but we
will show it is prime by showing R/Q is normal, since a normal local ring is
automatically an integral domain, hence (c) ⇒ (b).

Choose c ∈ R/Q not in any minimal prime (a nonzero divisor on R/Q).
By construction,

(c) +
∑
n>0

φ
n
(Fne∗ (c))

is φ-compatible and contains c. But by Lemma 6.1 and part (a) there are
no φ-compatible ideals of R/Q except for 0 and R/Q itself. �

Setting 6.5 (Setting for the splitting prime of a local ring). Suppose that
(R,m) is a an F -finite Frobenius split local ring.

Definition 6.6 ([AE05]). With notation as in Setting 6.2, we define the
splitting prime of R as

P(R) = {x ∈ R | φ(F e∗ (x)) ∈ m for all e > 0 and all φ ∈ HomR(F e∗R,R)}.

Proposition 6.7 ([AE05]). Suppose R is as in Setting 6.5 and set Q =
P(R).

(a) Q is the unique largest proper ideal compatible with all φ ∈ HomR(F e∗R,R)
for all e > 0.

(b) Q is prime.
(c) R/Q is strongly F -regular, and in particular R/Q is a normal and

Cohen-Macaulay domain.

Proof. Left to the reader in Exercise 6.5. �

6.2. Finitely many compatible ideals. We conclude the section by
proving that there are finitely many ideals compatible with a surjective map
φ : F e∗R −→ R. In the case that R is local, this was proven independently
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in [Sha07, EH08]. The general case was then shown independently in
[KM09, Sch09] (and our proof essentially follows that strategy).

Theorem 6.8 ([KM09, Sch09]). Suppose R is an F -finite ring and φ ∈
HomR(F e∗R,R) is surjective. Then there are finitely many φ-compatible
ideals.

Proof. We proceed by induction on the dimension of R. Since φ is
surjective, R is reduced. Each compatible ideal is likewise radical. Hence by
Chapter 1 Proposition 6.7 (b) it suffices to show that there are only finite
many compatible prime ideals since a radical ideal is the intersection of its
minimal primes and an intersection of compatible ideals is compatible.

Since any compatible prime contains some minimal prime (which is also
compatible again Chapter 1 Proposition 6.7 (b)), using Lemma 6.1 it suffices
to work modulo a minimal prime and hence assume R is a domain.

Since J = τ(R,φ) is the unique smallest non-zero φ-compatible ideal,
again by Lemma 6.1 it suffices to show that R/J has only finitely many φ-
compatible ideals. But dimR > dim(R/τ(R,φ)), and the result follows. �

In Chapter 8 Theorem 2.23 we will substantially generalize this removing
the surjectivity hypothesis on φ ([BB11]). However, instead of considering
all compatible ideals we will consider ideals J such that φ(F e∗J) = J . The
proof is more involved though.

Remark 6.9. In the case that (R,m, k) is local, φ : F e∗R −→ R is surjective,
and n = dimk(m/m

2) is the embedding dimension, there at most
(
n
d

)
φ-

compatible prime ideals Q such that dimR/Q = d [ST10b]. In fact, work
of Huneke-Watanabe [HW15] , even shows that the multiplicity can be
bounded above by

(
n

dimR

)
. Outside of the local case however, there is no

bound on the number of compatible ideals, see Exercise 6.6.

6.3. Test (sub)modules of pairs. If R is Gorenstein, then we may
take ωR = R and then it is not difficult to see that τ(R) = τ(ωR) where
τ(ωR) is as defined in Chapter 2 Section 5. However, there is another way
to relate τ(R) and τ(ωR), and that is by building a pair into τ(ωR). This
perspective will be very useful for us in future chapters when comparing test
ideals with multiplier ideals from birational geometry.

We work in the following setting.

Setting 6.10. Suppose R is an F -finite normal domain with canonical
canonical module ωR. Fix an embedding R ⊆ ωR which itself fixes a choice
of a canonical divisor KR. Finally suppose that Γ ≥ 0 is a R-divisor on
SpecR.
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Note, since we are working with divisors, we assume R is normal. On
the other hand if R is normal, it is harmless to assume R is a domain.

Definition 6.11. With R, ωR and Γ as in Setting 6.10, we define the test
module of the pair (ωR,Γ), denoted τ(ωR,Γ) to be the smallest non-zero
submodule J ⊆ ωR such that

φ(F e∗J) ⊆ J

for every

φ ∈ HomR(F e∗ωR(d(pe − 1)Γe), ωR) ⊆ HomR(F e∗ωR, ωR).

Here ωR(d(pe − 1)Γe) = R(KR + d(pe − 1)Γe).

The techniques we have seen so far also imply that the test module of
τ(ωR,Γ) exists.

Theorem 6.12. With notation as in Setting 6.10, τ(ωR,Γ) exists and its for-
mation commutes with localization. Furthermore, if c is any non-zerodivisor
which is a strong test element for (R,Γ), then

τ(ωR,Γ) =
∑
e≥0

∑
φ

φ(c ωR)

where φ ranges over HomR(F e∗ωR(d(pe − 1)Γe), ωR).

Proof. Left to the reader in Exercise 6.8 and Exercise 6.9. �

The following follows easily, via the same argument as Lemma 5.23 (left
to the reader in Exercise 6.9 and Exercise 5.15 respectively).

Lemma 6.13. With notation as in Definition 6.11,

(a) For any multiplicative setW ⊆ R,W−1τ(ω,Γ) = (W−1ωR,Γ|SpecW−1R).
(b) For any ideal J ⊆ R with R̂ the J-adic completion, τ(ω,Γ)⊗R R̂ ∼=

(ω
R̂
,Γ|

Spec R̂
).

We now relate this object to the test ideal.

Theorem 6.14. Suppose R is an F -finite normal domain, ωR ⊇ R is a
canonical module (note KR ≥ 0) and ∆ ≥ 0 is a Q-divisor. Then

τ(R,∆) = τ(ωR,KR + ∆)

viewed as submodules of the fraction field K(R) (or as submodules of ωR).
In particular, τ(R) = τ(ωR,KR).
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Proof. We begin our argument in dimension 1 when R is a DVR. In
that case ωR = 1

f ·R ∼= R, with div(f) = KR. The dual-to-Frobenius map14

T e is identified with Φe via the isomorphism ωR ∼= R above (since both
generate their respective Hom-sets):

F e∗ωR

∼
��

T e // ωR

∼
��

F e∗R Φe
// R.

In this case, because we are computing τ(ωR,KR + ∆), and KR + ∆ ≥ KR,
the associated τ(ωR,KR + ∆) ⊆ f · ωR = R by Exercise 5.12.

Now, since R is S2, if τ(ωR,KR+∆) ⊆ R in dimension 1, the containment
holds generally. We now return to R of arbitrary dimension.

Notice that
HomR

(
F e∗ωR(d(pe − 1)(KR + ∆)e), ωR

)
= HomR

(
F e∗R(KR + d(pe − 1)(KR + ∆)e), R(KR)

)
∼= HomR

(
F e∗R(KR + d(pe − 1)(KR + ∆)e − peKR), R

)
= HomR

(
F e∗R(d(pe − 1)∆e), R

)
= C ∆,e.

Thus we may view any φ ∈ HomR(F e∗ωR(d(pe − 1)(KR + ∆)e), ωR) as an
element of C ∆,e. Because τ(ωR,KR + ∆) ⊆ R, it is the smallest non-zero
submodule of R compatible with elements of C ∆,e, in other words, it equals
the test ideal as desired. �

We point out some other basic properties of test modules of pairs.

Proposition 6.15. Suppose R is a Noetherian F -finite normal domain and
Γ ≥ 0 is a Q-divisor. Then

(a) If Γ′ ≥ Γ then τ(ωR,Γ
′) ⊆ τ(ωR,Γ).

(b) τ(ωR,Γ + div(f)) = fτ(ωR,Γ) for any 0 6= f ∈ R.
(c) If D ≥ 0 is any other divisor, then τ(ωR,Γ) = τ(ω,Γ + εD) for all

1� ε > 0.

Proof. The first property is immediate from the definition. Property
(b) follows immediately from Theorem 6.12 since

HomR(F e∗ωR(d(pe−1)(Γ+div(f))e), ωR) = (F e∗ f
pe−1) HomR(F e∗ωR(d(pe−1)Γe), ωR)

and we may replace c by cf without harm.

14see Chapter 2
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For (c), by utilizing Theorem 6.12 to increase Γ by a principal divisor,
we may assume that Γ ≥ KR. Setting ∆ = Γ +KR we see that

τ(ωR,Γ) = τ(R,∆) = τ(R,∆ + εD) = τ(R,Γ + εD)

by Proposition 5.26 (c). �

6.4. Exercises.

Exercise 6.1. Suppose R is an F -finite not necessarily local ring and that
φ ∈ HomR(F e∗R,R) is nonzero. Use Chapter 1 Exercise 4.12 to show that
any proper ideal that is maximal with respect to being φ-compatible is prime.
This gives an alternate proof of Proposition 6.4 (b).

Exercise 6.2. Suppose that R is an F -finite ring and suppose that φ ∈
HomR(F e∗R,R). LetW ⊆ R be a multiplicative set and let φ′ : F e∗W−1R −→
W−1R be the induced map. Let Q ∈ SpecR be a prime such that Q∩W = ∅
so that Q′ := W−1Q is a prime in SpecW−1R. Further suppose that Q′ is
φ′-compatible. Prove that Q is φ-compatible.

Exercise 6.3. Suppose thatR is an F -finite ring and that φ ∈ HomR(F e∗R,R).
If J is φ-compatible, show that

√
J is φ-compatible.

Hint: Localize at each minimal prime of J and consider separately the cases
when φ is surjective or not. Recall (or prove) that an ideal compatible with
a surjective map is always radical. Then use the previous exercise to undo
the localization.

Exercise 6.4. Suppose thatR is an F -finite ring and that φ ∈ HomR(F e∗R,R).
If Q ∈ SpecR is φ-compatible but φQ : F e∗RQ −→ RQ is not surjective, show
that every prime P ⊇ Q is also φ-compatible.

Exercise 6.5. Prove Proposition 6.4.

Exercise 6.6. Let R = Fp[x]. Show that for every integer n, there exists a
surjective φ : F e∗R −→ R that is compatible with exactly n non-zero prime
ideals.

Exercise 6.7. Let R = Fp[x1, . . . , xn] and let φ : F eR −→ R be the canonical
toric splitting implicitly defined in Chapter 3 Example 1.4. Show that φ is
compatible with exactly

(
n
d

)
prime ideals Q such that dimR/Q = d.15

Exercise 6.8. Prove that τ(ωR,Γ), as defined in Definition 6.11, exists by
showing that

τ(ωR,Γ) =
∑
e≥0

∑
φ

φ(c ωR)

where φ ranges over HomR(F e∗ωR(d(pe − 1)Γe), ωR).
15In fact, if R is an F -finite local ring with embedding dimension n and φ is surjective,

then there are at most
(
n
d

)
compatible ideals by [ST10b].
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Exercise 6.9. Prove that the formation of τ(ωR,Γ) commutes with local-
ization and completion.

Exercise 6.10. For a Noetherian F -finite normal domain, prove that τ(ωR, g
t) =

τ(ωR, tdiv(g)) where τ(ωR, g
t) is defined in Chapter 4 Definition 6.22.

Hint: Use Proposition 6.15 (c) and Chapter 4 Exercise 6.14 to handle any
difference in rounding that may occur.

7. Test ideals and finite ring maps

We begin with the following question:

If R ⊆ S is a finite extension of rings, and φ : F e∗R −→ R is an R-linear
map, when does φ extend to a map φS? In other words, when can we find a
φS to make the following diagram commute?

F e∗S
φS

// S

F e∗R
?�

OO

φ
// R
?�

OO

We begin with an example.

Example 7.1. Let k be a perfect field of characteristic p > 2. Consider the
extension R = k[x] ⊆ k[x1/2] = S. We will consider three different maps
F∗R −→ R defined by where they send monomials as follows:

φ1 : F∗(x
1/2)(p−1) 7→ 1 and other monomials to zero

φ2 : F∗(x
1/2)(p−1)/2 7→ 1 and other monomials to zero

φ3 : F∗1 7→ 1 and other monomials to zero

Let us begin with φ1. Suppose φ1 extended to a map ψ1 : F∗S −→ S. Then
notice that

1 = ψ1(F∗x
p−1) = ψ1(F∗(x

1/2)2(p−1)) = ψ1(F∗(x
1/2)px

p−2
2 ) = (x1/2)ψ1(F∗x

p−2
2 ).

Hence ψ1(F∗x
p−2

) = x−1/2, but that is not in S, a contradiction. Thus φ1

does not extend.

For φ2 and φ3, the maps do extend to F∗S −→ S which we now verify.
Indeed, to extend φj to ψj : F∗S −→ S, it suffices to identify where F∗(x1/2)i

goes for i = 1, . . . , p− 1 and show that this ψj |F∗R = φj .

We define ψ3 to be the map which sends F∗1 7→ 1 and F∗(x
1/2)i 7→ 0

for i = 1, . . . , p − 1. We notice that then F∗xi = F∗(x
1/2)2i is sent to 1 for

i = 1, . . . , p−1
2 . Next, notice that F∗x

p+j
2 = F∗(x

1/2)p+j = x1/2F∗(x
1/2)j



7. TEST IDEALS AND FINITE RING MAPS 303

is sent to zero for 0 < j < p. Hence for i = p+1
2 , . . . , p − 1, we see that

F∗x
i = x1/2F∗(x

1/2)i−p is sent to zero as well. Thus ψ3|F∗R = φ3 (both are
the canonical toric Frobenius splitting).

For ψ2, we define it to be the map which sends F e∗ (x1/2)p−1 7→ 1 and
the other monomials F∗1, F∗x1/2, . . . , F∗(x

1/2)p−2 to zero. A computation
similar to the one above for φ3, shows that ψ2|F∗R = φ2. We do point
out that φ2(F∗x

(p−1)/2) = 1 = ψ2(F∗(x
1/2)p−1). Notice that ψ2 generates

HomS(F∗S, S) even though φ2 does not generate HomR(F∗R,R).

7.1. Extending Frobenius splittings for field extensions. We be-
gin in the case when R and S are fields. This is not such an unreasonable
place to start, if R ⊆ S is a finite extension of integral domains, then taking
fraction fields we obtain K(R) ⊆ K(S) a finite field extension. It is straight-
forward to see that if φ : F e∗R −→ R extends to F e∗S −→ S, then the map
induced by localization φ : F e∗K(R) −→ K(R) extends to F e∗K(S) −→ K(S).
Thus we think first about the field case. It turns out then our question is
completely determined by whether the field extension is separable or not.

Lemma 7.2. Suppose that K ⊆ L is a finite purely inseparable extension of
F -finite fields of characteristic p > 0. If φ : F e∗K −→ K is a K-linear map
which extends to a L-linear map φL : F e∗L −→ L, then φ = 0.

Proof. Choose x ∈ L \K with xpe ∈ K. Suppose φL exists as in the
statement of the lemma. Choose y ∈ K. Then since xpy ∈ K we have that:

φL(F e∗x
py) = φ(F e∗x

pey) = xφ(F e∗ y) ∈ K.

If φ(F e∗ y) 6= 0, then dividing by that element implies that x ∈ K, a contra-
diction. Hence φ(F e∗ y) = 0. �

On the other hand, p−e-linear maps always extend uniquely across sepa-
rable field extensions. We already saw and used a version of this in Chapter 1
Proposition 5.9. Recall that a finite extension of fields is separable if and
only if it is étale.

Lemma 7.3. Suppose that K ⊆ L is a finite separable extension of F -finite
fields of characteristic p > 0. If φ : F e∗K −→ K is a K-linear map, then
there is a unique L-linear extension φL : F e∗L −→ L.

Proof. Tensor the map φ : F e∗K −→ K by ⊗KL to obtain

φ⊗K L : (F e∗K)⊗K L −→ L.

It follows from Proposition 5.9 in Chapter 1 that (F e∗K)⊗K L = F e∗L. Thus
we take φL = φ⊗K L. The uniqueness follows from L-linearity. �
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Lemma 7.4. Suppose that K ⊆ L is a finite inseparable extension of F -
finite fields of characteristic p > 0. If φ : F e∗K −→ K is a map that extends
to φL : F e∗L −→ L then φ = 0.

Proof. Let K ′ ⊆ L denote the separable closure of K in L. We will
show first that φL(F e∗K

′) ⊆ K ′. Since K ′ · (F e∗K) = F e∗K
′ by the proof of

Lemma 7.3, we see that any F e∗x ∈ F e∗K ′ can be written as

F e∗x = y1 · (F e∗x1) + · · ·+ yt · (F e∗xt)

for some yi ∈ K ′ and xi ∈ K. Hence

φL(F e∗x) = φL(y1·(F e∗x1)+· · ·+yt·(F e∗xt)) = y1φ(F e∗x1)+· · ·+ytφ(F e∗xt) ∈ K ′.

Thus φL also extends φL|K′ , but K ′ ⊆ L is purely inseparable and we are
done by Lemma 7.2. �

We immediately obtain the following generalization of Proposition 4.1.

Corollary 7.5. Suppose X is normal proper variety over an F -finite field
k with H0(X,OX) = k, and pick non-zero φ ∈ HomOX (F e∗OX ,OX) with
associated ∆ = ∆φ. Further suppose that x ∈ X is a closed point with
k ⊆ k(x) separable, that is compatible with φ, and such that the induced
φ : F e∗OX/mx −→ OX/mx is nonzero. Then (X,∆) is globally Frobenius
split.

Conversely, if a F -splitting φ is compatible with some closed point x ∈ X,
then k ⊆ k(x) is separable.

Proof. The proof of Proposition 4.1 goes through with little change for

the first statement. If H0(X,F e∗OX)
φ−→ H0(X,OX) is zero, so is the induced

map F e∗ k(x) −→ k(x) by Lemma 7.3. On the other hand, if φ is nonzero, it
is surjective.

For the second statement, apply Lemma 7.4 to the diagram (4.1.1). �

If K ⊆ L is a finite field extension, then viewing L as a finite-dimensional
K-vector space, each x ∈ L then becomes a K-linear transformation Tx :
L −→ L by multiplication. We can then take the trace of this linear trans-
formation to obtain any element of K. That is, we define:

Tr : L −→ K

by setting Tr(x) to be the trace of Tx. This map is non-zero if and only if
K ⊆ L is separable [Sta19, Tag 0BIL].

https://stacks.math.columbia.edu/tag/0BIL
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We need to relate extensions of φ along field extensions with the field
trace. For this we observe the following.

Lemma 7.6. Suppose that K ⊆ L is a finite extension of F -finite fields.
Fix a non-zero K-linear map T : L −→ K. Then for every K-linear map
φ : F e∗K −→ K there is a unique L-linear map φL : F e∗L −→ L such that the
following diagram commutes:

F e∗L

F e∗T

��

φL
// L

T
��

F e∗K φ
// K.

Proof. Notice that since 0 6= φ we have that φ generates HomK(F e∗K,K)
as a F e∗K-module. Likewise T generates HomK(L,K) hence φ◦(F e∗T ) gener-
ates HomK(F e∗L,K) ∼= F e∗L as an F e∗L-module. For any map ψL : F e∗L −→
L, the composition T ◦ ψL will be a pre-multiple of φ ◦ (F e∗T ) by some
non-zero element F e∗ z ∈ F e∗L. Setting φL = ψL ◦ (·F e∗ z−1) makes the di-
agram commute. The uniqueness follows since HomL(F e∗L,L) ∼= F e∗L and
HomK(F e∗L,K) ∼= F e∗L. �

Definition 7.7 ([ST10a]). The map φL in Lemma 7.6 is called the T -
transpose of φ.

Theorem 7.8. Suppose K ⊆ L is a finite separable field extension. Suppose
φK : F e∗K −→ K is K-linear and φL : F e∗L −→ L is L-linear. Then φL|F e∗K =
φK (i.e. φL extends φK) if and only if the following diagram commutes:

(7.8.1) F e∗L

F e∗ Tr

��

φL
// L

Tr
��

F e∗K φK

// K.

That is, that Tr ◦φL = φK ◦ (F e∗ Tr).

Proof. We begin with the following claim.

Claim 7.9. Using the inclusion L ⊆ F e∗L, we have that (F e∗ Tr)|L = Tr.

Proof of claim. Take f1, . . . , fm a basis for L over K. Since

F e∗L = L · (F e∗K),

their images in F e∗L are also a basis for F e∗L over F e∗K. In particular, for
any element y ∈ L, the matrix expression for multiplication by y, (the linear
transformation ·y on L), agrees with the matrix expression for multiplication
by its image in F e∗L. �
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Suppose first that φL extends φK and choose F e∗ z ∈ F e∗L. Similar to
the argument in the claim, since L ⊇ K is separable, we see that a basis
{F e∗x1, . . . , F

e
∗xk} for F e∗K over K is also a basis for F e∗L ∼= L⊗K F e∗K over

L. Write

F e∗ z =
k∑
i=1

yiF
e
∗xi

for some yi ∈ L. Hence, using the claim, we have that

(φK ◦ (F e∗ Tr))(F e∗ z) = φK

(∑k
i=1(F e∗xi) · Tr(yi)

)
=

∑k
i=1(φK(F e∗xi)) · Tr(yi)

=
∑k

i=1 Tr
(
φK(F e∗xi) · yi

)
=

∑k
i=1 Tr

(
φL(F e∗xi) · yi

)
= Tr

(∑k
i=1 φL(F e∗ y

pe

i xi)
)

= Tr ◦φL(F e∗ z).

Thus the diagram commutes. This proves the (⇒) direction.

For the reverse (⇐) direction, suppose the diagram (7.8.1) commutes.
On the other hand, by Lemma 7.3, we know there exists a φ′L extending φK
and so if it we place φ′L in the diagram (7.8.1) replacing φL, the new diagram
commutes as well by the (⇒). In other words, we have the following equality:

Tr ◦φ′L = φK ◦ (F e∗ Tr) = Tr ◦φL ∈ HomK(F e∗L,K).

Now, φL · (F e∗ v) = φ′L, or in other words that φL(F e∗−) = φ′L(F e∗ v · −), for
some v ∈ L since HomL(F e∗L,L) ∼= F e∗L. Thus we have that

Tr ◦φL · (F e∗ v) = Tr ◦φL ∈ HomK(F e∗L,K) ∼= F e∗L

proving that v = 1. This completes the proof. �

7.2. Extending p−e-linear maps for normal integral domains.
Suppose R ⊆ S is a finite generically separable16 extension of F -finite normal
Noetherian domains and φ : F e∗R −→ R is an R-linear map. We are interested
in when φ extends to a map F e∗S −→ S. It turns out that the obstruction
to extending such a map is the ramification of R ⊆ S. A brief description
of (wild and tame) ramification can be found in Appendix B Section 8. We
return to the problem at hand.

In the previous subsection, we studied when, given some field extension
K ⊆ L, φ : F e∗K −→ K extended to some φL : F e∗L −→ L. Now suppose
that R ⊆ S is a finite extension of normal domains and φR : F e∗R −→ R is a

16This means that K(R) ⊆ K(S) is separable.
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non-zero map. If K = K(R) and L = K(S) and K ⊆ L is separable, then
we have a diagram

F e∗L

F e∗ Tr

��

φL
// L

Tr
��

F e∗K φK

// K

by Theorem 7.8 where φK is the localization of φR at (0) and φL is the unique
map extending φK which exists by Lemma 7.3. It follows immediately that
if φS : F e∗S −→ S extends φR, then we have the following commutative
diagram:

(7.9.1) F e∗S

F e∗ Tr

��

φS
// S

Tr
��

F e∗R φR

// R.

We will use this diagram to understand ∆φL and compare it to ∆φ.

First we consider what happens in a slightly more general setting.

Proposition 7.10. Suppose that R ⊆ S is a finite extension of F -finite Noe-
therian normal domains with f : SpecS −→ SpecR the corresponding map
of schemes. Suppose that T ∈ HomR(S,R) is non-zero and so corresponds to
a divisor DT ∼ KS − f∗KR. Suppose that φ : F e∗R −→ R and ψ : F e∗S −→ S
are such that the following diagram commutes:

F e∗S

F e∗T

��

ψ
// S

T
��

F e∗R φ
// R.

Then
∆ψ = f∗∆φ −DT .

Proof. The statement is about divisors and so may be checked in di-
mension one on R. Thus we may assume that R is a DVR and S is semi-local,
regular and of dimension 1. In this case, we can choose

ΦR ∈ HomR(F e∗R,R)
ΦS ∈ HomS(F e∗S, S)

ΦS/R ∈ HomR(S,R)

generating their respective Hom-sets as an F e∗R-module, F e∗S-module, and
S-module respectively. Since ΦR ◦ (F e∗ΦS/R) and ΦS/R ◦ ΦS both gener-
ate HomR(F e∗S,R) ∼= F e∗S they are unit multiples of each other: ΦR ◦
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(F e∗ΦS/R) = ΦS/R ◦ ΦS ? u. Now, writing

φ = ΦR ? x
ψ = ΦS ? y
T = ΦS/R · z

we have that:
T ◦ ψ = ΦS/R · z ◦ ΦS · (F e∗ y)

= ΦS/R ◦ ΦS · (F e∗ yzp
e
)

which equals
φ ◦ (F e∗T ) = ΦR · (F e∗x) ◦ F e∗ (ΦS/R · z)

= ΦR ◦ F e∗ΦS/R · (F e∗xz)
= ΦS/R ◦ ΦS · (F e∗uxz)

Thus yzpe = uxz and so div(yzp
e
) = div(uxz) = div(xz) where we are

computing divisors on SpecS. Thus since div(x) = f∗(pe − 1)∆φ, div(y) =
(pe − 1)∆ψ, and div(z) = DT we see that

(pe − 1)∆ψ + peDT = (pe − 1)f∗∆φ +DT .

Reorganizing the equation and dividing by pe − 1 completes the proof. �

To translate this into our setting of extending maps, we need to under-
stand what the ramification divisor corresponds to.

Lemma 7.11. Suppose R ⊆ S is a finite generically separable extension of
normal Noetherian domains with corresponding map of schemes f . Then the
map Tr ∈ Hom(S,R) ∼= S(KS − f∗KR) defines a non-zerodivisor DTr ∼
KS − f∗KR which agrees with the ramification divisor Ram of f on SpecS.

Proof. We will black box this result as it is well known. It can be found
in [Mor53], [SS75] or [ST10a, Proposition 4.8]. Also see in [Sta19, Tag
0BTC] �

We thus obtain the following as an immediate corollary of Proposi-
tion 7.10 and Lemma 7.11.

Corollary 7.12. Suppose R ⊆ S is a finite generically separable extension
of F -finite Noetherian normal domains. Further suppose that φ : F e∗R −→ R
extends to a map ψ : F e∗S −→ S. Then

∆ψ = f∗∆φ − Ram

where Ram is the ramification divisor.

Since ∆ψ is effective, if φ : F e∗R −→ R extends to a map F e∗S −→ S,
we necessarily must have that f∗∆φ − Ram ≥ 0, or in other words that
f∗∆φ ≥ Ram. Indeed, it turns out that this is a sufficient condition for
extending maps as well.

https://stacks.math.columbia.edu/tag/0BTC
https://stacks.math.columbia.edu/tag/0BTC
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Theorem 7.13 ([ST10a]). Suppose R ⊆ S is a finite extension of F -finite
normal domains and 0 6= T ∈ HomR(S,R) with DT ≥ 0 the associated
divisor on SpecS. Suppose f : SpecS −→ SpecR is the induced map of
schemes. Fix φ : F e∗R −→ R. Then there exists ψ : F e∗S −→ S making the
following diagram commute:

F e∗S

F e∗T

��

ψ
// S

T
��

F e∗R φ
// R

if and only if f∗∆φ ≥ DT . In this case, ∆ψ = f∗∆φ − DT . In particular,
if R ⊆ S is generically separable, then φ extends to a map F e∗S −→ S if and
only if f∗∆φ ≥ Ram.

Proof. If there exists a ψ making the diagram commute, then we have
that f∗∆φ ≥ DT by Proposition 7.10 and our observations above. Thus we
can assume that f∗∆φ ≥ DT .

Let K = K(R) and L = K(S). Tensoring with K(R), we find that ψS , if
it exists, must be the restriction to F e∗S, of the unique φL, the T -transpose
of φK = φ ⊗R K(R), by Lemma 7.6. Therefore it suffices to show that
φL(F e∗S) ⊆ S. Since S, F e∗S, and F e∗R are all S2 as R-modules, we may
assume that R is a DVR and so S is semi-local and regular. We choose

ΦR ∈ HomR(F e∗R,R)
ΦS ∈ HomS(F e∗S, S)

ΦS/R ∈ HomR(S,R)

generating their respective Hom-sets as an F e∗R-module, F e∗S-module, and
S-module respectively and write

φ = ΦR ? x
ψL = (ΦS ⊗ L) ? y
T = ΦS/R · z

where x ∈ R, z ∈ S and y ∈ L = K(S). If we can show that y ∈ S then we
are done since then we must have ψL = (ΦS?y)⊗L and we set ψ = ΦS ·(F e∗ y).
Arguing and using notation as in the proof of Proposition 7.10, we see that
yzp

e
= uxz and so

div(yzp
e
) = div(uxz) = div(xz)

for some unit u ∈ S. Thus

div(y) = (pe − 1)f∗∆φ − (pe − 1)DT = (pe − 1)(∆φ −DT ) ≥ 0

and so y ∈ S as desired.
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For the final statement, we set T = Tr and recall that φ extends to ψ if
and only if ψ is the Tr-transpose of φ by Theorem 7.8. �

If T generates HomR(S,R) as an S-module, then DT = 0 and so we
immediately obtain:

Corollary 7.14. With notation as in Theorem 7.13, if T generates HomR(S,R)
as an S-module, then for every φ : F e∗R −→ R there exists a ψ : F e∗S −→ S
making the diagram commute:

F e∗S

F e∗T

��

ψ
// S

T
��

F e∗R φ
// R

Example 7.15. Suppose p 6= 2, that k is a perfect field of characteristic
p > 0, and consider the extension R = k[x] ⊆ k[x1/2] = S of Example 7.1.
In this case the ramification divisor is div(x1/2).

The map φ1 from Example 7.1 has ∆φ1 = 0 and so since f∗∆φ1−Ram ≤ 0
we see that φ1 does not extend.

The map φ2 has ∆φ2 = 1
2 div(x) so that f∗∆φ2 − Ram = 1

2f
∗ div(x) −

Ram = 1
2 ·2 ·div(x1/2)−Ram = div(x1/2)−Ram = 0. Thus φ2 extends to ψ2

with ∆ψ2 = 0, in other words, φ2 extends to a map generating HomS(F∗S, S)
as an F∗S-module.

The map φ3 has ∆φ3 = div(x). Thus f∗∆φ3 − Ram = 2 div(x1/2) −
Ram = div(x1/2). Which is exactly what we found by explicit computation.

The previous example was tamely ramified, and so it was easy to compute
the ramification divisor Ram. Since the extension had ramification index 2
(at the origin), we see that the ramification divisor Ram had coefficient
2 − 1 = 1 at the origin in SpecS. For wild ramification, the coefficient of
the ramification divisor is always strictly larger than the ramification index
minus 1.

Example 7.16. Suppose k is a perfect field of characteristic 2 and consider
the extension R = k[x2(1 + x5)] ⊆ k[x] = S. This extension is generically
separable since if t = x2(1 + x5), then x is a root of the polynomial f(X) =
X7 + X2 + t = 0 and that is a separable polynomial. After localizing at
Q = (t) ∈ R, we see that t = ux2, and so the ramification index at the origin
is 2. Thus R ⊆ S is wildly ramified.

We can compute the ramification divisor by taking the derivative with
respect to X, which is X6, so the ramification divisor is 6 div(x).
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Now suppose that φ : F e∗R −→ R satisfies ∆φ = λ div(t) + other terms.
Then we see that φ extends to a map φ : F e∗S −→ S if and only if f∗∆φ =
2λ div(x) + f∗ other terms ≥ Ram = 6 div(x), which occurs if and only if
λ ≥ 3.

As a consequence, we see that there is no Frobenius splitting on R that
extends to a Frobenius splitting on S, since for such a φ to be a Frobenius
splitting on R, we need λ ≤ 1.

7.3. Applications to singularities of pairs. Suppose R ⊆ S is a
finite extension of F -finite normal Noetherian domains. We saw previously
in Chapter 1 Proposition 3.5 that if R ⊆ S splits, and if S is F -split, then
so is R. In many cases, the splitting of R −→ S is actually accomplished by
the normalized trace map 1

[K(S):K(R)] Tr. Thus, suppose that Tr is surjective
(for instance if the normalized trace map splits) and φ : F e∗R −→ R is such
that f∗∆φ ≥ Ram where f : SpecS −→ SpecR is the induced map. Then
we have the following commutative diagram:

F e∗S

F e∗ Tr

��

ψ
// S

Tr
��

F e∗R φ
// R

where ψ is the extension of φ. Hence if ψ is surjective, so is Tr ◦ψ = φ ◦
(F e∗ Tr), and thus so is φ. In other words, if (S, f∗∆φ − Ram) = (S,∆ψ) is
sharply F -split, so is (R,∆φ).

On the other hand, suppose φ is surjective so that 1 ∈ R is in its image.
But then its extension ψ : F e∗S −→ S also has 1 in its image and thus surjects
as well. We have just proven the following.

Proposition 7.17. Suppose that R ⊆ S is an extension of F -finite normal
Noetherian domains with induced map f : SpecS −→ SpecR. Assume that
Tr : S −→ R is surjective. Suppose that ∆ is a Q-divisor on SpecR such that
(pe − 1)(KR + ∆) is Cartier for some e > 0 and that f∗∆ ≥ Ram. Then
(R,∆) is F -split (meaning that φ∆ is surjective) if and only if (S, f∗∆−Ram)
is F -split.

This should be viewed as an analog of the standard result in characteristic
zero that a normal log-Q-Gorenstein pair (X,∆), that f : Y −→ X is a finite
surjective morphism of normal varieties, and f∗∆ ≥ Ram, then (X,∆) is
log canonical if and only if (Y, f∗∆ − Ram) is log canonical, see [KM98,
Proposition 5.20].
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For a generalization of this result to the inseparable case, or simply the
case when Tr is not surjective, see Exercise 7.4. This is particularly important
for cyclic covers of index divisible by p > 0, cf. [CR22].

Question 7.18. It is unknown if Proposition 7.17 holds without the hy-
pothesis that KR + ∆ has (Cartier-)index not divisible by p.

We next explore the behavior of the test ideal under finite maps.

Theorem 7.19 ([ST10a, Spe20]). Suppose that R ⊆ S is a finite exten-
sion of F -finite normal Noetherian domains with f the induced map between
the associated affine schemes. Suppose T ∈ HomR(S,R) is non-zero with
corresponding divisor DT (for instance, if R ⊆ S is separable, we can pick
T = Tr and so DT = Ram). Suppose that ∆ ≥ 0 is a R-divisor on SpecR
such that f∗∆ ≥ DT . Then

T (τ(S, f∗∆−DT )) = τ(R,∆).

Proof. We begin by proving the containment ⊇. It is sufficient to show
that T (τ(S, f∗∆−DT )) is compatible with φ for every φ ∈ HomR(F e∗R,R)
with ∆φ ≥ ∆ since, by definition, τ(R,∆) is the smallest non-zero J com-
patible with all such φ (see Setting 5.17). But for any such φ, we have
f∗∆φ ≥ f∗∆ ≥ DT and so we have the following commutative diagram:

F e∗S

F e∗T

��

ψ
// S

T
��

F e∗R φ
// R.

By definition τ(S, f∗∆−DT ) is compatible with ψ and so the diagram guar-
antees that its trace is compatible with φ.

For the converse direction, we make the following simplifying assumption,
and leave the general case to the reader in Exercise 7.7, or see [ST10a,
Proposition 6.24] for a proof in an even more general case. Assume that
∆ = ∆φ for some φ ∈ HomR(F e∗R,R) (in other words, assume that (pe −
1)(KR+∆) ∼ 0). We choose ψ : F e∗S −→ S sitting in a commutative diagram
as above. Observe that

T ◦ ψn = T ◦ ψ ◦ (F e∗ψ
n−1) = φ ◦ (F e∗T ) ◦ (F e∗ψ

n−1) = · · · = φn ◦ (Fne∗ T ).

Next choose d 6= 0 a strong test element for (S, f∗∆ − DT ) (that is, d ∈
τ(S, f∗∆−DT ) = τ(S,∆ψ)) so that T (dS) ⊆ τ(R,∆) (indeed, if T (dS) was
not in τ(R,∆φ), simply multiply d by something in τ(R,∆φ) so that it is).
Note that

τ(S,∆ψ) =
∑
n>0

ψn(Fne∗ dS)
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so that if we apply trace, we obtain that

T (τ(S,∆φ)) =
∑

n>0 T
(
ψn(Fne∗ dS)

)
=

∑
n>0 φ

n(F e∗T (dS))
⊆

∑
n>0 φ

n(F e∗ τ(R,∆))
= τ(R,∆).

�

Remark 7.20. One can find a much more general results, weakening the
normality hypothesis and even generalizing the pairs to Cartier algebras
(Chapter 8), in [CRS23, Theorem B].

Corollary 7.21. Suppose that R ⊆ S is a finite extension of F -finite normal
Noetherian domains with f : SpecS −→ SpecR the induced map. Suppose
that ∆ ≥ 0 is a Q-divisor on SpecR such that f∗∆ ≥ Ram.

(a) If (R,∆) is strongly F -regular, then so is (S, f∗∆− Ram).
(b) Suppose that Tr : S −→ R surjects. If (S, f∗∆ − Ram) is strongly

F -regular, then so is (R,∆).

Proof. Choose c ∈ R \ {0} a strong test element for (R,∆) that is also
a strong test element for (S, f∗∆ − Ram). Then a φ with ∆φ ≥ Ram such
that φ(F e∗ c) = 1 extends to a ψ : F e∗S −→ S also sending F e∗ c 7→ 1. This
proves the first statement.

The second statement is an immediate consequence of Theorem 7.19 since
(R,∆) is strongly F -regular if and only if τ(R,∆) = R. �

We can rephrase Theorem 7.19 in terms of parameter test modules of
pairs in the sense of Definition 6.11. This particular rephrasing has the
advantage that it makes no assumption on the Q-divisor.

Corollary 7.22. Suppose R ⊆ S is a finite extension of F -finite normal
Noetherian domains with f the induced map between the associated affine
schemes. Let T : ωS −→ ωR denote the Grothendieck dual of R ⊆ S. For any
effective Q-divisor Γ ≥ 0, we have that

T (τ(ωS , f
∗Γ)) = τ(ωR,Γ).

Proof. Without loss of generality, we may pick an embedding R ⊆ ωR
(picking KR ≥ 0). Choose a free S-module xS = M ⊆ ωS such that T (M) ⊆
R (if gωR ⊆ R, then any free submodule of gωS will work). Identifying M
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with S gives us a diagram:

ωS
T // ωR

S
?�

OO

T
// R
?�

OO

By Proposition 5.26 (b) and the fact that T is R-linear, it is harmless to
replace Γ by Γ + div(f). Hence, we may assume that Γ ≥ KR and so write
∆ = Γ−KR. We may also assume that f∗∆ ≥ DT and so f∗Γ ≥ KS . Now
by Theorem 7.19

τ(ωR,Γ) = τ(R,∆)
= T (τ(S, f∗∆−DT ))
= T (τ(S, f∗(Γ−KR)−KS + f∗KR))
= T (τ(S, f∗Γ−KS))
= T (τ(ωS , f

∗Γ))

as desired. �

Remark 7.23. If R ⊆ S is a finite and generically separable extension of
normal domains. Suppose we have an embedding ωR = R(KR) ⊆ K(R) of
the canonical module in the fraction field and set ωS = S(f∗KR + Ram) ⊆
K(S). Then we may identify the map T : ωS −→ ωR with the restriction
of the field trace Tr : K(S) ⊆ K(R) up to a unit. We briefly sketch the
argument.

Since Tr ∈ HomR(S,R) corresponds to the ramification divisor by Lemma 7.11,
it is not difficult to see that

Tr ·S = HomR(S(Ram), R)

as submodules of HomR(S,R). Now, we see that

HomR(S(Ram), R) ∼= HomR(S(Ram)⊗R R(KR), R(KR))
∼= HomR(S(Ram + f∗KR), R(KR))
= HomS(ωS , ωR).

Since all these isomorphisms are equalities at the generic point (fraction
field level), we see that Tr must also generate HomS(ωS , ωR). On the other
hand, the evaluation-at-1 map T : ωS = HomR(S, ωR) −→ ωR also generates
HomR(ωS , ωR) by Appendix C Proposition 5.7, we see that Tr and T agree
up to a unit.

7.4. Applications to surjectivity of trace and wild ramification.
Consider a finite extension of DVRs (R, (r)) ⊆ (S, (s)) with r = usn for some
unit u ∈ S. Since Tr ∈ HomR(S,R) determines the ramification divisor, we
see that Tr generates HomR(S(Ram), R) ⊆ HomR(S,R). Write S(Ram) =
s−mS as a fractional ideal. Suppose that R ⊆ S is wildly ramified, which
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means thatm ≥ n (in the tame case,m = n−1). Notice that Tr : S(Ram) −→
R surjects since Tr generates HomR(S(Ram), R) and S(Ram) is a free R-
module17 (it is abstractly isomorphic to S). Thus since Tr is R-linear we
have that

(r) = rR = Tr
(
rS(Ram)

)
= Tr(sn−mS) ⊇ Tr(S).

Hence Tr is not surjective. Conversely, if R ⊆ S is tamely ramified, then the
same computation shows that Tr is surjective. Indeed, more generally one
can show the following well-known lemma:

Lemma 7.24. Suppose R is a DVR and R ⊆ S is a finite generically Galois
extension with S normal. Then Tr : S −→ R surjects if and only if R ⊆ S is
tame.

For the non-generically Galois case, having Tr surjective means that at
least one of the R ⊆ Sni is tame where ni are the finitely many maximal ideals
of S lying over m, see Exercise 7.10. However, this suggests that we might
make declare that a finite generically Galois extension of normal domains
R ⊆ S to be tame if Tr : S −→ R is surjective, indeed this is the strongest
notion of tameness in higher dimensions considered in the paper [KS10].

Example 7.25. Consider the extension R = F2[x2(1 +x)] ⊆ k[x] = S. This
is a variant of Example 7.16. As an R-module S has basis 1, x, x2 and it is
easy to see that

Tr(1) = Tr

 1 0 0
0 1 0
0 0 1

 = 3 ≡ 1

and so trace is surjective. However, this extension is not generically Galois.
Indeed, there are two points lying over the origin P = (x2(1 +x)) of SpecR;
namely Q1 = (x) and Q2 = (x+ 1). Note RP ⊆ SQ1 is wildly ramified, but
RP ⊆ SQ2 is tame (it is in fact unramified). It follows that K(R) ⊆ K(S)
cannot be Galois as the Galois group would be able to send these points to
each other.

If instead we complete the extension at the two origins R̂ = F2JtK ⊆
kJxK = Ŝ where t 7→ x2(1 + x). In this case 1, x form a basis for Ŝ over
R̂. In this case, Tr(1) = 2 ≡ 0. Notice that in terms of this basis, we
have that x2 = 1 · f + x · g where f = t + t2 + t3 + t5 + t6 + t9 + . . . and
g = t + t3 + t5 + t9 + . . . . Thus the multiplication ·x is represented by the
matrix [

0 f
1 g

]
and one sees that Tr(x) = g, which is not a unit. It follows that Tr is not
surjective.

17Note that R is a PID and S and hence S(Ram) is a finitely generated and torsion
free R-module.
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Example 7.26. Suppose R ⊆ S is a finite generically Galois inclusion of
normal domains and X −→ SpecR is a proper birational map with X normal
and with Y the normalization of X in K(S) making a commutative diagram:

Y

g

��

// X

f
��

SpecS // SpecR.

Suppose that E is an exceptional divisor on X with generic point η so that
OX,η ⊆ (f∗OY )η is not tame, then Tr : (f∗OY )η −→ OX,η is not surjective
and so it does not have 1 in its image. It follows that Tr : S −→ R cannot
have 1 in its image either since S ⊆ (f∗OY )η.

On the other hand, there are finite extensions R ⊆ S where there is no
divisorial obstruction to tameness as above, but where Tr is not surjective.
See for instance [KS10] or Exercise 7.11.

A famous result of Zariski-Nagata on purity of the branch locus ([Zar58,
Nag59], see [Sta19, Tag 0BMB]) says that if R is regular and R ⊆ S is finite
and étale in codimension 1, then R ⊆ S is étale. We obtain the following
related result for strongly F -regular rings.

Theorem 7.27. Suppose R ⊆ S is a finite extension of F -finite normal
Noetherian domains that is generically Galois. Suppose that R ⊆ S is étale
in codimension 1 and R is strongly F -regular. Then Tr : S −→ R is surjective
and hence tamely ramified even in the strongest sense.

Proof. Since R ⊆ S is étale in codimension 1 we see that Ram = 0 and
so we see that Tr ∈ HomR(S,R). Now, we know that Tr(τ(S)) = τ(R) = R
and so we have Tr(S) = R as desired. �

7.5. An application to cyclic covers. It is well known that if (R,m)
is a Noetherian normal local domain, and D is a Weil divisor on SpecR of
index n (that is R(nD) ∼= R), then a cyclic cover associated to D,

S = R⊕R(−D)⊕ · · · ⊕R(−(n− 1)D)

need not be normal or reduced, see for instance Appendix B Example 9.3.

However, when R is a F -split, this pathology is avoided, as first shown
by Carvajal-Rojas.

Theorem 7.28 ([CR22]). Suppose (R,m) is a Noetherian F -finite normal
local domain and D is a Weil divisor of index n. Let R ⊆ S be a cyclic cover
using an isomorphism R(nD) ∼= R (that is, so that Dz = 0 in the notation
of Appendix B Section 9).

https://stacks.math.columbia.edu/tag/0BMB
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(a) If R is F -split, so is S. In particular S is reduced.
(b) If R is strongly F -regular, so is R. In particular R is normal.

Proof. Let φ : F∗R −→ R be a surjective map. Even though the local18

ring S need not be normal, we can do a construction similar to the ones
earlier in this section. Let T : S −→ R be the projection onto the degree 0
(which we know generates HomR(S,R) as an S-module by Appendix B (a)).

Consider the following diagram

HomF e∗R(F e∗S, F
e
∗R)

ν //

��

HomR(S,R)

��

F e∗R φ
// R

where vertical maps are evaluation-at-1 and the horizontal map ν applied to
ψ : F e∗S −→ F e∗R is defined to be the composition:

S ↪→ F e∗S
F e∗ψ−−→ F e∗R

φ−→ R.

We observe that φ(ψ(F e∗ 1S)) = (ν(ψ))(1S) and so the diagram commutes.
Now, since S ∼= HomR(S,R) (with generator T ) we may identify this diagram
with a diagram:

F e∗S
φ′
//

F e∗T

��

S

T
��

F e∗R φ
// R

and so we have constructed φ′ the T -transpose of φ (even though we do not
know S is a domain or even reduced).

Since T (mS) ⊆ m (see Proposition 9.4 in Appendix B), if φ′ is not surjec-
tive, its image lies in ms, and so T ◦φ′ is not surjective. But T ◦φ′ = φ◦F e∗T
and the latter is a composition of surjective maps, a contradiction.

This proves that S is Frobenius split and hence reduced.

For the second part, we already know that S is reduced, and hence we
can find a nonzero c ∈ R whose image in S is also a strong test element
for the finite extension S. Fix φ ∈ HomR(F e∗R,R) such that φ(F e∗ c) = 1.
As above, the T -transpose φ′ exists. If φ′(F e∗ c) is a unit, we are done so
we may assume φ′(F e∗ c) ∈ mS . Thus, as above, we see that m ⊇ T (mS)
contains T (φ′(F e∗ c)) = φ(F e∗T (c)) = φ(F e∗ c) = 1, a contradiction. The result
follows. �

18by Appendix B (a)
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The proof above actually proves something stronger.

Corollary 7.29 ([CR22]). Suppose (R,m) ⊆ (S, n) is a finite extension
of Noetherian F -finite normal local rings. Further suppose that there exists
T : S −→ R satisfying the following.

(a) T (n) ⊆ m
(b) T generates HomR(S,R) as an S-module.
(c) T (S) = R (that is, T is surjective).

Then if R is F -split (respectively strongly F -regular) then so is R.

In the case that T = Tr, the second condition is simply that Ram = 0,
and so our corollary becomes a variant of Corollary 7.21. If R is strongly F -
regular, then the third condition is implied by the second, see Exercise 7.12.

7.6. Application to F -jumping numbers. In Chapter 4 Theorem 6.14
we proved that in a quasi-Gorenstein ring, that the F -jumping numbers of
(R, f t) are all rational and have no accumulation points. In this section, we
generalize this to the case when R is Q-Gorenstein.

We first make the following definition.

Definition 7.30. Suppose that R is a Noetherian F -finite normal domain,
∆ ≥ 0 is a Q-divisor, and 0 6= g ∈ R. We say a number t > 0 is an
F -jumping number for (R,∆, g) if

τ(R,∆ + (t− ε) div(g)) 6= τ(R,∆ + t div(g))

for all 1� ε > 0.

Theorem 7.31. Suppose that R is a Noetherian F -finite normal domain,
∆ ≥ 0 is a Q-divisor such that KR + ∆ is Q-Cartier, and 0 6= g ∈ R. Then
the set of F -jumping numbers for (R,∆, g) is a set of rational numbers with
no limit points.

Setting ∆ = 0, this generalizes Chapter 4 Theorem 6.14 to the Q-
Gorenstein case.

We prove this in two cases. The first is when ∆ = 0 and the index of the
Q-Cartier divisor KR is not divisible by p, as this case is immediate.

Proof of Theorem 7.31 when ∆ = 0 and p 6 | ind(KR). Since R is
Q-Gorenstein, we can use Appendix B Proposition 9.4 (e) to find a cyclic
cover S ⊇ R that is quasi-Gorenstein (a canonical cover). Since the index
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of KR is not divisible by p, we see that S remains normal by Appendix B
Lemma 9.2 (c).

Since R ⊆ S is étale-in-codimension-1 (Appendix B Lemma 9.2 (e)) and
so Tr ∈ HomR(S,R) is an S-module generator, we see that

Tr(τ(S, f∗t div(g))) = τ(R, t div(g))

for all t > 0 by Theorem 7.19. We know that the F -jumping numbers of
τ(S, tf∗ div(g)) = τ(S, gt) are discrete without limit points by Chapter 4
Theorem 6.14 and thus the same holds for their Tr-images in R. �

To prove the general case, we recall the following result which was an
exercise in Chapter 4 and is convenient for our purpose (rephrased since
τ(ωS , g

t) = τ(ωS , tdiv(g)) by Exercise 6.10).

Theorem 7.32 (Chapter 4 Exercise 6.17). Suppose that S is a Noetherian
normal F -finite domain and g ∈ S is nonzero, then the set of numbers t > 0
such that

τ(ωS , (t− ε) div(g)) 6= τ(ωS , tdiv(g))

is a set of rational numbers without accumulation points.

Our proof is now quite similar in spirit to the one we gave in the special
case above.

Proof of Theorem 7.31, general case. Fix a canonical divisorKR ≥
0 (that is, fix an embedding R ⊆ ωR). By Appendix B Lemma 9.5 there
exists a finite generically separable extension R ⊆ S normal domains such
that if f is the induced map on Specs, we have that f∗(KR + ∆) = divS(h)
is Cartier.

We know by Theorem 6.14

τ(R,∆ + t div(g)) = τ(ωR,KR + ∆ + t div(g))

and so it suffices to show that τ(ωR,KR + ∆ + t div(g)) has jumps only at
rational numbers without accumulation points.

Next we know that

τ(ωR,KR + ∆ + t div(g)) = T (τ(ωS , f
∗(KR + ∆ + t div(g))))

= T (τ(ωS ,divS(h) + tdivS(g)))
= T (h τ(ωS , tdivS(g))).

The result follows by Theorem 7.32 above. �
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7.7. Exercises.

Exercise 7.1. Find an example of an inseparable extension of fields K ⊆ L
so that the zero map φ : F e∗K −→ K extends to a non-zero map φ : F e∗L −→ L.

Exercise 7.2. Suppose that k is a perfect field of characteristic p > 0 and
n > 0 is an integer relatively prime to p and consider the ring extension
R = kJxK ⊆ kJx1/nK = S. Classify, up to pre-multiplication by units, which
maps φ ∈ HomR(F e∗R,R) extend to maps F∗S −→ S.

Exercise 7.3. Suppose that R ⊆ S is a finite generically separable extension
of normal domains. For any radical ideal I ⊆ R, show that Tr(

√
IS) ⊆ I.

In particular, if (R,m) ⊆ (S, n) is a finite local extension of normal domains,
then Tr(n) ⊆ m.

Hint: First reduce to the case where K(S) is Galois over K(R) by taking
the normalization of R in the Galois closure of K(S). In that case, use the
fact that Tr(y) =

∑
σ∈G σ(y) where G = Gal(K(S)/K(R)).

Exercise 7.4. Suppose that (R,m) ⊆ (S, n) is a finite extension of F -finite
normal local domains and that you are given a surjective T ∈ HomR(S,R).
Further suppose that T (n) ⊆ m. Suppose that (R,∆) is a pair where ∆ ≥ 0
is a Q-divisor such that (pe − 1)(KR + ∆) is Cartier and that f∗∆ − DT

is effective. Show that if (S, f∗∆ − DT ) is F -split if and only if (R,∆) is
F -split. Note this works even in the case of an inseparable R ⊆ S.
Exercise 7.5. Given an example to show that, without the hypothesis that
Tr is surjective, that Proposition 7.17 is false.

Hint: You can find an example in [ST10a] if you get stuck.

Exercise 7.6. Suppose R ⊆ S is a finite, split, and étale in codimension 1
extension of F -finite normal domains and R is Frobenius split (respectively
strongly F -regular). Prove that S is Frobenius split (respectively strongly
F -regular).

Exercise 7.7. Complete the proof of the general case of the ⊆ containment
for Theorem 7.19.

Hint: Show that the following diagram commutes:

HomS(F e∗S, S)

ν

��

// S

T
��

HomR(F e∗R,R) // R

where ν is induced by T on the second coordinate and by the inclusion
F e∗R ⊆ F e∗S on the first. Let ∆S = f∗∆ − DT . Then show that ν sends
HomS(F e∗S(b(pe − 1)∆Sc), S) into HomR(F e∗R, (b(pe − 1)∆c), R).
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Exercise 7.8. Suppose that R is a normal Noetherian domain and Γ is a Q-
Cartier Q-divisor on SpecR. Show that there exists a finite extension R ⊆ S
where S is normal and where f∗Γ is Cartier where f : SpecS −→ SpecR is
the induced map.

Exercise 7.9. Suppose that R is an F -finite Noetherian domain and choose
KR ≥ 0. Suppose that ∆ ≥ 0 is a Q-divisor on SpecR such that KR + ∆
is Q-Cartier, say with div(f) = n(KR + ∆). Prove that there exists a finite
extension R ⊆ S containing f1/n so that

τ(R,∆) = T (f1/n · τ(ωS))

where T : ωS −→ ωR = R(KR) ⊇ R is the Grothendieck dual of the inclusion
R ⊆ S (again see Appendix C Proposition 5.6).

Exercise 7.10. Suppose that R is a DVR and R ⊆ S is a finite extension
with S a normal domain. Prove that Tr : S −→ R surjects if and only if there
exists some maximal ideal Q of S such that R ⊆ SQ is tame.

Hint: One approach is can reduce to the complete case, in which case
S becomes a product of domains and the Tr map is the sum of the traces.
Then each R ⊆ SQ is finite.

Exercise 7.11. Fix a base perfect field k. Suppose R is the section ring over
an ordinary elliptic curve E with respect to an ample A. Let f : E′ −→ E
be an étale p-to-1 cover (see for instance [Sil09, Section V.3]) and let R′
denote the section ring of E′ with respect to f∗A. If X (respectively X ′)
is the blowup of the irrelevant ideal of SpecR (respectively SpecR′), show
that X ′ −→ X is étale but that Tr : R′ −→ R is not surjective. This example,
taken from [KS10], shows that a divisorial notion of tameness does not imply
stronger notions of tameness.

Hint: For the second statement, notice that H0(E′,OE′)
Tr−→ H0(E,OE)

is zero by showing it is multiplication by p on k.

Exercise 7.12. Suppose that R ⊆ S is a finite extension of Noetherian do-
mains with R strongly F -regular. Suppose that T ∈ HomR(S,R) generates
HomR(S,R) as an S-module. Prove that T (S) = R.

Hint: Use Exercise 6.20 in Chapter 1

.





CHAPTER 6

Frobenius and connections with characteristic zero

In this chapter we study the relations between F -split, strongly F -
regular, F -rational and F -injective rings (as well as the test ideal and test
module), and their characteristic zero counterparts coming out of birational
algebraic geometry. This is summarized in the following diagram.

Kawamata
Log Terminal

ow '/
+3

��

Rational

+Gor.

x�

��

px &.
Strongly
F -Regular

+3

��

F -Rational

+Gor.

y�

��
Semi

Log Canonical
+3

go
Du Bois

+quasi-Gor.

ai
fn F -Split +3 F -Injective

+quasi-Gor.

\d

Multiplier
Ideals

ks +3 Test
Ideals

In the above diagram, the red arrows correspond to reduction modulo p,
which is the first topic of this chapter.

1. Reduction modulo p

Reduction to prime characteristic is an ancient technique, with roots
as old as the Chinese Remainder Theorem.1 In an undergraduate algebra
course, students learn how to verify that a monic polynomial with integer
coefficients is irreducible over Q by checking irreducibility after reducing its
coefficients modulo some prime. Much more substantially, there are im-
portant theorems about complex varieties, such as Mori’s Bend and Break
theorem [Mor79], whose proof relies on reduction to characteristic p.

1at least as old as the third century where its use appeared in the book Sunzi Suanjing
by the Chinese mathematician Sunz.

323
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In this section, we explain how one can view any algebraic variety2 over
a field of characteristic zero as one member of a family of related varieties
over fields of different finite characteristics, and how this can be used to
verify or understand basic geometric properties such as reducedness, Cohen-
Macaulayness, smoothness, etc.

1.1. The main idea in a simple case. Let us first discuss the idea
of reduction to characteristic p in its simplest setting. Given some finitely
generated Q-algebra RQ, we can choose a presentation

(1.0.1) RQ =
Q[x1, . . . , xn]

(f1, . . . , fm)

where, without loss of generality, the polynomials fi have integer coefficients.
Thus we can define a Z-algebra

(1.0.2) RZ =
Z[x1, . . . , xn]

(f1, . . . , fm)

together with the corresponding family of models

(1.0.3) SpecRZ −→ Spec Z

corresponding to the natural ring map Z −→ RZ. In this way, we can think of
RQ as just one of many of the different members (fibers) of this family: the
fiber over the generic point is our original "characteristic zero" affine scheme

SpecQ× SpecRZ = SpecRQ,

while the fiber over a closed point (p) ∈ SpecZ is the spectrum of the
characteristic p ring

(1.0.4) RFp := Fp ⊗Z RZ ∼=
Fp[x1, . . . , xn]

(f1, . . . , fm)
.

(Here, and elsewhere in this chapter, the notation fi denotes a polynomial
in Z[x1, . . . , xn], as well as its image in Q[x1, . . . , xn] and Fp[x1, . . . , xn],
depending on the context.)

The idea of "reduction to prime characteristic" is that, often, we can
infer nice properties of the generic fiber from the same—or perhaps some
analogous—nice property of most of the closed fibers.3

To see how this works in practice, we state and carefully prove the fol-
lowing theorem reflecting this general principle for the property of Cohen-
Macaulayness:

2or any finitely generated algebra
3We can not expect good properties to be inherited by all fibers in general. For

example, the algebra k[x, y, z]/(x3 + y3 + z3) is obviously quite special and different when
k has characteristic three than in any other characteristic, including characteristic zero.
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Theorem 1.1. Let RQ be a domain finitely generated over Q as in (1.0.1),
and let

(1.1.1) SpecRZ −→ Spec Z
be a family of models as in (1.0.3). Then the ring RQ is Cohen-Macaulay if
and only if, for all but finitely many p, the characteristic p model

(1.1.2) RFp := Fp ⊗Z RZ

is Cohen-Macaulay. In other words, the property of Cohen-Macaulayness for
fibers of the map (1.0.3) is open in SpecZ.

Before proving Theorem 1.1, we introduce a more uniform (and more
general) notation: for any finitely generated Z-algebra RZ and an arbitrary
ring L, let

RL := L⊗Z RZ.

Its spectrum can be considered as the fiber over the "point" SpecL −→
SpecZ. When L = Q or L = Fp, we recover the ring RQ or RFp above.

To prove Theorem 1.1, we use the fact that RL is Cohen-Macaulay if
and only if its dualizing complex ω q

RL
has non-trivial cohomology in exactly

one cohomological degree; see Lemma 3.14 in Appendix C. The point is
that we can construct a dualizing complex ω q

RZ
for the Z-algebra RZ with

the property that after inverting a single non-zero integer b, for all regular
Z[b−1]-algebras L, we have

(i) An isomorphism L⊗Z ω
q
RZ
∼= ω

q
RL

; and
(ii) The cohomology of the complex ω

q
RZ[b−1]

is free over Z[b−1], and

commutes with base change to L—that is, L⊗ZH
i(ω

q
RZ

) ∼= H i(ω
q
RL

)
for all i.

In particular, the dualizing complex Q ⊗Z ω
q
RZ

for RQ will have one non-
trivial cohomology group if and only if, for all primes p except possibly
those dividing the integer b, the dualizing complex

(1.1.3) Fp ⊗Z ω
q
RZ
∼= ω

q
RFp

has one non-trivial cohomology group. In other words, RQ is Cohen-Macaulay
if and only if RFp is Cohen-Macaulay for all but finitely many primes p.

Both points (i) and (ii) follow from the very important Lemma of Generic
Freeness, which we state in a simple case:

Lemma 1.2. Let A be a Noetherian domain, and let RA be a finitely gen-
erated A-algebra. For any finite set4 M1, . . . ,Mr of finitely generated RA

4equivalently, we can consider just one finitely generated RA-module M1 ⊕ · · · ⊕Mr
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modules, there exists a non-zero b ∈ A such that the RA[b−1]-modules

A[b−1]⊗AM1, . . . , A[b−1]⊗AMr

are free over A[b−1].

Assuming this lemma of generic freeness for a moment (see Theorem 1.8
for the proof), let us now prove Theorem 1.1.

Proof of Theorem 1.1. Let SZ be the polynomial ring Z[x1, . . . , xn]
so that RZ is the quotient of SZ by the ideal generated by f1, . . . , fm. Re-
membering that

ω
q
RZ = RHomSZ(RZ, SZ),

we construct an explicit (non-normalized) dualizing complex forRZ by taking
a free SZ-module resolution

F
q
Z := 0 −→ F−t −→ F−t+1 −→ . . . −→ F 0 −→ 0

of the SZ-module RZ by finitely generated free SZ-modules, and then apply-
ing the functor Hom(−, SZ). Thus

(1.2.1) ω
q
RZ = HomSZ(F

q
Z , SZ)

is a (non-normalized) dualizing complex for RZ.

Of course, for any flat map Z −→ L, base change produces

L⊗Z ω
q
RZ

∼=−→ HomL⊗SZ(L⊗Z F
q
Z , L⊗Z SZ) = HomSL(F

q
L , SL),

which is a (non-normalized) dualizing complex ω q
RL

for RL (provided that L
a regular domain5). But the residue map Z −→ Fp is decidedly non-flat, and
the natural map

(1.2.2) L⊗Z HomSZ(F
q
Z , SZ) −→ HomSL(F

q
L , SL)

is not necessarily isomorphism for an arbitrary base change Z −→ L.

On the other hand, if RZ is free over Z, then for any ring L, the complex
L⊗Z F

q
Z is a resolution of RL over SL—the point is that the relevant maps

in F q
Z are all split over Z in this case (see Exercise 1.1). Furthermore, if each

of the cohomology modules of the complex HomSZ(F
q
Z , SZ) is free over Z,

then the map (1.2.2) is an isomorphism for any L (again by Exercise 1.1).
Although we can not expect this freeness over Z to hold in general, by the
Lemma of Generic Freeness (Lemma 1.2), we can assume that there is a non-
zero integer b such that, after tensoring with Z[b−1], both RZ and each of
the cohomology groups of HomSZ(F

q
Z , SZ) are free over Z[b−1]. So the map

5or a Gorenstein domain, so that SL is Gorenstein; see Lemma 3.7 or Theorem 4.3 in
Appendix C
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(1.2.2) becomes an isomorphism if we replace Z by Z[b−1], or equivalently,
if we assume that b is invertible in L under the natural map Z −→ L.

When L is a field, the isomorphism (1.2.2) yields an isomorphism6

L⊗Z ω
q
RZ
∼= ω

q
RL

provided that b is invertible in L. In particular, for all primes p not dividing
b, we have

Fp ⊗Z ω
q
RZ
∼= ω

q
RFp

.

Futhermore, because each H i(ω
q
RZ

) becomes free over Z[b−1] after tensoring
with Z[b−1], the natural maps

L⊗Z H
i(ω

q
RZ) −→ H i(L⊗Z ω

q
RZ)

are isomorphisms for all Z[b−1]-algebras L and all indices i (Exercise 1.1 yet
again).

Now that we have created the desired complex ω q
RZ

satisfying (i) and (ii),
we conclude that for any field L, the rank of the free L-module H i(ω

q
RL

) is
independent of L, as long as b is invertible in L. In particular, H i(ω

q
RQ

) = 0

if and only if H i(ω
q
RFp

) = 0 for any p not dividing b. This shows that—
assuming the Lemma on Generic Freeness— the ring RQ is Cohen-Macaulay
if and only if RFp is Cohen-Macaulay for infinitely many p. �

Remark 1.3. Different presentations of R as a finitely generated Q-algebra
will produce different algebras RZ and perhaps different finite sets of primes
p for which the map (1.2.2) might fail to be an isomorphism. This does not
affect the proof of Theorem 1.1.

1.2. Adapting to finitely generated algebras over C. The reader
will easily discern that, other than defining the family of modules Z −→ RZ,
the fact that RZ is finitely generated over Z was not particularly essential in
the proof of Theorem 1.1. The entire argument adapts easily to any finitely
generated algebra over any field k of characteristic zero.

Indeed, given some finitely generated k-algebra Rk, we can choose a
presentation

(1.3.1) Rk =
k[x1, . . . , xn]

(f1, . . . , fm)

where the polynomials fi ∈ k[x1, . . . , xn]. Each of the finitely many poly-
nomials fi has finitely many coefficients λij from the field k. We can then

6As ω
q
R = RHomS(R,S) when S is Gorenstein; see Lemma 3.7 or Theorem 4.3 in

Appendix C
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define a finitely generated Z-algebra
(1.3.2) A = Z[{λij} | i = 1, . . . ,m] ⊆ k
so that the polynomials fi can be viewed as elements of the ring A[x1, . . . , xn].
This allows us to define a finitely generated A-algebra

(1.3.3) RA =
A[x1, . . . , xn]

(f1, . . . , fm)

together with the corresponding family of models

(1.3.4) SpecRA −→ Spec A

arising from the natural ring map A −→ RA. The base ring A is called a
coefficient ring for Rk.

Remark 1.4. The coefficient ring A may be assumed regular. Indeed, be-
cause the regular locus of a domain finitely generated over Z is a non-empty
open7 set, we can invert one element of A to get a regular ring. Then replac-
ing A by this localization, we can assume that A is regular.

Likewise, by adjoining the inverse of another non-zero element of A if
necessary, we may assume that RA is free over A (Lemma 1.2). In particular,
with no loss of generality, we may assume SpecRA −→ SpecA is a flat family.

As before, the base change A ↪→ k is flat, and the fiber over the "point"
Spec k −→ SpecA is the spectrum of the original k-algebra

k ⊗A RA = Rk.

For a maximal ideal µ ⊆ A, the base change A −→ A/µ is not flat, but as we
range over the different maximal ideals of A, we get finite fields of different
positive characteristics (see Exercise 1.6). Each closed fiber

A/µ⊗A RA
is a finitely generated algebra RA/µ over some finite field A/µ. Again, using
the Lemma of Generic Freeness, we easily prove:

Theorem 1.5. Let Rk be a domain finitely generated over a field k as in
(1.3.1), let A be a choice of coefficient ring for Rk as in (1.3.2), and let

(1.5.1) SpecRA −→ Spec A

be a family of models as in (1.5.1). Then the ring Rk is Cohen-Macaulay if
and only if for all µ in some open set of m-SpecA, the prime characteristic
model

(1.5.2) RA/µ := A/µ⊗A RA
is Cohen-Macaulay.

7This is because finitely generated Z-algebras are excellent [Sta19, Tag 07QW], so
their regular locus is open.

https://stacks.math.columbia.edu/tag/07QW
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The proof essentially the same as before:

Proof. With notation as above, assume without loss of generality that
the coefficient ring A is regular (Remark 1.4). Let F q

A be a free resolution
for RA as a module over SA = A[x1, . . . , xn]. Define the complex

(1.5.3) ω
q
RA

= HomSA(F
q
A , SA),

which is a (non-normalized) dualizing complex for RA (by Lemma 3.7 or The-
orem 4.3 in Appendix C). By the Lemma of Generic freeness (Lemma 1.2),
there is some non-zero b ∈ A so that RA and the cohomology of ω q

RA
become

free over A[b−1] after the base change to A[b−1]. Then, arguing exactly as
in the proof of Theorem 1.1, it follows that for all regular A[b−1]-algebras L,
there are natural isomorphisms

(1.5.4) L⊗A H i(ω
q
RA

) −→ H i(L⊗A ω
q
RA

) −→ H i(ω
q
RL

)

for all indices i ≥ 0 (the key is Exercise 1.1 yet again). Furthermore, since
H i(ω

q
RA[b−1]

) is free over A[b−1], the rank of H i(ω
q
RL

) is independent of L.
In particular, since we can take L = k, the dualizing complex ω

q
Rk

of Rk
has one non-trivial cohomology group if and only if the dualizing complex
of RA/µ has one non-trivial cohomology group for all µ ∈ m- SpecA in the
open set of maximal ideals not containing b. �

Remark 1.6. The coefficient ring A is highly non-unique—a different choice
of presentation produces a different A; furthermore, we can always enlarge
A by adjoining finitely many additional elements of k. None-the-less, if
Rk is Cohen-Macaulay, our proof shows that, regardless of the choice of
A, for an open set of maximal ideals µ ∈ SpecA, the prime characteristic
model RA/µ is Cohen-Macaulay as well, and conversely. In particular, there
will be infinitely many different prime numbers p for which there exists a
characteristic p model of Rk that is Cohen-Macaulay if and only if Rk itself
is Cohen-Macaulay (see Exercise 1.4).

1.3. Modeling and flattening other features to prove other prop-
erties. Let k be a field of characteristic zero, and let Rk be a finitely gener-
ated k-algebra. We saw how to check Cohen-Macaulayness of Rk by viewing
Rk as just one member of a flat family over some mixed characteristic base
A over which sufficiently many relevant associated objects are free. More
precisely, we created a family of models where, not only was the ring Rk
"modeled" by some flat family A −→ RA, but also some extra data—namely,
the dualizing complex ω q

Rk
— was modeled over A. We deployed the Lemma

of Generic Freeness to assume that (after inverting an element of A, if nec-
essary) the relevant maps in the complex ω q

RA
all split over A, so that for

every point P of SpecA, the base change to the residue field κ(P ) of P

κ(P )⊗A ω
q
RA
→ ω

q
Rκ(P )
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is an isomorphism and the cohomology commutes with base change. In par-
ticular, by restricting to closed points in SpecA, we get prime character-
istic models of the entire set-up for infinitely many different characteristics
p.

In other contexts, we may want to model different features—such as a
resolution of singularities, say—of a variety over a field of characteristic zero,
or some map between cohomology groups. In various contexts, we may want
to model finite-type information such as:

(a) a finite collection of ideals of Rk;
(b) a finite collection of finitely generated algebras over k, together with

finitely many maps between them and/or finitely many ideals in
them;

(c) a finite collection of projective schemes over these finitely generated
k-algebras, and finitely many closed subschemes in them.

(d) a finite collection of finitely generated Rk-modules and finitely many
maps between them.

(e) a finite collection of coherent sheaves of modules on the finitely many
projective schemes in (c), as well as finitely many maps between
them.

Because all the objects above are described in terms of finite-type infor-
mation, we can model them (simultaneously!) over some finitely generated
Z-algebra A: we simply adjoin all the elements of k needed to describe a
presentation for Rk as well as generators of the ideals in (a), presentations
for the algebras and maps in (b), the graded algebras defining the projective
schemes in (c) as well as the homogeneous ideals defining the subschemes,
presentations for the modules and maps in (d), and presentations for the
finitely generated graded modules and maps between them for the coherent
sheaves in (e). All this can be done with finitely many elements from k.

For example, say that Mk is a finitely generated module over Rk. Fix a
presentation

RNk
α−→ Rdk −→Mk −→ 0

where αk is a d×N matrix with entries in Rk. Adjoining enough elements
of k to A to describe (polynomials representing) the entries of α, we can
consider the entries of α to be in RA. Define MA be the cokernel of the map

RNA
α−→ RdA,

inverting an element of A (if needed, by Lemma 1.2) to make MA free over
A. Base change to k recovers the original moduleMk over Rk, where as base
change to A/µ for some maximal ideal µ of A produces a module MA/µ over
RA/µ—a characteristic p model of Mk.
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In the presentations of the objects (a) through (e) above we need to
refer only finitely many elements of k. So throwing them all into A, we can
construct a finitely generated Z-algebra A contained in k, together with a
finitely generated flat8 A-algebra RA and

(i) a finite collection of ideals of RA;
(ii) a finite collection of finitely generated algebras over A, together with

finitely maps between them and/or finitely many ideals in them;
(iii) a finite collection of projective schemes over these finitely generated

A-algebras, and finitely many closed subschemes in them.
(iv) a finite collection of finitely generated RA-modules and finitely many

maps between them.
(v) a finite collection of coherent sheaves of modules on the finitely many

projective schemes in (c), as well as finitely maps between them.

Notation 1.7. We indicate the original objects over k with the subscript
k—Rk, Tk, Mk, πk, etc—and the corresponding objects over A with the
subscript A—RA, TA, MA, πA, etc. We refer the objects over A as a family
of models for the original objects or say that they are spread out to
mixed characteristic from the original objects over k. For any A-algebra
L, we denote the base change to L (that is, the result of applying the functor
L⊗A −) with the subscript L—RL, TL, ML, πL, etc. When L is the residue
field of a maximal ideal of A, we will call these objects reductions to prime
characteristic of the original objects over k.

Replacing A by its localization at one nonzero element, we may assume
that A is regular. The base change A −→ k is flat and in all cases above,
recovers the original collection of objects and data. Furthermore, we may
assume that all the objects and cokernels of maps are free over A by Generic
Freeness. To get this A-freeness in (1.1) in the discussion after Theorem 1.1,
we need the following stronger form of Generic Freeness:

Theorem 1.8 (Hochster-Roberts Generic Freeness). Let A be a Noetherian
domain. Let RA −→ TA be a map of finitely generated A-algebras, and sup-
pose EA is a finitely generated TA-module. Let MA be a finitely generated
RA-submodule of EA and let NA be a finitely generated A-submodule of EA.
Let DA = EA/(MA + NA). Then there is a non-zero element a ∈ A such
that A[a−1]⊗DA is a free A[a−1]-module.

Proof. See [Mat89, Thm 24.1] �

Remark 1.9. Enough freeness over A implies that kernels and cohomology
commute with arbitrary base change. For example, modeling an ideal Jk ⊆
Rk with the ideal JA ⊆ RA, we can assume that the cokernel is free over A,

8in fact free!
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so the inclusion JA ↪→ RA splits over A. Thus tensoring with any A-algebra
L, the map

L⊗A JA ↪→ L⊗A RA
also splits over A, and in particular is injective. In particular, we can identify
L⊗AJA = JL with an ideal in L⊗ARA = RL. Likewise, it is easy to see that
cohomology commutes with base change in the presence of enough freeness;
see Exercise 1.1.

When we have modeled a collection of data in this way, we call the map
A −→ RA a family of prime characteristic models for the data. All
objects in our data are defined over A and can be assumed free over A,
courtesy of Generic Freeness (Theorem 1.8).

Remark 1.10. We can freely adjoin more elements to A if we discover we
need them to model some additional auxiliary (finite-type) objects in the
course of our study. By Generic Freeness, we can assume all objects are free
over A and all cokernels of maps are free over A after inverting finitely many9

elements of A.

Remark 1.11. Each time we invert an element of A to guarantee some
freeness, we are effectively choosing a smaller open subset of m-SpecA since
m-SpecA[a−1] ⊆ m-SpecA is an open dense set.

1.4. Some technical lemmas. We record some of the technical steps
we used in the proof of Theorem 1.5 for future reference.

Lemma 1.12. Let A be a Noetherian domain, and let RA be a finitely gen-
erated A algebra. Given a map φA : MA −→ NA of finitely generated RA-
modules, or of finitely generated A-algebras, there exists non-zero b ∈ A such
that the following are equivalent

(a) The map φA[b−1] is injective (resp. surjective);
(b) The map φL is injective (resp. surjective) for every A[b−1]-algebra

L.

Proof. This follows easily from the lemma of Generic freeness (Lemma 1.2).
The stronger version (Theorem 1.8) is needed for the statement about the
surjectivity of algebra maps, since the cokernel of an algebra map is typically
not an finitely generated module over a finitely generated A-algebra. �

The following corollary is immediate:

9inverting several elements of A is the same as inverting their product
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Corollary 1.13. Let k be a field of characteristic zero and let Rk be a finitely
generated k-algebra. Suppose that

0 −→Mk −→ Nk −→ Qk −→ 0

is a sequence of Rk modules. This sequence is exact, if and only if, after
spreading out to mixed characteristic, there exists a dense open set U ⊆
m- SpecA such that the induced

0 −→MA/µ −→ NA/µ −→ QA/µ −→ 0

is exact for all µ ∈ U .

This corollary comes up often because of the following fact, again cour-
tesy of Generic Freeness:

Lemma 1.14. Let A be a Noetherian domain, and let RA be a finitely gen-
erated flat A-algebra. Let MA be a coherent sheaf, flat over A, on a flat
A-scheme XA projective over SpecRA. Then there is a non-zero b ∈ A such
that the natural maps

L⊗A H i(XA,MA) −→ H i(XL,ML)

are isomorphisms for every A[b−1]-algebra L. In particular,

A/µ⊗A H i(XA,MA) ∼= H i(XA/µ,MA/µ)

for all maximal ideals µ in a dense open set of SpecA.

Proof. Since XA −→ SpecRA is proper, the cohomology modules are
finitely generated over RA. So H i(XA,MA) is finitely generated over RA,
and can be assumed free over A (after inverting an element of A) by the
Lemma of Generic Freeness. The module H i(XA,MA) can be computed
from the Čech complex for a finite cover of XA by open affine sets. If U is an
open affine subset of XA, then each MA(U) is a finitely generated module
over the ring OXA(U), which is a finitely generated A-algebra since XA has
finite type over A. Thus the Čech complex for a finite affine cover computing
H i(XA,MA) consists of finitely many modules, each finitely generated over
a finitely generated A-algebra, as its terms are direct sums of finitely many
terms of the form MA(U) for different open affine sets U . Since there are
only finitely many in total, we can invert one element of A to assume that all
are free over A, by the Lemma of Generic Freeness. The desired isomorphism
now follows from Exercise 1.1. �

Corollary 1.15. Let k be a field of characteristic zero, and let Rk be a
finitely generated k algebra. Fix a projective scheme Xk over SpecRk, and
let Mk be a coherent sheaf on Xk. Then H i(Xk,Mk) = 0 if and only if, after
spreading out to mixed characteristic, there is a dense open set of maximal
ideals µ of the coefficient ring A such that the prime characteristic model
H i(XA/µ,MA/µ) is zero.
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We proved carefully that Cohen-Macaulayness can be checked by re-
duction to positive characteristic. The next proposition summarizes many
properties—well beyond Cohen-Macaulayness— that can be checked by re-
duction to characteristic p:

Proposition 1.16. Let k be a field of characteristic zero and let Rk be a
finitely generated k algebra. Choose any finitely generated Z-algebra A over
which Rk is defined, so that Rk ∼= RA ⊗A k. Then Rk satisfies any of the
following properties if and only, for a dense set of maximal ideals µ ∈ SpecA,
the ring RA/µ has the same property:

(a) is reduced;
(b) is regular;
(c) is normal;
(d) is Cohen-Macaulay;
(e) satisfies Serre’s Sn condition;
(f) is Rn, meaning that the localization at each height n prime is regular;
(g) is unmixed;10.
(h) is geometrically integral;11.
(i) SpecR is geometrically connected;12.
(j) is quasi-Gorenstein;13 (respectively Gorenstein).
(k) is normal and Q-Gorenstein of index m.
(l) has dimension m.

Proof. Invert a single non-zero element of A to assume that RA is flat
over A. Likewise, assume that A is regular and has trivial class group. Thus
without loss of generality, A has all of the listed properties (except the one
about dimension).

For statement (l) on dimension: see [Sta19, Tag 05F7].

Now let P be one of the properties (a) through (k), say P, listed above.
We use the fact that if A −→ RA is a flat finite-type map of Noetherian rings,
the set

(1.16.1) {Q ∈ SpecA | the fiber ring k(Q)⊗A RA has property P}

is a constructible subset of SpecA. See [GW10, Appendix E] for list of
properties, including (a) through (k) for which this holds, together with

10Meaning that every associated prime is minimal
11A ring finitely generated over a field L is geometrically integral if R⊗LL is a domain

where L is the algebraic closure of L
12A scheme of finite type over a field L is geometrically connected if Spec(R⊗L L) is

connected.
13This means that KR is Cartier, or in other words that R(KR) is locally free. Recall

that a ring is Gorenstein if it is Cohen-Macaulay and quasi-Gorenstein.

https://stacks.math.columbia.edu/tag/05F7
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precise references to EGA where they are proved. Only property (k) is not
on that list; this is left as an exercise for the reader Exercise 1.12.

Now, a constructible subset of an integral scheme is dense if and only
if it contains the generic point, or equivalently, if and only if it contains
an open set [Sta19, Tag 005K]. And because finitely generated Z-algebras
are Jacobson, any dense subset contains a dense subset of m-SpecA. Thus
property P holds for the generic fiber RK(A) (where K(A) is the fraction field
of A) if and only if P holds for a dense set of closed fibers—that is, for a
dense set of characteristic p models.

It remains only to check that the generic fiber RK(A) has property P if
and only if Rk does. All of the properties are preserved by faithfully flat base
change, so all "ascend" from RK(A) to Rk ∼= RK(A) ⊗K(A) k. Likewise, again
using that RK(A) ↪→ Rk is faithfully flat, all of the properties P "descend"
from Rk to the generic fiber RK(A). For references, see [Sta19, Tag 033D]
when P is one of the properties reduced, Cohen-Macaulay and Sn, regular,
Rn or normality. When P is geometrically connected or geometrically inte-
gral, this is part of the definition as K(A) ⊆ k is a field extension. When P
is quasi-Gorenstein or Q-Gorenstein, this follows from the fact the canoni-
cal module, and its reflexive powers, commute with this base change. For
unmixedness, see [Sta19, Tag 0CUB]. �

Remark 1.17. In fact, the properties properties (a)-(f),(j),(k) can all be
assumed to hold for RA, after replacing A by a localization at a single non-
zero element. For most of these properties, this can even be directed deduced
from the positive characteristic models. Indeed, inverting one more element
of A if needed, we may assume that A is regular (and so isP) and furthermore
that all fibers have property P. Now since the base and fibers of the flat
map SpecRA −→ SpecA have property P, we can conclude that the total
space SpecRA does too. For a reference, see [Sta19, Tag 0339] for Sn and
[Sta19, Tag 033A] for Rn, whence the statements for normality (which is
R1 and S2), regularity (which is Rn for all n) and reducedness (which is R0

and S1) all follow.

Remark 1.18. See Exercise 1.11 below for an example illustrating the need
for the "geometric" hypothesis in in (h) and (i).

1.5. Reducing a local ring to characteristic p > 0. Let k be a
field of characteristic zero. Suppose that (D,m) is a local ring obtained by
localizing a finitely generated k-algebra Rk at a maximal ideal mk. We can
spread out the pair (Rk,mk) to mixed characteristic to get an ideal mA in the
A-algebra RA. The ideal mA is prime but not maximal, since RA/mA

∼= A.

Note that for some µ ∈ m-SpecA, we may have that mA + µ = RA. On
the other hand for most µ ∈ m-SpecA, since R/m has dimension 0 and is

https://stacks.math.columbia.edu/tag/005K
https://stacks.math.columbia.edu/tag/033D
https://stacks.math.columbia.edu/tag/0CUB
https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/033A
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reduced, the ring RA
mA+µ is dimension zero and is reduced Proposition 1.16

(a). Thus mA + µ is a finite intersection of maximal ideals. If Rk/mk is
geometrically integral over k, then most mA +µ consist of just one maximal
ideal Proposition 1.16 (h).

Now defining the DA/µ to be the semi-local (or local as appropriate) ring
RA/µ localized at mA/µ = mA + µ. This is a prime characteristic model of
the local ring D.

1.6. Dense and open F -type and choice of model. Consider a fam-
ily of prime characteristic models A −→ RA for a ring Rk finitely generated
over a field k of characteristic zero.

An interesting phenomenon occurs when the closed fibers satisfy a property—
such as strong F -regularity— that does not make sense in characteristic 0.
This leads to the following definition.

Definition 1.19. Suppose that P is a property of Noetherian rings of prime
characteristic (such as Frobenius splitting, strong F -regularity, F -rationality
or F -injectivity). The characteristic zero ring Rk is said to have dense P
type if, for some family of prime characteristic models A −→ RA, there exists
a dense subset T ⊆ m-SpecA such that RA/µ has property P for all µ ∈ T .

Similarly, the ring Rk has open P-type if there exists a dense open
subset U ⊆ m- SpecA such that RA/µ has property P for all µ ∈ U .

Example 1.20. Let RC = C[x, y, z]/(x3 + y3 + z3). The obvious family of
prime characteristic models is the Z-algebra RZ = Z[x, y, z]/(x3 + y3 + z3).
Reducing modulo p—that is, looking at the closed fibers—we have the Fp-
algebras RFp = Fp[x, y, z]/(x3 + y3 + z3). Because we have seen that for
any finite field L, the algebra RL is Frobenius split when p is congruent to 1
modulo 3 but not when p is congruent to 2 modulo 3, the ring RC is dense
Frobenius split type but not open Frobenius split type. See Subsection 1.1.1
in Chapter 4.

Remark 1.21. If Rk has dense F -rational or dense strongly F -regular type,
then Rk is normal and Cohen-Macaulay by Proposition 1.16, and the fact
that F -rational and strongly F -regular rings are always normal and Cohen-
Macaulay. See Theorems 4.30 and 7.4 in Chapter 1.

Likewise, we have the following global definitions for schemes Xk over a
field k on characteristic zero.

Definition 1.22. Suppose that P is a property of schemes of characteristic
p > 0 (such as being globally Frobenius split or globally F -regular). We
say that Xk has dense P type if for some choice of positive characteristic



1. REDUCTION MODULO p 337

models XA −→ SpecA, there exists a dense subset T ⊆ m-SpecA such that
XA/µ has property P for all µ ∈ T .

Similarly, Xk has open P-type if there exists a dense open subset U ⊆
m- SpecA such that XA/µ has property P for all µ ∈ U .

One can also make definitions for pairs (X,∆) or (R, at), analogously.

1.7. Independence of model. The choice of family of models is highly
non-unique. We may begin by forming RA over A but later discover we
need to enlarge A. Or, we might have two apparently unrelated mixed
characteristic models for Rk.

Fortunately, for the properties we study, whether or not a finite type
scheme or variety of characteristic zero has dense (or open) P type is inde-
pendent of the choice of family of models used to model it:

Proposition 1.23. Fix a characteristic zero field k, and let Rk be a finitely
generated k-algebra. Suppose that A1 and A2 are two different finitely gen-
erated Z-algebras contained in k that each are the base of a free family of
models A1 −→ RA1 and A2 −→ RA2 for Rk. Let P be one of the properties
strongly F -regular, Frobenius split, F -injective or F -rational. Then a dense
(respectively, open) set of fibers of A1 −→ RA1 has property P if and only if
a dense (respectively, open) set of fibers of A2 −→ RA2 has property P.

Proof. Let A ⊆ k be the finitely generated Z-algebra A1[A2] (equiva-
lently, A2[A1]) obtained by adjoining to Z the union of the two finite sets
of elements in k used to construct A1 and A2. By Generic Freeness, for
i = 1, 2, we may assume (after adjoining the inverse of some element of Ai
Theorem 1.8) that A is free over Ai and the map Ai ↪→ A splits over Ai. So

RAi ↪→ A⊗Ai RAi = RA

is split injective (and free) as well. Because RAi is free over Ai, also RA
is free over A. It suffices to show that a dense (respectively open) set of
the fibers of Ai −→ RAi have property P if and only if a dense (respectively
open) set of the fibers of A −→ RA have property P.

For any µ ∈ m-SpecA, let µi be its contraction µ∩Ai to m-SpecAi. The
induced map

Ai/µi ↪→ A/µ

is a finite separable extension of fields (as both are finite fields). So tensoring
over Ai with RAi ,

Ai/µi ⊗Ai RAi ↪→ A/µ⊗Ai RAi ∼= A/µ⊗A (A⊗Ai RAi) ∼= A/µ⊗A RA
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produces a split finite étale extension

RAi/µi ↪→ RA/µ.

Thus for any of the properties P (strong F -regularity, Frobenius splitting,
F -rationality, or F -injectivity), the ring RAi/µi has property P if and only
if RA/µ has property P. See Proposition 5.8 and Exercise 5.11 in Chapter 1,
as well as Exercise 1.15 and Exercise 1.16.

Finally, the inclusion Ai ↪→ A of finitely generated Z-algebras induces
a map SpecA −→ SpecAi whose image is constructible and dense since the
zero ideal contracts to the zero ideal. So the image contains an open set of
SpecAi. As both rings are finitely generated over Z, there is an induced map

m-SpecA −→ m-SpecAi

whose image contains an open set as well []. It follows that dense (respec-
tively, open) P type for our family of models over Ai is the same as having
dense (respectively, open) P type for our family of models over A. Thus the
condition that a k-algebra Rk has dense (or open) P-type is independent of
the choice of models. �

1.8. Exercises.

Exercise 1.1. Let P q be right bounded complex of (not necessarily finitely
generated) free modules over some commutative ring A

. . . P−t
∂t−→ P−t+1 ∂−t+1

−−−−→ . . .
∂−2

−−→ P 1 ∂−1

−−→ P 0 −→ 0

with the property that H i(P
q
) are free for all i. Then for any commutative

A-algebra L, the natural maps

(1.23.1) L⊗Z H
i(P

q
)
∼=−→ H i(L⊗Z P

q
)

are isomorphisms for all i ≥ 0.

Hint: Induce on i and use the fact that the complex breaks up into short
exact sequences

0 −→ ker ∂i −→ P i −→ im ∂i −→ 0 and 0 −→ im ∂i+1 −→ ker ∂i −→ H i(P
q
) −→ 0.

Exercise 1.2. Let RZ be a homomorphic image of the polynomial ring
SZ = Z[x1, . . . , xn], and suppose that F q

Z is a free resolution of RZ as an SZ-
module. Assuming that Z[b−1]⊗Z RZ is a free Z[b−1]-module, show that for
any commutative Z[b−1]-algebra L, the complex L⊗Z F

q
Z is a free resolution

of RL as an SL-module (where SL = L[x1, . . . , xn] and RL = L⊗Z RZ).

Hint: Use Exercise 1.1.
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Exercise 1.3. Let RZ be a homomorphic image of the polynomial ring
SZ = Z[x1, . . . , xn], and suppose that F q

Z is a free resolution of RZ as an
SZ-module. Suppose that both RZ and the cohomology of the complex

HomSZ(F
q
Z , SZ)

become free (over Z[b−1]) after tensoring with Z[b−1]. Prove that the natural
map

(1.23.2) L⊗Z HomSZ(F
q
Z , SZ) −→ HomSL(F

q
L , SL)

is an isomorphism for all Z[b−1]-algebras L. Deduce that for all p not dividing
b,

Fp ⊗Z ω
q
RZ
∼= ω

q
RFp

.

Hint: Use Exercise 1.1 and Exercise 1.2.

Exercise 1.4. Let A be a domain finitely generated over Z and contained
in a field k of characteristic zero. Prove that if U is a non-empty open set of
maxSpecR, then among the fields {A/µ | µ ∈ U}, there are fields of every
positive characteristic p except for finitely many p.

Hint: For b ∈ A \ {0}, consider bA ∩ Z.

Exercise 1.5. Let M be a non-zero finitely generated module over a Noe-
therian ring. Prove that for all but finitely many primes p, M is a p-torsion
free Z-module.

Hint: Use the fact that M has finitely many associated primes in R.

Exercise 1.6. Let A be a finitely generated Z-algebra. Prove that if µ ⊆ A
is a maximal ideal, then the residue field A/µ is finite. Conversely, prove
that if Q ∈ SpecA has a finite residue field, then Q is maximal.

Exercise 1.7. With notation as in Notation 1.7, suppose that Ri is a finite
S-algebra (in other words, that Ri is finite as an S-module). Show that we
may also choose RA,i to be a finite SA-algebra.

Hint: Make sure to choose, among the relations presenting RA,i, monic
relations that make each algebra generator integral of RA,i integral over SA.

Exercise 1.8. With notation as in Notation 1.7, prove that ifM is a locally
free R-module of finite rank then we can spread it out to a locally free RA-
module MA (possibly enlarging A if necessary) and then base change to
obtain RA/µ-modules MA/µ. Further show that we may assume that the
MA/µ are locally free for all µ ∈ U , a dense open subset of m- SpecA.
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Exercise 1.9. With notation as in Notation 1.7 suppose that R is a domain
and M is a finitely generated Cohen-Macaulay R-module. Show that we
may spread out M to a Cohen-Macaulay RA-module MA.

Exercise 1.10. With notation as in Notation 1.7, suppose that 0 −→ L −→
M −→ N −→ 0 is a short exact sequence of finitely generated R-modules.
Show we may spread out these modules and maps between them to a short
exact sequence 0 −→ LA −→ MA −→ NA −→ 0 of finitely generated modules
over RA.

Exercise 1.11. Consider R = Q[x]/(x2 +1) and observe that R is a domain
(although it not geometrically a domain over Q). Show that we may take
A = Z in such a way that the reduction modulo p fibers, RFp is not a domain
(in fact not even connected), for a dense set of (p) ∈ m-SpecZ.

Exercise 1.12. With notation as in the section, show that RA/µ is quasi-
Gorenstein for a Zariski-dense set of µ ∈ m-SpecA if and only if Rk is
also quasi-Gorenstein. More generally, show that m is an integer such that
mKRA/µ is Cartier for all µ ∈ U a Zariski-dense subset of m-SpecA if and
only if mKRk is Cartier in characteristic zero. This finishes the proof of
Proposition 1.16.

Hint: A slick way to deal with this it to show that the R-module M
is locally free of rank 1 if and only if the map M ⊗R HomR(M,R) −→ R
induced by m ⊗R φ 7→ φ(m), is an isomorphism. To show this fact, work
locally.

Exercise 1.13. With notation as in the section, suppose that RA/µ is semi-
normal for a dense set of µ ∈ m-SpecA. Show that Rk is seminormal. See
Chapter 1 Exercise 4.14 for a brief introduction to seminormality or see the
exercises later in this chapter for a more complete introduction, in particular
see Definition 5.19.

Hint: If R is not seminormal, then there exists a finite ring extension
R ⊆ S = R[x] ⊆ K(R) where x2, x3 ∈ R.

Exercise 1.14. Suppose that (D,mD) is a local ring of essentially finite
type over a field of characteristic zero obtained by localizing a finitely gen-
erated k-algebra at a maximal ideal. Recall we may reduce this local ring
to characteristic p > 0 as in Subsection 1.5. Show that the following are
equivalent.

(a) D is Cohen-Macaulay.
(b) DA/µ is Cohen-Macaulay for a dense set of µ ∈ m- SpecA.
(c) DA/µ is Cohen-Macaulay for an open dense set of µ ∈ m-SpecA.

Exercise 1.15. Suppose that Xk is a variety of finite type over a perfect
field k of characteristic p > 0 and that k ⊆ K is a finite extension. Show
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that Xk is F -rational (respectively F -injective) if and only if the base change
XK = Xk ×k K is F -rational (respectively F -injective). In fact, show that
we may canonically identify τ(ωXk)⊗k K with τ(ωXK ).

Hint: Assume X = SpecR is affine. For the F -rational case, since
k perfect, kp ∼= k. Use this to show that the base change of Frobenius
R −→ F∗R can be identified with R′ −→ F∗R

′ and the deduce that the map
T : F∗ωR −→ ωR base changes to T : F∗ωR′ −→ ωR′ . Finally use a common
strong test element.

Exercise 1.16. Suppose that X is a normal variety of finite type over a
perfect field k of characteristic p > 0, that ∆ ≥ 0 is aQ-divisor onX and that
k ⊆ K is a finite extension. Show that X is strongly F -regular (respectively
locally F -split) if and only if the base change (XK ,∆K) is strongly F -regular
(respectively locally F -split). In fact, show that τ(X,∆)⊗kK is canonically
identified with τ(XK ,∆K).

Hint: Again assumeX is affine. Show that the formation of HomR(F e∗R,R)
commutes with our base change (likewise with the divisorial version).

2. Resolution of singularities and rational singularities

Thanks to Hironaka’s Fields medal-winning work [Hir64], resolution sin-
gularities for complex varieties is now a well-known tool. In this section, we
recall the definitions of several variants of resolution of singularities. We also
discuss rational singularities— singularities which, cohomologically at least,
are negligible in the sense that they can be replaced by a resolution with
little consequence.

2.1. Resolution of singularities. We recall three variants— resolu-
tions, embedded resolutions, and log resolutions— of singularities.

Definition 2.1. Let X be a reduced Noetherian scheme. A resolution of
singularities of X is a proper birational14 map π : Y −→ X with Y a
regular scheme.15

We say that π is strong resolution of singularities if π is an isomor-
phism over the regular locus of X.

Caution 2.2. There are schemes—even one dimensional schemes of charac-
teristic zero— that do not admit resolutions of singularities. For example,

14Birational means that π induces a bijection on components, and for each component
Yi of Y , the restriction π|Yi : Yi −→ Xi is birational, meaning an isomorphism at the generic
point.

15meaning each stalk is a regular local ring.
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in Caution 2.4 in Chapter 1, we constructed a one dimensional Noether-
ian domain R whose normalization R̃ was not finite. The scheme SpecR
therefore cannot admit a resolution of singularities, because by the uni-
versal property of normalization, any such resolution would factor through
Spec R̃ −→ SpecR, which is not proper [Sta19, Tag 01WN].

Example 2.3. Every excellent reduced Noetherian scheme of dimension one
admits a resolution of singularities, namely, its normalization. Note that
by definition, normalization of an excellent scheme is finite, hence proper,
eliminating the pathology of Caution 2.2.

Remark 2.4. If π : Y −→ X is a proper birational map, then the locus
of points of Y where π fails to be an isomorphism is a closed set, called
the exceptional set of π, and denoted Eexc. Note that if π is a strong
resolution, then π(Eexc) is the singular set of X. Typically, for us, this set
will be a divisor, in which case it is called the exceptional divisor.

Embedded resolutions resolve (certain) subschemes of X:

Definition 2.5. LetX be a reduced Noetherian scheme, and suppose Z ⊆ X
is a reduced closed subscheme X, none of whose components are contained
in the singular locus16 of X. A map π : Y −→ X is an embedded resolu-
tion of singularities of Z in X if π is a resolution of singularities of X
which, when restricted to the strict transform Z̃ of Z, induces a resolution
of singularities π|

Z̃
: Z̃ −→ Z of Z.

Finally, log resolutions resolve collections of closed subschemes—typically
divisors— on X:l

Definition 2.6. Let X be a reduced Noetherian scheme, and {Z1, . . . , Zn}
a finite collection of closed subschemes. A log resolution of (X,Z1, . . . , Zn)
is a resolution of singularities π : Y −→ X such that

(a) the locus of points in Y where π is not an isomorphism— the ex-
ceptional set E of π— is a simple normal crossings divisor;17

(b) the scheme theoretic inverse image π−1(Zi) of each closed subscheme
is a divisor with simple normal crossing support; and

(c) The sum of all the divisors in (a) and (b) form a divisor on Y with
simple normal crossing support.

16equivalently, such that X is non-singular at each of the generic points of Z
17This means that it is a divisor whose irreducible components are non-singular, and

at any point where two or more components intersect, the equations defining the irre-
ducible components of the divisor are a product of part of a regular system of parameters
(part of minimal set of generators of the maximal ideal). In particular, these intersections
are all non-singular as well.

https://stacks.math.columbia.edu/tag/01WN
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Remark 2.7. If π is a projective log resolution—meaning that the log reso-
lution π is a projective morphism—then π is given by blowing up some sheaf
of ideals J ⊆ OX . In this case, the expansion JOY has the form OY (−G) for
some effective divisor G on Y which has simple normal crossing support and
contains all the components of the exceptional divisor. Note that the sup-
port of G also has normal crossings with the support of sum of the divisors
in the π−1(Zi).

Caution 2.8. If Z is a reduced divisor and X is normal, then any log resolu-
tion of (X,Z) will obviously be an embedded resolution of the subscheme Z
in X. However, if Z is not a divisor, then a log resolution of (X,Z) is never
an embedded resolution of singularities: in this case, π is not an isomorphism
over the generic points of Z. See, however, Exercise 2.2.

The three variants of resolutions of singularities are closely related. For
example, if π : Y −→ X is an embedded resolution of some irreducible closed
scheme Z whose exceptional set is a simple normal crossing divisor, then
blowing up the proper transform of Z produces a log resolution of (X,Z),
provided the newly created exceptional divisor has normal crossings with
the (proper transform of) the previous exceptional divisor. Conversely, em-
bedded resolutions can often be constructed from log resolutions; see Exer-
cise 2.2. See also Exercise 2.1.

All three types of resolutions of singularities were understood to exist for
complex surfaces (complex varieties of dimension two) by the Italian school
of algebraic geometry in the early twentieth century.18 By mid-century,
Hironaka had addressed the issue completely for varieties of characteristic
zero in any dimension:

Theorem 2.9. [Hir64] Let X be a reduced scheme essentially of finite type
over a field of characteristic zero. Then

(a) X admits a strong resolution of singularities π, with π projective;
(b) Any reduced closed subscheme Z of X admits an embedded resolution

of its singularities π, with π projective; and
(c) Any finite collection of closed subschemes {Z1, . . . , Zn} of X admits

a projective log resolution of singularities.

Hironaka’s proof shows that such resolutions can be constructed by a
carefully chosen sequence of blow ups along non-singular subvarieties. Sim-
plified presentations of his proof can be found in [BM97, BEV05, Wło05,
Kol07] among other sources, also cf. [dJ96, AdJ97, BP96] for other
proofs.

18settled definitely by Walker [Wal35] and Zariski [Zar39a]
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2.2. Resolving Q-divisors. There is an important variant of log res-
olutions for Q-divisors on normal varieties:

Definition 2.10. Let X be a normal variety and Γ a Q-Cartier Q-divisor on
aX. A log resolution of the pair (X,Γ) is a proper birational map π : Y −→
X, with Y non-singular, such that, picking any natural number n so that nΓ
is a Cartier divisor, the divisor π∗nΓ has simple normal crossings support
and its union with the exceptional set is also in simple normal crossings.

The existence of log resolutions as in Definition 2.10—at least for varieties
of characteristic zero— follows from the existence of log resolutions as defined
in Definition 2.6. The details are worked out in Exercise 2.5.

Often, one encounters a pair (X,∆) where ∆ is a Q-divisor such that
Γ = KX + ∆ is Q-Cartier. In this case, a log resolution of (X,∆) is
a log resolution of (X,Γ), provided that KX and ∆ have disjoint support
(otherwise, if Supp ∆ 6⊆ Supp(KX + ∆) we also require that the strict trans-
form π−1

∗ ∆ of ∆ has simple normal crossing support, and its union with the
exceptional set has simple normal crossings support).

Remark 2.11. Resolutions of singularities (and their various variants) are
expected to exist quite generally, including prime characteristic, under mild
conditions. Indeed, Grothendieck introduced the notion of excellence as no-
tion of well-behaved rings, and suggested it may be the setting for the exis-
tence of resolutions of singularities for reduced Noetherian schemes. Indeed,
he showed that existence of resolution of singularities for schemes of finite
type ove X implies the quasi-excellence19 of X [Gro65, Proposition 7.9.5
and Remarque 7.9.6].

Hironaka’s proof shows that resolution of singularities exists for schemes
of finite type over a complete local reduced ring containing Q [Hir64].
Later, Temkin wrote down proofs that resolutions exist for schemes of fi-
nite type over quasi-excellent reduced schemes of equicharacteristic zero
[Tem12, Tem18].

Remark 2.12. Resolution of singularities for varieties of prime character-
istic remains a vexing open problem. In characteristic p > 0, Abhyankar
proved this for surfaces [Abh56a, Abh66]. It was done for threefolds by Ab-
hyankar when p > 5 [Abh66] (see also Cutkosky’s simplification [Cut09]),
and Cossart and Piltant for p = 2, 3, 5, [CP09a, CP09b].

Progress has also been made under suitable hypothesis for mixed char-
acteristic (or "arithmetic") surfaces [Lip78] and threefolds [CP19].

19Quasi-excellence is the same as excellence but with the catenary condition dropped.
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Despite our lack of understanding of resolution in prime and mixed char-
acteristic, we often do work with such resolutions because they arise as
models of characteristic zero resolutions when we reduce to prime charac-
teristic. Indeed, given a variety Xk over a field k of characteristic zero, a
projective resolution of singularities Yk −→ Xk can be modeled over some
mixed characteristic base A. That is, we can spread out to a projective
map YA −→ XA of flat finite type A-schemes with YA regular in such away
that base-change to any field L—including the closed fibers A/µ which all
have prime characteristic—produces a projective resolution YL −→ XL of the
model variety over L. See Subsection 3.1

2.3. Resolutions and the canonical module. Resolution of singu-
larities for varieties of characteristic zero have built in vanishing theorems.
One important such is the Grauert-Riemenschneider vanishing theorem, con-
cerning the canonical module of a resolution:

Theorem 2.13. Let X be a reduced scheme essentially of finite type over
a field of characteristic zero, and suppose that π : Y −→ X is a resolution
of singularities. If ωY is a canonical sheaf on Y , then Riπ∗ωY = 0 for all
i > 0.

Proof. See [GR70] for the original proof, or deduce it as a special case
of relative Kawamata-Viehweg vanishing. �

Remark 2.14. The assumption that X is essentially finite type over a field
is unnecessary in Theorem 2.13; for a scheme X over Q, we need only that
X has a dualizing complex [Mur21].

Theorem 2.13 begs the question: what about zero-th cohomologyRiπ∗ωY ?
Note that if π : Y −→ X is a resolution of singularities of a normal variety
X, then there is an obvious natural map

π∗ωY −→ ωX .

Namely, letting U ⊆ Y and U ′ ⊆ X be open sets where π is an isomorphism,
there is a natural map

π∗ωY
restrict to U ′−−−−−−−−→ ωU ′ ∼= π∗ωU

which extends uniquely to a map

(2.14.1) π∗ωY ↪→ ωX

because ωX is reflexive and the complement of U ′ can be assumed of codi-
mension two or more. The map is injective, as we can view it inside the
function field K(X) of X.
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In fact, the map (2.14.1) is defined much more generally. Before defining
it, we recall our definition and conventions about canonical modules from
Chapter 2:

Definition 2.15. For a normal variety X generically smooth over a field
k, we define the canonical sheaf ωX to be the reflexive hull of the rank
one coherent sheaf

∧dimX ΩX/k. More generally, if X is essentially of finite
type over k and locally equidimensional, and h is the structural morphism
h : X −→ k, then the complex h!k = ω

q
X is a (not-necessarily normalized)

dualizing complex, and we define the canonical sheaf ωX locally to be the
first non-vanishing cohomology of ω q

X on each component; In particular, if
X is finite type20 over k and equidimensional, then ωX = H− dimX(ω

q
X). See

Remark 3.11 in Appendix C.

Lemma 2.16. Suppose π : Y −→ X is a proper generically finite map of
locally equidimensional schemes over a field k. By applying Grothendieck
duality to OX −→ Rπ∗OY and then taking cohomology of the resulting map,
we obtain a map

π∗ωY −→ ωX .

Proof. Consider OX −→ Rπ∗OY . We apply the Grothendieck duality
functor RH omOX (−, ω q

X) and obtain

ω
q
X
∼= RH omOX (OX , ω

q
X)← RH omOX (Rπ∗OY , ω

q
X).

By Grothendieck duality (see Appendix C) the right side is quasi iso-
morphic to Rπ∗RH omOY (OY , ω

q
Y ) ∼= Rπ∗ω

q
Y and so we consider the map

(2.16.1) ω
q
X ← Rπ∗ω

q
Y

dual to OX −→ Rπ∗OY . Set −d to be the smallest integer such that ω q
X

(and so likewise ω q
Y ) has cohomology in degree −d. Since π∗ is left exact,

and ω q
Y is zero below degree −d, we see that

π∗ωY = H−d(Rπ∗ω
q
Y ).

Thus taking −dth cohomology of (2.16.1) we obtain the map

(2.16.2) π∗ωY −→ ωX

as desired. �

Remark 2.17. The map π∗ωY −→ ωX of Lemma 2.16 is always injective
when π is birational; see Exercise 2.3.

20If X is not finite type but is the localization of some locally equidimensional finite
type scheme W over k, our dualizing complex ω

q
X (respectively, canonical module ωX) is

the corresponding localization of ω
q
W (respectively, ωW ). In this case, the complex ω

q
X is

not normalized: its first non-zero cohomology will be in degree − dimW , which may not
equal − dimX; see Caution 3.10 in Appendix C.
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It turns out that, restricting to the case where π : Y −→ X is a resolu-
tion of singularities in characteristic zero, the image of the map (2.16.2) is
independent of the choice of resolution and is an important invariant of the
singularities of X. Assuming this independence for a moment, we define:

Definition 2.18. Let X be a reduced locally equidimensional Noetherian
scheme essentially of finite type over a field of characteristic zero. Suppose
π : Y −→ X is a resolution of singularities. Then multiplier submodule
of X is the image of the natural map

π∗ωY −→ ωX ,

or, equivalently, the subsheaf π∗ωY of ωX . We denote the multiplier sub-
module by J (ωX).

Remark 2.19. The object J (ωX) is also frequently called the Grauert-
Riemenschneider canonical sheaf, and denoted ωGR

X , since it was first stud-
ied in [GR70]. We will use the term “multiplier submodule” however to
emphasize the relation to the multiplier ideals; see Subsection 4.3.

To prove the independence of the image of map (2.16.2), we need the
following lemma:

Lemma 2.20 ([LT81, Section 5]). Suppose that X is a non-singular21 Noe-
therian scheme with canonical module ωX . Then for every proper birational
map π : Y −→ X the map π∗ωY −→ ωX is an isomorphism.

Proof. By working on components, we can assume X is irreducible.
We may also assume that Y is normal. Otherwise, say Y ′ −→ Y is the
normalization with composition π′ : Y ′ −→ X. Then there is a factorization
π′∗ωY ′ ↪→ π∗ωY ↪→ ωX , where all maps are inclusions since they are maps
of rank-1 torsion free modules (since π and π′ are isomorphisms on an open
set).

We need only show that the map π∗ωY −→ ωX is surjective (Remark 2.17).

We first prove the surjectivity in the case that X is smooth over a field k,
where it is straightforward. Working locally onX, take w = gdx1∧· · ·∧dxd ∈
ωX ∈

∧d ΩX/k. Its pullback

π∗w = π∗(gdx1 ∧ · · · ∧ dxd) = π∗gd(π∗x1) · · · d(π∗xd)

is in
∧d ΩY/k. The reflexification map

∧d ΩY/k −→ ωY gives a map

π∗ωX −→ ωY and hence ωX −→ π∗ωY .

Then, as these maps are an isomorphism where π is an isomorphism, it
follows that π∗ωY −→ ωX is an isomorphism, as desired.

21Meaning that every local ring is regular
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For the general case, we work locally and so assume that ωX is trivial.
The map π∗ωY −→ ωX can be written

(2.20.1) π∗OY (KY ) −→ OX
where the divisor KY is supported on the exceptional set. Thus the map
(2.20.1) is surjective if and only if KY ≥ 0.

To check KY ≥ 0, we should check this at each of the prime (exceptional)
divisors D in its support. Let Z0 = π(D), the center of the discrete valuation
vD corresponding to D on X. Let π1 : X1 −→ X denote the blowup of X0

along Z0. Since X is non-singular at the generic point of Z0, the blowup
X1 is non-singular over the generic point of Z0. Hence if we set Z1 to be
the center of vD on X1, the generic point of Z1 is non-singular in X1 (it
lies over the generic point of Z0). Let π2 : X2 −→ X1 denote the blowup
of X1 at Z1. Again X2 is non-singular generically over Z1, we define Z2 as
above and continue on. We stop the procedure when Zm has codimension
1 in Xm, and indeed this occurs eventually by [Abh56b, Proposition 3] or
[Art86, Theorem 5.2]; also see [Zar39b]. In that case, the stalk OXm,z at
z, the generic point of Zm is the valuation ring associated to vD. It follows
that Y and Xm agree in a neighborhood of the generic point of Zm and D
respectively.

We next assert that at least over the generic point of Zi, that

KXi+1 = KXi + (di − 1)Ei+1

where di is the codimension of Zi in Xi. For varieties, this is [Har77,
Chapter II, Exercise 8.5]. However, that proof works in our generality.
The point is that over the generic point ηi of Zi we have that the excep-
tional divisor is Ei+1 = Pdi−1

ηi . Using the adjunction map OXi+1(KXi+1 +
Ei+1) −→ OEi+1(KEi+1) (at least over the nonsingular loci) and the fact that
OEi+1(KEi+1)ηi

∼= OPdi−1
ηi

(−di) one obtains the formula above.

Iterating the formula, we see the coefficient of KXm along Zm is positive.
It follows that KY has positive coefficient at D, since Y and Xm agree in a
neighborhood of the generic point of D. The result is proven. �

Corollary 2.21. Let X be a reduced locally equidimensional scheme of finite
type over a field of characteristic zero. Then for any resolution of singular-
ities π : Y −→ X, the image of the map π∗ωY −→ ωX is independent of the
choice of resolution.

Proof. Suppose that π : Y −→ X and π′ : Y −→ X are two resolution
of singularities. Let Y ′′ denote a resolution of singularities of the subscheme
consisting of irreducible components of Y ×X Y ′ that dominate a component
of X. It follows that π′′ : Y ′′ −→ X is a resolution of singularities X.
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Likewise the induced maps g : Y ′′ −→ Y and h : Y ′′ −→ Y are resolution of
singularities of Y and Y ′. It thus suffices to show that π′′∗ωY ′′ = π∗ωY as by
symmetry it will also follow that π∗ωY ′′ = π′∗ωY . We have maps

π′′∗ωY ′′ −→ π∗ωY −→ ωX

where the first map is π∗ applied to g∗ωY ′′ −→ ωY . But that map is an
isomorphism by Lemma 2.20. The result follows. �

Remark 2.22. Corollary 2.21 and its proof hold much more generally: it
suffices if X is a reduced locally equidimensional scheme essenetially of fi-
nite type over a quasi-excellent scheme of characteristic zero, and X admits
dualizing complex ω q

X .

2.4. Rational singularities. Now we introduce rational singularities.

Definition 2.23. Suppose that X is a reduced scheme essentially of finite
type over a field of characteristic zero. The scheme X has rational singu-
larities if for every resolution of singularities π : Y −→ X,

(i) π∗OY ∼= OX (this is equivalent to requiring that X is normal, see
[Har77, III, Exercise 11.4] ), and

(ii) Riπ∗OY = 0 for all i > 0.

These two conditions may be more compactly written as Rπ∗OY ∼= OX .

A reduced Noetherian ring R has rational singularities if SpecR has
rational singularities.

Because rational singularities are normal, they are a disjoint union of
irreducible components, each with rational singularities. Thus we usually
stick to the integral case in dealing with rational singularities.

The following is a dual characterization, often called Kempf’s criterion
[KKMSD73]:

Theorem 2.24. Suppose that X is a connected locally equidimensional re-
duced scheme essentially of finite type over a field of characteristic zero.
Then X has rational singularities if and only if the following two conditions
are satisfied:

(a) X is Cohen-Macaulay.
(b) For every resolution of singularities π : Y −→ X, the induced map

π∗ωY −→ ωX of Lemma 2.16 is an isomorphism.

In other words, X has rational singularities if and only if X is Cohen-
Macaulay and it multiplier submodule J (ωX) is all of ωX .
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Proof. Suppose first thatX has rational singularities. So OX −→ π∗OY
is an isomorphism. Applying the Grothendieck duality functor, also (b) is
an isomorphism.

Thus we need to show that X is Cohen-Macaulay. Using that Y is non-
singular and hence Cohen-Macaulay, we see that

ω
q
X
∼= Rπ∗ω

q
Y
∼= Rπ∗ωY [d] ∼= π∗ωY [d]

for some shift 22 d. Thus ω q
X has non-zero cohomology only in one cohomo-

logical degree, so X is Cohen-Macaulay as well.

Conversely, if X satisfies (a) and (b), then the map π∗ωY [d] −→ ωX [d] is
a quasi-isomorphism, in other words:

Rπ∗ω
q
Y −→ ω

q
X .

is a quasi-isomorphism (using Grauert-Riemenschneider vanishing Theorem 2.13
and the fact that X is Cohen-Macaulay). Applying Grothendieck duality
RH omOX (−, ω q

Y ) we obtain that

OX −→ Rπ∗OY
is also a quasi-isomorphism, and so X has rational singularities. Here we
used that applying Grothendieck duality twice is naturally isomorphic to
the identity. �

Example 2.25. Every non-singular variety of characteristic zero has rational
singularities, by Lemma 2.20.

Remark 2.26. It is enough to check conditions (a) and (b) in Definition 2.23
of rational singularities for one resolution of singularities. This follows from
the dual criterion Theorem 2.24 using Corollary 2.21. Generalizations of this
fact beyond characteristic zero can be found in [CR11, CR15, Kov17].

Finally, we observe that having rational singularities is a local and open
property.

Lemma 2.27. Let X be a reduced Noetherian scheme of essentially finite
type over a field of characteristic zero. The subset

{P ∈ X | OX,P has rational singularities}
is open in X, and constitutes the largest open subscheme of X that has
rational singularities.

Proof. This is left to the reader in Exercise 2.10. �

22in fact, d is such that −d is the lowest degree where the dualizing complex of Y
has non-zero cohomology (and hence likewise with X) but this is not so important for the
argument
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2.5. Pseudo-rational singularities. Let (R,m) be a reduced local
Noetherian ring and let π : Y −→ X = SpecR be a proper birational map.
Suppose X has a normalized23 dualizing complex ω q

X . Grothendieck dual to
OX −→ Rπ∗OY we have the map

Rπ∗ω
q
Y −→ ω

q
X
∼= RH omOX (Rπ∗OY , ω

q
X)

whose first non-vanishing cohomology is π∗ωY −→ ωX (Lemma 2.16). Let
E denote the injective hull of the residue field and apply the exact functor
HomR(−, E) to obtain:

Hom(ω
q
X , E) −→ Hom(Rπ∗ω

q
Y , E).

The left side is quasi-isomorphic to RΓm(OX) by local duality Appendix C
Section 6 and the right side is RΓm(Rπ∗OY ) also by local duality. The map
π∗ωY −→ ωX is thus dual to Hd

m(R) −→ HdRΓm(Rπ∗OY ).

This motivates the following definition:

Definition 2.28. [Lip69, LT81] Let (R,m) be a reduced Noetherian d-
dimensional local ring. Then R has pseudo-rational singularities if the
following two conditions are satisfied:

(a) R is Cohen-Macaulay, and
(b) For every proper birational map π : Y −→ X = SpecR we have that

Hd
m(R) −→ Hd

m(Rπ∗OY ) = Hd
π−1(m)(OY ) is injective.

A ring R is pseudo-rational if all its localizations at prime ideals RQ are
pseudo-rational. A scheme is pseudo-rational if all its stalks are pseudo-
rational local rings.

When R has a dualizing complex, condition (b) is dual to the surjec-
tivity of π∗ωY −→ ωX . Thus if R is essentially of finite type over a field of
characteristic zero, it follows that R has rational singularities if and only if
R is pseudo-rational.

Pseudo-rationality, however, makes sense even if SpecR does not have
a resolution of singularities or even if it does not have a dualizing complex.
A disadvantage is that it is not clear whether pseudo-rationalityis an open
condition. See [Kov17] for evidence that pseudo-rational singularities are
much closer to rational singularities than is immediately obvious.

Lemma 2.29. Suppose that (R,m) is a local ring. If the completion R̂ is
pseudo-rational, then so is R.

23We normalize so that H− dimRω
q
X = ωR; See Definition 3.5 in Appendix C.
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Proof. If R̂ is Cohen-Macaulay, then so is R, since H i
m(R) ∼= H i

m(R̂)
for all i. On the other hand, if π : Y −→ X = SpecR is a proper birational
map, then its base change to the completion π̂ : Y ×XX̂ −→ X̂ = Spec R̂ is
also proper and birational. We then see that

Hd
m(R) ∼= Hd

m(R̂) ↪→ Hd
m(Rπ∗OY ⊗R R̂) ∼= Hd

m(Rπ∗OY )

injects as desired. �

We also have the following variant of Lemma 2.20.

Corollary 2.30. If (R,m) is a Noetherian regular local ring, then R is
pseudo-rational.

Proof. SinceR is regular, it is Gorenstein and thus also Cohen-Macaulay.
Thus it has a canonical module ωR ∼= R. Now apply Lemma 2.20. �

2.6. F -rational implies pseudo-rational. For schemes of prime char-
acteristic, the test submodule is closely related to the multiplier module
discussed above.

Theorem 2.31 ([Smi97a]). Let X be an F -finite reduced locally equidi-
mensional scheme with canonical module ωX . Let T : F∗ωX −→ ωX be the
Grothendieck dual to Frobenius.24 For any proper dominant generically fi-
nite map from a locally equidimensional scheme π : Y −→ X (for instance,
a proper birational map), we have

τ(ωX) ⊆ Image(π∗ωY −→ ωX).

As an immediate corollary, we recover the main theorem [Smi97a]:

Corollary 2.32. An F -finite25 F -rational Noetherian scheme is pseudo-
rational.

Proof of Corollary. This follows immediately from the theorem us-
ing Chapter 2 Corollary 5.14 and the fact fact that F -rationality is equivalent
to being Cohen-Macaulay and satisfying τ(ωX) = ωR. �

Proof of Theorem 2.31. The hypotheses imply that over a dense
open subset U of X, π is finite.

We first claim that Image(π∗ωY −→ ωX) is non-zero at every generic
point of X. To see this, observe that over each generic point η of X, Xη =

24See Chapter 2 add dmore precise reference.
25This hypothesis can be removed.
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SpecK(η) is the prime spectrum of a field. Replacing X by Xη, we see that
SpecS = Y −→ X = SpecK(η) is finite and π∗ωY −→ ωX is identified with

Hom(S,K(η))
eval@1−−−−→ K(η)

which is nonzero, as claimed.

Now consider the diagram

Y

π
��

F // Y

π
��

X
F
// X

which induces a diagram

F∗π∗ωY

��

π∗TY // π∗ωY

��
F∗ωX

TX

// ωX .

where TY and TX are dual to Frobenius as described in Chapter 2. This
diagram shows that image of π∗ωY −→ ωX is compatible with TX : F∗ωX −→
ωX . Since τ(ωX) is the smallest such compatible module non-zero at every
generic point of X, we see that

τ(ωX) ⊆ Image(π∗ωY −→ ωX).

as desired. �

Remark 2.33. In fact, the F -finite hypothesis is unnecessary in Corol-
lary 2.32 if R is local we define F -rationality appropriately in the non-F -finite
case [Smi97a]. We will explore this later using tight closure Chapter 7.

Remark 2.34. In a fixed positive characteristic there are pseudo-rational
singularities that are not F -rational, even for Gorenstein surface singulari-
ties, see Exercise 3.3.

2.7. Exercises.

Exercise 2.1.

Exercise 2.2. Show that one can construct an embedded resolution from a
log resolution as follows. Let W be a closed integral subscheme of a reduced
Noetherian schemeX, not contained in its singular locus, and let φ : X̃ −→ X
be the normalized blowup ofX alongW . Let IW ⊆ OX be the sheaf of ideals
defining W on X, and let Z ⊆ X̃ be the closed codimension one subscheme
of X̃ cut out by its expansion IWOX̃ to OX . Now, if π : Y −→ X̃ is a log
resolution of (X̃, Z), show that the restriction of φ◦π to the strict transform
W̃ of W is an embedded resolution of W .
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Hint: You will want to intersect the strict transform of a suitable component
of Z with exceptional divisors of π.

Exercise 2.3. Show that if π : Y −→ X is a resolution of singularities
of schemes with canonical sheaves, then the natural map π∗ωY −→ ωX is
injective.

Hint: This can be checked on affine charts U . So we want to check ωY (π−1(U)) ⊆
ωX(U).

Exercise 2.4. Suppose thatX is a reduced Noetherian scheme and π : Y −→
X is a proper birational map with Y normal. Prove that OX ∼= π∗OY if and
only if X is normal. Furthermore, show that the object π∗OY is independent
of π and Y and the sheafy Spec, Specπ∗OY , is the normalization of X.

Exercise 2.5. Suppose that X is a normal variety and Γ is a Q-Cartier Q-
divisor on X. Show that there exists a log resolution of (X,Γ) in the sense
of Definition 2.10.

Hint: If Γ ≥ 0 (respectively anti-effective), one may simply work with
Z, the scheme associated to a Cartier divisor nΓ (respectively to −nΓ). We
wish to reduce to this case. First take a resolution to make the ambient
space smooth, and pull back the divisor there (keeping track of the Cartier
exceptional divisor as well). ReplaceX by this resolution. By Chow’s lemma,
we may assume that X is quasi-projective over a field (further resolving
singularities if necessary) and hence there exists a ample effective divisors
whose components include those of Γ (the new Γ). Use these.

Exercise 2.6. Suppose Y is a scheme essentially of finite type over a field
of characteristic zero and π : Y −→ X is a resolution of singularities. Let
M be a finite rank locally free sheaf on X. Suppose that X has rational
singularities and use that to show that

H i(X,M ) ∼= H i(Y, π∗M )

for every integer i.

Hint: Observe that M ∼= M ⊗OX Rπ∗OY and then use the derived
projection formula.

Exercise 2.7. Suppose that (R,m) is a reduced equidimensional local ring
essentially of finite type over a field of characteristic zero. Suppose that
f ∈ m is a non-zerodivisor such that R/(f) has rational singularities. Prove
that R has rational singularities. This was first shown by R. Elkik in [Elk78].

Hint: First show that R is Cohen-Macaulay. Let π : Y −→ X = SpecR
be a resolution of singularities that is also an embedded resolution of the
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divisor D = div(f). Let D̃ denote the strict transform of D. Push forward
the short exact sequence 0 −→ ωY −→ ωY (D̃) −→ ω

D̃
−→ 0, using Grauert-

Riemenschneider vanishing, compare with 0 −→ ωX −→ ωX(D) −→ ωD −→ 0
and use the snake lemma, or argue similarly to Theorem 7.14 after Matlis
duality.

Exercise 2.8. Suppose that X is a smooth projective scheme over a field of
characteristic zero and L is a big a nef line bundle on Y . One special case
of Kawamata-Viehweg vanishing says that H i(X,ωX ⊗L ) = 0 for all i > 0.
Prove that that vanishing also holds when X has rational singularities. More
generally, show that

H i(X,J (ωX)⊗L ) = 0

for all i > 0.

Hint: Notice that H i(X,J (ωX) ⊗ L ) = HiRΓ(X,Rπ∗(ωY ⊗ π∗L ))
and then compose the derived functors, or use a spectral sequence. Notice
also that the pullback of a big and nef line bundle under a proper birational
map is still big and nef.

Exercise 2.9. Suppose that X ⊆ Pn is a projective variety over an alge-
braically closed field of characteristic zero with rational singularities. Sup-
pose that H ⊆ Pn is a general hyperplane. Show that H∩X also has rational
singularities.

Hint: Pull back the linear system |OX(1)| to a resolution of singularities
π : Y −→ X. This linear system is still base point free, so we can use Bertini’s
theorem to show that HY = π∗(H ∩X) is non-singular.

Exercise 2.10. Prove Lemma 2.27.

Exercise 2.11. Suppose that X is a normal variety and D ⊆ X is a re-
duced26 divisor. Fix π : Y −→ X an embedded resolution of (X,D) with
D̃ := π−1

∗ D the strict transform of D. Show that π∗ωY (D̃) ⊆ ωX(D) is
independent of the choice of embedded resolution Y .

Exercise 2.12. Show that any pseudo-rational local ring is normal.

Hint: First reduce to the complete case by [Sta19, Tag 033G] and
recall that a complete local ring always has a dualizing complex. Choose
your proper birational map to be the normalization map. Use Appendix C
Proposition 6.9.

Exercise 2.13. Suppose that X is a variety of characteristic zero and that
π : Y −→ X is a resolution of singularities. Suppose that there is a map
φ : Rπ∗OY −→ OX in the derived category such that the composition with

26Meaning all its coefficients are 1.

https://stacks.math.columbia.edu/tag/033G
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the canonical map OX −→ Rπ∗OY
φ−→ OX is the identity. Prove that X

has rational singularities. This is sometimes known as Kovács’ rationality
criterion, see [Kov00].

Hint: Apply the Grothendieck duality functor RH omX(−, ω q
X) and

recall that RH omX(OY , ω
q
X) = Rπ∗ω

q
Y by Grothendieck duality. Use

Grauert-Riemenschneider vanishing and the fact that ωY [dimY ] = ω
q
Y to

prove that X is Cohen-Macaulay.

3. F -rational singularities vs rational singularities

Our goal in this section is to prove the following theorem.

Theorem 3.1. Suppose X is a variety over a field of characteristic zero.
The following are equivalent.

(a) X has open F -rational type.
(b) X has dense F -rational type.
(c) X has rational singularities.

In fact, modeling the multiplier submodule J (ωX) ⊆ ωX over a mixed char-
acteristic ring A, the prime characteristic models in a non-empty open set
of m-SpecA all reduce to the test submodule in ωXA/µ.

Certainly (a) ⇒ (b). We will then show that (b) ⇒ (c) and finally that
(c) ⇒ (a).

3.1. Modeling a resolution of singularities. A resolution of singu-
larities for a variety over a field of characteristic zero can be reduced to prime
characteristic using a family of models.

Given a projective birational map π : Yk −→ SpecRk with Yk smooth over
k, we can build a coefficient ring— a (regular) domain A finitely generated
over Z and contained in k— together with a projective birational map

πA : YA −→ SpecRA,

of schemes over A such that the flat base change A ↪→ k recovers the res-
olution π. The point is that, because π is finite type, only finitely many
elements of k are needed to describe π (and Yk) completely, so we can just
adjoin them all to A.27 Indeed, the map πk is the blowup up some ideal
Jk ⊆ Rk, with finitely many generators g1, . . . , gr. Adjoining to A a set of

27In fact, by Hironaka’s theorem, once we have picked an A containing enough ele-
ments of k to define Rk, if we let K be the fraction field of A, then we know that SpecRK
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finitely many elements of k needed to describe polynomials in k[x1, . . . , xn]
representing these generators, we can define an ideal JA ⊆ RA generated
by the (images of the) corresponding polynomials, also denoted g1, . . . , gr in
A[x1, . . . , xn]. Define TA to be the Rees ring

TA := RA[JAt] ∼= RA ⊕ JA ⊕ J2
A ⊕ · · · ⊆ RA[Jt],

which is finitely generated over A because there is a surjection of N-graded
domains

A[x1, . . . , xn, Y1, . . . , Yr]� TA,

sending each xi to its image in RA and Yj to the degree one element gjt in
TA. Now define YA to be ProjTA. There is a natural projective map

(3.1.1) πA : ProjTA −→ SpecRA

of schemes of finite type over A. Base change to k recovers π. The Lemma of
Generic Freeness allows us to assume—at the expense of possibly adding one
more Z-algebra generator b−1 to A— that the finitely generated A-algebra
TA (as well as RA) is free over A, and also that A is regular.

Remark 3.2. The scheme YA is covered by affine charts D+(yj), where yj
is the image of Yj in TA. Note that D+(yj) is the spectrum of the ring[

TA[
1

Yj
]

]
0

,

which is finite type and (without loss of generality) free over A (again, by in-
verting one element of A if needed). In particular, for each j, the localization
TA[ 1

yj
], which is the Laurent extension[

TA[
1

yj
]

]
0

[yj , y
−1
j ]

of
[
TA[ 1

yj
]
]

0
, is free over A as well. Base change to k produces[

Tk[
1

yj
]

]
0

= OYk(D+(yj)),

where here we use the same notation yj for the image in Tk.

The map πA models our resolution of singularities for SpecRk, at least
on a dense open subset of SpecA:

Theorem 3.3. Let Rk be a domain finitely generated over a field k as in
(1.3.1) and let π : Yk −→ SpecRk be projective birational map of k-schemes
with Yk smooth over k. Let A be a choice of coefficient ring for Rk as in the
proceeding paragraph, and define

(3.3.1) πA : ProjTA −→ SpecRA

has a resolution of singularities defined over K, so we don’t even need to adjoin any further
elements from k to A beyond possibly the inverses of some elements in A.
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be as in (3.1.1). Then there exists non-zero b ∈ A such that for all A[b−1]-
algebras L, the base change

(3.3.2) πL : ProjTL −→ SpecRL

is a projective birational map with ProjTL smooth over L. In particular, for
closed points µ in some open set of SpecA, the map

πA/µ : YA/µ −→ SpecRA/µ

is a resolution of singularities for the prime characteristic scheme RA/µ.

Proof Sketch. The coherent sheaf ΩYA/A of Kähler differentials for
YA over A has the property that base change to k produces the locally free
sheaf of OYk -modules ΩYk/k. Because Yk is smooth over k, we can chose a
sufficiently fine affine cover of Yk so that ΩYk/k is a free OYk -module on each
chart. These charts can be assumed of the form D+(h) = Spec

[
Tk[h

−1]
]
0
,

where h is a degree one element of TA. Adding finitely many elements28

(if needed) to A, we may assume that these affine charts are obtained by
base change from corresponding affine charts D+(h) of YA, all of which are
spectra of finitely generated A-algebras free over A. Now, ΩYk/k(D+(h)) is
free over

[
Tk[h

−1]
]
0
if and only if ΩYA/A(D+(h)) is free over

[
TA[h−1]

]
0
, and

in this case, they have the same rank. Thus, base changing to any A-algebra
L, also ΩYL/L(D+(h)) is free over

[
TL[h−1]

]
0

= OYL(D+(h)). In other words,
ΩYL/L is locally free of rank equal to the relative dimension of dimYL over
L if and only if ΩYk/k is locally free of rank dimYk. �

3.2. Modeling the multiplier module. Now we reduce to character-
istic p from characteristic zero.

Recall Theorem 2.31, which ensures that the test submodule is contained
in the multiplier module for a variety over an F -finite field of prime charac-
teristic. Using this, we can state

Theorem 3.4 ([Smi97a]). Suppose that X is a reduced equidimensional
scheme of finite type over a field of characteristic zero. Let J (ωX) ⊆ ωX be
the multiplier submodule. Then after reduction to characteristic p from any
chosen family of models XA −→ SpecA, we have that

τ(ωXA/µ) ⊆ J (ωX)A/µ

for an open dense set of µ ∈ m-SpecA. Therefore if R has dense F -rational
type, R has rational singularities.

28any elements of k involved in the finitely many polynomials h, and possibly the
inverse of some nonzero element of A. Here, we abusively use h to denote an element of
TA or its image in any TL.
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Proof. Without loss of generality we may assume that X = SpecR is
affine. Fix a projective resolution of singularities π : Y −→ X = SpecR and
spread it out to mixed characteristic to obtain πA : YA −→ RA over A as in
Theorem 3.3. Define a J (ωRA) = (πA)∗ωYA ⊆ ωRA , and invert an element
of A to assume the inclusion splits over A.

Reduce to characteristic p > 0 by base changing to A/µ. Cohomology,
and in particular zeroth cohomology commutes with base change for almost
all µ ∈ m-SpecA, so

((πA)∗ωYA)A/µ ∼= (πA/µ)∗ωYA/µ

by Lemma 1.14. The first part of theorem follows by Theorem 2.31.

It remains to justify why if R has dense F -rational type, then R has
rational singularities. First, if R has dense F -rational type then R is Cohen-
Macaulay by (d). On the other hand, if J (ωR) 6= ωR, then this inequality
will be preserved via reduction to characteristic p > 0 for most µ and so
τ(ωRA/µ) 6= ωRA/µ as well by Lemma 1.14. This completes the proof. �

3.3. Hara’s surjectivity theorem. We now begin to tackle the con-
verse direction, showing that rational singularities have open F -rational type.
Our goal in this section is to prove the following result, cf. the work of
Mehta-Srinivas [MS97].

Lemma 3.5 (Hara’s Surjectivity Theorem). With notation as in Section 1,
suppose that π : Y −→ X = SpecR is a log resolution of singularities in
characteristic 0, D is a π-ample Q-divisor with simple normal crossings sup-
port. We reduce this setup to characteristic p > 0 as in Section 1. Then the
dual to Frobenius

T eYt : (πt)∗F
e
∗ωYt(dpeDte) −→ (πt)∗ωYt(dDte)

surjects for a dense open set of t ∈ m- SpecA

We will prove this below in Subsection 3.4, but for now we will use it.

We also need the following lemma which shows us we can find a test
element independent of the characteristic.

Lemma 3.6. Suppose R is finite type over a field of characteristic zero,
reduced and equidimensional. Then there exists non-zerodivisor d ∈ R so
that for a sufficiently large finite generated Z-algebra A, the mod p reduction
dt of d is a strong test element in Rt for an open dense set of t ∈ m-SpecA.

Proof. By Noether normalization, we may take C ⊆ R where C is
smooth over k and C ⊆ R is finite. Choose x = x1, . . . , xn ∈ R that form
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a basis for K(R) = R ⊗C K(C) over K(C). By inverting an element g ∈ C
we may even assume that R[g−1] is a free C[g−1]-module with basis x. All
this structure may be preserved via reduction to characteristic p > 0 at least
for an open dense set of m-SpecA and it follows by construction that the
discriminant Dx of Chapter 6 Subsection 7.3 reduces to characteristic p > 0
as well since we may do all computations over C[g−1] instead of over K(C).
In particular, if xt is the mod-p reduction of x, we have that

Dxt = (Dx)t.

But now by Chapter 1 Theorem 7.12 we see thatDxt is a strong test element.
The theorem follows setting d = Dx. �

We are finally in a position to combine these results to show that rational
singularities have open F -rational type and even better that the multiplier
submodule reduces to the test submodule.

Theorem 3.7 (cf. [Har98a, MS97]). Suppose that R is an equidimensional
reduced ring over a field of characteristic zero. Suppose that {Rt} is a family
of characteristic p models of R as in Section 1 for a sufficiently large A.
Then

J (ωR)t = τ(ωRt)

for all t ∈ U where U is an open dense subset of m- SpecA. In particular, if
R has rational singularities, then R has open F -rational type.

Proof. Choose a projective log resolution of singularities π : Y −→ X =
SpecR of the pair (R, V (d)) where d is as in Lemma 3.6, a test element after
reduction modulo p. We assume that π is the blow-up of some ideal J ⊆ R
and hence that J · OY = OY (−G) is relatively ample and G is an effective
divisor.

SetD = ε(−G−divY (d)) for some 1� ε > 0. It is a π-ample because−G
is π-ample and divY (d) = π∗ divX(d) is π-trivial. Since ε > 0 is sufficiently
small, we also have that dDe = 0. We reduce this setup to characteristic
p > 0 and obtain the following diagram (at least assuming peεdivX dt ≥
divX dt).

(πt)∗F
e
∗ωYt(dpeDte)

T eYt // //

��

(πt)∗ωYt(dDte)

��

(πt)∗ωYt .

F e∗ (dt · ωRt) T eRt

// ωRt .

For t in a dense open subset of m-SpecA we see that the map T eYt is sur-
jective by Hara’s surjectivity theorem Lemma 3.5. Restricting our t further
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if necessary, we may assume that dt is a strong test element and therefore
T eRt(F

e
∗ dωRt) is contained in τ(ωRt). The diagram implies that

(πt)∗ωYt ⊆ T eRt(F
e
∗ dωRt) ⊆ τ(ωRt).

The reverse containment follows from Theorem 2.31. Now because

J (ωR)t = (π∗ωY )t = (πt)∗ωYt

for an open dense set of t, the first statement of the theorem is proven.

For the statement about rational singularities, simply recall R is rational
if and only if J (ωR) = ωR and R is Cohen-Macaulay and likewise remember
that R is F -rational if and only τ(ωR) = ωR and R is Cohen-Macaulay. Since
R is Cohen-Macaulay if and only if Rt is for an open set of t, the theorem is
proven. �

3.4. The Cartier isomorphism, vanishing theorems, the setup
to the proof of Hara’s surjectivity theorem. Before we prove Hara’s
surjectivity theorem Lemma 3.5, we need to build some tools. First however,
we recall how the (log) de Rham complex behaves in characteristic p > 0,
at least for (log) smooth varieties. What follows is an expanded version of
[Har98a] (also see [MS97]).

Suppose that Y is a smooth variety over a perfect field (of characteristic 0
or p > 0) and E is a reduced simple normal crossings divisor. Let U = Y \E
with inclusion map ν : U −→ Y . We define

Ωi
Y (logE)

to be the subsheaf ν∗Ωi
U made up of sections α where α and dα ∈ ν∗Ωi+1

U
have simple (degree 1) poles along E. Explicitly, working locally at a stalk
OY,x where Ex = div(f1 · · · ft) for fi part of a regular system of parameters29

f1, . . . , fn for mx. Then

(Ω1
Y (logE))x =

(df1

f1
,
df2

f2
, . . . ,

dft
ft
, dft+1, . . . , dfn

)
is the free OY,x-module generated by df1

f1
, df2

f2
, . . . , dftft , dft+1, . . . , dfn. Because

Ωi
Y (logE) =

i∧
Ω1
Y (logE)

we see that (Ωi
Y (logE))x can be generated by ith wedge powers of the same

forms. Notice that Ω0
Y (logE) = OY since the wedge of no sheaves is OY .

Remark 3.8. It is important to note that Ω1
Y (logE) is not the same as

Ω1
Y ⊗OY (E). Notice that dft+1

f1
is in the latter, but not the former.

29In other words, the fi define the non-singular irreducible components of E that
pass through x.
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The Ωi
Y (logE) can be put into a complex, the logarithmic de Rham

complex but care must be taken because the differentials are not morphisms
of OY -modules. Indeed, if our base field is C and then the associated analytic
object (Ω

q
Y )an is a resolution of the constant sheaf C. Hence, by GAGA, we

can use Hj(Y,Ωi
Y ) to compute singular cohomology H i+j(Y an,C). In fact,

the associated Hodge-to-de Rham spectral sequence degenerates at the E1

page if Y is projective.

We are interested in what happens in characteristic p > 0 however. In
that case, if f ∈ Γ(U,OY ) = Γ(U,Ω0

Y ) is a pth power f = gp, we have that
df = 0. In particular, Ω

q
Y (logE) is not exact like it is in characteristic 0.

On the other hand, while in characteristic 0, the differential maps are not
OY -linear, they are only k-linear. However, in characteristic p > 0, since
dfp = 0, the differential maps are OpY -linear. It immediately follows that we
have the following:

Lemma 3.9. For Y as smooth variety over a field of characteristic p > 0,
the differential maps

(F∗d) : F∗Ω
i
Y (logE) −→ F∗Ω

i+1
Y (logE)

are OY -linear.

The same argument also implies that Ω0
Y = OY ⊆ ker(F∗Ω

0
Y

F∗d−−→ F∗Ω
1
Y ).

It turns out that this completely describes the non-exactness of the log de
Rham complex in characteristic p > 0.

Theorem 3.10 (The log Cartier isomorphism). Suppose that Y is a smooth
variety over a perfect field of characteristic p > 0 and E is a reduced simple
normal crossings divisor on Y . Then there is an isomorphism for all i

C−1 : Ωi
Y (logE) ∼= Hi(F∗Ω

q
Y (logE)).

In other words, the cohomology sheaves of the complex F∗Ω
q
Y (logE) are

sheaves of log differentials.

Proof. We will not work out the details, see [EV92] or [BK05] for a
more detailed presentation. However, it will be useful to know that locally
C−1 is given by cdf 7→ [F∗c

p · fp−1 ·df ] (here [−] means the equivalence class
of (−)) for i = 1 and more generally for i = n by

c · df1 ∧ · · · ∧ dfn 7→ [F∗c
p · fp−1

1 · · · fp−1
n · df1 ∧ · · · ∧ dfn].

�

In view of the fact that the log de Rham complex is a complex of OpY -
modules, there is another way to describe the De Rham complex, in the local
setting, which we will find useful. First recall the following definition.
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Definition 3.11. Suppose that k is a perfect field of characteristic p > 0 and
K ⊇ k is a finitely generated field extension. We say that x1, . . . , xn ∈ K
are a p-basis or a differential basis if dx1, . . . , dxn ∈ Ω1

K/k freely generate
Ω1
K/k as an K-module. This is equivalent to requiring that xa1

1 · · ·xann , for
0 ≤ ai < p, generate K over Kp by [Sta19, Tag 07P0].

Suppose Y is a variety over a perfect field k and that (R = OY,Q,mQ) is
the stalk of a closed point of Q ∈ Y . Suppose now that OY,Q is regular with
x1, . . . , xn ∈ mQ a minimal system of generators. Since xa1

1 , . . . , x
an
n freely

generate F∗R over R, for 0 ≤ ai < p, we see that the xi form a p-basis for
K(Y ) over k. Likewise, the dxi generate ΩR/k (which we can see directly as
well).

Lemma 3.12. Suppose R is a ring, smooth over a perfect field k of charac-
teristic p > 0. Suppose that Ω1

R is a free R-module generated by dx1, . . . , dxn
where x1, . . . , xn ∈ Q ⊆ R are such that E =

∑t
i=1Ei =

∑t
i=1 div(xi) is a

simple normal crossing divisor, here t ≤ n. For each j = 1, . . . , t define the
complex of Rp-modules

K
q
j =

(
0 //

p−1⊕
i=0

xijR
p d //

p−1⊕
i=0

xij
dxj
xj

Rp // 0
)

and for j = t+ 1, . . . , n write

K
q
j =

(
0 //

p−1⊕
i=0

xijR
p d //

p−1⊕
i=0

xijdxjR
p // 0

)
Then

Ω
q
R(logE) ∼=

n⊗
j=1

K
q
j

where the tensor product is taken over Rp.

Proof. This is left as an exercise to the reader in Exercise 3.6. �

For the top cohomology n = dimY , when E = 0 the Cartier isomorphism
is stated as

ωY = Ωn
Y
∼= coker(F∗Ω

n−1
Y −→ F∗ωY )

and we notice that it gives a surjective map C : F∗ωY −→ ωY . This map can
be identified, up to isomorphism, with our dual to Frobenius T : F∗ωY −→
ωY , and we will use this in what follows. But notice that it has given us the
kernel of T .

https://stacks.math.columbia.edu/tag/07P0
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Lemma 3.13. The map C : F∗ωY −→ ωY induced by the Cartier isomor-
phism agrees, up to isomorphism, with the map T : F∗ωY −→ ωY Grothendieck
dual to Frobenius.

Proof. Suppose dimY = n. Recall that

H omOY (F∗ωY , ωY ) ∼= F∗H omOY (ωY , ωY ) ∼= F∗OY
and T locally generates this Hom-sheaf. It will suffice to show that C :
F∗ωY −→ ωY also generates this Hom-sheaf, and thus it suffices to show it
locally agrees with T .

Working locally, suppose that x1, . . . , xn are a regular system of parame-
ters generating the maximal ideal OY,x. Since dx1∧· · ·∧dxn locally generates
ωY , we see that we may assume that T is given by the map which sends, for
0 ≤ ai ≤ p− 1,

F∗x
a1
1 . . . xann dx1 ∧ · · · ∧ dxn 7→

 dx1 ∧ · · · ∧ dxn if all ai = p− 1, and

0 otherwise
.

For C, notice that C−1(dx1 ∧ · · · ∧ dxn) = [F∗x
p−1
1 . . . xp−1

n dx1 ∧ . . . d ∧ dxn]

and hence C : F∗ωY −→ ωY also sends F∗(x
p−1
1 . . . xp−1

n dx1 ∧ . . . d ∧ dxn)
to dx1 ∧ · · · ∧ dxn. By Exercise 2.8, this shows that C must also (locally)
generate the Hom-sheaf. This completes the proof. �

We now follow a modified version of Hara’s proof. We first prove one of
Hara’s lemmas [Har98a, Lemma 3.3], the proof is essentially as in loc. cit..

Lemma 3.14. Suppose that Y is a smooth projective variety over a perfect
field of characteristic p > 0 and E =

∑t
j=1Ej is a reduced simple normal

crossings divisor with irreducible components Ej with complement U = Y \
E

ν−→ Y . Suppose that B =
∑t

j=1 rjEj is another divisor with 0 ≤ rj ≤ p−1.
We have inclusions

Ωi
Y (logE) ⊆ Ωi

Y (logE)⊗OY (B) ⊆ ν∗Ωi
U .

The differential from ν∗Ω
i
U restricted to Ωi

Y (logE)⊗OY (B) makes Ω
q
Y (logE)⊗

OY (B) into a complex and the induced map of complexes

(3.14.1) Ω
q
Y (logE) −→ Ω

q
Y (logE)⊗OY (B)

is a quasi-isomorphism.

Proof. First we need to show that the differential d : ν∗Ω
i
U −→ ν∗Ω

i+1
U

restricts to

Ωi
Y (logE)⊗OY (B) −→ Ωi+1

Y (logE)⊗OY (B).
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Fix a point x ∈ Y and work locally using that E is a simple normal crossings
divisor in Y . We may suppose that at x, the maximal ideal mx ⊆ OY,x is
generated by x1, . . . , xn where Ej = V (xj) for j = 1, . . . , t ≤ n, the Ej
passing through x ∈ Y . In this case Ωi

Y (logE)x is generated by a wedge of
i distinct forms from dx1

x1
, . . . , dxtxt , dxt+1, . . . , dxn. Furthermore Ω0

Y (logE)⊗
OY (B) ∼= OY (B). By direct computation, one sees that d : OY (B) −→
Ω1
Y (logE) ⊗OY (B) is well defined since 1

xri
7→ −r

xr+1
i

dxi for i = 1, . . . , t. For
degree 1, notice that if 1 ≤ j ≤ t, then for any 1 ≤ l ≤ n,

d

(
1

xrj
dxl

)
=
−r
xr+1
j

dxj ∧ dxl ∈ Ω0
Y (logE)⊗OY (B).

The higher degree computations are similar.

To show that (3.14.1) is a quasi-isomorphism we work locally, say on
SpecR. We can then describe Ω

q
Y (logE) as in Lemma 3.12. Set L q

j =

K
q
j · xj−rj for 1 ≤ j ≤ t, where the differential is still chosen by restricting

the differential of ν∗Ω
q
U (and not post multiplying the differential by x−rjj ).

For j > t, we set L q
j = K

q
j . This is chosen so that

Ω
q
R(logE)⊗R(B) ∼= L

q
1 ⊗ · · · ⊗ L

q
t ⊗K

q
t+1 ⊗ · · · ⊗K

q
n .

where the tensor products are over Rp.

Claim 3.15. K q
j −→ L

q
j is a quasi-isomorphism.

Proof of claim. We only need consider ourselves with 1 ≤ j ≤ t since
the objects defined to be the same for j > t. The kernel of the differential of
K

q
j is Rp ⊆ R. Since in K q

j , we send x
aj
j 7→ x

aj
j
dxj
xj

, we see that the cokernel

is the Rp summand of K1
j generated by dxj

xj
.

Now, for L q
j , our basis for L

0
j is x

−rj
j , x

−rj+1
j , . . . , x

−rj+p−1
j and the kernel

of the differential is still the summand Rp ⊆ L0
j (notice we are using the

0 ≤ rj < p). Likewise, the cokernel of the differential is the Rp-summand
generated by dxj

xj
. The map K q

j −→ L
q
j is a quasi-isomorphism. �

The map Ω
q
Y (logE) −→ Ω

q
Y (logE) ⊗ OY (B) is then simply induced by

the tensor product of the K q
j −→ L

q
j . The lemma follows. �

3.5. The proof of Hara’s surjectivity theorem. Our first result
shows that our desired surjectivity can be reduced to certain vanishing the-
orems. This follows [Har98a, Proposition 3.6].
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Proposition 3.16. Suppose that Y is a smooth n-dimensional variety over
a perfect field k of characteristic p > 0 and E is a simple normal crossings
divisor on Y . Suppose that D is a Q-divisor on Y and suppose that {D} :=
D − bDc, the fractional part of D, satisfies Supp{D} ⊆ SuppE. Further
suppose that we have the following vanishing of cohomologies:

(a) Hj(Y,Ωi
Y (logE)⊗OY (−E + dDe)) = 0 if j > 1 and i+ j = n+ 1,

and
(b) Hj(Y,Ωi

Y (logE)⊗OY (−E + dpDe)) = 0 if j > 0 and i+ j = n.

Then

T : H0
(
Y, F∗OY (KY + dpDe)

)
−→ H0

(
Y,OY (KY + dDe)

)
.

is surjective.

Before proving this, notice that the T map is the one we want to show
is surjective (at least when only taking F 1

∗ ).

Proof. Set B := (p − 1)E − pdDe + dpDe and notice that SuppB ⊆
SuppE and that the coefficients of B are between 0 and p − 1. Combining
the Cartier isomorphism Theorem 3.10 with Lemma 3.14, we have a variant
of the log Cartier isomorphism:

Ωi
Y (logE) ∼= Hi

(
F∗
(
Ω

q
Y (logE)⊗OY (B)

))
.

We tensor by OY (−E + dDe) to obtain a twisted log Cartier isomorphism:

Ωi
Y (logE)⊗OY (−E + dDe)

∼= Hi
(
F∗
(
Ω

q
Y (logE)⊗OY (B − pE + pdDe)

))
∼= Hi

(
F∗
(
Ω

q
Y (logE)⊗OY (−E + dpDe)

))
Hence, for every i = 0, . . . , n, we have two short exact sequences, the first
breaking up our twisted log de Rham complex into cycles and boundaries:

(3.16.1) 0 −→ Zi −→ F∗
(
Ωi
Y (logE)⊗OY (−E + dpDe)

)
−→ Bi+1 −→ 0

and the second exhibiting the twisted log Cartier isomorphism

(3.16.2) 0 −→ Bi −→ Zi −→ Ωi
Y (logE)⊗OY (−E + dDe) −→ 0.

We take global sections and notice that for i = n, Ωn
Y (logE) = ωY (E) ∼=

OY (KY + E) and so

Zn = F∗
(
Ωn
Y (logE)⊗OY (−E + dpDe)

) ∼= F∗OY (KY + dpDe).

Therefore (3.16.2) provides us with the exact sequence

H0
(
Y, F∗OY (KY + dpDe)

)
// H0(Y,OY (KY + dDe)) // H1(Y,Bn).
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The first map is the one we are trying to show is surjective, therefore it
suffices to show that H1(Y,Bn) = 0. Using now (3.16.1), we have the exact
sequence

H1(F∗
(
Ωn−1
Y (logE)⊗OY (−E + dpDe)

)
−→ H1(Y,Bn) −→ H2(Y,Zn−1).

The first term vanishes by (b) and so it suffices to show that H2(Y, Zn−1) =
0. Returning to (3.16.2) we have the exact sequence

H2(Y,Bn−1) −→ H2(Y, Zn−1) −→ H2(Y,Ωn−1
Y (logE)⊗OY (−E + dDe))

where the right term vanishes by (a) and so it suffices to show thatH2(Y,Bn−1) =
0. Continuing in this way, we see that it suffices to show that H3(Y, Zn−2)
vanish, or that H3(Y,Bn−2) = 0 etc. But Hn+1(Y, Z0) = 0 since n = dimY .
This proves the proposition. �

We thus need to arrange that (a) and (b) hold after reduction to charac-
teristic p > 0. In characteristic zero, in our case where Y is a resolution of
singularities, (a) is a relative variant of Kodaira-Nakano-Akizuki vanishing,
now stated.

Theorem 3.17 ([Har98a, AMPWo23], cf. [Kod53, Nak73, Nak75,
AN54, DI87]). Suppose that π : Y −→ X = SpecR is a resolution of singu-
larities of an affine variety in characteristic zero and E is a reduced simple
normal crossings divisor on Y . Further suppose that D is a π-relatively
ample divisor such that Supp({D}) = Supp(D − bDc) ⊆ E. Then

Hj
(
Y,Ωi

Y (logE)⊗OY (−E+dDe)
)

= Rjπ∗

(
Ωi
Y (logE)⊗OY (−E+dDe)

)
= 0

as long as i+ j > dimY .

In view of Lemma 1.14, this vanishing still holds after reduction to char-
acteristic p � 0, as long as we know that (ΩX)t = (ΩXt) in our modulo p
reduction. We show this below in Exercise 3.7.

On the other hand (b) will hold for p� 0 by a version of Serre vanishing.
We use relative Castelunovo-Mumford regularity.

Definition 3.18. Suppose that π : Y −→ X = SpecR is a projective mor-
phism and L is an ample globally generated line bundle on Y . We say that
a coherent sheaf M on Y is m-regular (with respect to L ), or simply
m-regular, if

H i(Y,M ⊗Lm−i) = 0

for all i > 0.

By Serre vanishing, every coherent sheaf is m-regular (with respect to
any ample L ) for some m� 0.



368 6. CONNECTIONS WITH CHARACTERISTIC ZERO

Theorem 3.19 (Relative Castelnuovo-Mumford Regularity). Suppose that
π : Y −→ X = SpecR is a projective morphism and L is an ample globally
generated line bundle on Y . Suppose M is an m-regular coherent sheaf on
Y , then:

(a) M is m+ 1-regular.
(b) M ⊗Lm is generated by global sections.
(c) The map induced by multiplication

H0(Y,M ⊗Lm)⊗R H0(Y,L ) −→ H0(Y,M ⊗Lm+1)

is surjective.

Proof. Castelnuovo-Mumford regularity is normally stated for X pro-
jective over a field, see for instance [Laz04a, Theorem 1.8.5]. However, it
holds for X projective over a Noetherian ring as well when L is relatively
very ample, see [Ooi82] for a statement in terms of local cohomology on a
graded ring and [Kee03, Proposition 4.9] for the geometric phrasing. In the
case that L is only ample and globally generated, we may choose N global
generators of H0(Y,L ) to induce a map

κ : Y −→ PNX .

Since L is globally generated and ample, this map is finite and so κ∗ is
exact. Thus for all i ≥ 0,

H i(Y,M ⊗Lm) ∼= H i
(
PNX , κ∗(M ⊗Lm)

) ∼= H i
(
PNX , (κ∗M )⊗OPNX

(m)
)

and so M is m-regular with respect to L if and only if κ∗M is m-regular
with respect to OPNX

(1). The consequences (a), (b), (c) of Castelnuovo-
Mumford regularity may likewise be translated back to Y and so we may
cite the above references. �

Lemma 3.20. Suppose that Y is a variety of characteristic zero and π :
Y −→ X = SpecR is a projective morphism. Further suppose that M is a
coherent sheaf on Y and L is a π-ample line bundle. We reduce this setup
to characteristic p > 0. Then for each i > 0, there exist an n0 and an open
dense U ⊆ m- SpecA so that for all n ≥ n0 and t ∈ U , we have that

H i(Yt,Mt ⊗L n
t ) = Ri(πt)∗

(
Mt ⊗L n

t

)
= 0.

Proof. First suppose that L is π-very ample. In this case we see that
if M is n0-regular for some n0, then by Lemma 1.14, so is Mt. Hence

H i(Yt,Mt ⊗L n−i
t ) = 0

for all n ≥ n0 by Theorem 3.19(a). The result follows for all t ∈ U0. Now,
suppose that L is not very ample but that L ′ = L N is very ample. Then we



3. F -RATIONAL SINGULARITIES VS RATIONAL SINGULARITIES 369

may apply our above work and Theorem 3.19(a) for L ′ and simultaneously
for the sheaves

M ,M ⊗L ,M ⊗L 2, . . . ,M ⊗L N−1

obtaining U0, U1, . . . , UN−1 and n0,0, . . . , n0,N−1. Now set U =
⋂
Ui and

n0 = maxn0,i, the result follows. �

Finally, we can combine our results to prove Hara’s surjectivity.

Proof of Lemma 3.5. We reduce our setup to characteristic p > 0,
using the notation of Section 1. Enlarging A if necessary, we may assume
that components of E are geometrically irreducible, which means that they
will not split up into new components in our reduction to characteristic
p > 0. We must show that

(3.20.1) T eYt : F e∗ωYt(dpeDte) −→ ωYt(dDte)

surjects for all e > 0. Choose m such that mD is a Z-divisor. As n varies,
we notice that we may write dnDe = b nmcmD +Rn where Rn takes on only
finitely many values. Therefore, using Lemma 3.20 for finitely many modules,
we may restrict to an open set U ⊂ m-SpecA, where all p = char(A/t) satisfy
b pme ≥ n0, we may assume that

(3.20.2)
Hj(Yt,Ω

i
Yt

(logEt)⊗OYt(−Et + dpeDte))
= Hj(Yt,Ω

i
Y (logEt)⊗OYt(−Et + bp

e

m cmDt + (Rn)t))
= 0

for all j > 0, e > 0 and all t ∈ U .

From Theorem 3.17, we may also assume that

Hj(Yt,Ω
i
Yt(logEt)⊗OYt(−Et + dDte)) = 0

for i+ j > dimYt, since the same vanishing holds in characteristic zero.

By Proposition 3.16, we thus have that

T1 : H0
(
Yt, F∗OYt(KYt + dpDte)

)
−→ H0

(
Yt,OYt(KYt + dDte)

)
is surjective. Even more, we also have that

Te : H0
(
Yt, F∗OYt(KYt + dpe+1Dte)

)
−→ H0

(
Yt,OYt(KYt + dpeDte)

)
surjects for all e > 0 by using (3.20.2) for (a) in Proposition 3.16.

Hence T eYt is composition of surjective maps

T eYt = T1 ◦ (F∗T2) ◦ · · · ◦ F e−1
∗ Te−1.

This completes the proof of Lemma 3.5. �
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3.6. Exercises.

Exercise 3.1. Suppose that π : Y −→ X is a proper dominant generically
finite map of locally equidimensional schemes of finite type over a field of
characteristic zero. We shall show that there exists a further proper dominant
generically finite π′ : Y ′ −→ X that factors through π and such that there
exists a finite map h : Y ′ −→ X ′ with X ′ −→ X proper birational and
X ′ −→ X is a resolution of singularities of X. We do this in the following
steps.

(a) Show that we may assume that X is normal and integral, Y is
normal and integral, and that K(X) ⊆ K(Y ) is Galois with Galois
group G. Further use Chow’s Lemma [Har77, Chapter II, Exercise
4.10] to show that we may assume that Y is projective.

(b) Show that we can factor π : Y
ν−→ S −→ X where S −→ X is finite

and Y −→ S is a blowup of some ideal sheaf J . Show that the
quotient of S by G is X.

(c) Let J ′′ =
∏
σ∈G σ(J) and show that ν ′′ : Y ′′ −→ S, the blowup of

J ′′, factors through the blowup of J .
(d) Show that Y ′′ has a G action as well and let X ′′ denote the quotient

of Y ′ by G. Finally, resolve the singularities X ′′ by X ′ −→ X ′′ and
take Y ′ to be the normalization of X ′ in K(Y ). Show that Y ′ −→ X ′

satisfies the desired properties.

Exercise 3.2. Let (R,m) be a local d-dimensional Noetherian domain with
normalized dualizing complex ω q

R. Suppose that π : Y −→ X = SpecR is a
proper dominant map of integral schemes with dualizing complex ωY = π!ω

q
R.

Show that the map

H−dRπ∗ω
q
Y −→ H−dω

q
R =: ωR

is nonzero. In the case that R is F -finite and of characteristic p > 0, deduce
that

τ(ωR) ⊆ Image(H−dRπ∗ω
q
Y −→ H−dω

q
R).

Show that this also implies, and hence generalizes, Theorem 2.31.

Hint: Reduce to the case that R is a field and use Grothendieck-Serre
duality.

Exercise 3.3. Let S = F2[x, y, z] and let f = z2 + x2y + xy2. Show that
R = S/(f) is not F -pure by Fedder’s criterion and deduce that it is not
F -rational. Then show that SpecR does have rational singularities.

Hint: For the second part, it suffices to find a resolution of singularities
π : Y −→ X = SpecR such that KY ≥ 0 (notice we may chose KX = 0).
Compute an embedded resolution of singularities of X in SpecS by blowing
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up points. Next compute the relative canonical divisor of that map over a
non-singular base, and use the adjunction formula to compute KY .

Exercise 3.4. Prove the Cartier isomorphism Theorem 3.10 in the special
case that X = P1

Fp and E = 0.

Exercise 3.5. For X = A2 = Spec k[x, y], show that the map C−1 : Ω1
X 7→

H1(F∗Ω
q
X) given by f 7→ [fp−1df ]. Show that this map is well defined and

additive. Then show it is injective. Finally show it is surjective.

Hint: To show it is additive, write h = 1
p((f + g)p − fp − gp) =∑p−1

i=1

(
p
i

)
/pf igp−i. Compute dh and use it to show that C−1(df + dg) =

C−1(df) + C−1dg. For surjectivity, first verify it for A1. For a detailed
writeup, see for instance [BK05, Theorem 1.3.4].

Exercise 3.6. Prove Lemma 3.12.

Exercise 3.7. Suppose that X is a smooth quasi-projective variety of a field
k of characteristic zero and E is a SNC divisor on X. With notation as in
Section 1, show that

(Ω1
X/k(logE))t ∼= Ω1

Xt/k(t)(logEt)

and conclude that also (Ωi
X/k)t

∼= Ωi
Xt/k(t) for all i. Notice that we may not

reduce the differentials of the de Rham complex to characteristic p > 0 as
they are not OX -linear.

Hint: The most direct route is to work on charts and keep track of
transition maps in the reduction mod p process. Notice that while ν∗ΩU ⊇
Ω1
X/k(logE) cannot be reduced modulo p, since it is only quasi-coherent, we

can reduce the intermediate sheaf Ω1
X/k ⊗ OX(E). There is a quick way to

reduce the non-log differentials. Suppose X −→ X×kX denotes the diagonal
map with kernel ideal sheaf I, then I/I2 may be identified with ΩX/k.

4. Log terminal, log canonical singularities and multiplier ideals
and their characteristic p > 0 analogs

Now that we have handled rational and F -rational singularities, we turn
our attention to log canonical and log terminal singularities, the character-
istic zero analog of locally F -split and and strongly F -regular singularities.
We will also study the multiplier ideal, a characteristic zero analog of the
test ideal.

4.1. Log terminal and log canonical singularities. Our first goal
is to define log terminal and log canonical singularities. For a much more
complete treatment, see for instance [KM98, Kol13].
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We first explain how to pull backQ-Cartier divisors. Suppose π : Y −→ X
is a dominant map between normal integral Noetherian schemes. If D is a
Cartier divisor onX, then we define π∗D to be the divisor obtained by pulling
back the local defining equations of D: if locally on U ⊆ X, D|U = divU (f),
then (π∗D)|π−1U = divπ−1U (f). Notice that we have OY (π∗D) = π∗OX(D).

If D is a Q-Cartier Q-divisor on X, meaning that mD is a Cartier divisor
(with integer coefficients) for some m > 0, we define

(4.0.1) π∗D :=
1

m
π∗(mD).

See Appendix B Subsection 6.1 and Exercise 4.1 for additional discussion.

Remark 4.1. IfD is notQ-Cartier, there are also ways to define the pullback
of D. See [DH09] for two options.

Setting 4.2 (Choosing canonical divisors somewhat canonically). Suppose
that π : Y −→ X is a birational map of normal Noetherian integral schemes
with dualizing complexes. Suppose first that π is proper. If one fixes a
canonical divisor KY , then as in the proof of Lemma 2.20, KX := π∗KY is
a canonical divisor on X (recall, we simply remove any components of KY

that are contracted to non-divisors). Conversely, if K ′X is another canonical
on X, then K ′X −KX = divX(f) for some f ∈ K(X). Hence we can define
K ′Y = KY + divY (f) as another canonical divisor on Y and we still have
π∗K

′
Y = K ′X . Of course, if π is not proper then we may compactify π via

Nagata’s compactification π : Y −→ X [Nag63], normalizing if needed. We
may then pick KY and restrict it to the open set U to obtain KY .

Going forward, for any birational map π, we always pick our canonical
divisors on Y and X compatibly as described above.

Definition 4.3 (Discrepancies). Suppose that π : Y −→ X is a birational
map of normal Noetherian integral schemes. Let ∆ be a Q-divisor on X such
that KX + ∆ is Q-Cartier (we call (X,∆) a log Q-Gorenstein pair). Choose
KY and KX as in Setting 4.2. Write

KY − π∗(KX + ∆) =
t∑
i=1

aiEi

where the Ei are prime divisors. The number ai is called the discrepancy
of (X,∆) along Ei. The number ai + 1 is called the log discrepancies of
(X,∆) along Ei. If ∆ = 0, in which case X is Q-Gorenstein,we simply call
ai’s the discrepancy of X along Ei.

Lemma 4.4. The discrepancies defined in Definition 4.3 are independent of
the choice of canonical divisor KX .

Proof. Left to the reader in Exercise 4.2. �
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Example 4.5. Suppose that X = Spec k[x, y, z]/(xy − z2) is the affine
quadric cone. Let Y −→ X be the blowup of the origin (x, y, z). We embed
X ⊆ A = A3 and notice that if we blowup the origin π : P −→ A then Y
is the strict transform of X in P . Let E ∼= P2 ⊆ P denote the exceptional
divisor and notice that E ∩ Y is the exceptional divisor of π : Y −→ X.

We may take KA = 0. In this case KP = 2E by [Har77, Chapter II,
Exercise 8.5]. We notice that π∗X = Y + 2E since xy − z2 has multiplicity
two at the origin. By the adjunction formula

KY = (KP + Y )|Y = (2E + π∗X − 2E)|Y = (π∗X)|Y ∼P 0|Y = 0.

Notice here that π∗X ∼P 0 since X ∼A 0. We’ve shown that KY ∼ 0
and thus we may choose KX = π∗KY = 0 as well (recall, pushing forward
divisors discards any exceptional components).

It follows that the discrepancy of (X, 0) along E is 0. Now, let D =
divX((x, z)), this is a prime divisor with 2D = divX(x), see [Har77, Chapter
II, Example 6.11.3], and hence KX +D = D is Q-Cartier. Abusing notation
and writing π = π|Y , we have that

π∗(KX +D) =
1

2
divY (x).

We have that divY (x) = E + 2DY where DY is the strict transform of D.
Thus KY − π∗(KX + D) = −1

2E − DY and so (X,D) has discrepancy −1
2

along E. Notice that (X,D) has a rational discrepancy even though every
coefficient of D is an integer.

We now return to the general case where we have written:

KY − π∗(KX + ∆) =

t∑
i=1

aiEi

Suppose that ηi ∈ Y is the generic point of Ei, so that OY,ηi ⊆ K(Y ) = K(X)
is a discrete valuation ring. The next lemma says that the numbers ai depend
only on this valuation ring. For instance, if one starts with a resolution
singularities Y −→ X, and then takes a further log resolution Y ′ −→ Y −→ X,
the discrepancies from Y need not be recomputed on Y ′.

Lemma 4.6. Suppose that π : Y −→ X and π′ : Y ′ −→ X are two birational
maps between normal integral Noetherian schemes and Ei ⊆ Y and E′j ⊆ Y ′
are two divisors whose corresponding valuation rings are the same inside the
fraction field K(X). Suppose now that (X,∆) is a log Q-Gorenstein pair.
Then the discrepancy of (X,∆) along Ei is the same as its discrepancy along
E′j.

Proof. Left as an exercise in Exercise 4.3. �
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In view of this, we frequently work independently of the birational model
and simply talk about discrepancies along a divisorial30 discrete valuation
ring (in fact, there are even generalizations of discrepancies to non-divisorial
valuation rings, see for instance [FJ04, JM12, BdFFU15, Can20]). Or
more commonly, simply talk about the discrepancy of (X,∆) along some
divisor E without specifying the birational model.

Definition 4.7 (Log canonical and log terminal singularities). Suppose that
(X,∆ ≥ 0) is a log Q-Gorenstein pair.

(a) We say that (X,∆) is log canonical (LC) if every discrepancy is
≥ −1.

(b) We say that (X,∆) is Kawamata log terminal (KLT) if every
discrepancy is > −1.

(c) We say that (X,∆) is purely log terminal (PLT) if every dis-
crepancy along an exceptional31 E is > −1.

(d) We say that (X,∆) is canonical if every discrepancy along an ex-
ceptional E is ≥ 0.

(e) We say that (X,∆) is terminal if every discrepancy along an ex-
ceptional E is > 0.

If ∆ = 0, we ascribe those same definitions to X itself.

Remark 4.8. We will not study the notions of canonical or terminal singu-
larities in any real way, but they are key notions within the minimal model
program [KM98]. However, it is still an open question whether there are
any natural notions of singularities in characteristic p > 0 that correspond
to to canonical or terminal singularities, see also [TW04, Proposition 3.5]
in the three-dimensional case.

Remark 4.9. In the case that X is quasi-Gorenstein (that is KX is Cartier),
we see that X is KLT if and only if it is canonical. The point is that
KY − π∗KX is a divisor with integer coefficients. Hence if it’s coefficients
are > −1 they are also ≥ 0.

Fortunately, we do not need to compute all possible birational maps
π : Y −→ X. A sufficiently good resolution of singularities will suffice.

Proposition 4.10. Suppose that π : Y −→ X is a log resolution of singular-
ities of a log-Q-Gorenstein pair (X,∆). Write

KY − π∗(KX + ∆) =
t∑
i=1

aiEi.

30meaning it appears as the local ring of a divisor on some birational model
31meaning that E is an exceptional divisor in some birational model
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If all ai ≥ −1, then (X,∆) is log canonical and if all ai > −1, then (X,∆)
is Kawamata log terminal.

Further suppose that the strict transform π−1
∗ ∆ of ∆ non-singular (for

instance, if ∆ has only one component). Finally, if all exceptional discrep-
ancies along exceptional Ei are > −1 (respectively ≥ 0, > 0) we have that
(X,∆) is purely log terminal (respectively canonical, terminal).

For the log terminal and log canonical case, this is contained in [Kol13,
Corollary 2.13] and the idea is very similar to that of Lemma 2.20. For the
other cases the condition that the strict transform is nonsingular is necessary.
For example, if ∆ = div(x) + div(y) ⊆ Spec k[x, y] = A2, then (A2,∆) is
already in simple normal crossings and so the identity map A2 −→ A2 is
its own log resolution. But this pair is not canonical, terminal, or purely
log terminal as the blowup of the origin creates an exceptional divisor with
discrepancy −1. It is however divisorially log terminal, a notion we are not
introducing [Kol13].

Proof of Proposition 4.10. We leave the details to the reader in
Exercise 4.5. �

Example 4.11. In Example 4.5 our blowup was a log resolution. Hence
we see immediately that the pair (X, 0) is canonical, and hence also KLT.
However, the pair (X,D) of the same example is PLT, and hence LC, but
it is not KLT. The reason it is not KLT is that the discrepancy of (X,D)
along D itself, is −1.

Example 4.12. Suppose that H ⊆ Pnk is a non-singular hypersurface of
degree d. Let X ⊆ An+1 denote the affine cone over H. Then we see that

(a) X is LC if and only if d ≤ n+ 1.
(b) X is KLT (equivalently canonical since X is Gorenstein) if and only

if d ≤ n.
(c) X is terminal if and only if d ≤ n− 1.

Let π : Z −→ An+1 denote the blow up of the origin (the cone point) with
exceptional divisor E ∼= Pn. This blowup also provides an (embedded) log
resolution of X because H itself was non-singular. Hence if Y ⊆ Z is the
strict transform of X, we need to compute KY . Observe that we may take
KAn+1 = 0 and hence KZ = nE. Notice that π∗X = Y + dE. We compute
KY as follows.

KY ∼ (KZ + Y )|Y = (nE + π∗X − dE)|Y = (n− d)E|Y
The linear equivalence is the adjunction formula and the final equality is
because (π∗X)|E = 0 (since up to linear equivalence, X can be moved away
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from the cone point). In this case, E|Y is the reduced exceptional divisor
of π|Y : Y −→ X and so our only discrepancy is exactly n − d. Notice that
−1 ≤ n− d is equivalent to the assertion that d ≤ n+ 1, hence the LC case
is done. The other cases are the same.

4.2. F -split implies log canonical. Our next goal to prove the fol-
lowing of Hara and Watanabe [HW02].

Theorem 4.13. Suppose that (X = SpecR,∆) is an F -split pair as in
Chapter 5 Definition 3.1. Then (X,∆) is also log canonical. Furthermore,
if (X,∆) is strongly F -regular, then (X,∆) is Kawamata log terminal.

As a corollary, we obtain a way to prove varieties are log terminal or log
canonical via reduction to characteristic p� 0.

Corollary 4.14. Suppose that (X = SpecR,∆) is a variety over a field of
characteristic zero. Suppose that (X,∆) has dense F -split (respectively dense
strongly F -regular type). Then (X,∆) is LC (respectively KLT).

Proof. Being log canonical or Kawamata log terminal may be checked
on a log resolution π : Y −→ X, which we may reduce to characteristic
p� 0. The condition that the coefficients of the divisor KY − π∗(KX + ∆)
are < −1 or ≤ −1 may be preserved by reduction to characteristic p � 0.
The corollary follows. �

Before proving this, we need the following key lemma, explaining how
maps φ ∈H om(F e∗OX ,OX) can be lifted to maps on Y where π : Y −→ X
is birational.

Lemma 4.15 (Lifting Frobenius splittings to birational maps). Suppose
that X is a normal F -finite integral Noetherian scheme and π : Y −→
X is a birational map from a normal integral scheme. Suppose that φ ∈
H om(F e∗OX ,OX). Form the Q-divisor ∆φ associated to φ as in Chapter 5
Definition 2.1 and write KY + ∆Y = π∗(KX + ∆φ) where KY and KX are
chosen as in Setting 4.2. Then there is a map

φY : F e∗OY −→ OY

that agrees with φ on F e∗K(X) = F e∗K(Y ) (in other words, at the generic
point of X or Y ) if and only if we have that ∆Y ≥ 0. In this case, ∆Y = ∆φY .

Proof. We begin with the following claim.
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Claim 4.16. We may choose isomorphisms of F e∗OY and F e∗OX-modules
respectively,

H om(F e∗OY ,OY ) ∼= F e∗OY ((1− pe)KY )
and

H om(F e∗OX ,OX) ∼= F e∗OX((1− pe)KX)

which agree where π is an isomorphism.

Proof of claim. First assume that π is proper and fix an isomorphism
on Y . Pushing forward, we obtain an isomorphism:

π∗H om(F e∗OY ,OY ) ∼= π∗F
e
∗OY ((1− pe)KY )

whose reflexification (S2-ification) is the desired isomorphism on X, since π
is an isomorphism outside a set of codimension 2 on X. Notice that in doing
this, we may also fix KY and KX that agree where π is an isomorphism.
This proves the claim in the case that π is proper. If π is not proper, then
we may embed Y in a normal proper scheme over X, and so reduce to the
proper case by [Nag63] and normalizing. �

Now that we have the claim in place, suppose φY : F e∗OY −→ OY is a map
that agrees with φ at their respective generic points. Certainly ∆φY ≥ 0, we
need to show that KY + ∆φY = π∗(KX + ∆φ). Since X is not Q-Gorenstein,
we cannot simply pullback OX((1− pe)KX) as it is not a line bundle.

However, we may view φ as a global section which generates, as an
F e∗OX -module, the top row of the following diagram:

(4.16.1) F e∗OX((1− pe)(KX + ∆φ))� _

��

oo ∼ // H omOX
(F e∗OX((pe − 1)∆φ),OX)� _

��

F e∗OX((1− pe)KX) oo
∼ // H om(F e∗OX ,OX).

Likewise φY generates, as an F e∗OY -module, the top row of the following
diagram:

F e∗OY ((1− pe)(KY + ∆φY ))
� _

��

oo ∼ // H omOY (F e∗OY ((pe − 1)∆φY ),OY )
� _

��

F e∗OY ((1− pe)KY ) oo
∼ // H om(F e∗OY ,OY ).

Using the claim shows that the diagrams agree where π is an isomorphism.
Since φ and φY correspond to the same section generically, we then see that
OX((1−pe)(KX+∆φ)) ∼= OX , from (4.16.1), pulls back to OY ((1−pe)(KY +
∆φY )). Hence π∗(1 − pe)(KX + ∆) = (1 − pe)(KY + ∆φY ). It follows that
∆φY = ∆Y as desired.
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Conversely, if KY + ∆Y = π∗(KX + ∆φ) then ∆Y corresponds to a
(generating) global section of OY ((1 − pe)(KY + ∆Y )) pulled back from
OX((1−pe)(KX + ∆)). We apply the compatible isomorphisms of the claim
to complete the proof. �

We can now prove our result.

Proof of Theorem 4.13. First suppose that (X,∆) is locally F -split.
The statement is local so we may assume X = SpecR and thus choose a
surjective φ ∈ H om(F e∗OX(d(pe − 1)∆e),OX) with ∆φ ≥ ∆. It follows
that (X,∆φ) is also F -split and hence we may assume that ∆ = ∆φ using
Exercise 4.4.

Choose π : Y −→ X a birational map, write KY + ∆Y = π∗(KX + ∆)
and let U ⊆ Y be the open set where the coefficients of ∆Y non-negative.
Note we are trying to show that all coefficients of ∆Y are ≤ 1 for LC (and
< 1 for KLT), so we may restrict to U . Replacing Y by U , we may thus
assume that ∆Y ≥ 0 and thus φ lifts to φY : F e∗OY −→ OY .

Now, in the F -split case, φ is surjective, so has 1 in its image, and thus
so does φY . Hence (Y,∆Y ) is locally F -split. Thus the coefficients of ∆Y

are ≤ 1 by Chapter 5 Exercise 2.7. This proves that (X,∆) is log canonical.

Now suppose that (X = SpecR,∆) is strongly F -regular and fix π :
Y −→ X birational. As above, we may assume that KY +∆Y = π∗(KX +∆)
with ∆Y ≥ 0. Fix some prime divisor E on Y and choose f ∈ R that
vanishes on π(E). By Chapter 5 Proposition 3.14, (X,∆ + εdivX(f)) is
also strongly F -regular (in the affine case, strongly F -regular is the same as
globally F -regular). In particular, (X,∆ + εdivX(f)) is F -split, and hence
if we write KY + ∆′Y = π∗(KX + ∆ + εdivX(f)) we see that the coefficients
of ∆′Y are also ≤ 1. But

∆′Y = ∆Y + εdivY (f) = ∆Y + επ∗ divX(f)

and so since the E-coefficient of divY (f) is > 0, we see that E-coefficient of
∆Y is < 1. This proves that (X,∆) is KLT as claimed. �

4.3. Multiplier ideals and vanishing theorems. The multiplier ideal
of a pair (X,∆) is a sheaf that measures how KLT the pair is. It will corre-
spond to the test ideal under reduction to characteristic p� 0.

Definition 4.17. Suppose that X is a normal integral Noetherian scheme
in characteristic zero with a dualizing complex, that (X,∆ ≥ 0) is a log
Q-Gorenstein pair and π : Y −→ X is a log resolution of (X,∆). We define
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the multiplier ideal of (X,∆) to be:

J (X,∆) = π∗OY (dKY − π∗(KX + ∆)e).
Here KY and KX are chosen to agree where π is an isomorphism.

This is independent of the choice of resolution and it canonically embeds
inside OX (and so really is an ideal). For a detailed account of this, see
for instance [Laz04b]. One can define a multiplier ideal without having
a resolution of singularities. In that case one takes the intersection of the
objects π∗OX(dKY −π∗(KX+∆)e) as we run over all proper birational maps
π : Y −→ X. However, it is not immediately clear if such an intersection
is even a quasi-coherent sheaf, for additional discussion and proofs in some
cases, see [Can20, Section 7].

Lemma 4.18. (X,∆) is KLT if and only if J (X,∆) = OX .

Proof. This holds even if we do not have a resolution of singularities.
In that case we see that J (X,∆) = OX if and only if π∗OY (dKY −π∗(KX +
∆)e) = OX for every proper birational map π : Y −→ X.

We may assume that X is affine. Notice that π∗OY (dKY − π∗(KX +
∆)e) = OX if and only if the divisor dKY − π∗(KX + ∆)e is effective. That
occurs if and only if the coefficients of KY − π∗(KX + ∆) are > −1, which
is the definition of KLT. �

The power of multiplier ideals are tied up with vanishing theorems, which
are known when X is finite type over a field of characteristic zero. What
follows is a special case of the relative Kawamata-Viehweg vanishing theorem.

Theorem 4.19 (Local vanishing for multiplier ideals). Suppose that (X,∆)
is a log Q-Gorenstein pair. If π : Y −→ X is a log resolution of (X,∆) then

0 = Riπ∗OY (dKY − π∗(KX + ∆)e)
for all i > 0. In other words, we can compactly write

J (X,∆) = Rπ∗OY (dKY − π∗(KX + ∆)e).

As an immediate corollary, we obtain the following.

Theorem 4.20. If (X,∆) is KLT and X is a variety of characteristic zero,
then X has rational singularities.

Proof. We will use Exercise 2.13. Fix π : Y −→ X a log resolution of
(X,∆). Since (X,∆) is KLT, we see that dKY − π∗(KX + ∆)e ≥ 0 and so
OY ⊆ OY (dKY − π∗(KX + ∆)e). Thus we have the following composition

OX −→ Rπ∗OY −→ Rπ∗OY (dKY − π∗(KX + ∆)e) = J (X,∆) = OX .
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Since it is the identity at the generic point of X, it is the identity. Hence
Exercise 2.13 implies that X has rational singularities. �

4.4. Multiplier ideals and test ideals. We first need a lemma, which
can be viewed as a generalization (or variant) of Lemma 4.15.

Lemma 4.21. Suppose that R is a normal domain, π : Y −→ X = SpecR is
a proper birational map with Y normal. Then for every φ ∈ HomR(F e∗R,R)
we have that φ induces a map

φY : F e∗OY (dKY − π∗(KX + ∆φ)e) −→ OY (dKY − π∗(KX + ∆φ)e)

that agrees with φ generically.

Proof. Since H om(F e∗OX(∆φ),OX) ∼= F e∗OX((1−pe)(KX + ∆φ)), we
may view φ as a global section of the latter. We pull this back via (F e∗π)∗

to obtain a section

φY ∈ (F e∗π)∗OX((1− pe)(KX + ∆φ)).

Writing π∗(KX + ∆φ) = KY + ∆Y (notice that ∆Y need not be effective),
we see that we may view φY as a global section of

F e∗OY ((1− pe)(KY + ∆Y )) ∼= H omOY (F e∗OY ((pe − 1)∆Y ),OY ).

Hence we obtain

(4.21.1) φY : F e∗OY ((pe − 1)∆Y ) −→ OY
a map that agrees with φ generically (on the locus where π is an isomorphism,
we have done nothing). This is not quite the map we want, but it’s close.
We now twist both sides of (4.21.1) by dKY −π∗(KX +∆φ)e and reflexify to
make everything a (Frobenius pushforward of a) divisorial sheaf to obtain

(4.21.2) φY : F e∗OY ((pe − 1)∆Y + pedKY − π∗(KX + ∆φ)e)
−→ OY (dKY − π∗(KX + ∆φ)e).

Since
(pe − 1)∆Y + pedKY − π∗(KX + ∆φ)e

≥ (pe − 1)∆Y + peKY − peπ∗(KX + ∆φ)
= (pe − 1)∆Y + peKY − pe(KY + ∆Y )
= −∆Y

= KY − π∗(KX + ∆φ)

we see that

(pe − 1)∆Y + pedKY − π∗(KX + ∆φ)e ≥ dKY − π∗(KX + ∆φ)e

as both sides have integer coefficients. Hence, restricting φY to F e∗OY (dKY −
π∗(KX + ∆φ)e) and calling the resulting map φY as well, we obtain our
desired map. �
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We will show the following result in characteristic p > 0, which will
immediately imply that the modulo-p � 0 reduction of the multiplier ideal
is at least as big as the test ideal:

τ(Rt,∆t) ⊆ J (R,∆)t.

Proposition 4.22. Suppose that (X = SpecR,∆) is a log Q-Gorenstein
pair and that π : Y −→ X is a proper birational map with Y normal. Then
for every effective Weil divisor D ≥ 0 on Y , we have that

π∗OY (dKY − π∗(KX + ∆)e+D)

is compatible with every φ ∈ HomR(F e∗R,R) such that ∆φ ≥ ∆. In particu-
lar, it contains τ(R,∆).

There is a complication in the above statement that may be missed in
a first reading. Notice that if D contains a non-exceptional diDi such that
the coefficient di is larger than the corresponding coefficient of ∆ (at Di),
then π∗OY (dKY − π∗(KX + ∆)e+D) is not contained in OX . In that case
it is only a fractional ideal, but it is still compatible with φ in the sense it is
compatible with the induced map φK(X) : F e∗K(X) −→ K(X) on the fraction
field.

Proof. Fix φ ∈ HomR(F e∗R,R). We have a map from Lemma 4.21

φY : F e∗OY (dKY − π∗(KX + ∆φ)e) −→ OY (dKY − π∗(KX + ∆φ)e)
that agrees with φ generically. If we twist both sides by D and reflexify, we
obtain a map

φY : F e∗OY (dKY −π∗(KX +∆φ)e+peD) −→ OY (dKY −π∗(KX +∆φ)e+D).

Since peD ≥ D (since D is effective) we may restrict the domain of φY to
obtain

φY : F e∗OY (dKY − π∗(KX + ∆φ)e+D) −→ OY (dKY − π∗(KX + ∆φ)e+D).

Pushing forward, we obtain a map that agrees with φ generically. Hence,
π∗OY (dKY − π∗(KX + ∆φ)e+D) is compatible with φ as claimed. �

We now prove our main result of the section.

Theorem 4.23 ([Tak04b], cf. [Smi00b, Har01, HY03]). Suppose that
(X = SpecR,∆ ≥ 0) is a log Q-Gorenstein pair of finite type over a field
of characteristic zero where R is a normal domain. Suppose that {(Rt,∆t)}
is a family of characteristic p > 0 models of (R,∆) as in Section 1 for a
sufficiently large A. Then there exists an open dense subset U of m-SpecA
such that

J (X,∆)t = τ(Xt,∆t)

for all t ∈ U . In particular, (R,∆) has KLT singularities if and only if it
has open strongly F -regular type.
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Proof. By Proposition 4.22, we automatically obtain the containment
⊇, hence we need the reverse.

Fix 0 6= d ∈ R a test element after reduction to characteristic p � 0 by
Lemma 3.6. We may also assume that div(d) ≥ ∆ and so we in fact have
that

d2
t ∈ dt · τ(Rp) = τ(Rp,div(dt)) ⊆ τ(Rt,∆t)

after reduction modulo p, where the first equality is Skoda’s theorem for test
ideals Chapter 4 Theorem 5.20.

We fix a resolution of singularities π : Y −→ X in characteristic zero
which is the blowup of some ideal J ⊆ R and hence that J · OY = OY (−G)
where G is effective and −G is relatively ample. Write D = ε(−G −
divY (d2)) − π∗(KX + ∆) for some rational number 1 � ε > 0 so that D
is π-ample and notice we have that dDe = d−π∗(KX + ∆)e.

Since KX + ∆ is Q-Cartier, there exists a n > 0 such that n(KX + ∆)
is Cartier. We may also assume that nε ∈ Z by replacing n by a multiple.
Replacing R by finitely many localizations at a single element, we may even
assume that n(KX + ∆) ∼ 0. By shrinking U , we may restrict ourselves to
characteristics p > 0 such that n and p are relatively prime and hence there
exists an e (depending on p) so that (pe−1)(KX +∆) ∼ 0 and (pe−1)ε ∈ Z.

By Hara’s Surjectivity Theorem, Lemma 3.5, for some open dense U ⊆
m-SpecA, we see that we have surjections

(4.23.1) T eYt : π∗F
e
∗OYt(KYt + dpeDte) −→ π∗OYt(KYt + dDte)

for all t ∈ U and all e > 0. The target of (4.23.1) is J (X,∆)t since dDe =
d−π∗(KX + ∆)e.

The source of (4.23.1) can be rewritten as

π∗F
e
∗OYt(KYt + (pe − 1)Dt + dDte)

= F e∗

(
OXt

(
(1− pe)(KXt + ∆t) + (pe − 1)εdivXt(d

2
t )
)
⊗ π∗F e∗OYt(KYt + dDte)

)
= F e∗

(
OXt

(
(1− pe)(KXt + ∆t) + (pe − 1)εdivXt(d

2
t )
)
⊗ J (X,∆)t

)
by the projection formula.

Next we observe that if we twist F e∗ωXt −→ ωXt by −KXt and use that
−∆ is effective, we obtain a map ν : F e∗OXt((1 − pe)(KXt + ∆t)) −→ OX .
Next if we apply the isomorphism the OXt((1 − pe)(KXt + ∆t)) ∼= OXt we
may identify our map ν with a

φt : F e∗OXt −→ OXt
so that ∆φt = ∆t.
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Putting all this together with the surjectivity of (4.23.1), we see that φt
restricts to a surjection:

φt : F e∗ d
2(pe−1)ε
t · J (X,∆)t −→ J (X,∆)t.

Since d2
t ∈ τ(Xt,∆t), so is the image of F e∗ d

2(pe−1)ε
t · J (X,∆)t. Hence

J (X,∆)t ⊆ τ(Xt,∆t). This completes the proof of the first statement.

The second statement follows from the first since (X,∆) is KLT if and
only if J (X,∆) = OX and (Xt,∆t) is strongly F -regular if and only if
τ(Xt,∆t) = OXt . �

It is natural to expect an analogous result to Theorem 4.23 for LC sin-
gularities and F -split type. Note we cannot expect open F -split type as the
following example shows:

Example 4.24. Suppose that R is the affine cone over a smooth elliptic
curve, for instance we could take R = Q[x, y, z]/(x3 + y3 + z3). Then R is
log canonical by Example 4.5. However, R is only F -split when the associated
elliptic curve is ordinary, see Chapter 4 Subsection 1.1. For the Fermat cubic
above, that happens if and only if p ≡3 1.

The following conjecture is open and considered to be quite difficult.

Conjecture 4.25. Suppose that (X,∆) is log canonical, then it has dense
F -split type.

See [Sri91, Har98b, ST09, FT13, Her15, Her16], for a small sample
of the special cases that are known.

It is known that Conjecture 4.25 follows from the weak ordinarity conjec-
ture of Mustaţă-Srinivas, see [MS11], cf. [BK86, JR03, Mus10, BST17,
ST17, DS17, Bit20, Stfrm-e1].

Conjecture 4.26 (Weak Ordinarity). Suppose X is a d-dimensional smooth
variety over a field of characteristic zero. After reduction to characteristic
p� 0, for a dense set T ⊆ m-SpecA, we have that the Frobenius action on
Hd(Xt,OXt) is bijective for all t ∈ T .

For some cases where this latter conjecture is known see [Ogu82, JR03,
BZ09].

4.5. Examples and connections with the F -pure threshold. It
is particularly important to note that the open set U constructed in Theo-
rem 4.23 depends on both X and ∆. If we change the coefficients of ∆, then
the open set U changes as well. Indeed, consider the following example.
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Example 4.27. Let R = Q[x, y] with X = SpecR, fix f = y2 − x3, and set
∆ = s div(f) for varying s. Recall from Chapter 4 Example 3.9 that the F -
pure threshold of (R, f) is 5

6−
1
6p for p ≡6 5 (that is for p = 5, 11, 17, 23, . . . ).

In particular τ(Rp, f
s
p ) 6= Rp for any such p and any s ∈ (5

6 −
1
6p ,

5
6).

On the other hand, a straightforward computation shows that J (X,∆) =
OX if and only if t < 5

6 . Putting this together, we obtain the following.

Fix 0 < s < 5
6 . Then

Rp = J (X, sdiv(f))p = τ(Rp, sdiv(fp))

if and only if 5
6 − s >

1
6p . That is, if and only if

p >
1

5− 6s
.

Analogous to the F -pure threshold is the log canonical threshold (indeed,
the F -pure threshold of Chapter 4 Section 3 was inspired by the following
definition).

Definition 4.28 (Log canonical thresholds). Suppose thatR is aQ-Gorenstein
log canonical domain and 0 6= f ∈ R. We define the log canonical thresh-
old of f to be

lct(R, f) = sup{s > 0 | (SpecR, s div f) is log canonical}.

At this point, we recall the F -pure threshold from Chapter 4.

Definition 4.29 (F -pure threshold). Suppose that R is a F -pure domain
in characteristic p > 0 and 0 6= f ∈ R. We define the F -pure threshold of
f to be

fpt(R, f) = sup{s > 0 | (SpecR, s div f) is F -split}.

We then immediately obtain the following result, which is frequently
colloquially described as:

lim
p−→∞

fpt(Rp, fp) = lct(R, f).

Theorem 4.30. Suppose R is a KLT and Q-Gorenstein domain of finite
type over a characteristic zero and 0 6= f ∈ R. Reduce this setup to mixed
characteristic for a sufficiently large A. Then for every ε > 0, there exists
an open set U ⊆ m- SpecA such that for every t ∈ U , we have that

lct(R, f)− ε < fpt(Rt, ft) ≤ lct(R, f)

Proof. Since R is KLT, we have by Exercise 4.8 that

lct(R, f) = sup{s > 0 | (SpecR, s div f) is KLT}.
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We may use Theorem 4.23 to restrict to t so that Rt is strongly F -regular.
Hence we have that

fpt(Rt, ft) = sup{s > 0 | (SpecR, s div f) is F -split}.
The inequality ≤ in the statement can be deduced from the fact that F -split
pairs are log canonical Theorem 4.13.

If we set c = lct(R, f), then we see that (R, (c − ε) div(f)) is KLT (if
c − ε < 0, the statement is vacuous). Hence there exists an open set U ⊆
m-SpecA so that if t ∈ U , then (Rt, (c − ε) div(ft)) is strongly F -regular.
The statement follows. �

A variant of Conjecture 4.25 says the following.

Conjecture 4.31. With notation as in Theorem 4.30, there exists a dense
set of t ∈ m-SpecA such that

fpt(Rt, ft) = lct(R, f).

Remark 4.32 (Small primes). It is natural also to ask how things like the
log canonical threshold itself behave under mod-p reduction. While it is not
difficult to see that lct(Rt, ft) = lct(R, f) for t ∈ U , an open dense subset of
m-SpecA, it is less clear what happens for all t (ie, for small primes). This
has been studied in the papers [] where roughly speaking, it is shown that
lct(Rt, ft) ≤ lct(R, f) for all t ∈ m-SpecA under various hypotheses.

4.6. Calabi-Yau and Log Fano varieties. The theory we have so far
developed also informs us about analogs of globally F -regular varieties.

Definition 4.33. Suppose that (X,∆ ≥ 0) is a pair where X is a normal
projective variety over a field. We say that (X,∆) is log Calabi-Yau if
(X,∆) has log canonical singularities and n(KX + ∆) ∼ 0 for some n > 0.
We say that (X,∆) is log Fano if (X,∆) has KLT singularities and−KX−∆
is ample.

As a consequence of our work in Chapter 5 Theorem 3.20, we immediately
obtain the following.

Theorem 4.34. Suppose that X is a variety over an F -finite field of char-
acteristic p > 0. Suppose that X is globally F -split, then there exists a ∆
such that (X,∆) is log Calabi-Yau. Furthermore, if X is globally F -regular,
then there exists a ∆ such that (X,∆) is log Fano.

Proof. If X is globally F -split, then using Chapter 5 Proposition 3.6
we see that there exists a ∆ ≥ 0 such that (X,∆) is globally F -split with
n(KX + ∆) ∼ 0 for some n > 0. Since (X,∆) is F -split and KX + ∆ is
Q-Cartier, we see that (X,∆) is log canonical by Theorem 4.13.
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Next if X is globally F -regular, by Chapter 5 Theorem 3.20, we see that
there exists a ∆ ≥ 0 such that (X,∆) is globally F -regular and −KX −∆ is
ample. In particular, (X,∆) is KLT by Theorem 4.13, which completes the
proof. �

Based on this, we might expect the following conjecture.

Conjecture 4.35. Suppose that X is a projective variety of characteristic
zero that has open globally F -regular type (respectively, dense globally F -split
type). Then there exists a ∆ ≥ 0 such that (X,∆) is log Fano (respectively,
log Calabi-Yau).

In Conjecture 4.35, if X is globally F -regular type, as we reduce to char-
acteristic p > 0 we can find a ∆t on each Xt making (Xt,∆t) log Fano, see
Chapter 5 Subsection 3.5. However, these ∆t vary as t varies, and in fact the
denominators of its coefficients might very well increase as the characteristic
increases. There has been some progress on this conjecture however, see for
instance [GOST15, GT16, Oka17, Yos22].

We can prove the following however.

Theorem 4.36. If (X,∆) is log Fano, then (X,∆) has open globally F -
regular type.

Proof. Left to the reader in Exercise 4.9. �

4.7. Triples. We conclude this section with a brief discussion of another
variant of multiplier ideals, those associated to triples. This generality was
introduced for test ideals in Chapter 5 Exercise 5.16.

Definition 4.37. A triple (X,∆, as) consists of a normal integral scheme
X, an effective Q-divisor ∆ ≥ 0, an ideal sheaf a ⊆ OX and a real number
s ≥ 0. A triple is called log Q-Gorenstein if KX + ∆ is Q-Cartier.

In characteristic zero, associated to any triple, we can also define a mul-
tiplier ideal as follows.

Definition 4.38 (Multiplier ideals of triples). Suppose (X,∆, as) is a log
Q-Gorenstein triple where X is finite type over a field of characteristic zero.
Fix π : Y −→ X a log resolution of X, ∆ and V (a) ⊆ X where we write
a · OY = OX(−H). We define the multiplier ideal of (X,∆, as) to be

J (X,∆, as) = π∗OY (dKY−π∗(KX+∆)−sHe) ∼= Rπ∗OY (dKY−π∗(KX+∆)−sHe).

Note implicitly used here is the fact that the higher direct images are zero.
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The multiplier ideal in this generality still reduces to the test ideal (the
proof is left to the exercises).

Theorem 4.39. Suppose that (X = SpecR,∆, as) is a log Q-Gorenstein
triple of finite type over a field of characteristic zero where R is a normal
domain. Suppose that {(Rt,∆t, at)} is a family of characteristic p > 0 models
of (R,∆, a) as in Section 1 for a sufficiently large A. Then there exists an
open dense subset U of m- SpecA such that

J (X,∆, as)t = τ(Xt,∆t, a
s
t )

for all t ∈ U .

Proof. See Exercise 4.10 and Exercise 4.11. �

4.8. Exercises.

Exercise 4.1. Show that our definition of the pullback of a Q-Cartier Q-
divisor from (4.0.1) does not depend on the choice of m.

Exercise 4.2. Prove Lemma 4.4. That is, show the definition of discrepancy
is independent of the choice of canonical divisor KX .

Exercise 4.3. Prove Lemma 4.6. That is, show that the discrepancy of
(X,∆) along E depends only on the valuation associated to E and not the
particular choice of π : Y −→ X.

Exercise 4.4. Suppose that X is a normal Noetherian integral scheme and
that ∆′ ≥ ∆ ≥ 0 are Q-divisors such that KX + ∆ and KX + ∆′ are both
Q-Cartier. Show that if (X,∆′) is KLT (respectively LC, PLT, canonical,
terminal), then (X,∆) is also KLT (respectively LC, PLT, canonical termi-
nal).

Exercise 4.5. Prove Proposition 4.10 for the properties Kawamata log ter-
minal and purely log terminal.

Definition 4.40. Suppose π : Y −→ X is a proper birational map between
normal varieties and consider a log Q-Gorenstein pair (X,∆). We can always
write

KY − π∗(KX + ∆) =
t∑
i=1

aiEi

for some prime divisors Ei on Y . We say that a closed subvariety Z ⊆ X is
a non-KLT-center of (X,∆) if there exists a Y and Ei ⊆ Y as above such
that Z = π(Ei) and such that the associated ai ≤ −1.

Exercise 4.6. Now suppose that φ : F e∗OX −→ OX is a nonzero map and
set ∆ = ∆φ. Suppose that Z ⊂ X is a non-KLT-center of (X,∆). Prove
that the Z is compatible with φ.
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Exercise 4.7. Suppose X is a normal Gorenstein variety in characteristic
zero and D is a normal prime Cartier divisor on X. Define the adjoint ideal
of (X,D) to be

adjD(X,D) := π∗OY (dKY − π∗(KX +D) + π−1
∗ De)

where π : Y −→ X is a log resolution of (X,D) and π−1
∗ D is the strict

transform of D.

(a) Show that adjD(X,D) = OX if and only if (X,D) is PLT.
(b) Prove that there is a surjection adjD(X,D)� J (D).
(c) Conclude that D has KLT singularities if and only if (X,D) is PLT

near D.

The hypotheses that X is Gorenstein and that D is Cartier can be weak-
ened substantially. The general statement is typically called inversion of
adjunction for log terminal singularities.

Exercise 4.8. Suppose that R is KLT and Q-Gorenstein and of character-
istic zero (so that log resolutions exist). Show that

lct(R, f) = sup{s > 0 | (SpecR, s div f) is KLT}.

Next suppose that R is strongly F -regular of characteristic p > 0. Show that

fpt(R, f) = sup{s > 0 | (R, s div f) is strongly F -regular}.

Exercise 4.9. Prove Theorem 4.36.

Hint: Suppose that (X,∆) is log Fano. Form a section ring S with
respect to an ample Cartier divisor −n(KX + ∆) for n sufficiently divisible.
Let ∆S be a divisor on S corresponding to ∆ and show that (S,∆S) is KLT.
Now reduce to positive characteristic.

To show that (S,∆S) is KLT, it suffices to blowup at the irrelevant ideal
and check that the discrepancy on that exceptional divisor E (abstractly
isomorphic to X is > −1). To do that, use that E ∼= X and E|E ∼ n(KX +
∆).

Exercise 4.10. With notation as in Theorem 4.39, show that

J (X,∆, as)t ⊆ τ(Xt,∆t, a
s
t )

for all t ∈ U , where U is a dense open subset of m-SpecA.

Hint: We may replace s by s/n < 1 and a by an for some n. By the
argument of [Laz04b, Proposition 9.2.28], we may find a principal f ∈ a
such that J (X,∆, as) = J (X,∆ + s div(f)). In characteristic p > 0, show
that τ(Xt,∆t + s div(ft)) ⊆ τ(Xt,∆t, a

s
t ).
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Exercise 4.11. With notation as in Theorem 4.39, show that

J (X,∆, as)t ⊇ τ(Xt,∆t, a
s
t )

for all t ∈ U , where U is a dense open subset of m-SpecA.

Hint: The trick used in Exercise 4.10 does not work here. Instead show
that J (X,∆, as)t is compatible with every element of (F e∗ a

dt(pe−1)e) ·C e(∆)
as in Chapter 5 Exercise 5.16. Use the fact that for M on Y , that a ·π∗M ⊆
π∗(M ⊗OY (−H)) where a · OY ⊆ OY (−H).

5. Du Bois and F -injective singularities

In this section we describe the relationship between Du Bois and F -
injective singularities. We will show that singularities of Dense F -injective
type are Du Bois. The converse direction is open, and is equivalent to the
weak ordinarity conjecture of Conjecture 4.26, as we shall see. Our first goal
is to describe Du Bois singularities.

5.1. Du Bois singularities. Suppose that X is essentially finite type
over a field of characteristic zero and X ⊆ Y where Y is a smooth variety.
Take a log resolution π : Y ′ −→ Y of (Y,X) and let X = π−1(X)red denote
the reduced inverse image of X. Then define

Ω0
X = Rπ∗OX

an object in Db
coh(X).

This object is independent of the choice of log resolution (up to quasi-
isomorphism) or the embedding X ⊆ Y . This construction is not the usual
way to describe this object, we normally use hypercovers or hyperresolutions,
see [GNPP88, PS08, KS11b]. However, this is the quickest way to get to
this object for us.

The more general construction does not require an embedding into a non-
singular scheme (although, of course that always exists locally for schemes
essentially of finite type, and exists globally for quasi-projective varieties).
We will therefore assume that there is an object Ω0

X ∈ Db
coh(X) for any

scheme essentially of finite type over a field of characteristic zero which agrees
with the one described above locally. It also admits a canonical map OX −→
Ω0
X that agrees (locally) with the one that comes from our description above.

Remark 5.1. In fact, instead of taking a log resolution of (Y,X), one may
take an embedded resolution π : Y ′ −→ Y of X ⊆ Y such that the reduced
exceptional divisor E is a simple normal crossing divisor that meets X̃,



390 6. CONNECTIONS WITH CHARACTERISTIC ZERO

the strict transform of X, in a simple normal crossing divisor. If we let
X = π−1(X)red, then we still have Ω0

X = Rπ∗OX . Note in this case X

Definition 5.2 (cf. [Ste85, Esn90, Sch07]). Suppose that X is a scheme
essentially of finite type over a field of characteristic zero. We say that X
has Du Bois singularities if the canonical map

OX −→ Ω0
X

is a quasi-isomorphism.

Remark 5.3. Note that a scheme has Du Bois singularities if it can be cov-
ered by Du Bois charts (equivalently, if its stalks have Du Bois singularities).

There is a striking similarity between this definition and rational sin-
gularities. For Du Bois singularities, we use Ω0

X instead of Rπ∗OX̃ where
X̃ −→ X is a resolution of singularities.

In characteristic zero, one reason rational singularities have been so useful
is because of the Grauert-Riemenschneider vanishing theorem Theorem 2.13.
There is a result for Du Bois singularities that plays the same role. We fix
the following notation

ω
q
X := RH om(Ω0

X , ω
q
X)

which when E is as above, agrees with Rπ∗ω
q
X

by Grothendieck duality.

Theorem 5.4 ([KS11a]). Suppose X is a scheme essentially of finite type
over a field of characteristic zero. Then for every i, the Grothendieck dual
map to OX −→ Ω0

X ,
Hiω q

X −→ Hiω
q
X

is injective on cohomology. Dually, for every closed point x ∈ X, we have
that

H i
x(X,OX) −→ H i

x(X,Ω0
X)

surjects for every i.

Remark 5.5 (Injectivity implies some vanishing). Since Hiω q
X = 0 for i <

−dimX, we immediately see that Hiω q
X = 0 for i < −dimX as well.

Notice that X is a Cohen-Macaulay variety if and only if

Hiω q
X = 0

for all i 6= dimX. Hence, using the notation X = π−1(X)red as above, we
have that

Riπ∗ω
q
X

= 0

for all i 6= −dimX. If we replaceX by X̃, this is exactly Grauert-Riemenschneider
vanishing.
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Our next goal is to explain how Du Bois singularities are related to the
other singularities we have defined so far. Notice from our diagram at the
start of Chapter 6, we expect that Du Bois singularities should be related to
rational and log canonical singularities.

First we prove a criterion for Du Bois singularities analogous to Kovács
criterion for rational singularities Exercise 2.13, see [Kol95, Kov99].

Lemma 5.6. Suppose X is a scheme of finite type over a field of charac-
teristic zero and that there exists a map Ω0

X −→ OX in the derived category
such that the composition OX −→ Ω0

X −→ OX is an isomorphism. Then X
has Du Bois singularities.

Proof. We apply Grothendieck duality to our composition to obtain

ω
q
X ←H om(Ω0

X , ω
q
X)← ω

q
X

an isomorphism in the derived category. By Theorem 5.4 the left arrow is
injective on cohomology. But our displayed composition also implies it is sur-
jective on cohomology. Hence ω q

X ←H om(Ω0
X , ω

q
X) is a quasi-isomorphism.

Dualizing again proves that OX −→ Ω0
X is an isomorphism. The result fol-

lows. �

This immediately will show that rational singularities are Du Bois (first
shown by Kovács and Saito [Kov99, Sai00]).

Theorem 5.7 ([Kov99, Sai00]). Suppose X is a scheme essentially of finite
type over a field of characteristic zero which has rational singularities, then
X has Du Bois singularities.

Proof. Working locally, we may assume that X ⊆ Y where Y is non-
singular. We may then take an embedded resolution π : Y ′ −→ Y where
X̃ = π−1

∗ X is the strict transform and E = π−1(X)red is the reduced inverse
image. We may also assume that Ω0

X = Rπ∗OE as in Remark 5.1 by choosing
our embedded resolution carefully enough. Notice now that X̃ is a closed
subscheme of E. Consider the induced composition:

OX −→ Ω0
X = Rπ∗OE −→ Rπ∗OX̃ .

SinceX has rational singularities, this is a quasi-isomorphism. Hence Lemma 5.6
applies and the proof is complete. �

The argument used in the previous proof can also tell us about the −dth
cohomology of H om(Ω0

X , ω
q
X).

Lemma 5.8. Suppose that X is a normal d-dimensional integral scheme
of finite type over a field of characteristic zero. Let π : X̃ −→ X be a log
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resolution of X with reduced simple normal crossings exceptional divisor F .
Then

π∗ωX̃(F ) ∼= H−d H om(Ω0
X , ω

q
X).

Proof. It can be shown that π∗ωX̃(F ) is independent of the choice of
log resolution, see Exercise 5.1. Hence, working locally on X if necessary,
we may assume that X ⊆ Y with Y non-singular, π : Y ′ −→ Y an embedded
resolution of X where X̃ = π−1

∗ X is the strict transform, E is the reduced
exceptional divisor of π and F = E ∩ X̃. Since we may assume that π is
an isomorphism away from the singular locus of X, we may assume that
S = π(E) has codimension ≥ 2 and hence dimS ≤ dimX − 2 since X is
normal.

Notice we may write

X = π−1(X)red = X̃ ∪ E.

The map OX � OE is an isomorphism away from X̃ and hence we have that
the kernel is O

X̃
(−F ) (the functions on OX which vanish on E). Hence we

have the following short exact sequence:

0 −→ O
X̃

(−F ) −→ OX −→ OE −→ 0.

We apply the Grothendieck duality functor and push forward to obtain the
exact triangle:

(5.8.1) Rπ∗ω
q
E −→ Rπ∗ω

q
X
−→ Rπ∗

(
ω
q̃
X
⊗O

X̃
(F )
) +1−−→ .

Notice that E, X̃ are equidimensional (although X is not, unless X ⊆ Y is
a hypersurface).

We next observe thatRπ∗OE = Ω0
S and soRπ∗ω

q
E = RH om(Rπ∗OE , ω

q
Y )

has zero cohomology in degrees < −dimS ≤ −(dimX − 2). Hence, taking
cohomology in (5.8.1), we have an isomorphism

H−dRπ∗ω
q
X
−→ H−dRπ∗

(
ω
q̃
X
⊗O

X̃
(F )
)

= π∗ωX̃(F )

as claimed. �

Hence in the Cohen-Macaulay case, we have the following criterion for
Du Bois singularities.

Corollary 5.9. Suppose that X is a normal Cohen-Macaulay integral scheme
of finite type over a field of characteristic zero. Let π : X̃ −→ X be a log reso-
lution with reduced exceptional divisor F . Then X has Du Bois singularities
if and only if the canonical map

π∗OX̃(K
X̃

+ F ) = π∗ωX̃(F ) −→ ωX = OX(KX)

is an isomorphism.
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Proof. SinceX is Cohen-Macaulay, we have that 0 = Hi(ω q
X) = Hi(Ω0

X , ω
q
X)

for i 6= dimX. Hence we only need to show that �

Finally, we relate Du Bois and log canonical singularities, although for
one direction we restrict to the case that X is Cohen-Macaulay (the general
case is quite a bit more difficult, see for instance [KK10, FL22]).

Theorem 5.10 ([Kov99, KK10], cf. [Kol13], [FL22]). Suppose (X,∆)
has log canonical singularities. Then X is Du Bois. Conversely, if X is
normal, quasi-Gorenstein, and Du Bois, then X is log canonical.

Proof. Without loss of generality, we may assume that X is affine. We
use the notation of Corollary 5.9,

We prove the second statement first. If X is Du Bois, normal and quasi-
Gorenstein, the isomorphism π∗OX̃(K

X̃
+ F ) ∼= OX(KX) can be rewritten

as
π∗OX̃(K

X̃
− π∗KX + F ) ∼= OX

by the projection formula. This implies that the coefficients of K
X̃
−π∗KX+

F are ≥ 0 and hence that the coefficients of K
X̃
− π∗KX are ≥ −1 since F

is reduced. This proves the second statement.

As mentioned above, we only prove the first statement when X is Cohen-
Macaulay. Hence it is sufficient to show that π∗ωX̃(F ) = ωX . Suppose
f ∈ Γ(X,OX(KX)) is a section. We must show that f ∈ Γ(X̃,O

X̃
(K

X̃
+F )),

or in other words that div
X̃

(f) +K
X̃

+ F ≥ 0.

Since (X,∆) is log canonical, the coefficients of K
X̃
− π∗(KX + ∆) are

all ≥ −1. It follows that all the coefficients of

K
X̃
− π∗(KX + ∆) + F + π−1

∗ ∆

are ≥ 0. Since divX(f) +KX ≥ 0, we also have that divX(f) ≥ −(KX + ∆)
and so div

X̃
(f) ≥ −π∗(KX + ∆). Thus we also have that all coefficients of

K
X̃

+ div
X̃

(f) + F + π−1
∗ ∆

are also ≥ 0. The term π−1
∗ ∆ is not even needed since where π is an isomor-

phism K
X̃

and KX agree and so there is nothing to check. This completes
the proof of the first statement. �

5.2. F -injective versus Du Bois singularities. Now that we have
some intuition and basic results about Du Bois singularities, we come to our
main goal: showing that varieties of dense F -injective type have Du Bois
singularities.
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The key observation is as follows.

Lemma 5.11. Suppose that X ⊆ Y = SpecS is a subscheme of a normal
integral Noetherian scheme Y in characteristic p > 0. Further assume that
π : Y ′ −→ Y is a projective birational map with ample anti-effective divisor
−E such that X = π−1(X)red has the same support as E. Suppose finally
that OY −→ Rπ∗OY ′ is an isomorphism. Then Frobenius acts nilpotently on
Hi(Rπ∗OX) for every i > 0. Furthermore, Frobenius acts nilpotently on the
quotient π∗OX/OX .

Proof. For the first statement, by considering the long exact sequence

. . . −→ Riπ∗OY ′(−X) −→ Riπ∗OY ′ −→ Riπ∗OX −→ . . . ,

we see that Riπ∗OY ′(−X) ∼= Ri−1π∗OX for i > 1. Additionally, since
π∗OY ′ = OY , we have the isomorphism π∗OX/OX ∼= π∗OX/ Image(π∗OY ′)
and so to prove the lemma, it suffices to show that Frobenius acts nilpotently
on Riπ∗OY ′(−X) for i > 0.

The e-iterated Frobenius map OY (−X) −→ F e∗OY (−X) factors as

OY (−X) −→ F e∗OY (−peX) ⊆ F e∗OY (−X).

That second inclusion factors through F e∗OY (−nE) where n can be made
arbitrarily large when e� 0. Hence by Serre vanishing applied to the ample
divisor −E, we see that F e acts as zero on Riπ∗OY (−X) for e � 0. This
completes the proof. �

Now we come to our main theorem of the section.

Theorem 5.12. Suppose X of finite type over a field of characteristic zero
has dense F -injective type. Then X has Du Bois singularities.

Proof. We may assume that X = SpecR is affine and so X ⊆ Y =
SpecS where S is a polynomial ring. We may fix a log resolution π : Y ′ −→ Y
of (Y,X) that is the blowup of an ideal sheaf with the same support as X
by Exercise 5.2 (in particular, there is a ample divisor on Y with the same
support as X). Because Y is non-singular, it has rational singularities and
so Riπ∗OY ′ = 0 for all i > 0. Next notice that HiRπ∗ω

q
X
↪→ Hiω q

X injects
for all i by Theorem 5.4. Our goal is to show they are surjective as well.
Suppose that X is not Du Bois and so fix a prime Q ∈ X = SpecR minimal
with respect to the condition that RQ is not Du Bois.

We reduce this entire setup to a family of positive characteristic models.
Chose a minimal i ≥ 0 so there is a short exact sequence

0 −→ H−iR(πt)∗ω
q
Xt
↪→ H−iω q

Xt −→ Ct −→ 0
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where Ct 6= 0, and it is non-zero at every minimal prime of Qt, for all t ∈ U
an open dense set of m- SpecA. Since X has dense F -injective type, there
exist t ∈ U such that Xt = SpecRt is F -injective. We fix such a t. We
localize at Qt (or a minimal prime over Qt if Qt is not prime) to obtain a
local ring R′t with maximal ideal mt. Taking Matlis duality −∨ we obtain
the following short exact sequence:

0 −→ C∨t −→ H i
mt(R

′
t) −→ H i

mt(R
′
t ⊗R(πt)∗OXt) −→ 0.

Frobenius acts injectively on H i
mt(R

′
t) by hypothesis and so it acts injectively

C∨t as well.

On the other hand, we can also construct C∨t as follows. Consider the
exact triangle:

R′t −→ R(πt)∗OXt −→ D
q +1−−→ .

We see that H i−1
mt (D

q
) ∼= C∨t . On the other hand, by Lemma 5.11, Frobenius

acts nilpotently on the cohomology of D q . By construction, the cohomology
of D q is supported at mt, and hence C∨t ∼= H i−1

mt (D
q
) = Hi−1D

q . Thus
Frobenius acts injectively and nilpotently on C∨t 6= 0, a contradiction. �

5.3. Du Bois singularities and weak ordinarity. We first deduce
some consequences of the weak ordinarity conjecture (which hence are equiv-
alent to the conjecture).

Lemma 5.13 ([MS11, Remark 5.2]). If Conjecture 4.26 holds, then for a
finite set of smooth varieties X(1), . . . , X(r), an dense set T ⊂ m-SpecA can
be chosen so that Conjecture 4.26 holds for all X(i) simultaneously for all
t ∈ T .

Proof. See Exercise 5.3. �

Lemma 5.14. Assuming Conjecture 4.26, then for any finite collection of
varieties X(1), . . . , X(r), there exists a dense set T ⊆ m-SpecA so that the
Frobenius action on H i(X

(j)
t ,O

X
(j)
t

) is bijective for all i, all j = 1, . . . , r,
and all t ∈ T .

Proof. Proceed by induction with the following inductive hypothesis.
For any finite collection of varieties X(j) and any integer m we may find a
T ⊆ m-SpecA so that Frobenius action on H i(X

(j)
t ,O

X
(j)
t

) is bijective for all

i if dimX(j) ≤ m and such that the Frobenius action onHdimXj
(X

(j)
t ,O

X
(j)
t

)

is bijective. We will perform ascending induction on m. The base case when
m = 0 is trivial as it follows from Lemma 5.13.
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Suppose then we are given a set of varieties S and our inductive hy-
pothesis holds for some m. Let Sm+1 denote the set of varieties X(j) where
dimX(j) = m + 1. For each X(j) ∈ Sm+1, choose a smooth ample divisor
D(j) such that H i(X(j),OX(−D(j))) = 0 for all i < dimX(j) (this vanishing
is preserved even on an open dense subseteq of m-SpecA). We include the
components of the Dj to form a new set S and apply our inductive hypoth-
esis. We now have that Frobenius acts bijectively on H i(X

(j)
t ,O

D
(j)
t

) for all
t ∈ T and all i. But we now have that

H i(X
(j)
t ,O

X
(j)
t

) ↪→ H i(X
(j)
t ,O

D
(j)
t

)

injects for all i < dimX(j). Hence Frobenius acts injectively and hence
bijectively (since k(t) is perfect) on the left side, as desired. �

This bijectivity can also be generalized to simple normal crossings vari-
eties as well.

Proposition 5.15. Suppose that Y is a smooth projective variety over a
field of characteristic zero and X ⊆ Y is an SNC divisor. Assume that
Conjecture 4.26 holds. Then, in reduction to positive characteristic, there
exists a dense set T ⊆ m-SpecA such that Frobenius acts bijectively on
H i(Xt,OXt) for all i and all t ∈ T and furthermore for those t we may
assume that Frobenius acts bijectively on H i(Yt,OYt).

Proof. This is assigned to the reader in Exercise 5.4. �

We then obtain the following.

Corollary 5.16. Suppose Y is a smooth projective variety over a field of
characteristic zero and X ⊆ Y is an SNC divisor. Assume that Conjec-
ture 4.26 holds. Then, in reduction to positive characteristic, there exists a
dense set T ⊆ m- SpecA such that Frobenius acts bijectively on H i(Yt,OYt(−Xt))
and on H i(Yt,OYt) for all i and all t ∈ T .

Proof. Consider the long exact sequence

. . . // H i−1(Yt,OYt) // H i−1(Yt,OXt) //

// H i(Yt,OYt(−Xt)) // H i(Yt,OYt) // H i(Yt,OXt).

We may choose t so that Frobenius acts bijectively on all terms except
H i(Yt,OYt(−Xt)) by Proposition 5.15. But now the 5-Lemma implies that
Frobenius acts bijectively on that term as well. �

Another consequence of weak ordinarity is the following.
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Corollary 5.17. Suppose π : Y −→ V is a projective morphism of schemes
where V is finite type over a field of characteristic zero, Y is smooth and
X ⊆ Y is a reduced SNC divisor. Assume that Conjecture 4.26 holds. Then,
in reduction to positive characteristic, there exists a dense set T ⊆ m-SpecA
such that map, induced by the Grothendieck dual to Frobenius on OYt(−Xt),

RiF∗π∗ωYt(Xt) −→ Riπ∗ωYt(Xt)

is surjective for every i ≥ 0 and t ∈ T .

Proof. We first assume that V is projective over a field. By Serre
vanishing, we choose a very ample line bundle L on V so L ⊗Riπ∗ωY (X)
is 0-regular with respect to L for all i (see Definition 3.18), and hence that

Hj(V,L n ⊗Riπ∗ωY (X)) = 0

for all j > 0, all n > 0 and all i and so that L ⊗ Riπ∗ωY (X) is globally
generated for all i. By Bertini’s theorem, we may fix D ∈ |L | so that
X+π∗D is a reduced SNC divisor in Y . We reduce this setup to characteristic
p > 0.

By Serre duality applied to the conclusion of Corollary 5.16, we may
restrict to a T so the composition

H i(Yt, F∗ωYt(Xt+π
∗Dt)) −→ H i(Yt, F∗ωYt(Xt+p·π∗Dt)) −→ H i(Yt, ωYt(Xt+π

∗Dt))

is bijective. Hence the second map is surjective. But that second map is

(5.17.1) H i(Yt, F∗(π
∗L p

t ⊗ ωYt(Xt))) −→ H i(Yt,Lt ⊗ ωYt(Xt)).

Our Castelnuovo-Mumford regularity hypothesis, when combined with a
spectral sequence, also guarantees that

H i(Yt,L
n
t ⊗ ωYt(Xt)) ∼= H0(Yt,R

iπ∗L
n
t ⊗ ωYt(Xt))

for all i and all n > 0. The right side of (5.17.1), remains globally generated
and by our 0-regularity. Therefore we obtain the desired result.

For the case of a general V , compactify V to a projective V ′ (and
X ′, Y ′ −→ V ′). Then the resolution of singularities algorithms in fact imply
the existence of a resolution of Y ′ that is an isomorphism over the locus where
Y ′ is smooth and X ′ is SNC. Hence we may assume that V is projective. �

We can use this to prove the following.

Theorem 5.18. Assume the weak ordinarity conjecture Conjecture 4.26.
Suppose that X is a variety in characteristic zero with Du Bois singularities,
then X has dense F -injective type.
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Proof. The statement is local and so we embed X in a non-singular Y
(and we may assume that X ⊆ Y is not a divisor). Fix π : Y ′ −→ Y a log
resolution of (Y,X) with X = π−1(X)red and SNC divisor in Y ′. Notice that
Riπ∗ωY ′ = 0 for all i > 0 by Theorem 2.13 and that π∗ωY ′ ⊆ π∗ωY ′(X) ⊆
ωY is an isomorphism since Y is non-singular (we use here that X is not
codimension 1 in Y ). Since X has Du Bois singularities we also observe that
ω
q
X
∼= Rπ∗ω

q
X

= Rπ∗ωX [dimX].

By reducing to positive characteristic and applying Corollary 5.17 we
see that RiF∗π∗ωYt(Xt) −→ Riπ∗ωYt(Xt) surjects for every i ≥ 0. From the
short exact sequence

0 −→ ωY ′t −→ ωY ′t (Xt) −→ ωXt
−→ 0

and the associated long exact sequence obtained by applyingRπ∗, we see that
the dual Frobenius acts surjectively on Riπ∗ωXt

for every i, and so a shift by
[dimX] does not change this. Hence the dual Frobenius is surjective on the
(isomorphic) cohomology of ω q

X and so X has F -injective singularities. �

Interestingly enough, the conjecture that Du Bois implies dense F -injective
type implies (and so is equivalent to) the weak ordinarity conjecture. See
Exercise 5.6 and Exercise 5.7.

5.4. Exercises.

Exercise 5.1. Suppose that π : X̃ −→ X,π′ : X̃ ′ −→ X are two log resolu-
tions of an equidimensional scheme X of finite type over a field of charac-
teristic zero, with reduced exceptional divisors F, F ′ respectively. Show that
π∗ωX̃(F ) = π′∗ωX̃′(F

′).

Hint: Show that we may assume that we may factor our resolutions
as follows: π′ : X̃ ′

ρ−→ X̃
π−→ X. Notice that we do not necessarily have

F ′ = ρ−1(F )red but we do have F ′ ⊇ ρ−1(F )red. Now use the projection
formula and the fact that J (X̃, (1 − ε)F ) · ω

X̃
= ω

X̃
for 1 � ε > 0 (which

can be deduced either directly, or via reduction to characteristic p).

Exercise 5.2. Working over a field of characteristic zero, ifX ⊆ Y is a closed
subscheme and Y = SpecS is non-singular and affine, show that there exists
a log projective resolution π : Y ′ −→ Y of (Y,X) with an anti-effective ample
divisor −E on Y ′ so that π−1(X) has the same support as E. In particular,
π may be taken to be the blowup of an ideal sheaf with the same support as
X.

Hint: There are two cases, when X is a hypersurface and when X is not
a hypersurface.
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Exercise 5.3. Prove Lemma 5.13.

Hint: Apply the conjecture to X(1) × · · · ×X(r) and use the Künneth
formula.

Exercise 5.4. Prove Proposition 5.15.

Hint: Write X =
⋃r
i=1Xi the union of irreducible components. For

each I ⊆ {1, . . . , r} write XI =
⋂
i∈I Xi. Now, form an acyclic complex

where C0 = X and Ci =
⊕
|I|=iOXI ,

0 −→ C0 d0

−→ C1 d1

−→ . . .
dr−1

−−−→ Cr
dr−→ 0

where the maps are the obvious ones. Perform reduction to characteristic
p where Frobenius acts bijectively on all H i((XI)t,O(XI)t). Set Zi = ker di
and use descending induction to prove that Frobenius acts bijectively on the
cohomology of the OZi and eventually on X.

Exercise 5.5. Suppose that X ⊆ Y is a closed embedding of varieties over a
field k of characteristic zero. Further suppose X is non-singular except at a
single closed point x ∈ X, that π : Y ′ −→ Y is an embedded log resolution of
singularities of X which is an isomorphism except over x and E = π−1(x)red

is a SNC divisor. Further set X̃ be the strict transform of X. Prove that
there exists an exact triangle in the derived category:

Ω0
X −→ Rπ∗OX̃ ⊕ k(x) −→ Rπ∗OE∩X̃

+1−−→ .

In fact, there are a number of generalizations of this when x is not a point.

Hint: Recall that π−1(X)red = X = X̃ ∪E is such that Rπ∗OX = Ω0
X .

Construct a related short exact sequence on Y ′ and then push it down.

Exercise 5.6. Suppose that Z is a smooth projective variety in characteristic
zero. Then for any ample line bundle L on Z and any sufficiently large
integer m� 0, we have that the section ring with respect to Lm,

S :=
⊕
n∈Z

H0(Z,L nm),

has Du Bois singularities. In fact, this holds under the weaker hypothesis
that Z has Du Bois singularities even if Z is not smooth.

Hint: Use the previous exercise. Note that if x = SpecS and π : X̃ −→
X is the blowup of the cone point with exceptional divisor F ∼= Z, then it
suffices to show that Riπ∗OX̃ −→ RiOF is an isomorphism for i > 0. Prove
this isomorphism degree by degree (the degree zero piece is the only one
which requires real computation).
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Exercise 5.7. Suppose that it is shown that every variety in characteristic
zero with Du Bois singularities has dense F -injective type. Show that the
Weak Ordinarity Conjecture Conjecture 4.26 must hold.

Hint: Use the previous exercise.

5.5. Exercises on seminormality. See Chapter 2 Subsection 4.5 for
a related discussion of weak normality. The following definition will be used
in the exercises that follow.

Definition 5.19 (Seminormal extensions and seminormal normal rings). An
integral extension of reduced rings R ⊆ S is called subintegral if

(a) SpecS −→ SpecR is a bijection and,
(b) For every prime Q ∈ SpecR with corresponding Q′ ∈ SpecS, the

inclusion of residue fields k(Q) ⊆ k(Q′) is an equality.

We say R is seminormal in an overring B if every subintegral extension
R ⊆ S ⊆ B has the property that R = S. We say that R is seminormal if it
is weakly normal in its total ring of fractions K(R). A scheme is seminormal
if and only if its stalks are seminormal (or equivalently if it can be covered
by seminormal affine charts).

Earlier we defined R to be seminormal if any x ∈ K(R) such that x2, x3 ∈
R also satisfies x ∈ R. These two notions of seminormality coincide, see
[Ham75, Swa80] and the exercises below.

Exercise 5.8. For a ring essentially of finite type over a field of characteristic
zero, show that weak normality and seminormality coincide.

Exercise 5.9. Suppose that R is excellent reduced Noetherian ring, show
that there exists a seminormalization RSN (a finite extension) of R in K(R).
That is, RSN is the unique largest subintegral extension of R.

Exercise 5.10. Suppose that R is reduced x ∈ K(R) and x2, x3 ∈ R. Show
that R ⊆ R[x] =: R′ is subintegral.

Hint: Choose a primeQ ⊆ R. We need to show that P =
√
QR′ is prime

and the residue fields are the same. This can be checked after localizing R
at Q. Handle this in cases: either x ∈ P or x /∈ P .

Exercise 5.11. Show that R is seminormal if and only if it satisfies the
following condition due to Hamann [Ham75], also see the work of Swan
[Swa80]. For any y, z ∈ R such that y2 = z3 there exists a unique x ∈ R
with x3 = y and x2 = z.
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Exercise 5.12. Suppose that X is a reduced seminormal scheme. Prove
that for any open subseteq U ⊆ X, that Γ(U,X) is seminormal.

Exercise 5.13. Suppose that D is a simple normal crossings divisor in some
scheme Y . Prove that D is seminormal (in fact, it is weakly normal, say if
one is in characteristic p > 0).

Exercise 5.14. With notation as in Subsection 5.1, assume X = SpecR.
Show that H0Ω0

X = ν∗OXSN where ν : XSN −→ X is the seminormalization
map (in other words Γ(X,H0Ω0

X) = RSN).

Hint: With notation as in the section, we need to show that π∗OX
is the seminormalization of OX . Since Y is normal and π : Y ′ −→ Y is
birational, the fibers of π are geometrically connected hence so are the fibers
of X −→ X. Use this to show that R ⊆ Γ(X,OX) is subintegral.

6. Test ideals and quotients by height 1 ideals

We have already seen some of this theory in various exercises, but here
we write down some general results which closely mimic similar results in
characteristic p > 0. First however, we generalize the results of Chapter 5
Section 2 to encompass Q-divisors such that KX + ∆ that are only locally
Q-linearly equivalent to zero.

We continue to work in the following setting.

Setting 6.1. Suppose that X is an F -finite normal integral separated Noe-
therian scheme with a chosen canonical module ωX such that Hom(F e∗OX , ωX) ∼=
F e∗ωX . We fix a canonical divisor KX with ωX ∼= OX(KX).

6.1. Divisor pairs corresponding to twisted p−e-linear maps. Fix
L a line bundle on a normal F -finite Noetherian scheme X satisfying Set-
ting 6.1 and write L = OX(L). Consider a map

φ ∈ HomOX (F e∗L ,OX) ∼= H0(X,F e∗OX((1− pe)KX − L))

In then induces an effective divisor Dφ ∼ (1 − pe)KX − L. We set ∆φ :=
1

pe−1Dφ. Notice that (pe − 1)(KX + ∆) ∼ −L and in particular KX + ∆ is
Q-Cartier.

Furthermore, the map φ : F e∗L −→ OX can be self composed in the
following sense. We define

φ2 := φ ◦ (F e∗ (φ⊗L )) : F 2e
∗ L 1+pe F e∗ (φ⊗L )−−−−−−→ F e∗L

φ−→ OX .
and more generally:

(6.1.1) φn := φ ◦ (F e∗ (φ⊗L )) ◦ · · · ◦ (F
(n−1)e
∗ (φ⊗L

pne−1
pe−1 )).
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Locally, restricting to an open affine set U such that L |U ∼= OU , this is the
same as the composition of maps we have been working with for instance as
in Chapter 1 (4.12.5). Indeed, on these charts, the divisors Dφ|U and ∆φ|U
are exactly the same same as that described in Chapter 5 Definition 1.1 and
Definition 2.1.

We then obtain a bijection as follows: cf. Chapter 5 Theorem 2.2.

Proposition 6.2. With notation as in Setting 6.1 there is a bijection between
the two sets:

Q-divisors ∆ ≥ 0
such that

(pe − 1)(KX + ∆)
is Cartier for some e > 0

↔


non-zero OX-linear maps
φ : F e∗L −→ OX

(for some e > 0 and
some line bundle L ).

/ ∼
where the equivalence relation on the right is generated by the relation φ ∼ φd
and also by φ(F e∗−) ∼ φ(F e∗u · −) where u ∈ H0(X,OX) is a unit.

Proof. This follows as in the case that L = OX which is done in
Chapter 5 Theorem 2.2. �

6.2. Global F -adjunction. Consider the following situation. Suppose
that X is a normal F -finite Noetherian scheme, D = SpecOX/ID is a re-
duced divisor onX with normalizationDN −→ D. We have seen that divisors
∆ ≥ D with KX + ∆ Q-Cartier with index not divisible by p, correspond to
line bundles L = OX(L) and non-zero elements in

HomOX (F e∗L ,OX).

Note here that L ∼ (1 − pe)(KX + ∆) for some e. Those elements are
compatible with D in the sense that

φ(F e∗OX(L−D)) ⊆ OX(−D)

by Chapter 5 Proposition 2.7 (this condition can be checked locally after
trivializing OX(L))), and so induce maps in

HomOD(F e∗L |D,OD).

Finally, in Chapter 5 Theorem 4.8 and we have seen that these in fact lift to
the normalization (locally, and hence globally) to produce a map in

HomO
DN

(F e∗L |DN ,ODN).

Note we abuse notation as is common in birational algebraic geometry: by
L |DN we simply mean the pull back of L to DN via the map DN −→ D −→
X. In particular, each map in HomOX (F e∗OX(L + (pe − 1)D),OX) then
induces a divisor ∆DN ≥ 0 on DN with ODN

(
(1−pe)(KDN +∆DN)

) ∼= L |DN .
In other words, we have produced an effective divisor ∆DN on DN so that

(KX +D)|DN ∼Q KDN + ∆DN .
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This is called the F -different of ∆ along DN and denoted by F DiffDN(∆).

6.3. The different vs the F -different. In birational geometry, there
is another way to produce such a ∆DN called “the different” or “Shokurov’s
different”. We briefly introduce this concept and prove that the F -different
agrees with the different. This was first shown in [Das15].

Suppose thatX is a normal integral scheme with a normalized32 dualizing
complex ω q

X . Suppose further thatD ⊆ X is a reduced divisor onX and that
∆ = D+B ≥ 0 is a Q-divisor where D and B have no common components
and with KX + ∆ Q-Cartier. Suppose further that we write KX = −D+H
where H and D have no common components (this can be arranged since
KX is only defined up to principal divisors). In this case, we have that

KX +D = −D +H +D = H

where H does not contain any component of D. Now, we have the following
exact sequence

OX(KX) −→ OX(KX +D) −→ ωD −→ H− dimX+1ω
q
X

Since X is normal, it is S2, and so H− dimX+1ω
q
X is supported on a codi-

mension ≥ 3 set. The rational section s of OX(KX + D) corresponding
to H then yields a rational section of ωD. Since we have a birational map
µ : DN −→ D, we obtain an inclusion H0(DN, ωDN) −→ H0(D,ωD). Hence
our rational section also gives us a rational section of ωDN . In particular, it
selects a particular choice of canonical divisor KDN on DN. In summary:

our choice of KX determines a canonical divisor KDN .

It is worth seeing this in an example or two:

Example 6.3. Consider X = Spec k[x, y, z]/(xy− z2) the quadric cone and
set D = V ((x, z)). This is not Cartier, although 2D = divX(x) is, as is
D + E = divX(z) = D + V ((y, z)). In our case, KX is Cartier, so we can
choose KX = −D − E = −divX(z) satisfying our condition above. Then
KX +D = −E = −div((x, z)). The divisor −E corresponds to the rational
section 1 of OX(−E) (notice that 1 is not a global section of OX(−E), only
a rational section). In our case, X is Cohen-Macaulay and so

ωD = OX(KX+D)/OX(KX) = OX(−E)/OX(−D−E) = (y, z)OX
/

(z·OX) = y·OD.

The rational section 1 then corresponds to the non-effective divisor−Q where
Q is the origin in D = Spec k[y]. In particular, our choice of KX +D = −E
determines the divisor KD to be −Q.

32Meaning that ω
q
X has its first non-zero cohomology in −dimX, and in particular

H− dimXω
q
X = ωX is the canonical module.
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On the other hand, we could have just as easily chosen KX = −D+E =
div(z/x). In that case, KX + D = E = div((y, z)). Notice that OX(E) =
1/y ·OX(−E) = 1/y(y, z) = (1, z/y) and OX(−D+E) = x/z ·OX = z/y ·OX
ωD = OX(KX+D)/OX(KX) = OX(E)/OX(−D+E) = (1, z/y)OX/((z/y·OX) = OD.
Thus we have that the rational section 1 is an actual section, so thatKD = 0.
This should not be surprising – to pass between the two choices of KX , we
multiplied by y, and divD(y) = Q.

When D is non-normal, we need to understand the map µ∗ωDN −→ ωD
as well (coming from µ : DN −→ D). In this case one has the formula

µ∗ωDN = H om(µ∗ODN , ωD)

and the map µ∗ωDN −→ ωD is simply evaluation-at-1 (it is also an inclusion
since it is a non-generically zero map of rank-1 torsion-free sheaves). In
the case that D is is Gorenstein, then the image of this inclusion map is
simply the conductor ideal times ωD. In particular, the conductor on DN

will contribute to the rational section in question.

Example 6.4 (A non-normal non-integral D). Within the same ambient
space X = Spec k[x, y, z]/(xy − z2) consider D = div(z) = D1 + D2 =
Spec k[x, y]/(xy) where D1 = divX((x, z)) and D2 = divX((y, z)). In this
case, we can take KX = −D, since both are principal divisors. In this case
we have from the adjunction sequence that

ωD = OX(KX +D)/OX(KX) = OX/OX(−D) = OD
and the rational section 1 is an honest section and gets mapped to the 1 ∈ ωD.
Thus ifD was normal, we could takeKD = 0. Now, instead we must consider
the normalization map DN −→ D which induces

ωDN −→ ωD = OD.
Now, DN is just the disjoint union of the two components of D. If we set
R = k[x, y]/(xy) and S = k[x]× k[y] to be the normalization, then this map
is identified with the evaluation-at-1 map:

HomR(S,R) −→ R.

Notice S as an R-module is generated by (0, 1)) and (1, 0). In this case, one
can show that HomR(S,R) ∼= S and the induced inclusion HomR(S,R) −→ R
is described by saying where (0, 1) and (1, 0) go – to y and x respectively.
Hence the section 1 ∈ R corresponds to the rational section (1/x, 1/y).

In conclusion, if Q1, Q2 are the two origins ofDN, thenKDN = −Q1−Q2.

Now, recalling that ∆ = D + B where D and B have no common com-
ponents, we have that:

KX + ∆ = (−D +H) + (D +B) = H +B
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does not vanish along D. Hence, working locally on some U ⊆ X, we can
write n(KX + ∆)|U = div(f) for some f ∈ Γ(U,OX) and some n sufficiently
divisible. This function f does not vanish along D and so pulls back to a
non-zero function on DN, and so we write

divDN(f) = nKDN +G

and define the different ∆DN to be 1
nG. Here KDN is the particular choice of

canonical divisor we made above. It is straightforward to see that this ∆DN

does not depend on the choice of KX . We have finally come to our definition
of the different:

Definition 6.5 (Shokurov’s different). With notation as above, ∆DN is
called the different of ∆ along DN. It is denoted by DiffDN(∆) and it
satisfies:

(KX + ∆)|DN ∼Q KDN + DiffDN(∆).

Example 6.6. Using the setup and notation of Example 6.3, we set X =
Spec k[x, y, z]/(xy − z2), D = V ((x, z)) and E = V ((y, z)). Finally fix
∆ = D. We choose KX = −D + E and found that KD = −Q where Q is
the point at the origin. Since 2(KX + ∆) = −2E = div(1/y). We restrict
1/y to D where we get

−Q = divD(1/y) = 2KD +G = −2Q+G

Hence G = Q and so DiffD(∆) = 1
2Q.

We note the following lemma which lets us compute the different in many
common cases. We will use this in our proof that the different agrees with
the F -different.

Lemma 6.7. Suppose X is a non-singular integral scheme and suppose D
is a reduced, normal, and Cartier divisor. Suppose that ∆ = D + B where
B and D have no common components and B ≥ 0 is a Q-divisor. Then the
different ∆D = B|D.

Proof. We work locally, and so can setKX = −D. Since we are working
sufficiently locally, we also have ωD = ωX(D)/ωX = OX/OX(−D) = OD
and it follows that we chose KD = 0. Next, KX + D + B = B and so we
choose n > 0 so that m(KX + D + B) = mB = divX(f) (again working
sufficiently locally). Finally, we write (mB)|D = divD(f) = KD + G = G
and so the different ∆D = 1

m(mB)|D = B|D. �

We finally describe the way that the different is most often computed in
practice, assuming that X is excellent. To compute the different DiffDN(∆),
we must compute its coefficients at codimension 1 points of DN. Those map
to codimension 2 points of X and so we may assume that X = SpecR where
(R,m) is a normal 2-dimensional local domain.
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Since X is excellent, there exists a resolution of singularities π : Y −→ X
that simultaneously resolves the singularities of D, see [Lip78]. Let D′ =
π−1
∗ D denote the strict transform, then D′ = DN is in fact the normalization

of D, since D is 1-dimensional. We now have the following commutative
diagram:

D′

µ
����

� � // Y

π
����

D // X.

A choice of KX induces a choice of KD′ , but now we have another way to
select KD′ . Fix KY so that KX and KY agree where π is an isomorphism.
Then since KY = −D′ +H where H and D′ have no common components,
we can write KD′ = (KY +D′)|D′ .

Lemma 6.8. The two definitions of KD′ agree.

Proof. If s is a rational section of ωX that defines KX , then we may
also view it as a rational section of ωY , defining KY , using that π∗ωY ⊆ ωX .
Because the following diagram commutes:

µ∗ωD′� _

��

π∗ωYoo
� _

��
ωD ωXoo

we see it does not matter which way we pull back this rational section, and
the proof is complete. �

Now, if m(KX +D +B) = divX(f), we can pull this element f back to
Y and then restrict it to D′, or we can restrict it to D and then pull it back
to D′. Either way will give us the same element on D′. Hence this provides
the following algorithm for computing the different.

Proposition 6.9. Suppose X = SpecR where R is an excellent normal
local 2-dimensional domain. Suppose D is a reduced divisor and ∆ = D+B
where D,B have no common components and KX + D + B is Q-Cartier.
Next write KX = −D + G where G has no common components with D.
Suppose π : Y −→ X is a resolution of singularities of X which is also an
embedded resolution of D (this exists since dimR = 2). Then we have

π∗(KX +D +B) = KY +D′ +BY

where D′ is the strict transform and hence normalization33 of D and where
KX and KY agree where π is an isomorphism. Then the different of ∆ along
D is simply BY |D′ .

33since dimD = 1
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Proof. This follows from the discussion above. �

Finally, we can use this description to show that F -different agrees with
the different. First we prove the analog of Lemma 6.7.

Lemma 6.10. Suppose that X is a regular F -finite scheme and that D is a
normal reduced Cartier divisor on X. Suppose that ∆ = D+B where B ≥ 0
is a Q divisor ans where B and D have no common components. Finally,
suppose that KX + ∆ is Q-Cartier with index not divisible by p. Then

F DiffD(∆) = B|D.

Proof. Working locally withX = SpecR for some local F -finite regular
ring R, write B = 1

pe−1 divX(g) and D = divX(f). The map φ : F e∗R −→ R

corresponding ∆ is then simply the generating map Φ pre-composed with
multiplication by F e∗ fp

e−1g. Since Φ pre-composed with multiplication by
F e∗ f

pe−1 restricts to the generating map for R/ID by Fedder’s Lemma, we see
that φ restricts the generating map on D pre-composed with multiplication
by F e∗ g. In other words, F DiffD(∆) = B|D as claimed. �

Theorem 6.11 ([Das15]). Suppose X is a normal integral F -finite scheme,
D is a reduced divisor on X and ∆ = D+B where D and B have no common
components and B ≥ 0 is a Q-divisor. Further suppose that KX + ∆ is Q-
Cartier with index not divisible by p. Then

F DiffDN(∆) = DiffDN(∆).

Proof. This may be computed at codimension 2 points of X and so
we may assume that X = SpecR where (R,m) is a 2-dimensional F -finite
normal local domain. Let π : Y −→ X be a log resolution of singulari-
ties of (X,∆). In particular, it is simultaneously is an embedded resolu-
tion/normalization of D with D′ = π−1

∗ D the strict transform. We will show
we can compute the F -different by working on Y . This will complete the
proof since our F -different computation will agree with the computation of
the different in Proposition 6.9.

Fix Q ∈ D ⊆ X a codimension 2 point of X and replace X by SpecR
where R = OX,Q. Since we are locally, we may assume that (pe − 1)(KX +
∆) ∼ 0. Choose φ : F e∗OX −→ OX with ∆ = φ∆.

Let Q1, . . . , Qt ∈ D′ be the points of D′ mapping to Q ∈ D. Write
π∗(KX + ∆) = KY + D′ +

∑
cjCj where the Cj are divisors on Y distinct

from D′. Suppose some cj < 0, then we can find an element f ∈ R that does
not vanish along D, but such that when we write

π∗(KX + ∆ + div(f)) = KY +D′ +
∑

(cj + vCj (f))Cj
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we have that cj+vCj (f) ≥ 0. The added div(f) is added to the different and
the F -different simply by pullback to DN, hence we may replace ∆ = D+B
by ∆ + div(f) = D + (B + div(f)) and notice that for either the different
or the F -different. Notice that we have also implicitly replaced φ by pre-
multiplication by f . At this point we can write π∗(KX + ∆) = KY + ∆Y

where ∆Y ≥ 0.

In particular, we can now apply Lemma 4.15 and see that we obtain a
map φY : F e∗OY −→ OY inducing ∆Y where ∆Y = D′ +B′. Since ∆Y ≥ D′
we see that φY is compatible with D′ hence it induces a map φD′ : F e∗OD′ −→
OD′ . At the generic point of D′, this is the same as the map φD : F e∗OD −→
OD induced by φ (since Y is an isomorphism there). Thus we see that φD′
is the extension of φD to F e∗OD′ and so computes the F -different. This
completes the proof. �

6.4. Adjoint test ideals and the restriction theorem. In this sub-
section we generalize the work done in Chapter 5 Exercise 5.9 to also incor-
porate normalizations.

Suppose that R is an F -finite normal domain and D ⊆ X = SpecR is a
reduced divisor. Suppose B ≥ 0 is a Q-divisor with no common components
with D and suppose that (pe − 1)(KX +D+B) ∼ 0. Choose φ : F e∗R −→ R
corresponding to ∆ = D +B. We make the following definition:

Definition 6.12. With notation as above, let Q1, . . . , Qt be height one
primes corresponding to the components of D. We define

τ6⊆Q1,...,Qt(R,∆) = τD(R,∆)

to be the smallest ideal J , compatible with φ, such that we have JQi = RQi
for i = 1, . . . t. This is called the adjoint test ideal of (X,∆) along D

This object was originally defined by S. Takagi in [Tak11].

Proposition 6.13. With notation as above, τD(R,∆) exists.

Proof. We must find c ∈ R where c /∈ Qi for all i = 1, . . . , t but where
for each d ∈ R, d /∈ Qi for any i, we have that c ∈ φn(Fne∗ (d)). In that case,
we may take

τD(R,∆) =
∑
n≥0

φne(Fne∗ (c)).

To this end let I = Q1 . . . Qt denote the radical ideal defining D. Notice
that (R,∆) is sharply F -pure after localizing at each Qi since R is normal,
D has coefficients 1 and B and D have no common components. We then
choose b ∈ R so that
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(a) b /∈ Qi for any i = 1, . . . , t.
(b) (Rb,∆|Rb) is sharply F -pure.
(c) For any φ-compatible prime not containing b (in other words, cor-

responding to a φb-compatible prime), if PQi 6= RQi , then we have
that P ⊆ Qi. Note that this implies that if φ : Rb/Ib −→ Rb/Ib is
the map induced by φ, then (Rb/Ib,∆phi) is strongly F -regular. In
particular, Rb/Ib = (R/I)b is normal.

(d) b ∈ φn(Fne∗ R) for all n ≥ 0 (that is, b ∈ σ(R,φ)).

We claim that c = b2 works. Let J ′ =
∑

n≥0 φ
ne(Fne∗ (d)), this is a φ-

compatible ideal so that J ′Qi = RQi for all i. By our third assumption, we
have that J ′b = J ′R[b−1] = R[b−1]. Thus we see that bm ∈ J ′ for some m.

But now for n� 0 we have that

b2 ∈ φn(Fne∗ (bbp
ne

)) ⊆ φn(Fne∗ (bm)) ⊆ φn(Fne∗ J ′).

The result follows. �

Theorem 6.14 ([Tak11]). With notation as in Definition 6.12, let I denote
the radical ideal defining D. We have that

τD(R,∆) · (R/I)N = τ((R/I)N,DiffDN(∆)).

In fact, the map R −→ R/I −→ (R/I)N induces a surjection:

τD(R,∆) −→ τ((R/I)N,DiffDN(∆)).

Proof. Set φ corresponding to ∆ and let φR/I : F e∗R −→ R be the
induced map and let φ(R/I)N : F e∗ (R/I)N −→ (R/I)N be the extension to
the normalization. The right side is τD(R,φ) · (R/I)N and the right side is
τ((R/I)N, φ(R/I)N)

Notice that we may choose c ∈ R a strong test element for (R,φ) so
that c ∈ R/I ⊆ (R/I)N is also a strong test element for (R/I, φR/I) and for
((R/I)N, φR/IN). Notice that we may assume c is in the conductor (in fact,
it must be since the conductor is φR/I -compatible), so that c(R/I)N ⊆ R/I.

We then see that

τD(R,∆) · (R/I) =
(∑

n≥0 φ
ne(Fne∗ (c))

)
· (R/I)

=
∑

n≥0 φ
ne
R/I(F

ne
∗ (c))

= τ(R/I, φR/I).
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But we also have that

τ((R/I)N, φ(R/I)N) =
∑

n≥0 φ
ne
(R/I)N(Fne∗ c2(R/I)N)

⊆
∑

n≥0 φ
ne
R/I(F

ne
∗ (c))

⊆
∑

n≥0 φ
ne
(R/I)N(Fne∗ c(R/I)N)

= τ((R/I)N, φ(R/I)N)

But the second line is equal to τ(R/I, φR/I). The result follows. �

Definition 6.15. With notation as in Definition 6.12, we say that (R,∆) is
purely F -regular (along D) if τD(R,∆) = R.

We obtain the following immediate corollary of Theorem 6.14.

Corollary 6.16. With notation as in Definition 6.12, we have that (X,∆)
is purely F -regular in a neighborhood of D if and only if (DN,DiffDN(∆)) is
strongly F -regular. In either case, D was normal to begin with.

Proof. We may assume that X = SpecR where R is local. The first
statement follows from the fact that an ideal agrees with a ring if and only
if it contains 1. The second fact comes from the surjection:

τD(R,∆) −→ τ((R/I)N,DiffDN(∆))

induced by R −→ R/I −→ (R/I)N since if R/I −→ (R/I)N surjects, then R/I
was already normal to begin with. �

Remark 6.17. This normality we deduced above can be seen another way.
If R is F -finite and reduced with normalization RN then any φ : F e∗R −→ R
lifts to a φRN : F e∗R

N −→ RN which is compatible with the conductor ideal,
see Chapter 1 Exercise 6.30. In particular, (RN, φRN) cannot be strongly
F -regular unless R = RN.

Remark 6.18. There are numerous generalizations of these results possible.
We leave them to the exercises. Note it is also possible to obtain this restric-
tion theorem without assuming that the index of KX + ∆ is not divisible by
p, [Tak08].

6.5. Exercises.

Exercise 6.1. Consider the ring R = k[x, y, z]/(xy − zn) for n ≥ 2. Let
D = div((x, z)) and set ∆ = D. Show thatKR+∆ is Q-Cartier and compute
the different DiffD(∆).

6.5.1. F -pure centers. The following exercises will be about the next
definition.
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Definition 6.19. Suppose that R is a reduced F -finite ring and C is a
Cartier subalgebra of the full Cartier algebra. We say that a reduced irre-
ducible subscheme Z = V (Q) ⊆ X (corresponding to a prime ideal Q) is an
F -pure center of (R,C ) if the following conditions hold.

(a) The localization (RQ,CQ) is F -pure (that is, there exists some ho-
mogeneous φ ∈ Ce so that φQ : F e∗RQ −→ RQ surjects).

(b) For every φ ∈ Ce we have that φ(F e∗Q) ⊆ Q.

If R is normal, ∆ ≥ 0 is a Q-divisor and C = C ∆, then we call Z an F -pure
center of (X,∆).

Exercise 6.2. Suppose that (R,C ) is as in Definition 6.19. Show that an
F -pure center Z ⊆ X is minimal (with respect to containment among F -pure
centers) if and only if the restricted pair (R/Q,C |R/Q) is strongly F -regular.
In particular, in such a case Z is normal.

Exercise 6.3. Suppose that R is an F -finite normal domain and ∆ = D+B
is a Q-divisor with D reduced and B having no common components with
D. Further suppose that (R,∆) is purely F -regular along D. Show that D
the prime components of D are minimal F -pure centers of (X,∆).

Exercise 6.4. Consider the ring R = Fp[x, y, z, t]/(y2z − x(x− z)(x− tz))
with X = SpecR. This is the cone over a family of elliptic curves.

(a) Show that the line L = V ((x, y, z)) is an F -pure center of (R, 0) =
(R,CR).

(b) The generating map Φ ∈ HomR(F e∗R,R) induces the F -different
∆L on L. Show that ∆L is supported at exactly those (t − α) for
α ∈ Fp where the associated elliptic curve y2z− x(x− z)(x−αz) is
supersingular.

7. Finding explicit test elements

If R is a reduced F -finite Noetherian ring and c ∈ R is such that R[c−1]
is strongly F -regular, then some power of c is in the test ideal by Theo-
rem 5.21. But often it is important to be able to identify an explicit strong
test element—that is, to understand what power of c is a strong test element.
For instance, in the ring Fp[x, y, z]/(x4 + y4 + z4) with p > 2, what power of
x is a strong test element? Is there a power works for all p > 2?

Fortunately, there are practical tools for identifying explicit test ele-
ments. Indeed, under suitable hypothesis, we will see that certain Jacobian
ideals and certain discriminant ideals are contained in the test ideal. The
main results are Theorems 7.2 and 7.4 showing different kinds of Jacobian
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determinants are strong test elements, as well as Theorem 7.12, showing
certain discriminants are strong test elements. Importantly, these theorems
construct strong test elements in a manner independent of characteristic,
which will be important later in Chapter 6 when we apply our F-singularity
theory to complex varieties and other characteristic zero settings. Interest-
ingly, all three theorems are deduced in a similar way from Theorem 7.8,
which is highly dependent on the specific characteristic.

The ideas in this section closely follow the work of Hochster and Huneke
in their papers on the existence of tight closure test elements. A theorem of
Lipman and Sathaye also plays a critical role.

7.1. Jacobian ideals. We review the definition of Jacobian ideals be-
fore stating our theorems connecting them to the test ideal. See [?] for more
information.

Definition 7.1. Let A be an arbitrary domain. Consider a finitely generated
A-algebra

R = A[x1, x2, · · · , xn]/(f1, . . . , ft)

such that K(A) ⊗A R has equidimension d. The Jacobian ideal J (R/A)
of R over A is the ideal generated by the (images in R of the) (n− d)-sized
minors of the t× n Jacobian matrix:

[
∂fi
∂xj

]
=



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂ft
∂x1

∂ft
∂x2

· · · ∂ft
∂xn

 .

The Jacobian ideal J (R/A) is independent of the presentation of the
A-algebra; indeed, it can be described more canonically as a certain Fitting
ideal of the module ΩR/A of Kähler differentials. In general, the Jacobian
ideal J (R/A) cuts out non-smooth locus of the morphism SpecR −→ SpecA.

Two special cases of Jacobian ideals J (R/A), at opposite extremes, play
a role in our test element story: one is where A is a field and the other is
where A is a regular domain of the same dimension as R. We state two
theorems, postponing the proofs until the next subsection.

Theorem 7.2. Let R be a geometrically reduced34 finitely generated algebra
over an F -finite field k. Then the Jacobian ideal J (R/k) is contained in the
test ideal τ(R).

34This means that R is reduced and also that R⊗kk is reduced where k is the algebraic
closure of k.
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Example 7.3. For p > 2, let R = Fp[x, y, z]/(x4 + y4 + z4). The Jacobian
ideal J (R/k) is generated by the partial derivatives of x4 + y4 + z4 with
respect to each of the variables x, y, and z. So Theorem 7.2 says that

(x3, y3, z3) ⊂ τ(R).

This is true regardless of the characteristic p (assuming p 6= 2).

Theorem 7.2 follows from the following result, in which one should imag-
ine that A ↪→ R is a Noether Normalization of the finitely generated k-
algebra R:

Theorem 7.4. Let A be an F -finite regular domain, and suppose A ↪→ R is
a finite, torsion-free, generically étale extension.35 Then the Jacobian ideal
J (R/A) is contained in the test ideal τ(R).

Example 7.5. Let R = Fp[x, y, z]/(x4 + y4 + z4) where p > 2 be the ring of
Example 7.3. Viewing R as an extension of the regular subring A = k[x, y],
the Noether normalization A ↪→ R satisfies the hypothesis of Theorem 7.4.
As an A-algebra, the ring R has presentation A[z]/(f(z)) where f(z) =

z4 +x4 +y4, so its Jacobian ideal is generated by the image of ∂f∂z in R. That
is,

J (R/A) = (z3) ⊆ τ(R),

recovering a fact we already knew from Theorem 7.2. Indeed, choosing differ-
ent Noetherian normalizations—say, one given by the regular subring k[x, z]
and another by k[y, z], we can use Theorem 7.4 to recover the fact that
J (R/k) = (x3, y3, z3) ⊂ τ(R) from Theorem 7.2. In a similar way, we will
deduce Theorem 7.2 from Theorem 7.4 in general.

Proof that Theorem 7.2 follows from Theorem 7.4. Suppose that
R has dimension d, and let k[x1, x2, . . . , xn]/(f1, f2, . . . , ft) be a finite pre-
sentation of R. Note that we can enlarge the ground field k by tensoring
with a finite separable extension; this preserves all hypotheses, the Jaco-
bian, and the test ideal (see (c)). A generic choice of Noether normalization
A ⊆ R (that is, a generic projection of SpecR onto a linear subspace of
dimension d in An) will be generically étale.36 Thus, enlarging k if needed,
after a generic change of variables g ∈ GLn(k), we may assume that our
coordinates {x1, . . . , xn} have the property that every subset of cardinality d
consists of algebraically independent elements generating a polynomial ring
over which R is generically étale. For example, we have a factorization

k ↪→ k[x1, . . . , xd] = A ↪→ k[x1, . . . , xn]

(f1, f2, . . . , ft)
=
A[xd+1, . . . , xn]

(f1, f2, . . . , ft)

35Recall that A −→ R is generically étale if, letting K denote the fraction field of A,
the ring K ⊗A R is a product of separable field extensions; see Subsection 5.2.

36For a detailed discussion of this point, see, e.g. [?, p44].
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where A is a polynomial ring over which R is finite, torsion free and generi-
cally étale, and likewise for any other subset {xi1 , . . . , xid} of the generators.
Thinking about the Jacobian matrix for R/A and for R/k, observe that the
former is a submatrix of the later: both have t rows indexed by the fi, but
only the columns indexed by xd+1, . . . , xn appear in the Jacobian matrix for
R/A. The Jacobian ideal J (R/k) is generated by the (appropriate-sized) mi-
nors of the larger Jacobian matrix, and so we see many of them are contained
in J (R/A). To get the remaining minors generating J (R/k), we choose dif-
ferent sets {xi1 , . . . , xid}. Ranging over all

(
n
d

)
choices of {xi1 , . . . , xid}, we

see that
J (A, k) ⊆

∑
A

J (R/A) ⊂ τ(R).

�

Remark 7.6. Importantly, note that Theorems 7.2 and 7.4 construct strong
test ideals that are in some sense independent of the characteristic.

Caution 7.7. With hypothesis as in Theorem 7.2, the Jacobian ideal J (R/k)
is typically strictly contained in τ(R). For example, if R is strongly F -regular
but not regular, then the Jacobian ideal is a proper ideal (it defines the non-
geometrically regular locus) but τ(R) = R.

Theorem 7.4 will follow from Theorem 7.8, which constructs test elements
in a highly-characteristic-dependent way, together with a result of Lipman
and Sathaye guaranteeing certain Jacobians are in the conductor of a non-
normal ring.

7.2. Test Elements from generically étale extensions. The fol-
lowing result guaranteeing the existence of strong test elements is the main
ingredient in the proofs of all the other theorems about test elements in this
section:

Theorem 7.8. Let A be an F -finite regular domain, and let A ↪→ R be a
finite, torsion free, generically étale extension. Suppose that for all e � 0,
c ∈ R annihilates the cokernel of the natural map

(7.8.1) R⊗A F e∗A −→ F e∗R

(or in other words, that cF e∗R ⊆ R[F e∗A]). Then c is a strong test element
for R.

The proof of Theorem 7.8 requires the following lemma:

Lemma 7.9. Let A be an F -finite regular domain, and let A ↪→ R be a
finite, torsion free, generically étale extension. Then the natural map

(7.9.1) R⊗A F e∗A
r⊗F e∗ a 7→ rF e∗ a−−−−−−−−−→ F e∗R
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is injective for all e > 0. Furthermore, identifying R⊗A F e∗A with a subring
of F e∗R, the ring F e∗R is contained in the normalization of R⊗A F e∗A.

Proof. Because R is torsion free over A, and F e∗A is faithfully flat over
A, the module R ⊗A F e∗A is torsion free over F e∗A, and hence over A. So
if (7.9.1) has a non-zero kernel, it would still have a non-zero kernel after
tensoring with the fraction field K = K(A) of A. Thus it suffices to check
that, as a map of A-modules, (7.9.1) is injective at the generic point of
SpecA. Since localization commutes with Frobenius, this is equivalent to
checking that

(7.9.2) L⊗K F e∗K
r⊗F e∗ a 7→ rF e∗ a−−−−−−−−−→ F e∗L

is injective, where L = R ⊗A K. But our assumption that R is generically
étale over A means precisely that L is étale over K, so the map (7.9.2) is
an isomorphism by Proposition 5.9. This completes the proof of the first
statement.

For the second statement, take arbitrary F e∗ r ∈ F e∗R. Since (F e∗ r)
pe =

r⊗ F e∗ 1 ∈ R⊗ F e∗A, the extension (7.9.1) is integral. But also the ring F e∗R
and its subring R⊗AF e∗A have the same total quotient ring because inverting
the non-zero elements in the subring A already produces the isomorphism
(7.9.2). �

Proof of Theorem 7.8. Our hypotheses imply R is F -finite, Noe-
therian and reduced. Further, since A ↪→ R is generically étale, there exists
non-zero d ∈ A such that A[d−1] ↪→ R[d−1] is étale, and hence R[d−1] is
regular. So d has a power that is a strong test element for R; replace d by
this power. The element d is not in any minimal prime of R, so it is not a
zero-divisor of R, and we can use d to generate τ(R) as a module over the
Cartier algebra (see Corollary 6.16). That is, to show that c is a test element,
it suffices to find e > 0 and φ ∈ HomR(F e∗R,R) such that φ(F e∗ d) = c.

To this end, because A is regular, we know A is F -regular; so for suf-
ficiently large e, we can find ψ ∈ HomA(F e∗A,A) such that ψ(F e∗ d) = 1.
Tensoring with R, we have a map

R⊗A F e∗A
1⊗ψ−−−→ R

sending F e∗ d to 1. By Lemma 7.9, the image of the map (7.9.1) is isomorphic
to R ⊗A F e∗A, and by our assumption on c, we know c multiplies F e∗R into
this image. So the map

F e∗R
mult by c−−−−−−→ im(R⊗A F e∗A −→ F e∗R) ∼= R⊗A F e∗A

1⊗ψ−−−→ R

is an R-linear map F e∗R→ R sending F e∗ d to

c(1⊗ ψ)(1⊗ F e∗ d) = cψ(F e∗ d) = c.
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Thus c is a strong test element for R. �

Finally, we explain how to deduce Theorem 7.4 from Theorem 7.8. For
this, we need the following general theorem of Lipman and Sathaye [LS81,
Theorem 2], which we state without proof37:

Theorem 7.10 (Lipman-Sathaye Jacobian Theorem). Let A be a Noetherian
domain, and let A ↪→ R be a finite, torsion-free, generically étale extension.
Then the Jacobian ideal of R/A is contained in the conductor of R. That is,

J (R/A)RN ⊂ R
where RN is the integral closure of R in its total ring of fractions.

Proof of Theorem 7.4. Because F e∗A is faithfully flat over A, the
Jacobian ideal of the extension F e∗A ↪→ F e∗A ⊗A R can be identified with
F e∗A ⊗A J (R/A) ⊂ F e∗A ⊗A R. In addition, identifying F e∗A ⊗A R with a
subring of F e∗R, recall that F e∗R is contained in the normalization of F e∗A⊗A
R (Lemma 7.9). So by Theorem 7.10,

(7.10.1) J (R/A)F e∗R ⊂ F e∗A⊗A R.
In other words, J (R/A) annihilates the cokernel of the natural map F e∗A⊗A
R → F e∗R for all e > 0, and so is contained in the test ideal τ(R) by
Theorem 7.8. �

7.3. Discriminants. As another application of Theorem 7.8, we prove
that certain discriminants are always in the test ideal. Like Theorems 7.4
and 7.4, Theorem 7.12 produces test elements in a manner independent of
the characteristic.

7.3.1. Discriminants and the trace form. We review discriminants and
the trace form, which are used in the statement of Theorem 7.12. See [Sta19,
Tag 0BVH] for details.

Let A be a domain and let A → R be a finite map of rings, where R is
free over A. The discriminant of R/A is a principal ideal of A cutting out
the non-étale locus of A→ R. To define it, recall the trace form

(7.10.2) R×R→ A (r, s) 7→ trace(rs),

(where the trace of an element r ∈ R over A is, by definition, the trace38

of the A-linear map R mult by r−−−−−−→ R). The trace form is obviously symmetric
and bilinear. In the case where A is a field, the trace form is non-degenerate

37In the paper [LS81], the ring R is assumed a domain; the argument can be adapted
to work under the hypothesis stated below; see [?, Thm3.1]

38in the usual linear algebra sense—for example, the sum of the diagonal entries a
matrix representing this map of free module.

https://stacks.math.columbia.edu/tag/0BVH
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if and only if the extension A −→ R is a finite product of separable field
extensions (or, equivalently, R/A is étale) [Sta19, Tag 0BIE]. The bilinear
map (7.10.2) induces a natural A-linear map of free A-modules

(7.10.3) R→ HomA(R,A),

so taking top exterior powers, there is an induced map of rank one free
A-modules

(7.10.4) A ∼=
rank R/A∧

R −→
rank R/A∧

HomA(R,A) ∼= A.

The map (7.10.4) is therefore (up to unit) multiplication by some element
of A, called the discriminant of R over A. In particular, when A is a
field, the discriminant is non-zero if and only if the extension R/A is étale.
More generally, the discriminant cuts out the non-étale locus of the extension
A −→ R.

In practice, the discriminant is easy to compute: if x1, . . . , xn is a free
basis for R over A, then the matrix of the bilinear form (7.10.2) with respect
to this basis is

(7.10.5) Mx =


Tr(x1x1) Tr(x1x2) . . . Tr(x1xn)
Tr(x2x1) Tr(x2x2) . . . Tr(x2xn)
. . . . . . . . . . . .

Tr(xnx1) Tr(xnx2) . . . Tr(xnxn)

 .

The discriminant Dx is then the determinant of Mx. This depends on the
choice of basis! If y is a different basis for R/A, with change of basis
matrix g ∈ GLn(A), then the matrix of the bilinear form transforms by
My = gtMxg. So computing the determinants, we see they differ by mul-
tiplication by (det g)2 ∈ A∗. Thus the discriminant of R/A is defined only
up to multiplication by (square) units in A, and should be thought of as an
ideal (or divisor) in A.

Remark 7.11. Even if R is not free over A, we can define the matrixMx and
the discriminant Dx using formula (7.10.5) above, whenever x is a collection
of elements in R that generically form a basis for R over A (meaning that
their images in K(A) ⊗ R form a K(A)-vector space basis.) If A is normal,
then Tr(r) ∈ A for any r ∈ R [Sta19, Tag 032L], so the entries of Mx are in
A. In particular, Dx ∈ A.

Theorem 7.12. Let A be an F -finite regular domain. Suppose A ↪→ R is a
finite, generically étale extension. Then

(a) If R is free over A, then the discriminant ideal of R/A is contained
in the test ideal τ(R);

(b) More generally, if R is torsion free over A, then for any set x =
{x1, . . . , xn} ⊆ R that generically form a free basis for R/A, the

https://stacks.math.columbia.edu/tag/0BIE
https://stacks.math.columbia.edu/tag/032L
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discriminant

Dx = det


Tr(x1x1) Tr(x1x2) . . . Tr(x1xn)
Tr(x2x1) Tr(x2x2) . . . Tr(x2xn)
. . . . . . . . . . . .

Tr(xnx1) Tr(xnx2) . . . Tr(xnxn)


is in the test ideal τ(R).

We record a basic fact about discriminants needed to deduce Theo-
rem 7.12 from Theorem 7.8:

Lemma 7.13. Let S be a normal domain, and let S ↪→ T be a finite, torsion-
free extension with T reduced. For any subset x := {x1, . . . , xn} ⊆ T which
generically form a free basis for T over S, the discriminant Dx is in the
conductor of T—that is,

Dx T
N ⊆ T

where TN denotes the normalization, or integral closure in the total ring of
quotients, of T .

Proof. LetK = K(S) be the fraction field of S. Our assumptions imply
that L = K ⊗S T is a finite product of finite field extensions of K, and that
x is a K-vector space basis for L.

Note that TN ⊂ L. So any y ∈ TN can be written in the basis x as
y = λ1x1 + λ2x2 + · · · + λnxn where λi ∈ K. To show Dxy ∈ T , it suffices
to show each Dxλi ∈ S.

Since Dx = detMx, we have an equality of n× n matrices over S

Dx In = adj(Mx)Mx,

where In is the n×n identity matrix and adj(Mx) is the adjugate, or classical
adjoint matrix, of Mx (see [?]). Note that the entries of adj(Mx) are all in
S because the entries of Mx are in S.

To show that Dλi ∈ S, it then suffices to show that the column vector

(7.13.1) Dx


λ1

λ2
...
λn

 = adj(Mx)Mx


λ1

λ2
...
λn


has all entries in S. But by definition of Mx,

Mx


λ1

λ2
...
λn

 =


Tr(x1y)
Tr(x2y)

...
Tr(xny)

 ,
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which is clearly in Sn, since Tr(TN) ⊆ S [Sta19, Tag 032L]. So the entries
of the column vector in equation (7.13.1) are all in S. Thus Dxλi ∈ S, as
needed. �

Proof of Theorem 7.12. By Theorem 7.8, it is enough to show that
the discriminants Dx annihilate the cokernel of

(7.13.2) R⊗A F e∗A −→ F e∗R

for all e. Choose x = {x1, . . . , xn} ⊆ R whose image in R ⊗K(A) is a basis
over K(A). Tensoring the map A ↪→ R with the faithfully flat A-module
F e∗A, we have a finite, torsion-free, generically étale extension

(7.13.3) F e∗A ↪→ F e∗A⊗A R,
and the image of the set x in F e∗A⊗AR is generically a basis over F e∗A. Note
that the map (7.13.3) satisfies the hypothesis of Lemma 7.13. So because
F e∗R is contained in the normalization of F e∗A ⊗A R (see Lemma 7.9), we
have

Dx F
e
∗R ⊂ F e∗A⊗A R

by (7.13.3). Thus Dx annihilates the cokernel of the map (7.13.2) for all
e > 0. By Theorem 7.8, we conclude that Dx is a strong test element. �

7.4. Exercises.

Exercise 7.1. Suppose p does not divide n. Let R = Fp[x1, · · · , xd]/(xn1 +

· · ·+ xnd ). Show that xn−1
i ∈ τ(R) for all i.

Exercise 7.2. For the ring R = Fp[x, y, z]/(x4+y4+z4) with p > 2, compute
the discriminant of R over Fp[x, y] using the basis {1, z, z2, z3} to find a test
element for R. Compare to ??.

Exercise 7.3. Let A be an F -finite regular domain, and let A ↪→ R be a fi-
nite, torsion free, generically étale extension. Suppose that c ∈ R annihilates
the cokernel of the natural map

R⊗A F∗A −→ F∗R

Then prove that c2 is a strong test element for R.

Hint: The point is to show that c2 annihilates the cokernel of allR⊗AF e∗A −→
F e∗R.

https://stacks.math.columbia.edu/tag/032L




CHAPTER 7

Tight closure

This chapter is missing some content we hope to add in the future, for instance phantom
homology.

Tight closure is a closure operation on ideals in a commutative ring
of prime characteristic—or more generally, on submodules of R-modules—
introduced by Mel Hochster and Craig Huneke in a long series of papers start-
ing with [HH90], cf. [HH89, HH91, AHH93, HH93, HH94a, HH94b].
Tight closure has several deep properties that have led to a better under-
standing of integral closure, Cohen-Macaulayness and other subtle issues in
commutative algebra.

The resulting insight into singularities in prime characteristic, docu-
mented in earlier chapters of this book, ultimately helped enable progress
in the minimal model program for prime characteristic threefolds and four-
folds; see Chapter 10. Although it arose independently, tight closure is rem-
iniscent of Faltings’ theory of "almost ring theory" in arithmetic geometry
[Fal02, GR03], which is used in Scholze’s theory of perfectoid algebras. It
is no surprise then, that the methods pioneered in tight closure theory have
also appeared in work on the minimal model program in mixed characteristic;
see [TY23, BMP+23, HW23].

In this chapter, we re-tell Hochster and Huneke’s story of tight closure,
emphasizing the perspective of F -singularities developed in the previous
chapters. The first section defines tight closure, including a variant called
"finitistic tight closure" for infinitely generated modules that appears at the
center of several important open questions. The second section introduces
the tight closure test ideal, which of course inspired the what we called the
test ideal — a key figure in evolving algebraic and geometric applications
and a star of the earlier chapters. We focus mainly on the F -finite case,
where the arguments are more natural and transparent. One advantage of
tight closure, however, is that the definition does not require the F -finite
hypotheses, so we include pointers to the literature where statements have
been proved more generally.

421
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Section 3 treats F -regularity, outlining the still open question of whether
strong F -regularity is the same as weak F -regularity, the property that all
ideals are tightly closed. We then turn to the connection with integral ex-
tensions and plus closures in Section 4, and prove Hochster and Huneke’s
famous theorem that the absolute integral closure of a Noetherian domain
of positive characteristic is a "big Cohen-Macaulay algebra" in Section 5.
There, we point out how many ideas and techniques about tight closure have
been developed in mixed characteristic through work of Y. André, B. Bhatt,
Gabber, Heitmann, Ma and others [And20, BS22, Bha20, HM18].

We touch only on the basics of tight closure theory (and do not prove
things in as great as generality as is possible). For those who are interested
in further study, we recommend the excellent notes of Hochster [Hoc07] or
the short book of Huneke [Hun96].

1. The definition of tight closure

Fix a commutative Noetherian ring R of prime characteristic p > 0.

Definition 1.1. Fix an ideal I ⊆ R. The tight closure of I is the ideal I∗
of all elements z ∈ R with the following property: there exists some c ∈ R,
not in any minimal prime of R, and some natural number e0, such that

(1.1.1) czp
e ∈ I [pe] for all e ≥ e0,

or equivalently,

(1.1.2) zF e∗ c ∈ IF e∗R for all e ≥ e0.

It is important to note that, a priori, the element c in the definition
of tight closure may depend on I and z but not e. On the other hand,
for many classes of rings R—including all reduced F -finite rings—there are
certain distinguished elements c that can be used in tight closure tests (as in
(1.1.1)) for any I and any z. These are called tight closure test elements
(Definition 2.1) and include the strong test elements we have already met in
Chapter 1; see Proposition 2.3 later in this chapter.

Remark 1.2. There is no loss of generality in restricting to reduced rings
to compute tight closure: z ∈ I∗ if and only if the image of z in the reduced
ring Rred is in the tight closure of IRred, where Rred = R/

√
0 is the quotient

of R by the ideal of its nilpotent elements; see Exercise 1.1. In the reduced
case, the condition that c is not in any minimal prime is equivalent to the
condition that c is a non-zerodivisor.

Remark 1.3. Many questions about tight closure reduce to the domain
case, where the condition on c is simply that it is non-zero; see Exercise 1.2.
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We say that an ideal I of the ring R is tightly closed if I = I∗. The
next proposition, whose proof is left as an exercise, establishes some basic
properties of tight closure.

Proposition 1.4. Let I and J be ideals in a commutative Noetherian ring
of prime characteristic. Then

(a) I ⊆ I∗;
(b) (I∗)∗ = I∗;
(c) If I ⊆ J , then I∗ ⊆ J∗;
(d) (0)∗ is the ideal of all nilpotent elements of R.

Remark 1.5. An element of the tight closure of I is "almost" in I in the
following sense. Let Rperf be the perfection of a domain R, obtained by
adjoining the pe-roots of every element for all e (see Definition 2.16 in Chap-
ter 1). Then z ∈ I∗ if and only if c1/pez ∈ IRperf for all e and fixed c not in
any minimal prime. Note here that the elements c1/pe are getting "arbitrarily
close to 1" as e approaches infinity in a way that can be made precise using
valuations; see [HH91]. In other words, z is "almost in I". We will discuss
tight closure in the context of Faltings’ almost mathematics [Fal02, Gab04]
in Theorem 5.36.

Remark 1.6. One can define tight closure in characteristic zero by reduction
to characteristic p > 0 as in Chapter 6. We won’t explore this but instead
refer the reader to [HH06] or the appendix by Hochster to [Hun96]. For
some interesting examples see [BK06].

1.1. Tight closure for modules. The definition of tight closure ex-
tends naturally to submodules in an ambient module:

Definition 1.7. Let M be a module over a commutative ring R of prime
characteristic p > 0. For any submodule N ⊆ M , the tight closure of
N in M is the set of all elements z ∈ M with the following property:
there exists some c ∈ R, not in any minimal prime, such that the element
F e∗ c⊗ z ∈ F e∗R⊗RM is in the image of the natural map

F e∗R⊗R N → F e∗R⊗RM
for all e � 0. The set of all elements of M in the tight closure of some
submodule N forms a submodule of M , denoted N∗M . We say that N is
tightly closed in M if N∗M = N .

One readily checks that Definition 1.7 and Definition 1.1 are just two
different ways of writing the same thing in the case that M = R. So Defini-
tion 1.7 gives a natural generalization of tight closure to modules.

Notation 1.8. To make the notation less onerous, we introduce notation
matching our notation in the case where M = R. For any m ∈ M , we let



424 7. TIGHT CLOSURE

mpe denote the image of m under the natural map M → F e∗R⊗RM sending
m to F e∗ 1⊗m, and cmpe for F e∗ c⊗m. Likewise, we write

N
[pe]
M for Image (F e∗R⊗R N → F e∗R⊗RM) ,

the F e∗R-submodule generated by all elements npe for n ∈ N . With this
notation, an element m ∈M is in the tight closure of a submodule N means
that there exists c ∈ R, not in any minimal prime of R, such that

cmpe ∈ N [pe]
M

for all e� 0.

Remark 1.9. For a Noetherian local ring (R,m) of dimension d, Nota-
tion 1.8 is consistent with the notation for the Frobenius action on Hd

m(R)
described in Section 7 of Chapter 1. Indeed, we have natural isomorphisms
of R-modules,

F e∗R⊗R Hd
m(R) ∼= Hd

m(F e∗R) ∼= F e∗H
d
m(R)

as explained in Subsection 7.1 of Chapter 1 (see also Lemma 7.2 in Appen-
dix C). With these identifications, ηpe (or F e∗ ηp

e if we want to emphasize the
R-module structure given by Frobenius) is just another notation for F e(η)
as in Chapter 1 Section 7. Likewise, cηpe is another notation for cF e(η), for
any η ∈ Hd

m(R).

1.2. Strong F -regularity and F-rationality in terms of tight clo-
sure. With tight closure in mind, we revisit strong F -regularity and F -
rationality, both of which have simple interpretations in terms of tight clo-
sure.

Theorem 1.10. Let (R,m, k) be an F-finite local Noetherian ring of prime
characteristic. Then

(a) The ring R is strongly F-regular if and only if the zero module is
tightly closed in the injective hull of its residue field;

(b) [Smi94] The ring R is F -rational if and only if zero is tightly closed
in the local cohomology module Hd

m(R), and R is Cohen-Macaulay.

Proof. We first prove (a). First assume that R is strongly F -regular
(hence reduced). If 0∗E 6= 0, then suppose η 6= 0 ∈ 0∗E . This means that
there is some c ∈ R, not in any minimal prime, such that F e∗ c ⊗ η = 0 in
F e∗R⊗R E for all e� 0. But since for large e, the R-module map

R→ F e∗R r 7→ rF e∗ c

splits, we have a split map

E → F e∗R⊗ E ξ 7→ F e∗ c⊗ ξ
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for all e � 0. In particular, if η 6= 0, then also F e∗ c ⊗ η is not zero in
F e∗R⊗R E. So 0∗E = 0.

Conversely, fix any non-zero divisor c ∈ R. To check that

R→ F e∗R r 7→ rF e∗ c

splits for some e ∈ N, it suffices to check that, after tensoring with E, the
map

(1.10.1) E → F e∗R⊗R E ξ 7→ F e∗ c⊗ ξ
is injective (Lemma 7.22 in Chapter 1). Since E has a one-dimensional socle,
say generated by η, it suffices to check that η is not in the kernel of (1.10.1)
for some e. But otherwise, η is in the kernel of (1.10.1) for all e, which means
that

cηp
e

:= F e∗ c⊗ η is zero in F e∗R⊗R E
for all e ∈ N. This says that η ∈ 0∗E .

We next prove (b). First suppose R is F -rational (Definition 7.9 of
Chapter 1). Because R is Cohen-Macaulay, all embedded primes are minimal
([Sta19, Tag 031Q] or [Mat89, p136]) so the non-zero-divisors of R are
precisely the elements not in any minimal prime of R. Now, if η ∈ Hd

m(R)
is in the tight closure of the zero submodule of Hd

m(R), then there exists a
c ∈ R, not in any minimal prime of R (hence a non-zero-divisor) such that
the image of F e∗ c⊗η in F e∗R⊗RHd

m(R) is zero for all e� 0. Re-interpreting,
we see that η is in the kernel of the map

(1.10.2) Hd
m(R)

F e∗ c ◦F e−−−−−→ F e∗H
d
m(R)

obtained by applying the local cohomology functor to the R-module map
R −→ F e∗R sending 1 to F e∗ c. By definition, because R is F -rational, the
map (1.10.2) is injective. This means that η = 0, so the zero submodule is
tightly closed in Hd

m(R).

Conversely, assume that zero is tightly closed in Hd
m(R) and that R is

Cohen-Macaulay. Take any non-zero-divisor c ∈ R. We need to show that
the map (1.10.2) is injective for e� 0. We first observe that Frobenius acts
injectively on Hd

m(R). Indeed, if η ∈ Hd
m(R) is in the kernel of Frobenius,

then ηp = 0, and so for all e ∈ N also ηpe = (ηp)p
e−1

= 0. Hence cηpe must be
zero as well for e � 0. This says that η ∈ 0∗ in Hd

m(R). So by assumption,
η = 0. That is, Frobenius acts injectively on Hd

m(R).

We next claim that for each e

(1.10.3) ker(cF e+1) ⊆ ker cF e.

Indeed, suppose that η ∈ ker(cF e+1). This means that cηpe+1
= 0, so that

also cpηpe+1
= (cηp

e
)p = 0. But since Frobenius is injective on Hd

m(R), we

https://stacks.math.columbia.edu/tag/031Q
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can conclude that cηpe = 0, proving (1.10.3). Now (1.10.3) implies that we
have a descending chain of R-submodules

Hd
m(R) ⊇ ker(cF ) ⊇ ker(cF 2) ⊇ ker(cF 3) ⊇ . . . ,

and since Hd
m(R) is Artinian, this chain stabilizes. That is, there exists

an e0 such that for all e ≥ e0, ker(cF e0) = ker(cF e). Now, if the map
cF e of (1.10.2) fails to be injective for e � 0, then there is some non-zero
η ∈ ker(cF e) for all e ≥ e0. For this η, we have that cηpe = 0 for all e ≥ e0,
which says that η ∈ 0∗

Hd
m(R)

. So in fact η = 0 by hypothesis. This shows that
the maps (1.10.2) are injective for all e ≥ e0. �

Remark 1.11. Hochster and Huneke’s original definition of F -rationality
is different—it is stated in terms of "parameter" ideals being tightly closed.
We return to this shortly in Subsection 3.3.

1.3. Finitistic tight closure. For infinitely generated modules over a
Noetherian ring, there is an alternate notion of tight closure that is more
closely associated with tight closure for ideals.

Definition 1.12. Let M be a (possibly non-Noetherian) module over a
Noetherian ring R of prime characteristic p. The finitistic tight closure of
a submodule N ⊆M , denoted N∗ fg

M , is the union, over all finitely generated
submodules M ′ of M , of the submodules

(N ∩M ′)∗M ′ .

From the definition, we see immediately, for any pair of R-modules N ⊆
M , that

N∗ fg
M ⊆ N∗M ,

and that equality holds if M is Noetherian. Equality holds in some other
important settings:

Proposition 1.13 ([Smi94]). Let (R,m) be a Cohen Macaulay local ring of
dimension d. Then 0∗

Hd
m(R)

= 0∗ fg

Hd
m(R)

.

Remark 1.14. Proposition 1.13 holds without the Cohen-Macaulay hypoth-
esis, for example, whenever R is F -finite and reduced, or more generally,
excellent; See Exercise 2.9.

Proof of Proposition 1.13. To see that an arbitrary η ∈ 0∗
Hd

m(R)
is

in the tight closure of zero in some finitely generated submodule of Hd
m(R),

recall that, when R is Cohen-Macaulay, the module Hd
m(R) can be identified

with a direct limit of an injective system of R-module homomorphisms1.

1See Subsection 10.3 in Appendix A
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Specifically, fix a system of parameters x1, . . . , xd for R, then for all t ∈ N,
we have injective maps

(1.14.1)
R

(xt1, . . . , x
t
d)

multiply by x1x2···xd−−−−−−−−−−−−−→ R

(xt+1
1 , . . . , xt+1

d )
,

and Hd
m(R) is the directed limit of these maps. We leave it to the reader to

check that if an element η ∈ 0∗
Hd

m(R)
is represented by some z mod (xt1, . . . , x

t
d)

in R/(xt1, . . . , x
t
d), then z ∈ (xt1, . . . , x

t
d)
∗ (see Exercise 1.11). In this case,

η ∈ 0∗ in the submodule R/(xt1, . . . , xtd). Thus η ∈ 0∗ fg

Hd
m(R)

. �

An important open question that will appear in various guises and gen-
eralizations is the following. If (R,m) is an F -finite Noetherian local ring
and E is an injective hull of R/m, is

(1.14.2) 0∗E = 0∗ fg
E ?

Proposition 1.13 shows that (1.14.2) has a positive answer for Gorenstein
local rings, even without the assumption that R is F -finite and reduced,
since E = Hd

m(R) in this case; see also [HH94a, Prop 4.9]. We’ll return to
this question, and some related history, in Remark 2.11

1.4. Tight closure versus integral closure. The tight closure of an
ideal is much "tighter" than its integral closure— one readily checks that
the tight closure is contained in the integral closure for any ideal: I∗ ⊆ I
see Exercise 1.4. In particular, integrally closed ideals, including all radical
ideals, are always tightly closed. More substantially, we have an inclusion in
the other direction via the so-called Briançon-Skoda Theorem:

Theorem 1.15 ([HH90, Thm 5.4]). Let R be a Noetherian ring of prime
characteristic. Let I be an ideal of positive height of R generated by n ele-
ments (or more generally, integral over an ideal generated by n elements).
Then the integral closure

Im+n ⊆ (Im+1)∗

for all integers m ≥ 0. In particular, (In) ⊆ I∗.

Proof. We prove this only in the main case — when R is a domain and
m = 0 — leaving the straightforward reduction to this case as Exercise 1.6
(or see [HH90]). In general, it is easy to see (Exercise 1.5) that if y is
integral over J , then there exists some k ∈ N such that for all m ∈ N,

(1.15.1) (J + y)k+m = Jm+1(J + y)k−1.

In particular, if I is integral over (z1, . . . , zn), and y ∈ In = (z1, . . . , zn)n,
then

(1.15.2) yk+m ∈ (z1, . . . , zn)n(m+1) ⊆ (zm1 , z
m
2 , . . . , z

m
n ).
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Now, assuming R is a domain, c = yk is not in any minimal prime of R, and
so taking m = pe, the equation (1.15.2) for all e says that y ∈ I∗. �

1.5. Exercises.

Exercise 1.1. Let I be an ideal in a commutative ring R of prime charac-
teristic, and let N ⊆ R be the nilradical of R. Prove that the tight closure I∗
is the pre-image under the natural surjection R→ R/N of the tight closure
of the ideal (I/N) in the reduced ring (R/N).

Exercise 1.2. Let I be an ideal in a commutative ring R of prime charac-
teristic. Show that z ∈ I∗ if and only if the image of z is in the tight closure
of the image of I modulo each minimal prime of R.

Exercise 1.3. Prove Proposition 1.4.

Exercise 1.4. Let I be an ideal in a Noetherian commutative ring R of
characteristic p > 0. Show that I∗ ⊆ I, that is the tight closure is contained
in the integral closure.

Hint: Use the following characterization of integral closure in a Noetherian
domain R: z ∈ I if and only if there exists a non-zero c ∈ R such that
czn ∈ In for all n� 0 [SH06, Corollary 6.8.12].

Exercise 1.5. Assume that y is integral over J , meaning that there is an
equation of the form yk + a1y

k−1 + · · · + ak−1y + ak = 0 where ai ∈ J in.
Prove that for all m ∈ N, (J + y)k+m = Jm+1(J + y)k−1.

Exercise 1.6. Complete the proof of Theorem 1.15 by showing that the
statement reduces to the domain case, and deriving an appropriate analog
of (1.15.2).

Exercise 1.7. Let R be a commutative ring of prime characteristic p. Show
that an element z ∈ R is in I∗ if and only if its image x in R/I is in the tight
closure of the zero-submodule in R/I. More generally, show that if N ⊆M
are R-modules, then for any m ∈ M , m ∈ N∗M if and only if the class m of
m in M/N is in 0∗M/N .

Hint: Use the right exactness of tensor.

Exercise 1.8. Let M be a module over an arbitrary commutative R of
prime characteristic. Write M as a quotient of a free module, with module
of relations K—that is, suppose that

0 −→ K −→ F
π−→M −→ 0

is an exact sequence of R modules, with F free. Prove that

0∗M = π (K∗F ) .
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Hint: Use the right exactness of tensor.

Exercise 1.9. [HH90, Prop 8.5] Prove that if M is a finitely generated
module over a Noetherian ring and N ⊆ Q ⊆ M are submodules, then
N∗M ⊆ Q∗M .

Exercise 1.10 ([HH90, Prop 8.9]). Let N ⊆M be finitely generated mod-
ules over Noetherian ring R, and suppose that the support of M/N consists
of one maximal ideal m. Then (N∗M )m = (Nm)∗Mm

, where the later is com-
puted over Rm.

Exercise 1.11. Let (R,m) be a Cohen Macaulay2 for Noetherian local
ring of dimension d with system of parameters x1, . . . , xd. Show that z ∈
(xt1, . . . , x

t
d)
∗ if and only if the element η in Hd

m(R) represented by the class
of z modulo (xt1, . . . , x

t
d) in the limit (1.14.1) is in the tight closure of the

zero module.

Hint: Use Exercise 1.7, the fact that (1.14.1) is injective, and the fact that
F e∗R ⊗R R/(xt1, . . . , xtd) ∼= F e∗

(
R/(xp

et
1 , . . . , xp

et
d

)
is another module in the

limit system (1.14.1).

Definition 1.16 ([HY03]). Suppose R is a Noetherian domain, a ⊆ R is
an ideal, and t ≥ 0 is a real number. For any ideal J ⊆ R define the at-tight
closure of J , denoted J∗a

t to be the set of x ∈ R such that there exists
0 6= c ∈ R so that

cadt(p
e−1)exp

e ∈ J [pe]

for all e > 0.

Exercise 1.12. Suppose that (R, at) is strongly F -regular in the sense of
Chapter 4 Definition 4.21. Show that J = J∗a

t for all ideals J ⊆ R.

Exercise 1.13. Find an example where at-tight closure is not idempotent.
In other words, show that

J∗a
t 6= (J∗a

t
)∗a

t

need not hold. When (R,m) is local and a is m-primary, Vraciu introduced
an idempotent variant of at-tight closure, see [Vra08].

Hint: Even polynomial rings and principal ideals will work.

2The Cohen Macaulay assumption can be removed under mild hypothesis; see Exer-
cise 2.9
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2. Test elements and test ideals

Test elements and test ideals were originally defined by Hochster and
Huneke differently and in more general settings than we did in Chapter 1.
To avoid confusion, we will refer to their test elements as tight closure test
elements:

Definition 2.1 ([HH90, 8.11]). Let R be a Noetherian ring of prime char-
acteristic p. An element c ∈ R, not in any minimal prime of R, is a tight
closure test element for R if, for all finitely generated modules M and all
submodules N ⊆ M , whenever m ∈ N∗M , it follows that cmpe ∈ N [pe], or
equivalently, that

F e∗ c⊗m ∈ Image(F e∗R⊗R N → F e∗R⊗RM),

for all integers e ≥ 0.

Remark 2.2. In deference to Hochster and Huneke, our definition of tight
closure test element includes the restriction that a test element is not in
any minimal prime of the ring. We did not make such a restriction in our
definition of strong test element (Definition 5.14 in Chapter 1) although we
saw that a strong test element is most useful when it is a non-zerodivisor.

Hochster and Huneke proved that, under mild hypothesis on a Noether-
ian ring R (including the case where R is reduced and F -finite), the ring
R always admits a test element. Indeed, they showed that the strong test
elements we encountered in Chapter 1 are always tight closure test elements:

Proposition 2.3. Let R be a reduced Noetherian F -finite ring of prime
characteristic. If c ∈ R is a strong test element for R, then for an arbitrary
R-module M , not necessarily finitely generated, if m ∈ N∗M , then cmpe ∈
N

[pe]
M for all integers e ≥ 0.

In particular, strong test elements for R are tight closure test elements
provided they are not in any minimal prime of R.

Proof. Fix an arbitrary R-module M and suppose that m ∈ N∗M for
some submodule N . We need to prove that cmpf ∈ N [pf ] for all integers
f ≥ 0. Because m ∈ N∗M , there exists some d, not in any minimal prime of
R, such that dmpe ∈ N [pe] for all e � 0. Since R is reduced, the element d
is a non-zerodivisor. Fixing sufficiently large e, we have

(2.3.1) dmpe+f ∈ N [pe+f ]

for all E ≥ 0.

Now recall Definition 5.14 from Chapter 1: the element c ∈ R is a strong
test element if for all non-zerodivisors d ∈ R and for all e � 0, there exists
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φ ∈ HomR(F e∗R,R) such that φ(F e∗ d) = c. Fix such an e large enough
so that (2.3.1) holds as well. In this case, for all integers f ≥ 0, the map
FE∗ φ ∈ HomR(F e+f∗ R,F f∗ R) has the property that F f∗ φ(F e+f∗ d) = F f∗ c.

Now we can apply F f∗ φ to the first factor in F e+f∗ R ⊗R M to get an
R-linear map F e+f∗ R⊗RM −→ F f∗ R⊗RM. The statement dmpe+f ∈ N [pe+f ]

means that

F e+f∗ d⊗m ∈ Image(F e+f∗ R⊗R N → F e+f∗ R⊗RM),

so that after applying F f∗ φ, also

F f∗ c⊗m ∈ Image(F f∗ R⊗R N → F f∗ R⊗RM).

Since this hold for arbitrary f ≥ 0, we have shown that cm[pf ] ∈ N [pf ]
M for

all f ≥ 0. This completes the proof. �

Remark 2.4. Hochster and Huneke defined a tight closure test element
for ideals to be an element c, not in any minimal prime of R, with the
property that for all ideals I ⊆ R and all elements z ∈ I∗,

czp
e ∈ I [pe] or, equivalently, zF e∗ c ∈ IF e∗R

for all non-negative integers e. Clearly every tight closure test element is a
tight closure test element for ideals, as we can take M = R. The converse
holds when R is reduced and F -finite, or more generally, when all local rings
of R are approximately Gorenstein3 [HH90, Prop 8.15].

The following question is open.

Question 2.5. Does every reduced excellent Noetherian ring R have a tight
closure test element (which is necessarily a non-zerodivisor)?

Of course, if the ring R is F -finite, the answer is yes (Proposition 2.3).
For dimension ≤ 2, see [Abe93]. If R is complete and local, or more gen-
erally excellent and semi-local, or even essentially finite type over an ex-
cellent semi-local ring, then R has a test element by use of the so-called
Γ-construction; see [HH94a] or [Hoc07]. The Γ-construction allows one to
reduce the question for complete local rings (or rings of finite type over them)
to the F -finite case. The excellent case can be reduced to the complete case
since the formal fibers are geometrically regular. Other cases of existence of
test elements have can be found in [Sha12], including in the F -pure case,
and in [DET23].

3For the definition of approximately Gorenstein, see [Hoc77] or Section 11 in Appen-
dix A. Here, what is important is that a reduced locally excellent ring is approximately
Gorenstein, so an F -finite Noetherian reduced ring is approximately Gorenstein (invoking
[Kun76, Thm 2.5].)
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2.1. Tight closure test ideals. We now define tight closure test ideals:

Definition 2.6. Let R be a Noetherian ring of prime characteristic. The
tight closure test ideal for R is the ideal

τ fg
tc (R) =

⋂
N⊆M

N :R N
∗
M ,

where the intersection is taken over all pairs N ⊆M of finitely generated R
modules. Equivalently (see Exercise 1.7),

τ fg
tc (R) =

⋂
M

annR 0∗M

where M runs through all finitely generated R-modules M .

The subscript tc reminds us that we are defining test ideals via tight
closure. As before, the superscript fg reminds us we are using finitistic tight
closure.

The elements in τ fg
tc (R) are all tight closure test elements, provided they

are not in any minimal prime; see Exercise 2.1. Furthermore, as long as R
is reduced and has a tight closure test element, τ fg

tc (R) is generated by tight
closure test elements by Corollary 5.23 in Chapter 1.

The tight closure test ideal is, in fact, the annihilator of a single module:

Proposition 2.7 ([HH90, Prop 8.23]). Let R be a Noetherian ring of prime
characteristic. Then

τ fg
tc (R) = annR 0∗ fg

E

where E =
⊕

mER(R/m) is the direct sum of the injective hulls of the residue
fields of R over all maximal ideals of R.

Proof. By definition, τ fg
tc (R) annihilates 0∗ fg

E . Suppose c ∈ annR 0∗ fg
E .

Take any finitely generated R-module M . We need to show that c 0∗M = 0.
If not, then we can find M violating this statement with Supp(M) = {m},
where m is a maximal ideal of R (Exercise 2.7). Localizing at m, we may
assume that (R,m) is local with injective hull E = ER(R/m) of its residue
field, and M is Artinian (Exercise 1.10). Now M embeds in a finite direct
sum of copies of E ([Sta19, Tag 08Z3]). So

m ∈ 0∗M ⊆ 0∗ fg⊕
E =

⊕
0∗ fg
E .

Because c ∈ annR 0∗ fg
E , we see that cm = 0 as well. The proposition is

proved. �

Remark 2.8. The ideal τ fg
tc (R) is sometimes called the finitistic test ideal.

We also have a non-finitistic test ideal, which is a priori possibly smaller:

https://stacks.math.columbia.edu/tag/08Z3
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Definition 2.9. Let R be a Noetherian ring of prime characteristic. The
non-finitistic tight closure test ideal is the ideal

τtc(R) = annR 0∗E

where E =
⊕

mER(R/m) is the direct sum of the injective hulls of the residue
fields of R over all maximal ideals of R.

By definition, clearly

(2.9.1) τtc(R) ⊆ τ fg
tc (R).

This leads naturally to the following important open question about test
ideals, equivalent, via Matlis Duality, to our question about (1.14.2):

Conjecture 2.10. Let R be a reduced Noetherian F -finite ring of prime
characteristic. Then the non-finitistic test ideal is the same as the tight
closure test ideal. That is:

τtc(R) = τ fg
tc (R).

Conjecture 2.10 holds in the quasi-Gorenstein case by Proposition 1.13
(and the remark following it).

Remark 2.11. Conjecture 2.10 is known to be true for Q-Gorenstein rings
[AM99] or even in rings with isolated non-Q-Gorenstein points [Mac96,
LS01], as well as for standard graded rings over fields [LS99], and combi-
nations thereof [Stu08]. It is also known to be true if the anti-canonical
symbolic Rees algebra

R⊕ ω(−1)
R ⊕ ω(−2)

R ⊕ · · · = R⊕R(−KR)⊕R(−2KR)⊕ . . .
is finitely generated [CEMS18] (this finite generation condition is a weak-
ening of the Q-Gorenstein condition that appears naturally in the minimal
model program). If one adds a few more hypotheses, then one only needs to
assume that the anti-canonical symbolic Rees algebra is finitely generated
on the punctured spectrum, see [AHP23, Theorem 4.10] (cf. [AP21]). We
will prove this, and more, in the Q-Gorenstein case in Theorem 5.10 below.

Remark 2.12. The elements of the non-finitistic test ideal are "better"
test elements: every non-zerodivisor in τtc(R) is not only a tight closure test
element forR, but also a tight closure test element for R̂ (Exercise 2.11). This
is useful in proofs when we wish to reduce statements about tight closure
to the complete case. Hochster and Huneke used the term completely
stable test elements for test elements in R that remain test elements in
all complete local rings of R.

Furthermore, at least in reasonable rings (for instance, in F -finite rings)
elements of the non-finitistic tight closure test ideal can be used for any
"tight closure test" in the following sense: An element c ∈ τtc(R) if and only
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if whenever m ∈ N∗M for an arbitrary (not-necessarily finitely generated)
pair of R-modules N ⊆M , we have

cmpe ∈ N [pe]
M

for all e ∈ N; see Exercise 2.5. The elements of τ fg
tc (R), by contrast, are only

guaranteed to "test for tight closure" when N and M are finitely generated
modules.

Remark 2.13. The non-finitistic test ideal τtc(R) is also called the big test
ideal in the tight closure literature—its elements annihilate tight closure
relations even for non-finitely generated (or "big") modules; see [Hoc07]
where it was denoted by τb(R) although earlier literature denoted it by τ̃(R).
We will avoid this big terminology since the "big" test ideal is a priori smaller
than the usual (tight closure) test ideal. Note that the tight closure literature
usually uses the term "test ideal" for what we call the "tight closure test
ideal."

Remark 2.14. Of course, it is also of interest to ask Conjecture 2.10 in more
general settings, dropping the reduced or the F -finite assumptions, perhaps
imposing completeness or excellence. We will see another notion of the test
ideal for non-reduced (but still usually F -finite rings) in Chapter 8 where
we explore a theory developed by Blickle in [Bli13]. If one goes beyond the
excellent case however, many basic properties of tight closure seem to break
down; see [LR01, Hei10], which includes some ideas for potential fixes.

2.2. Connection with the test ideal. The test ideal as defined (Def-
inition 5.18 in Chapter 1) is closely related to the tight closure test ideal:

Theorem 2.15. Let (R,m) be a reduced F -finite Noetherian ring. Then the
non-finitistic tight closure test ideal is equal to the test ideal for R. That is:

τtc(R) = τ(R).

To prove Theorem 2.15, we need the following two lemmas:

Lemma 2.16. Let (R,m) be a Noetherian local ring, and let E denote an
injective hull of its residue field. Fix any finite R-algebra S and element
c ∈ S. The Matlis dual of the R-module map

(2.16.1) HomR(S,R)
eval at c−−−−−→ R

is the natural map

(2.16.2) E
ξ 7→c⊗ξ−−−−→ S ⊗R E.

Conversely, the Matlis dual of (2.16.2) is

(2.16.3) Hom
R̂

(R̂⊗R S, R̂)
eval at c−−−−−→ R̂.
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Proof. Because S is a finitely generated R-module and E is injective,
there is a natural isomorphism HomR(HomR(S,R), E) ∼= S ⊗R E sending
each map [HomR(S,R)

ψ−→ E] to the element 1S⊗ψ(1S) ∈ S⊗RE. The first
statement then follows easily by applying the functor HomR(−, E). For the
second statement, we use the fact that Matlis dualizing Noetherian modules
twice is the same as completing, so Matlis dualizing (2.16.1) twice is the
same as applying the faithfully flat functor R̂⊗R −. �

Lemma 2.17. Let (R,m) be a complete local Noetherian ring, and let E
denote an injective hull of its residue field. Given any exact sequence of
R-modules

(2.17.1) 0 −→ Z −→ E
Ψ−→M,

we have
annR Z = Image(Ψ∨) = (Image Ψ)∨ ∩R

where Ψ∨ denotes the Matlis dual of the map Ψ.

Proof. This is essentially proved in [Smi94, Lem 3.1]. The point is
that the Matlis dual of an exact sequence

(2.17.2) 0 −→ Z −→ E −→ N −→ 0,

is an exact sequence

(2.17.3) 0← Z∨ ← R← N∨ ← 0,

and also, by exactness,

(Image Ψ)∨ = Image(Ψ∨).

�

Proof of Theorem 2.15. Because it is reduced and F -finite, the ring
R admits a strong test element c that is a non-zerodivisor (Corollary 5.22 in
Chapter 1). Therefore, the test ideal τ(R) can be described as the image of
the map ⊕

e∈N
HomR(F e∗R,R)→ R

defined by sending φ ∈ HomR(F e∗R,R) to φ(F e∗ c), by Corollary 6.16 in Chap-
ter 1. Tensoring with the completion R̂, which is faithfully flat, we see that
also

(2.17.4)
⊕
e∈N

Hom
R̂

(F e∗ R̂, R̂)
Ψ−→ R̂

has image τ(R)R̂.
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Applying the Matlis Dual Functor to (2.17.4) and using Lemma 2.16, we
get a map

(2.17.5) E
Ψ∨−−→

∏
e∈N

F e∗ R̂⊗R̂ E =
∏
e∈N

F e∗R⊗R E

which sends each element ξ ∈ E to (· · · , F e∗ c⊗ ξ, . . . ). Because c is a strong
test element for R, Proposition 2.3 implies that the kernel of the map (2.17.5)
is precisely 0∗E . On the other hand, the annihilator, in R̂, of the kernel of
Ψ∨ is equal to Image(Ψ∨∨), or equivalently Image(Ψ), by Lemma 2.17. So
finally,

τtc(R) = annR 0∗E = ann
R̂

0∗E ∩R = Image(Ψ) ∩R = τ(R)R̂ ∩R = τ(R).

�

Cycling back to the open questions (1.14.2) and 2.10, we now rephrase
them as asking whether or not the strong and the tight closure test ideals
are the same for any reduced Noetherian F -finite ring. That is, whether:

(2.17.6) τ fg
tc (R) = τ(R)?

Again, see Remark 2.11 for what is known.

2.3. The test module and tight closure. We defined, in Chapter 2,
a variant of the test ideal living inside the canonical module called the test
module (or parameter test module). For a Noetherian F -finite reduced ring R
with canonical module4 ωR, the test module τ(ωR) is the smallest non-zero
uniformly compatible submodule τ(ω) of ωR (Definition 5.7 in Chapter 2).
Just as the test ideal for a local ring can be described in terms of tight closure
in the injective hull of its residue field, the test module can be described in
terms of tight closure in local cohomology:

Proposition 2.18. Let (R,m) be a reduced Noetherian F -finite ring of di-
mension d, and suppose that R admits a canonical module, ωR. If τ(ωR)
denotes the test module of R, then

0∗
Hd

m(R)
=

(
ωR

τ(ωR)

)∨
where (−)∨ denotes the Matlis dual functor HomR(−, E).

Proof. First note that R has a strong test element c ∈ R that is a
non-zero divisor (Corollary 5.22 in Chapter 1). Therefore, the test module

4Note, for us, the existence of a canonical module implies that R is locally
equidimensional.
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can be described as the image of the map⊕
e>0

F e∗ωR
Tc−→ ωR

defined by sending each F e∗w ∈ F e∗ωR to T e(F e∗ cw), where T e : F e∗ωR −→
ωR is dual-to-Frobenius R F e−−→ F e∗R under the functor HomR(−, ωR); see
Definition 5.7 and Proposition 5.6 in Chapter 2. Applying Matlis duality,
the dual map

Hd
m(R)

Tc∨−−→
∏
e>0

Hd
m(F e∗R) =

∏
e>0

F e∗H
d
m(R)

sends each η ∈ Hd
m(R) to (cηp, cηp

2
, cηp

3
, . . . ). The kernel of T ∨c is precisely

0∗
Hd

m(R)
, because c is a tight closure test element. Thus

0∗
Hd

m(R)
= ker T ∨c ∼= (ωR/ Image Tc)∨ = (ωR/τ(ωR))∨,

as desired, with the middle isomorphism following similarly to Lemma 2.17;
see Exercise 2.12. �

Similar to the test ideals, we can interpret the test module τ(ωR) as an
annihilator of a single tight closure module, suitably interpreted. Indeed, let
(R,m) be a Noetherian local ring with canonical module ωR, and let E be an
injective hull of its residue field. Matlis duality gives an R-bilinear pairing

(2.18.1) ωR ×Hd
m(R) −→ E

that allows us to view ωR as acting on Hd
m(R), and also view Hd

m(R) as acting
on ωR. For a submodule M ⊆ Hd

m(R), we can define

annωRM = {w ∈ ωR | wM = 0},

and for a submodule J ⊆ ωR,

annHd
m(R) J = {η ∈ Hd

m(R) | Jη = 0}.

The pairing (2.18.1) is perfect when R is complete. In this case, one checks
easily using Matlis duality that taking annihilators as above defines mutually
inverse bijections between submodules of Hd

m(R) and submodules of ωR.

Corollary 2.19. Let (R,m) be a reduced Noetherian local F -finite ring with
canonical module ωR. Then

τ(ωR) = annωR 0∗
Hd

m(R)
.

Proof. When R is complete, this follows immediately from the perfect
pairing (2.18.1) and Proposition 2.18. Now because R has a strong test
element c ∈ R that is a non-zero divisor (Corollary 5.22 in Chapter 1), one
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easily verifies that the tight closure is the same, whether we compute as an
R-module or as an R̂-module. We also know that

(2.19.1) R̂⊗R τ(ωR) = τ(ω
R̂

)

by Corollary 5.8 in Chapter 2. Using these two facts, we will reduce Corol-
lary 2.19 to the complete case.

Assume Corollary 2.19 holds for R̂. To see that τ(ωR) ⊆ annωR(0∗
Hd

m(R)
),

take any w ∈ τ(ωR). Then by (2.19.1), we have

1⊗ w ∈ R̂⊗R τ(ωR) = τ(ω
R̂

) = annω
R̂

0∗
Hd

m
(R).

Since the action of 1⊗w is the same as the action of w on Hd
m(R), it follows

that wη = 0 for every η ∈ 0∗
Hd

m(R)
. In other words, w ∈ annωR(0∗

Hd
m(R)

), as de-
sired. Now to see that annωR(0∗

Hd
m(R)

) ⊆ τ(ωR), take any w ∈ annωR(0∗
Hd

m(R)
).

Then 1 ⊗R w ∈ R̂ ⊗R ωR also annihilates 0∗
Hd

m(R)
. That is, 1 ⊗ w ∈

annω
R̂

(0∗
Hd

m(R)
) = τ(ω

R̂
) = R̂ ⊗ τ(ωR). Finally, because R̂ is faithfully flat

over R, we conclude that w ∈ τ(ωR), as needed. �

Remark 2.20. In the complete case (still in the world of Noetherian lo-
cal reduced F -finite rings), the mutually inverse order-reserving bijections
between submodules of Hd

m(R) and submodules of ωR given by taking anni-
hilators define bijections between

(i) compatible submodules of ωR in the sense of Chapter 2 Subsec-
tion 5.1; and

(ii) submodules of Hd
m(R) stable under the natural Frobenius action.

This point of view was developed in [Smi95], where annihilators, in ωR, of
F -stable submodules of Hd

m(R) were called F -modules.5 See Exercise 2.14.
Note that the smallest uniformly compatible submodule of ωR supported
on all of SpecR corresponds to the largest F -stable submodule of Hd

m(R)
annihilated by some non-zero-divisor, namely 0∗

Hd
m(R)

. See Definition 5.7 of
Chapter 2.

Remark 2.21. See Exercise 2.13 for a global formula for τ(ωR) as an anni-
hilator of a certain tight closure module.

Remark 2.22. Because 0∗
Hd

m(R)
= 0∗ fg

Hd
m(R)

for reduced F -finite Noetherian
local rings (see Proposition 1.13), there is no need to introduce "weak" and
"strong" variants of the parameter test module.

5A warning: several different notions have been called F -modules over the years, cf.
[Lyu97, EK04, BL19].
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2.4. Colon capturing. Perhaps one of best known features of tight
closure is its ability to "capture" the failure of a ring to be Cohen-Macaulay.
In its simplest form, the famous Colon Capturing property of tight closure
states the following:

Theorem 2.23. If x1, . . . , xd is a system of parameters for an excellent
Noetherian local domain,6 then

(2.23.1) (x1, . . . , xi)
∗ :R xi+1 ⊆ (x1, . . . , xi)

∗.

Before proving Theorem 2.23, we point out an immediate consequence:
rings in which all ideals—or even all ideals generated by parameters—are
tightly closed are always Cohen-Macaulay:

Corollary 2.24. Let (R,m) be an excellent local Noetherian domain (or re-
duced equidimensional ring) in which all ideals—or even just all ideals gen-
erated by subsets of a fixed system of parameters—are tightly closed. Then
R is Cohen-Macaulay.

Proof of Theorem 2.23. We will black box the fact that R has test
elements that remain test elements in the completion, although we haven’t
proven that (see [HH94a, Seciton 6]). Or the reader is invited to simply
assume that R is F -finite, whence this follows from Remark 2.12.

We first reduce to the case where R is complete. A system of param-
eters x1, . . . , xd for R is also a system of parameters for R̂, under the nat-
ural inclusion R ↪→ R̂. Suppose that z ∈ (x1, . . . , xi)

∗ :R xi+1. Then
xi+1z ∈ (x1, . . . , xi)

∗ in the ring R. Since non-zerodivisors in R remain non-
zero-divisors in R̂, also xi+1z ∈ (x1, . . . , xi)R̂

∗. Assuming the conclusion of
Theorem 2.23 holds for R̂, we have

z ∈ ((x1, . . . , xi)R̂)∗.

Now let c ∈ R be strong test element for R, so that c is a tight closure test
element for both R and R̂. In particular

czp
e ∈ (xp

e

1 , . . . , x
pe

i )R̂ ∩R = (xp
e

1 , . . . , x
pe

i )R.

for all e ≥ 0. This says that z ∈ (x1, . . . , xi)
∗ in R, as needed. Thus to prove

Theorem 2.23, we may assume without loss of generality that R is complete.

Although R̂ may no longer be a domain, it is reduced and equidimen-
sional since R is excellent.7 So the system of parameters x1, . . . , xd re-
mains a system of parameters modulo any minimal prime P , and any z ∈

6The ring need not be a domain; our proof of Theorem 2.23 holds for any equidi-
mensional local ring that admits a completely stable test element, for instance excellent
equidimensional reduced local rings.

7See [Sta19, Tag 0C21] and [Gro65, Scholie (7.8.3)(x)]; cf. [Rat71, Theorem 3.9].

https://stacks.math.columbia.edu/tag/0C21
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(x1, . . . , xi)
∗ :R xi+1 will remain in (x1, . . . , xi)

∗ :R xi+1 modulo P . Since we
can check that z ∈ (x1, . . . , xi)

∗ modulo each minimal prime, we have now
reduced to the case where R is a complete local domain. In this case, we
use the Cohen Structure theorem to write R as a module finite extension
of the power series subring A = kJx1, . . . , xdK. Now Theorem 2.23 follows
immediately from Lemma 2.25 below. �

Lemma 2.25. [HH90, Thm 4.8] Let R be Noetherian domain8 of charac-
teristic p > 0, finite over some regular subring A ⊆ R. Then for any ideals
I, J ⊆ A, we have

(2.25.1)
(IR)∗ :R JR ⊆ ((I :A J)R)∗ and

(IR)∗ ∩ (JR)∗ ⊆ ((I ∩ J)R)∗.

Proof of Lemma 2.25. Fix a finitely generated freeA-submoduleM ⊆
R of maximal rank, in which case R/M is a torsion A-module. So there ex-
ists non-zero c ∈ A such that cR ⊆M . Now suppose z ∈ (IR)∗ :R JR. Then
for each generator j of J , zj ∈ (IR)∗. So there exists nonzero d ∈ R such
that d(zj)p

e ∈ I [pe]R for e � 0. Multiplying by c, then cdzpejpe ∈ I [pe]M,
and since this holds for all generators j ∈ J ⊆ A

cdzp
e ∈ I [pe]M :M J [pe].

Now, since M is a free A-module and Frobenius is flat in A, we have (Ap-
pendix A Lemma 1.1) that I [pe]M :M J [pe] = (I :M J)[pe]. Expanding to R
we see

cdzp
e ∈ ((IR) :R (JR))[pe],

showing that z ∈ (IR :R JR)∗, as claimed. The proof for the intersection is
similar. �

2.5. Exercises.

Exercise 2.1. Show that an element c ∈ R, not in any minimal prime, is
a tight closure test element for R if and only if cN∗M ⊆ N for all pairs of
finitely generated modules N ⊆M .

Hint: Show that if m ∈ N∗M , then mpe ∈ (N [pe])∗M for all e ≥ 0.

Exercise 2.2 ([HH90, 6.1(c)]). Suppose (R,m) is a Noetherian local ring
and c ∈ R is a tight closure test element that remains a tight closure test
element in R̂ (a completely stable test element). Suppose that J ⊆ R is an
ideal. Prove that z ∈ J∗ if and only if z ∈ (JR̂)∗. That, is

J∗ = (JR̂)∗ ∩R.
8R need not be a domain—the proof works provided that R is locally equidimensional,

as in this case R will be torsion free over the regular subring A.
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Exercise 2.3. Suppose that (R,m) is a Noetherian local ring and c ∈ R is
a tight closure test element that remains a tight closure test element in R̂.
For any m-primary ideal J , prove that

J∗R̂ = (JR̂)∗.

Hint: Use the previous exercise.

Exercise 2.4. Let R be a reduced F -finite Noetherian ring of prime char-
acteristic p. Prove that an element c ∈ R, not in any minimal prime of R, is
a tight closure test element for R if and only if for all finitely generated
modules M , whenever m ∈ 0∗M , it follows that cmpe = 0, or equivalently,
that

F e∗ c⊗m ∈ F e∗R⊗RM
is the zero element.
Exercise 2.5. Let R be a reduced F -finite Noetherian ring. Let N ⊆ M
be an arbitrary pair of R-modules, not-necessarily finitely generated. Show
that if c ∈ τtc(R) and m ∈ N∗M , then

cmpe ∈ N [pe]
M

for all e ≥ N.

Hint: Use Proposition 2.3.

Exercise 2.6. Let R be a reduced F -finite Noetherian ring. Prove that the
tight closure test ideal is uniformly compatible (Definition 6.10 in Chapter 1).
Deduce that the test ideal is contained in the tight closure test ideal. Of
course, this also follows by combining (2.9.1) and Theorem 2.15.

Hint: Use Theorem 6.15 in Chapter 1.

Exercise 2.7. Let M be a finitely generated module over a Noetherian ring
R, and suppose x ∈ 0∗M but cx 6= 0 for some c ∈ R. Then if N is chosen to
be a maximal submodule of M with respect to the property that cx 6∈ M ,
then show that c 0∗M/N 6= 0 and SuppM/N consists of one maximal ideal of
R.
Exercise 2.8. Let (R,m) be an F -finite reduced Noetherian local ring of di-
mension d with system of parameters x1, . . . , xd. Show that z ∈ (xt1, . . . , x

t
d)
∗

if and only if the element η in Hd
m(R) represented by the class of z modulo

(xt1, . . . , x
t
d) in the limit (1.14.1) is in the tight closure of the zero module.

Hint: In the Cohen-Macaulay case, this is Exercise 1.11, but in general, one
needs a test element and colon capturing to deal with non-injectivity of the
limit (1.14.1).
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Exercise 2.9. Let (R,m) be a Noetherian local ring of dimension d. Use
Colon Capturing to prove Proposition 1.13 in the case R is reduced F -finite
but not Cohen-Macaulay.

Hint: Use Exercise 2.8.

Exercise 2.10. Let R be a Noetherian ring of prime characteristic. Prove
that the tight closure test ideal is contained in every associated prime of R
that is not minimal.
Exercise 2.11. Let (R,m) be a Noetherian local ring. Suppose c ∈ R is
not in any minimal prime of R. Show that if c ∈ annR 0∗E , then c is a tight
closure test element for both R and R̂.
Exercise 2.12. With hypotheses and notation as in the proof of Proposi-
tion 2.18, show that ker T ∨c ∼= (ωR/ Image Tc)∨.

Hint: Use the same technique as in Lemma 2.17.

Exercise 2.13. Let R be a Noetherian F -finite locally reduced ring of prime
characteristic with canonical module ωR. Show that

τ(ωR) = annωR 0∗H .

where H is the module ⊕HdimRm
m (R), where we range over all maximal ideals

of R.
Exercise 2.14.

3. Weak F -regularity

Many applications of tight closure stem primarily from situations in
which all ideals are tightly closed.
Definition 3.1 ([HH90]). A Noetherian commutative ring of prime char-
acteristic is weakly F -regular if every ideal is tightly closed.

Regular rings of prime characteristic are weakly F -regular, as is easily
checked using Kunz’s theorem on the flatness of Frobenius; see Exercise 3.1.

Weak F -regularity can be checked locally at maximal ideals:
Proposition 3.2. [HH90, Cor 4.15] A Noetherian ring is weakly F -regular
if and only if Rm is weakly F -regular for all maximal ideals m of R.

Proof. The point is that R is weakly F -regular if and only if every ideal
primary to a maximal ideal is tightly closed; see Exercise 3.2. The details
are left as an exercise using following two facts:
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(a) Every ideal in a Noetherian ring is an intersection of ideals primary
to maximal ideals.9

(b) For every ideal I ⊆ R primary to some maximal ideal m, I∗Rm =
(IRm)∗ (Exercise 1.10).

�

We caution the reader, however, that it is not known whether the local-
ization of a weakly F -regular ring at a non-maximal prime ideal is weakly
F -regular. See Subsection 3.2.

Theorem 3.3 ([HH90, Corollary 5.11], [HH94a, Proposition 6.27]). A
weakly F -regular ring is normal; furthermore, an excellent weakly F -regular
ring is Cohen-Macaulay.

Proof. Let R be a weakly F -regular ring. Because the zero ideal is
tightly closed, the nilradical of R is trivial, so that R is reduced. For nor-
mality, observe that the proof of Theorem 4.30 in Chapter 1 reveals that
a Noetherian ring is normal if all ideals generated by a non-zerodivisor are
tightly closed: Equation (4.31.1) in that proof shows that x ∈ (y)∗, so that
x ∈ (y) if R is weakly F -regular, without using the strong F -regularity hy-
pothesis. For Cohen-Macaulayness, we can check this after localization at
maximal ideals, in which case it follows immediately from Corollary 2.24. �

When all ideals are tightly closed, the same is true for all finitely gener-
ated modules:

Proposition 3.4 ([HH90, Prop 8.7]). Let R be a weakly F-regular ring.
Then every submodule N of a finitely generated module M is tightly closed.

Proof. Take x ∈M \N. We must show that x 6∈ N∗M . Replace N by a
submodule ofM maximal with respect to not containing x, and then replace
M,N, and x by their images modulo N inM/N . Then x is in every non-zero
submodule of M , so that Rx ↪→M is an essential extension and Rx ∼= R/m
for some maximal ideal m of R. In particular M is annihilated by a power
of m. There exists an irreducible m-primary ideal Q ⊆ R that annihilates
M and such that the Artin ring R/Q is Gorenstein (as Rm is normal and
normal local rings are approximately Gorenstein [Hoc77, Thm 1.6], or see
Appendix A Lemma 11.3). So the extension R/m ∼= Rx ↪→M is an essential
extension of R/Q-modules. It follows that M can be embedded in R/Q. It
will then suffice to show that 0 is tightly closed in R/Q, i.e., that Q is tightly
closed in R. �

9For example, if I ⊆ m, then I =
⋂
n∈N(I +mn).
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Corollary 3.5. A Noetherian ring R is weakly F -regular if and only if 1R
is a tight closure test element.

Proof. Suppose 1 is a tight closure test element. Then whenever z ∈
I∗, we have z = 1z ∈ I. So I∗ = I for all I. Conversely, if R is weakly
F -regular, then N∗ fg

M = N for all finitely generated R-modules N ⊆ M

(Proposition 3.4). Thus 1 ∈
⋂
N⊆M N :R N

∗ fg
M and so by Definition 2.1, 1 is

a tight closure test element. �

In particular, in the spirit of Theorem 1.10, we have the following char-
acterization of weak F -regularity:

Corollary 3.6. A Noetherian ring R is weakly F -regular if and only if

0∗ fg
E = 0

where E =
⊕

mER(R/m) is the direct sum of the injective hulls of the residue
fields of R over all maximal ideals of R.

Proof. The tight closure test ideal is annR 0∗ fg
E (Proposition 2.7). This

contains 1 if and only if 0∗ fg
E = 0. �

3.1. Weak versus strong F -regularity. As the name suggests, weak
F -regularity is closely related to strong F -regularity. One implication is
easy:

Proposition 3.7. Every strongly F -regular ring is weakly F -regular.

Proof. Suppose that R is strongly F -regular, and z ∈ I∗. By definition
of tight closure, there exists c ∈ R, not in any minimal prime, such that
zF e∗ c ∈ IF e∗R for all e � 0. As strongly F -regular rings are reduced, c
is a non-zerodivisor on R, so for all e � 0, there exists an R-linear map
φe : F e∗R→ R sending F e∗ c to 1. Applying such φe to some inclusion zF e∗ c ∈
IF e∗R, we have

z = φe(F
e
∗ c) ∈ Iφe(F e∗R) ⊆ I,

showing that I is tightly closed. �

In fact, Hochster and Huneke introduced strong F -regularity in the
hope it would be equivalent to weak F -regularity, as it was easier to ver-
ify many good properties (such as commutation with localization) for strong
F -regularity [HH89]. This is perhaps the most well known conjecture in
characteristic p > 0 commutative algebra.

Conjecture 3.8. Let R be an F -finite Noetherian ring of prime character-
istic. Then R is weakly F -regular if and only if R is strongly F -regular.
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This is of course, simply a special case of Conjecture 2.10 cf. (2.17.6).
In other words, if τ fg

tc (R) = R, then is τ(R) = R as well?
Remark 3.9. Beyond the cases we have already seen in Remark 2.11, Con-
jecture 3.8 is also known in dimension 3 by [Wil95]. Furthermore, it is known
also that if the anti-canonical symbolic Rees algebra R⊕ω(−1)

R ⊕ω(−2)
R ⊕. . . is

finitely generated on the punctured spectrum, then if R is weakly F -regular
it is also strongly F -regular [AHP23].

For a strongly F -regular ring, we expect that the associated anti-canonical
symbolic Rees algebra is always finitely generated, since the same holds for
Kawamata log-terminal singularities in characteristic zero as a consequence
of the minimal model program [Kol08]. Indeed, because the minimal model
program holds in dimension 3 in characteristic p > 0 ([HX15, Bir16,
DW19]) and strongly F -regular singularities are KLT, Aberbach-Polstra
showed that weakly F -regular rings are strongly F -regular (Conjecture 3.8
holds) in dimension 4 if p > 5 in [AP21], cf. [AHP23].
Conjecture 3.10. If R is a Noetherian F -finite strongly F -regular domain
then the anti-canonical symbolic Rees algebra

R⊕ ω(−1)
R ⊕ ω(−2)

R ⊕ · · · = R⊕R(−KR)⊕R(−2KR)⊕ . . .
is Noetherian (that is, finitely generated as an R-algebra).

By [AHP23], this implies Conjecture 3.8.

We expect that the tight closure test ideal defines the non-weakly F -
regular locus just as the test ideal defines the non-strongly F -regular locus
(Exercise 5.7 in Chapter 1), but this remains open. We do not even know
whether the weakly F -regular locus is open, as we discuss below in Subsec-
tion 3.2.

3.2. Tight closure and localization. A vexing open problem in tight
closure theory is whether or not weak F -regularity is preserved under local-
ization:
Question 3.11. Let R be an excellent weakly F -regular ring. Is it true that
W−1R is also weakly F -regular for any multiplicatively closed set W ⊆ R?

Indeed, unable to settle this problem, Hochster and Huneke introduced
the term F -regular to mean a ring all of whose localizations have the prop-
erty that all ideals are tightly closed; See [HH90]. To avoid confusion, we
will not use this term.
Remark 3.12. To settle Question 3.11, Proposition 3.2 ensures that it is
enough to check that any local ring of a weakly F -regular ring is weakly
F -regular.
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A related open question is whether or not weak F -regularity behaves well
under completion:

Question 3.13. Let (R,m) be an excellent weakly F -regular local ring. Is
the completion R̂ also weakly F -regular?

Without the excellent hypotheses, this is false, see [LR01], cf. [Hei10].

The converse is easier: R̂ weakly F -regular implies that R is weakly
F -regular. See Exercise 3.3.

Remark 3.14. We have seen in Chapter 1 that strong F -regularity does be-
have well under both localization (Proposition 4.23) and completion (Propo-
sition 6.17), where we assumed the rings were F -finite. Thus affirmative
resolutions to Question 3.11 and Question 3.13 are immediate for any class
of rings for which we can establish Conjecture 3.8, including the classes of
rings mentione din Remarks 2.11 and 3.9.

Remark 3.15. Weak F -regularity is known to pass to localizations for any
finitely generated ring over a field k of infinite transcendence degree over its
prime field; see [HH94a, Thm 8.1], where this fact is attributed to Murthy.

Importantly, tight closure itself does not commute with location: it is
not necessarily the case that I∗U−1R = (IU−1R)∗ for all ideals:

Example 3.16. (Brenner-Monsky [BM10]) Let k = F2 be the algebraic
closure of the finite field of two elements, and set

R = k[x, y, z, t]/(z4 + xyz2 + x3z + y3z + tx2y2).

Then for I = (x4, y4, z4) and the multiplicative system U = k[t] \ {0},
Brenner and Monsky show that I∗U−1 6= (IU−1)∗. Similar examples are
constructed in [BNS+22].

3.3. More on F -rationality. Fedder and Watanabe defined a local
ring to be F -rational ([FW89]) if all parameter ideals—meaning ideals
generated by subsets of systems of parameters—are tightly closed. We now
relate this to our definition of F -rationality in Definition 7.9 of Chapter 1:

Proposition 3.17 ([Smi94, Prop 2.5]). Let (R,m) be an equidimensional
F -finite local ring of prime characteristic. Then R is F -rational if and only
if every ideal generated by any subset of any system of parameters for R is
tightly closed.

Proof. Assume all ideals generated by any subset of a system of pa-
rameters are tightly closed. Then by colon capturing (Theorem 2.23), we
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can immediately conclude that R is Cohen-Macaulay and hence also equidi-
mensional. Now, to show that R is F -rational, we can show that 0∗

Hd
m(R)

= 0

(Theorem 1.10), where d = dimR.

Fix a system of parameters x1, . . . , xd for R. Then Hd
m(R) is the increas-

ing union of submodules of the form
R

(xt1, . . . , x
t
d)
,

where t ∈ N (see the proof of Proposition 1.13). An element η ∈ Hd
m(R) is

represented by some class z modulo (xt1, . . . , x
t
d), and if cηpe = 0, then the

class of czpe in R

(xtp
e

1 ,...,xtp
e

d )
is zero. So one easily checks that cηpe = 0 for all

e � 0 if and only z ∈ (xt1, . . . , x
t
d)
∗; see Exercise 1.11. So if by assumption,

(xt1, . . . , x
t
d)
∗ = (xt1, . . . , x

t
d) for all t, we can conclude that 0∗

Hd
m(R)

= 0. That
is, R is F -rational.

Conversely, suppose (R,m) is F -rational in the sense of Definition 7.9 in
Chapter 1. Then R is Cohen-Macaulay and 0∗ fg

Hd
m(R)

= 0 by Theorem 1.10
and Proposition 1.13. Suppose that x1, . . . , xd is a system of parameters for
R and that there is some z ∈ (x1, . . . , xi)

∗. In this case,

z ∈ (x1, . . . , xi, x
t
i+1, . . . , x

t
d)
∗

for all t ∈ N. In particular, arguing as in the previous paragraph, we see
that the the class of z in R/(x1, . . . , xi, x

t
i+1, . . . , x

t
d) is in the tight closure of

0 in the finitely generated submodule R/(x1, . . . , xi, x
t
i+1, . . . , x

t
d) of Hd

m(R).
But now because 0∗ fg

Hd
m(R)

= 0, we can conclude that it must be the zero class.
That is, z ∈ (x1, . . . , xi, x

t
i+1, . . . , x

t
d) for all t. This means that

z ∈
⋂
t∈N

(x1, . . . , xi, x
t
i+1, . . . , x

t
d) = (x1, . . . , xi),

as needed. �

Just as (strong or weak) F -regularity is equivalent to the triviality of the
(strong or tight closure) test ideals, F -rationality can be characterized as
the triviality of the test module (Definition 5.7 in Chapter 2). This follows
immediately from Corollary 2.19 and the fact that test modules behave well
under localization (Corollary 5.8 in Chapter 2). Tight closure gives another
perspective on Corollary 5.14.

The following facts about F -rationality follow easily from statements
about tight closure already proved in this chapter. We leave proving them
as an exercise; they have all essentially been proved in the F -finite case in
other parts of the text without tight closure:
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Theorem 3.18. Let (R,m) be an excellent Noetherian local ring in which
all parameter ideals are tightly closed. Then

(a) R is normal;10

(b) Then R is Cohen-Macaulay;
(c) If R is Gorenstein, then R is weakly F -regular;
(d) If R is Gorenstein and F -finite, then R is strongly F -regular.

3.4. Exercises.

Exercise 3.1. Use Kunz’s theorem (Theorem 2.1 in Chapter 1) to prove
that all ideals in a regular ring of prime characteristic are tightly closed.

Hint: Remember that flat maps commute with colons, cf. Appendix A
Lemma 1.1.

Exercise 3.2. Let R be a Noetherian ring. Show that R is weakly F -regular
if and only if every ideal primary to a maximal ideal is tightly closed.

Hint: Given I ⊆ R, let m be a maximal ideal containing I. Use the fact that
I =

⋂
n∈N(I + mn).

Exercise 3.3. Let (R,m) be Noetherian local ring whose completion R̂ is
weakly F -regular. Prove that R is weakly F -regular.

Exercise 3.4. Let R ↪→ S be an inclusion of Noetherian rings, split as a
map of R-modules. Prove that if S is weakly F -regular, then R is weakly
F -regular.

Exercise 3.5. Let (R,m) be a Noetherian local ring, with system of param-
eters x1, . . . , xd. Prove that the ideal (x1, . . . , xi) is tightly closed if and only
the ideals (x1, . . . , xi, x

t
i+1, . . . , x

t
d) are tightly closed for all integers t ≥ 1.

Exercise 3.6. Prove Theorem 3.18 (a) and (b) by examining the proofs of
the corresponding statements for weakly F -regular rings.

Exercise 3.7. Prove Theorem 3.18 (c).

Hint: Remember that E = Hd
m(R) for a Gorenstein local ring.

Exercise 3.8. [Hoc77] Let (R,m) be an approximately Gorenstein local
ring; by definition, we can fix a sequence of ideals It, cofinal with the powers
of the maximal ideal, such that each R/It is Gorenstein. For each t, and

10The proof is the same as the proof the weakly F -regular rings are normal Theo-
rem 3.3.
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s � t so that Is ⊆ It, let uts be an R-module generator for Is : It modulo
It. Show that in this case the directed limit system

R

It

Multiplication by uts−−−−−−−−−−−−−−→ R

Is

for s� t has limit isomorphic to an injective hull E of the residue field of R.
What goes wrong if we mimic the proof of Proposition 1.13 to try to prove
that 0∗E = 0∗ fg

E for reduced F -finite local rings?

4. Tight closure and integral extensions

An important feature of tight closure is its interaction with integral ex-
tensions:

Theorem 4.1. Suppose that R ⊆ S is a finite extension of domains of prime
characteristic.11 Then for every ideal I ⊆ R, we have IS ∩R ⊆ I∗.

Proof. Tensoring the inclusion R ↪→ S with the fraction field of R,
we easily see, after clearing denominators, that there is a R-linear map
φ ∈ HomR(S,R) such that φ(1S) = c, a non-zero element of R. Let
{z1, . . . , zn} ⊆ R be generators for the ideal I. Now if z ∈ IS ∩ R, we can
write z = a1z1+· · ·+anzn for some ai ∈ S. So also zpe = ap

e

1 z
pe

1 +· · ·+ap
e

n z
pe
n

for all e ∈ N. Applying φ, we have

czp
e

= φ(ap
e

1 )zp
e

1 + · · ·+ φ(ap
e

n )zp
e

n ∈ I [pe] ⊆ R

for all e, so that z ∈ I∗. �

It is natural to ask whether there exists some integral extension S of R
such that I∗ = IS ∩ R. To discuss this idea, it is helpful to consider all
integral extensions at once:

Definition 4.2. [Art71] For an arbitrary domain R, an absolute integral
closure of R is the integral closure of R in some fixed algebraic closure of
its fraction field. We denote any such absolute integral closure by R+.

Strictly speaking, the ring R+ depends on the choice of an algebraic
closure, but all choices are isomorphic as R-algebras.

Definition 4.3. Let R be a domain. The plus closure of an ideal I ⊆ R
is the ideal IR+ ∩ R where R+ is any12 absolute integral closure of R. We
denote the plus closure of I by I+.

11more generally, R and S need not be domains if S is torsion free over R
12The contracted ideal IR+ ∩R is independent of the choice of R+.



450 7. TIGHT CLOSURE

Theorem 4.1 says that I+ ⊆ I∗ for all ideals in a domain of prime char-
acteristic. We have the following partial converse due to Smith:

Theorem 4.4 ([Smi94]). Let R be an F -finite local domain of prime char-
acteristic p. Then I∗ = I+ for any ideal I generated by h elements, where h
is the height of I.

Equivalently, Theorem 4.4 says that tight closure and plus closure are
the same for parameter ideals.

Theorem 4.4 follows from Theorem 4.12 (see Exercise 4.7), whose proof
is postponed to the next section.

Remark 4.5. It is not the case that I∗ = IR+ ∩ R for all ideals. Indeed,
plus closure commutes with localization (Proposition 4.9 below), but unfor-
tunately, as we have mentioned, tight closure does not, see Example 3.16.

Remark 4.6. Plus closures are most interesting in rings of positive residue
characteristic. Indeed, I = I+ for all ideals in any normal domain containing
Q; see Exercise 4.1.

Remark 4.7. Theorem 4.4 generalizes to ideals generated by monomials in
any system of parameters or indeed, to any ideal I expanded from regular
subring A over which R is finite. More generally, Ian Aberbach showed that
I∗ = I+ for any ideal I in an excellent local domain R which admits a
phantom free resolution—meaning a complex of free modules abutting to I
with the property that the boundaries are contained in the tight closure of
the cycles in the free module at each spot, and that the same holds after
base changing with F e∗R for every e > 0, [Abe94], cf. [Abe94]; see ??.

4.1. Plus closure for modules. Similar to tight closure, we define
plus closure of modules as follows:

Definition 4.8. Let N ⊆M be a pair of R-modules. The plus closure of
N in M is the R submodule N+

M of M of elements m such that 1⊗m is in
the image of the natural map

R+ ⊗R N −→ R+ ⊗RM.

Equivalently,13

N+
M = ker

(
M

m 7→1⊗m−−−−−→ R+ ⊗RM/N
)
,

where m denotes the class of m modulo N .

In some ways, plus closures are better behaved than tight closures. For
example, there is no subtlety involved for infinitely generated modules (Ex-
ercise 4.2), and plus closure always commutes with localization:

13See Exercise 4.3



4. TIGHT CLOSURE AND INTEGRAL EXTENSIONS 451

Proposition 4.9. Let R be an arbitrary domain, and let N ⊆ M be a pair
of R-modules. Then for any multiplicatively closed set W ,

W−1N+
M = (W−1N)+

W−1M

as subsets of W−1M .

Proof. See Exercise 4.5. �

Theorem 4.1 extends to arbitrary pairs of R-modules:

Theorem 4.10. Let R be a domain of prime characteristic. For every pair
of R-modules N ⊆M , N+

M ⊆ N
∗ fg
M .

Proof. Take m ∈ N+
M . Then m ∈ (N ∩M ′)+

M ′ where M
′ is finitely

generated (by Exercise 4.2), so it suffices to show that N+
M ⊆ N∗M for finitely

generated modules M . Furthermore, we may assume with out loss of gen-
erality N = 0 (by Exercises 1.7 and 4.3). Map a finitely generated free
R-module F onto M to produce an exact sequence

0 −→ K −→ F −→M −→ 0.

If m ∈ 0+
M , then any preimage of m ∈ F is in

K+
F = {f ∈ F | 1⊗ f ∈ Image(R+ ⊗K −→ R+ ⊗ F )}

by Exercise 4.4. Fixing one f ∈ K+
F , write

(4.10.1) 1⊗ f = s1 ⊗ f1 + · · ·+ sn ⊗ fn ∈ S ⊗R F
where the fi ∈ K ⊆ F and S is a module finite extension of R containing
the elements s1, . . . , sn. Remembering that F is a free R-module, note that
S ⊗R F is a free S-module, so we can apply Frobenius in each coordinate to
get

(4.10.2) 1⊗ fpe = sp
e

1 ⊗ f
pe

1 + · · ·+ sp
e

n ⊗ fp
e

n ∈ S ⊗R F.
As in the proof of Theorem 4.1, now there is some φ ∈ HomR(S,R) such that
φ(1S) = c 6= 0 (tensor with the fraction field of R, then clear denominators).
The map φ induces a coordinate-wise map

S ⊗R F
Φ−→ F

by applying φ to the first factor. Applying Φ to the element 1⊗f in (4.10.2),
we see that

cfp
e

= K
[pe]
F

for all e ∈ N, so f ∈ K∗F , which means that its image m is in 0∗M by
Exercise 1.8. �

Theorem 4.10 raises the question:
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Question 4.11. Let R be a Noetherian domain of prime characteristic. For
what pairs of R-modules N ⊆M is N+

M = N∗M?

It is not the case that N+
M = N∗M for all module pairs, or even that

I+ = I∗ for all ideals Remark 4.5. But one important case is essentially
equivalent to Theorem 4.4:

Theorem 4.12 ([Smi94, BST11b]). Let (R,m) be an F -finite14 Noetherian
local domain of dimension d. Then

0+
Hd

m(R)
= 0∗

Hd
m(R)

which then necessarily equals 0∗ fg

Hd
m(R)

.

In fact, there exists a single finite extension R ⊆ T such that

0∗
Hd

m(R)
= ker

(
Hd

m(R) −→ Hd
m(T )

)
.

The proof of Theorem 4.12 is postponed until the Section 5.

4.2. Splinters.

Definition 4.13. An integral domain R is said to be a splinter (or +-
regular) if it is a direct summand, as an R-module, of every module-finite
extension ring.

Example 4.14. A domain containing Q is a splinter if and only if it is
normal; see Exercise 4.1.

Example 4.15. The direct summand theorem (due to Hochster in charac-
teristic p > 0 and André in mixed characteristic) says that all regular rings
are splinters [Hoc73c, And18, Bha18].

Remark 4.16. One easily checks that splinters are preserved by localization
(Exercise 4.16) and whether or not a Noetherian ring R is a splinter can be
checked locally at maximal ideals. A number of basic properties of splinters
are proved in [DT23a]: for example, splinters are preserved by étale exten-
sions [DT23a, Thm A], a Noetherian local domain is a splinter if and only if
its Henselization is a splinter [DT23a, Thm B], and in the excellent setting,
also if and only if its completion is a splinter [DT23a, Thm C].

Proposition 4.17. Let R be an excellent15 (e.g. F -finite) Noetherian do-
main. The following are equivalent

14F -finite is not needed if R has a tight closure test element that is a tight closure
test element for R̂–for example, if R is excellent.

15Excellence is not necessary; what we need is that every localization of R at a
maximal ideal is approximately Gorenstein, and this is used only to get that (c) implies
(a) and (b). Since normal rings are approximately Gorenstein [Hoc77, Thm 1.6] or
Appendix A Lemma 11.3, the excellence hypothesis can be replaced by normality.
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(a) R is a splinter;
(b) 0+

E = 0 where E is the direct sum, over all maximal ideals m of R,
of the injective hulls of the residue fields of the local rings Rm;

(c) I+ = I for all ideals.

Proof. The proof reduces easily to the local case (see Exercise 4.8), so
we assume that (R,m) is local and E is an injective hull of its residue field.

Recall that a finite map R ↪→ S splits if and only if, after tensoring with
E, the map

E −→ S ⊗R E
is injective (see Appendix A Lemma 2.4 or Lemma 7.22 in Chapter 1). Since
R+ is a direct limit of all module finite extensions of R contained in a fixed
algebraic closure of its total ring of fractions, we see that splitting for all
module finite S is the same as requiring that

ker
(
E

ξ 7→1⊗ξ−−−−→ R+ ⊗R E
)

= 0.

So (a) and (b) are equivalent.

Clearly, (a) implies (c) for all I, since a split map

R→ S

remains split after tensoring with R/I, so IS∩R = I for any ideal of R. For
the reverse implication, we observe that R is approximately Gorenstein, and
so cyclic purity of the extension R ↪→ R+ is equivalent to purity [Hoc77,
Thm 2.6], or see Appendix A Corollary 11.5. �

Corollary 4.18 ([HH94b, Theorem 6.7]). An excellent (e.g. F -finite)
weakly F -regular ring is a splinter.

Proof. This follows from the inclusion 0+
E ⊆ 0∗ fg

E . �

Question 4.19. We now have established, for F -finite Noetherian local
domains (R,m) of prime characteristic, that

(4.19.1) 0+
E ⊆ 0∗ fg

E ⊆ 0∗E

where E is an injective hull of the residue field of R. Does equality hold
in (4.19.1)? In other words, is strong (or weak?) F -regularity equivalent to
being a splinter for an F -finite Noetherian domain of prime characteristic?

4.3. Trace maps and trace ideals. Recall that if R −→ S is any map
of rings, the trace of S/R is the natural R-module map

(4.19.2) HomR(S,R)
φ 7→φ(1S)−−−−−−→ R
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given by evaluation at 1S . Clearly, the trace of S/R is surjective if and
only if R −→ S splits as a map of R-modules. This motivates the following
definition:

Definition 4.20. The trace ideal of a map of rings R −→ S is the image
τS/R of the trace map (4.19.2).

Clearly R −→ S splits if and only if τS/R = R. Thinking about all module
finite extensions, then, we make the following definition:

Definition 4.21. Let R be a domain. The absolute trace ideal for R is

(4.21.1) tr(R) :=
⋂
S

τS/R =
⋂
S

Image
(

HomR(S,R)
eval at 1S−−−−−−→ R

)
where the intersection is taken over all module finite extensions S of R con-
tained in some fixed absolute integral closure.

It follows immediately that

Proposition 4.22. The absolute trace ideal tr(R) of a domain R is trivial
if and only if R is a splinter.

We expect that the splinter locus is open in general. For domains con-
taining Q, the splinter locus is the same as the normal locus, so is open in
geometric settings; see Exercise 4.12. In prime characteristic, this is also
relatively easy in the F -finite case:

Corollary 4.23 ([DT23b]). Let R be an F -finite Noetherian domain of
prime characteristic. Then

{P ∈ SpecR | RP is a splinter}
is open in SpecR.

Corollary 4.23 follows immediately from next theorem, because the splin-
ter locus is a subset of the Frobenius split locus (Exercise 4.15) and the
Frobenius split locus is open (Proposition 3.17 in Chapter 1):

Theorem 4.24 ([DT23b] ). Let R be an F -finite Noetherian domain of
prime characteristic. Then the locus of splinter points

{P ∈ SpecR | RP is a splinter}
is open. If R is Frobenius split, its complement is defined by the trace ideal
tr(R). Furthermore, there exists a module finite extension T of R such that
tr(R) = τT/R.

The point of the proof is that trace ideals are uniformly compatible (Def-
inition 6.10 in Chapter 1) in prime characteristic:
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Proposition 4.25. [DMS20, Prop 8.5.1] Let R be a ring of prime character-
istic. Then for any R-algebra S, the trace ideal τS/R is uniformly compatible.

Proof of Proposition 4.25. You may have already shown this in
Chapter 1 Exercise 6.20 but we prove it here. Take arbitrary ψ ∈ HomR(F e∗R,R).
We need to show that ψ(F e∗ τS/R) ⊆ τS/R. For this, take arbitrary y ∈ τS/R
and fix some φ ∈ HomR(S,R) such that φ(1S) = y. To see that ψ(F e∗ y) ∈
τS/R, we observe that ψ(F e∗ y) is the image of the element 1S ∈ S under the
composition of R-linear maps

S
F e−−→ F e∗S

F e∗φ−−→ F e∗R
φ−→ R.

We conclude that ψ(F e∗ y) ∈ Image
(

HomR(S,R)
eval at 1S−−−−−−→ R

)
= τS/R. �

Proof of Theorem 4.24. Since the splinter locus is a subset of the
Frobenius split locus which we know is open from Chapter 1, it suffices to
assume for the entire problem that R is Frobenius split.

Furthermore, because tr(R) = R if and only if R is a splinter, it suffices
to show that tr(RP ) = tr(R)RP . Note that the trace ideal of a module finite
extension R ↪→ S satisfies

τS/RRP = RP ⊗R Image

(
HomR(S,R)

φ 7→φ(1S)−−−−−−→ R

)
= Image

(
RP ⊗R HomR(S,R)

φ 7→φ(1S)−−−−−−→ RP

)
= Image

(
HomRP (RP ⊗R S,RP )

φ 7→φ(1)−−−−−→ RP

)
= τSP /RP .

For a Noetherian F -finite Frobenius split ring, there are only finitely
many uniformly compatible ideals (Theorem 6.8 in Chapter 5). So by Propo-
sition 4.25, the intersection (4.30.1) defining tr(R) is actually a finite inter-
section. Of course, tr(RP ) is also a finite intersection of ideals of the form
τT/RP where T is a module finite extension of RP . Since every module finite
extension of RP is the localization of some module finite extension of R, and
since localization commutes with finite intersection, we have

(4.25.1) tr(R)RP =
⋂
S

τS/RRP =
⋂
SP

τSP /RP = tr(RP )

where S ranges over a finite set of finite integral extensions of R contained in
some fixed R+. For the final sentence, let S be any module finite extension
of R containing each of the finitely many extensions appearing in (4.25.1).
Then trR = τS/R by Exercise 4.17. �
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In Theorem 5.10 in the next section, for R Q-Gorenstein, we will also
prove that tr(R) = τS/R for a single R ⊆ S (in fact, we will show also that
τ(R) = τS/R for some S).

Remark 4.26. Without loss of generality, we may assume the extension T
in Theorem 4.24 is generically étale—meaning the corresponding extension
of fraction fields is separable— by [Sin99c].

Remark 4.27. Theorem 4.24 is proved more generally in [DT23b, Thm
1.0.1], for schemes locally essentially of finite type over a Noetherian local
ring of prime characteristic with geometrically regular formal fibers.

4.4. The plus test ideal. Naturally, it is worth defining the plus clo-
sure test ideal in analogy with the tight closure ideal:

Definition 4.28. Let R be a Noetherian domain. The plus closure test
ideal, denoted τ+(R), is annR 0+

E , where E is the direct sum, over all max-
imal ideals m of R, of the injective hulls of the residue fields of R at each
maximal ideal m.

Equivalently, the plus closure test ideal looks very much like Defini-
tion 2.6 of tight closure test ideals:

Proposition 4.29. Let R be an Noetherian domain. Then

τ+(R) =
⋂
N⊆M

N :R N
+
M

where the intersection is taken over all pairs N ⊆M of R-modules.

Proof. Clearly
⋂
N⊆M N :R N+

M ⊆ annR 0+
E , as {0} ⊆ E is one pair

of R-modules. For the reverse inclusion, fix c ∈ annR 0+
E . If there is a pair

N ⊆M of R-modules such that c N+
M \N , then without loss of generality, we

may assume N and M are finitely generated R-modules. Take x ∈ N+
M \N.

Replacing N be a submodule N ′ containing N and maximal with respect to
not containing x, we may assume that M/N is supported at one maximal
ideal m as in the proof of Proposition 3.4, and that the class x of x is in the
plus closure of zero in M/N . Now M/N embeds in a finite direct sum of
copies of an injective hull of the residue field at m. So in fact cx = 0, and
c ∈ N+

M :R N . �

Because the trace map for a finite extension R ↪→ S is Matlis dual to the
natural map E −→ S ⊗R E, the plus closure test ideal is simply the absolute
trace ideal (Definition 4.21):
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Theorem 4.30. Let R be a Noetherian domain. Then the plus test ideal is
equal to the absolute trace ideal—that is,

(4.30.1) τ+(R) = tr(R).

Theorem 4.30 follows easily from the following simple consequence of
Lemma 2.16:

Proposition 4.31. Suppose (R,m) is a Noetherian local domain, and let E
be an injective hull of its residue field. If R ↪→ S is a finite extension, then

τS/R = AnnR (ker (E −→ S ⊗R E)) =
(
Image

(
E −→ S ⊗R E

))∨ ∩R
Proof. Consider the exact sequence

(4.31.1) HomR(S,R)
eval at 1S−−−−−−→ R −→ R/τS/R −→ 0.

Let R̂ be the completion of R at its maximal ideal, and note that the map
R̂ −→ R̂ ⊗R S := Ŝ is finite. Now applying the functor −⊗R R̂, we have an
exact sequence

(4.31.2) Hom
R̂

(Ŝ, R̂)
eval at 1

Ŝ−−−−−−→ R̂ −→ R̂/τS/RR̂ −→ 0.

In particular, we have an equality of ideals τS/RR̂ = τ
Ŝ/R̂

.

Applying Matlis duality—either over R to (4.31.1) or over R̂ to (4.31.2)—
produces the same exact sequence

0 −→ (R/τS/R)∨ −→ E
ξ 7→1S⊗Rξ−−−−−−−→ S ⊗R E,

by Lemma 2.16. Denoting the kernel of the natural map E −→ S ⊗R E by
0SE , it follows that

0SE =

(
R̂

τS/RR̂

)∨
.

So Ann
R̂

(0SE) = τS/RR̂ by Lemma 2.17. Finally,

AnnR(0SE) =
(
Ann

R̂
(0SE)

)
∩R = τS/RR̂ ∩R = τS/R,

as desired. �

Proof of Theorem 4.30. We may assume that R is local and E is the
injective hull of the residue field; see Exercise 4.9. To simplify notation, let
0SE denote the kernel of the natural map E −→ S⊗RE obtained by tensoring
the extension R ↪→ S with E.
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For any finite extension R ⊆ S ⊆ R+ we have 0SE ⊆ 0+
E , so the reverse

containment holds for their annihilators. Thus Proposition 4.31 implies that

τ+(R) ⊆
⋂
S⊇R

τS/R = tr(R).

For the reverse containment, note that by definition

0+
E =

⋃
S⊇R

0SE

where the union is taken over all finite extensions S contained in R+. Hence

τ+(R) = AnnR 0+
E = AnnR

( ⋃
S⊇R

0SE

)
=
⋂
S⊇R

AnnR 0SE =
⋂
S⊇R

τS/R = tr(R),

as desired. �

Question 4.19 can be now rephrased in terms of test ideals:

Question 4.32. For a F -finite Noetherian domain, we have

τ(R) ⊆ τ fg
tc (R) ⊆ τ+(R) = tr(R).

Does equality hold? In particular, is every splinter strongly F -regular?

Remark 4.33. These are all equal in the (quasi-)Gorenstein case: in that
case E = Hd

m(R); see Exercise 4.19. In Theorem 5.10 we will show equality
when R is Q-Gorenstein, cf. [Sin99a]. In general Question 4.32 is known to
hold when the anti-canonical symbolic Rees algebra

R⊕ ω(−1)
R ⊕ ω(−2)

R ⊕ · · · = R⊕R(−KR)⊕R(−2KR)⊕ . . .
is Noetherian by [CEMS18]. However, we do not even know such finite
generation for splinters in dimension ≥ 3 (in dimension 2, it follows from
[Lip69] once one observes that splinters are F -rational and hence pseudo-
rational).

If one knew that for splinters, there existed a Q-divisor ∆ ≥ 0 such
that KR + ∆ is Q-Cartier and (R,∆) is Kawamata log terminal (in analogy
with Chapter 5 Corollary 3.21), then one could apply the minimal model
program ([HX15, Bir16, DW19]) to deduce the finite generation at least
for dimension 3 and p > 5.

4.5. Exercises.

Exercise 4.1. Let R be a domain containing a field of characteristic zero.
Prove that I+ = IS ∩R where S is the normalization of R.

Hint: Use the field trace to show that if S is a normal domain and T is any
module finite extension of S, then the inclusion S ↪→ T splits as an S-module
map.
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Exercise 4.2. Let N ⊆ M be modules over an arbitrary domain R. Show
that N+

M = N+fg
M where N+fg

M is defined as⋃
M ′

(N ∩M ′)+
M ′

where the intersection is taken over all finitely generated submodules M ′ of
M .

Exercise 4.3. Fix a domain R and a pair of R-modules N ⊆ M . Prove
that N+

M is the preimage, under the natural quotient map M → M/N , of
the R-module 0+

M/N .

Exercise 4.4. Let M be a module over an arbitrary domain R. Write M
as a quotient of a free module, with module of relations K—that is, suppose
that

0 −→ K −→ F
π−→M −→ 0

is an exact sequence of R modules, with F a free. Prove that

0+
M = π

(
K+
F

)
.

Exercise 4.5. Let R be a domain, and let W ⊆ R be any multiplicatively
closed set. Show that for any ideal I,

W−1I+ = (W−1I)+,

or more generally, for R-modules N ⊆M , N+
M ⊗RW−1R = (W−1N)+

W−1M

Exercise 4.6. Let R be a Noetherian F -finite domain. Suppose that all
ideals generated by systems of parameters are plus closed. Prove that all
ideals generated by subsets of systems of parameters are plus closed.

Exercise 4.7. Let R be an F -finite local domain of prime characteris-
tic p with system of parameters x1, . . . , xd. Show that an element η =
[z + (x1, . . . , xd)] ∈ Hd

m(R) is in the plus closure of zero if and only if
z ∈ (x1, . . . , xd)

+. Deduce that 0+
Hd

m(R)
= 0∗

Hd
m(R)

if and only if I∗ = I+

for all parameter ideals.

Hint: See Exercise 2.8.

Exercise 4.8. LetR be a Noetherian ring, and letE = ⊕m∈m- SpecRER(R/m),
where ER(R/m) is the injective hull of the R-module R/m and the sum is
taken over all maximal ideals of R. Show that Rm ⊗R E ∼= ERm(R/m) =
ER(R/m).

Exercise 4.9. Let R be a Noetherian ring and let R ↪→ S be a finite ex-
tension. For any prime ideal P ∈ SpecR, prove that τS/RRP = τSP /RP .
Use this and Exercise 4.8 to show that the proof of Proposition 4.17 reduces
immediately to the local case.
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Exercise 4.10. Let (R,m) be a Noetherian local ring. Assume that c ∈ R
is a tight closure test element, and its image in the m-adic completion R̂ is
a tight closure test element for R̂. Prove that colon capturing hold for R.
That is, prove Theorem 2.23 holds for R.

Exercise 4.11. Prove that a splinter is normal.

Exercise 4.12. An integral domain containing Q is a splinter if and only if
it is normal.

Hint: See Exercise 4.1 or use the trace map Tr : S −→ R coming from the
field extension K(R) ⊆ K(S).

Exercise 4.13. Let R be any domain. Show that R is a splinter if and only
if all module finite extensions R ↪→ S with S a domain are split.

Exercise 4.14. Let R ↪→ S be an inclusion of domains, split as a map of
R-modules. Prove that if S is a splinter, then R is a splinter. More generally,
prove that any domain of positive characteristic which is pure in a splinter
is a splinter.

Exercise 4.15. Let R be an F -finite domain of prime characteristic. Prove
that if R is a splinter, then R is Frobenius split.

Exercise 4.16. Prove that any localization of a splinter is a splinter.

Exercise 4.17. Suppose that R ↪→ S ↪→ T are module finite extensions.
Prove that τT/R ⊆ τS/R.

Exercise 4.18. Let (R,m) be a normal local domain, and suppose ∆ is
an effective Q-Cartier Q-divisor. Fix n > 0 the smallest positive integer
such that R(n∆) ∼= R, with n ∈ N minimal. Let R ↪→ S be the exten-
sion associated to the associated finite extension of R (see Definition 9.1 in
Appendix B). Prove that if R is a splinter, then so is S.

Hint: Let π ∈ HomR(S,R) be the splitting given by projection onto the
degree zero part of S. Show that π is an S-module generator for HomR(S,R),
and that, by adjointness of tensor and Hom, for any finite integral extension
T of S, all Ψ ∈ HomR(T,R) must factor through π.

Exercise 4.19. Show that for a quasi-Gorenstein F -finite domain, τ fg
tc ⊆

τ+(R).

Hint: For a quasi-Gorenstein local ring, tr(R) is equal to τS/R for one fixed
finite extension S of R.
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5. Cohen-Macaulay properties of R+

The colon capturing property of tight closure, together with the fact that
I∗ = I+ for parameter ideals, raises the question as to whether all relations
on systems of parameters are trivial in R+. In fact, Hochster and Huneke
proved that they are:

Theorem 5.1 ([HH92]). Let (R,m) be a Noetherian local domain of prime
characteristic that admits a dualizing complex.16 Then

H i
m(R+) = 0

for all i < dimR. As a consequence, any system of parameters for R is a
regular sequence on R+—that is, R+ is a big Cohen-Macaulay algebra for R.

The "big" refers to the fact that R+ is not a finitely generated R-module
(or algebra). It is not known whether there exists a finitely generated R-
module that is Cohen-Macaulay.

The relationship between the vanishing of H i
m(R+) and relations on pa-

rameters for R will be discussed in Subsection 5.2.

Remark 5.2. Theorem 5.1 is false for rings containing a field of charac-
teristic zero; see Exercise 4.1. However, in mixed characteristic, Bhargav
Bhatt recently proved that if (R,m) is a mixed characteristic domain with
residue field of prime characteristic, then the p-adic completion of R+ is a
big Cohen-Macaulay algebra [Bha20].

Corollary 5.3. Let (R,m) be a Noetherian local domain of prime char-
acteristic that admits a dualizing complex17. If R is a splinter, then R is
Cohen-Macaulay.

The same result also holds in mixed characteristic by [Bha20].

With the benefit of hindsight, Theorem 5.1 is now reasonably straight-
forward to prove, using the following:

Lemma 5.4 (The equational lemma, [HL07, Lem 2.2], [Smi94, Lem 5.2]).
Let J ⊆ R be an ideal in a Noetherian domain R of prime characteristic.
Suppose that for some i ∈ N and some η ∈ H i

J(R), the R-submodule gener-
ated by

η, ηp, ηp
2
, ηp

3
, . . .

16Recall that every F -finite local domain admits a dualizing complex by [Gab04];
see Chapter 2 Section 4. Even "admits a dualizing complex" is not needed if R is excellent
[HH92].

17Or is excellent
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is finitely generated. Then there exists a finite domain extension S of R such
that η maps to zero under the natural map H i

J(R) −→ H i
J(S) induced by the

inclusion R ↪→ S.

As a consequence, if M ⊆ H i
J(R) is an R-submodule of finite length such

that F (N) ⊆ N , then there exists a finite integral extension S of R such that
H i
J(R) −→ H i

J(S) sends M to zero.

Theorem Theorem 5.1 follows from the following stronger result:

Theorem 5.5 (cf. [HL07]). Suppose R is a Noetherian domain with a
dualizing complex18 ω

q
R so that Hi(ω q

R) = 0 for all i < −d where d = dimR.
Then there exists a finite extension R ⊆ T such that

Hiω q
T −→ Hiω

q
R

is the zero map for all i > −d. Specializing to the case that (R,m) is local,
we have that

H i
m(R) −→ H i

m(T )

is the zero map for all i < d.

This result can be generalize to the non-domain case, see Exercise 5.3.

Proof of Theorem 5.5 assuming Lemma 5.4. It suffices to do this
for a single i as, given any finite set of finite extensions of R contained on
R+, there is one finite extension S containing them all.

Suppose we have a finite extension R ⊆ S of domains such that

H−iω q
S � NS ↪→ H−iω

q
R

Notice that NS is a finitely generated R-module since it is an image of a
finitely generated R-module. We proceed by Noetherian induction on the
closed set Supp(NS). If Supp(NS) = ∅, we are done.

Let η denote a generic point of Supp(NS). Localizing at η, the module
(NS)η over Rmη has support at the maximal ideal mη := ηRη. Shifting the
dualizing complex to make it normalized and applying Matlis duality, we
have for some integer j < dimRη:

Hj
mη(Rη)� ((NS)η)

∨ ↪→ Hj
mη(Sη).

SetMS := ((NS)η)
∨. Notice thatMS is finite length (as it is the Matlis-dual

of a finite length module). Furthermore, it is Frobenius stable as a submodule
of Hj

mη(Sη) since MS is simply the image of Hj
mη(Rη) −→ Hj

mη(Sη) and

18For example, recall that F -finite domains always admit a dualizing complex; see
Chapter 2.
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Frobenius acts compatibly on the source and image of that map. Applying
Lemma 5.4, there exists a finite extension domain S′ of Sη, and hence of Rη,
such that Hj

mη(Sη) −→ Hj
mη(S′η) sends MS to zero. Thus

(5.5.1) Hj
mη(Rη) −→ Hj

mη(Sη) −→ Hj
mη(S′η)

is the zero map.

Now, S′η is obtained from Sη by formally adjoining finitely many vari-
ables, modding about one monic polynomials in each of those variables, and
finally modding out by a minimal prime if necessary. By clearing denomi-
nators, we may assume those monic polynomials have coefficients in S and
hence we can assume that S′η is the localization of some finite domain exten-
sion S′ ⊇ S.

Now consider the map

(5.5.2) H−iωS′η −→ H
−iω

q
Sη −→ H

−iω
q
R.

After localizing at η, this composition is zero since it is Matlis dual to (5.5.1).
Hence (5.5.2) has image NS′ such that

Supp(NS′) ( Supp(NS).

The result then follows by Noetherian induction. �

Remark 5.6. In [SS12], the Sannai and Singh showed a version of the above
equational lemma even when one restricts to extensions R ⊆ S which are
generically Galois extensions with solvable Gal(K(S)/K(R)).

Proof of Theorem 5.1. The fact that H i
m(R+) = 0 follows immedi-

ately from Theorem 5.5 and the fact that local cohomology commutes with
direct limits. That is, limiting over finite extension S of R with R ⊆ S ⊆ R+

we have:
H i

m(R+) = H i
m( lim−→
S⊇R

S) = lim−→
S⊇R

H i
m(S).

The fact that the transition maps are eventually zero implies H i
m(R+) = 0

for i < dimR.

For the statement about R+ being a big Cohen-Macaulay algebra, we
use fact that the formation of R+ commutes with localization and apply
Lemma 5.21 below. �

Proof sketch for Lemma 5.4. Our finite generation assumption im-
plies that there is some n ∈ N such that ηpn is in the R-submodule spanned
by η, ηp, . . . ηpn−1

. Write

ηp
n

= r0η + r1η
p + · · · rn−1η

pn−1
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where r0, r1, . . . , rn−1 ∈ R, and then consider the corresponding monic poly-
nomial

g(t) = tp
n − rn−1t

pn−1 · · · − r1t
p − r0t

in R[t]. Note that g(η) = 0 in H i
J(R). Let β be a cocycle representing η in

the Čech complex on a set of generators for J . Because g(η) = 0, there is
some coboundary dγ such that g(β) = dγ. Thinking explicitly in the Čech
complex, the components of this boundary produce a finite set of monic
polynomials {gi} in R[t]; see Exercise 5.1.

Let S be the module finite extension of R obtained by adding all roots of
all the gi. We claim that η maps to zero under the natural map H i

J(R) −→
H i
J(S). We leave the verification of this fact as an exercise; or see [HL07,

Lem 2.2]. �

5.1. Tight closure and plus closure in Hd
m(R). In the special case

where R is a local ring, J = m and i = dimR, the Equational Lemma,
Lemma 5.4, is also a key step in the proof of Theorem 4.12 that

0∗
Hd

m(R)
= 0+

Hd
m(R)

in the top local cohomology module Hd
m(R) of an excellent local domain. We

will actually prove a more general version when R is not necessarily local
(but now F -finite).

Theorem 5.7. Suppose R is an F -finite domain. Then there exists a finite
domain extension R ⊆ T such that the induced map ωT −→ ωR has image
τ(ωR)

τ(ωR) = Image
(
ωT −→ ωR

)
and hence all sufficiently large T have this same property.

Specializing to the case that R is local, by Matlis duality, we see that
0∗
Hd

m(R)
= ker

(
Hd

m(R) −→ Hd
m(T )

)
= 0+

Hd
m(R)

.

Proof. The proof is closely related to that of Theorem 5.5. We begin
by considering the composition map:

ωS −→ ωR −→ ωR/τ(ωR)

If we can find S large enough so that map is the zero map, we are done.
Consider the image

ωS � NS ↪→ ωR/τ(ωR).

Our goal again is to show that we can choose S such that Supp(NS) = ∅.
By Noetherian induction as before, the key computation is when R is local
and NS has finite length, so this time, for brevity, we assume we are in that
case.
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By local duality, our composition above Matlis dualizes to(
ωR/τ(ωR)

)∨
= 0∗

Hd
m(R)

� (NS)∨ ↪→ Hd
m(S)

We see that (NS)∨ then has finite length and is sent to itself by F (since
0∗
Hd

m(R)
is). Thus there exists S −→ T such that the image of (NS)∨ in

Hd
m(T ) = 0. The result follows. �

Remark 5.8. The hypothesis that R is a domain can also be weakened to
R is reduced, locally equidimensional and with connected Spec. The details
are left to the reader in Exercise 5.4

The assumption that R is F -finite in Theorem 5.7 can be weakened.
Indeed, one can instead assume that there exists a submodule τ(ωR) ⊆ ωR
whose formation commutes with localization and completion and such that
for each Q ∈ SpecR, we have that

τ(ωR) = AnnωR 0∗
H

dimRQ
Q (RQ)

.

This holds for instance when (R,m) is excellent and local and has a dualizing
complex, see [Smi95]. The proof of Theorem 5.7 is then unchanged.

We immediately obtain the following corollary (in view of Remark 5.8,
we can weaken the F -finite hypothesis to excellent if R is local).

Corollary 5.9. Suppose (R,m) is an F -finite Noetherian domain. If R is
quasi-Gorenstein, then since ωR ∼= R or dually, in the local case E = Hd

m(R),
we have that

τ+(R) = τ(R) or dually, in the local case 0+
E = 0∗E .

In fact, there exists a finite extension R ⊆ S such that τ(R) = τS/R. In
particular, every F -finite quasi-Gorenstein splinter is strongly F -regular.

We now generalize this to Q-Gorenstein rings.

Theorem 5.10 (cf. [Sin99a]). Suppose (R,m) is an F -finite Noetherian
normal local domain of dimension d. If R is Q-Gorenstein, then we have
that

τ+(R) = τ(R) or dually, in the local case 0+
E = 0∗E .

In fact, there exists a finite extension R ⊆ S such that τ(R) = τS/R. In
particular, every F -finite Q-Gorenstein splinter is strongly F -regular.

Proof. This immediately reduces to the local case, and so we may as-
sume that R is local. By Appendix B Lemma 9.5, there exists finite extension
R ⊆ S of normal domains such that, if πS : SpecS −→ SpecR is the induced
map on Spec, that f∗KR is Cartier on SpecS. Thus, fixing a choice of
KR ≥ 0, we can write π∗SKR = div g for some g ∈ S since S is semi-local.



466 7. TIGHT CLOSURE

By Theorem 6.14 and Corollary 7.22 in Chapter 5, applied with Γ = KR, we
see that

τ(R) = τ(ωR,KR) = T (τ(ωS , π
∗
SKR)) = T (τ(ωS ,div g)) = T (gτ(ωS))

where T : ωS −→ ωR is the Grothendieck dual of R −→ S. Note R ⊆
R(KR) = ωR since KR ≥ 0. If we can prove τ+(R) = T (gτ(ωS)) then we are
done.

Now, using Grothendieck duality for a finite map and the fact that the
Hom-sets below are S2 R-modules, we have

HomR(S,R)
∼= HomR(S ⊗ ωR, ωR)
∼= HomS(S(π∗SKR), ωS)
= HomS(1

gS, ωS)

= g ωS .

Furthermore, we have the following commutative diagram:

g ωS = HomR(S,R)� _

��

T // R� _

��
ωS = HomR(S, ωR)

T
// ωR

where T can be interpreted as evaluation-at-1.

By Theorem 5.7, we can choose S′ ⊇ S a finite extension of domains
such that τ(ωS) = Image

(
ωS′ = HomS(S′, ωS) −→ ωS

)
. Since we may work

in R+, for any R ⊆ T ′, a finite extension of domains, we may find a further
finite extension T ⊇ T ′, S′ and so we may compute

τ+(R) =
⋂
T⊇S′

Image
(

HomR(T,R) −→ R
)
.

where the intersection runs over normal domains T ⊆ R+.

As before for S, since g ∈ S ⊆ T so that π∗TKR = divSpecT g we see that
HomR(T,R) = g ωT . Thus the composition

HomR(T,R) −→ HomR(S,R) −→ R

may be identified with
g ωT −→ g ωS −→ R.

However, τ(ωS) = Image
(
ωT −→ ωS

)
since T ⊇ S′, and so we see that

Image
(

HomR(T,R) −→ R
)

= Image(g τ(ωS)
T−→ ωR) = T (g τ(ωS)).

Thus the intersection defining τ+(R) is constant, and so

τ+(R) = T (g τ(ωS)) = τ(R)
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as desired. �

As a consequence of Theorem 5.10, since the formation of τ(R) com-
mutes with completion (τ(R)R̂ = τ(R̂)) in F -finite local domains (Chapter 1
Proposition 6.17) we obtain the following.

Corollary 5.11. If (R,m) is a F -finite normal Q-Gorenstein domain then

τ+(R)R̂ = τ̂+(R) = τ+(R̂).

5.1.1. An application to deformation of F -rationality.

Theorem 5.12. Suppose (R,m) is a Noetherian F -finite local ring and f ∈
m is a non-zerodivisor such that R/(f) is F -rational. Then R is also F -
rational.

Proof. Since R/(f) is Cohen-Macaulay and normal, we see that R is as
well. It thus suffices to show that 0 = 0∗ = 0+ ∈ Hd

m(R) where d = dimR,
using Theorem 4.12.

Since a normal local ring is a domain, both R and R/(f) are domains.
Let (f)+ denote a prime ideal of R+ lying over the prime ideal (f). It follows
from Exercise 5.2 that we have the following map of short exact sequences:

0 // (f) //

��

R //

��

R/(f) //

��

0

0 // (f)+ // R+ // (R/(f))+ // 0

Applying local cohomology and using that R and R+ are (big) Cohen-
Macaulay, the fact that R/(f) is F -rational implies that the left vertical
arrow ι below is injective

0 // Hd−1
m (R/(f))

ι
��

// Hd
m((f))

θ //

κ
��

Hd
m(R)

��

0 // Hd−1
m ((R/(f))+) // Hd

m((f)+) // Hd
m(R)

Claim 5.13. κ : Hd
m((f)) −→ Hd

m((f)+) injects.

Proof of claim. Take η ∈ Hd
m((f)) in the socle. Since Hd

m((f)) ∼=
Hd

m(R), we may view θ as multiplication by f and so, we see that θ(η) = 0.
In particular, we may identify η with an element of Hd−1

m (R/(f)) which we
also call η. Since ι injects, by chasing the diagram we see that κ(η) 6= 0 and
the claim is proven. �
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Finally, note that we have a factorization (f) −→ fR+ −→ (f)+ and so
Hd

m((f)) −→ Hd
m(fR+) injects as well. Again, since f is a non-zerodivisor,

we immediately see that

Hd
m(R) −→ Hd

m(R+)

injects as well, which is what we wanted to show. �

5.2. Big Cohen-Macaulay algebras and almost mathematics. In
this section we present a brief sketch of the theory of Hochster’s big Cohen-
Macaulay modules and algebras [Hoc75b]. Other good (more thorough)
sources for background on big Cohen-Macaulay algebras include [Hoc07],
[BH93, Chapter 8], [HH95], and [Die07].

Definition 5.14 (Hochster, [Hoc75b]). Suppose that (R,m) is a Noetherian
local ring of dimension d. We say that an R-module B (respectively R-
algebra B) is a balanced big Cohen-Macaulay module (respectively
algebra) if B satisfies the following two conditions:

(a) mB 6= B.
(b) Every system of parameters x1, . . . , xd ∈ m acts as a weakly regular

sequence on B. (if only some system of parameters acts as a regular
sequence, the modifier balanced is removed)

We say that B is weakly balanced big Cohen-Macaulay if only if the
second condition holds.

In the literature, most Cohen-Macaulay modules (or algebras) or required
to be Noetherian. The modifier big above is meant to emphasize that B need
not be Noetherian.

Remark 5.15. The condition (a) is called the non-triviality condition.
Note, things like the 0-module and, if R is a domain, the fraction field K(R)
of R, are weakly big Cohen-Macaulay.

Warning 5.16. The non-triviality condition does not necessarily localize
well. Indeed, If R = kJx, yK/(xy) then the normalization kJxK × kJyK =
R/(y)×R/(x) is balanced big Cohen-Macaulay, but so is S = R/(y) = kJxK.
However, for localization at Q = (x) we have that SQ = 0. Hence S is a
balanced big Cohen-Macaulay R-algebra but SQ is only a weakly balanced
big Cohen-Macaulay RQ-algebra.

Remark 5.17. As mentioned above, B is called (weakly) big Cohen-
Macaulay (with the balanced condition removed) if condition (a) is weak-
ened to the condition that one system of parameters acts as a weakly regular
sequence on B. However, if B is big Cohen-Macaulay, then B̂ is always
balanced big Cohen-Macaulay by [BS83, Théorèm 1.7] or [BH93, Exercise
8.1.7 & Theorem 8.5.1].
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Remark 5.18 (Existence of big Cohen-Macaulay algebras). Given a Noe-
therian local ring (R,m) ring, it is not clear that a big Cohen-Macaulay mod-
ule or algebra exists. It was shown by Hochster that big Cohen-Macaulay
modules exists in characteristic p > 0 in [Hoc75b], also see [Hoc73b,
Hoc75a, Sha81]. Big Cohen-Macaulay algebras were shown to exist in
characteristics zero and p > 0 in [HH92]. In fact, in characteristic p >
0, Hochster and Huneke showed that R+ is big Cohen-Macaulay, also see
[HH95]. In mixed characteristic domains19 dimension 3, building upon work
of Heitmann [Hei02], Hochster proved that big Cohen-Macaulay algebras
exist [Hoc02]. For the case of arbitrary dimension, using Scholze’s the-
ory of perfectoid spaces, André proved the existence of big Cohen-Macaulay
algebras in [And20] (also see [HM18] and unpublished work of Gabber
[Gab18]). Finally, in [Bha20], Bhatt showed in mixed characteristic that
the p-adic completion (orm-adic completion) R̂+ ofR+ is big Cohen-Macaulay.

An important strengthening of existence is the existence ofweakly func-
torial big Cohen-Macaulay algebra. Meaning if (R,m) −→ (S,m) is a
local map of Noetherian rings, does there exist big Cohen-Macaulay algebras
BR and BS over R and S respectively, with a map between them BR −→ BS ,
such that the following diagram commutes.

R //

��

S

��

BR // BS

The existence of such big Cohen-Macaulay modules follows from the above
in positive (or mixed) characteristic since R+ (respectively R̂+) or its com-
pletion is big Cohen-Macaulay, and they exist in characteristic 0 as well.
However, this is not the first way the existence of weakly functorial big
Cohen-Macaulay algebras was proven.

Example 5.19. If R is Cohen-Macaulay, it is a big Cohen-Macaulay algebra
over itself. Since a direct limit of big Cohen-Macaulay algebras is easily seen
to still be big Cohen-Macaulay, we immediately see that if R is Cohen-
Macaulay, so is

Rperf =
⋃
e≥0

R1/pe

even though Rperf is not Noetherian.

If B is an (R,m)-module that is weakly (even not necessarily balanced)
big Cohen-Macaulay with respect to a system of parameters x1, . . . , xd, then

19In our case, this means that the ring has characteristic 0 but the residue field has
characteristic p > 0
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it is not difficult to see that

(5.19.1) H i
m(B) = 0 for all i < d = dimR,

the usual proof works. Furthermore, if B satisfies the nontriviality condition,
then B/(x1, . . . , xd)B 6= 0 and so using properties of regular sequences we
see that

B/(xt1, . . . , x
t
d)

x1···xd−−−−→ B/(xt+1
1 , . . . , xt+1

d )

is injective for every t, see Appendix A Subsection 4.1. Thus the direct
limit, which is isomorphic to Hd

m(B), is nonzero. In particular, if B is big
Cohen-Macaulay we see that in the derived category

(5.19.2) RΓm(B) ∼= Hd
m(B)[d] 6= 0.

Conversely however, it is not obvious whether (5.19.1) implies that B is
weakly (balanced) big Cohen-Macaulay. Fortunately, the m-adic completion
of a B with mB 6= B satisfying (5.19.1) is balanced big Cohen-Macaulay by
[BH93, Exercise 8.1.7 & Theorem 8.5.1] (a fact we won’t use).

Inspired by the local-cohomological criterion for Cohen-Macaulayness
(5.19.1), Bhatt has made the following definition.

Definition 5.20 ([Bha20]). Suppose that (R,m) is a Noetherian local ring
of dimension d. We say that an R-module (or algebra) B is weakly coho-
mologically big Cohen-Macaulay if

◦ for every Q ∈ SpecR and we have that

H i
Q(BQ) = 0

for i < dimRQ.

Lemma 5.21 ([HL07, Corollary 2.3(b)], [Bha20, Corollary 2.8]). Suppose
(R,m) is an excellent equidimensional local ring of dimension d, and B is
an R-algebra. Then B is weakly balanced big Cohen-Macaulay if and only if
B is weakly cohomologically big Cohen-Macaulay. As a consequence if B is
weakly balanced big Cohen-Macaulay over R, then so is any localization BQ
over RQ.

Proof. We first show that if B is weakly balanced big Cohen-Macaulay,
then in any localization, there is a system of parameters that is a regular
sequence on B (in other words, B is (potentially unbalanced) big Cohen-
Macaulay as well). This will immediately imply that B is weakly cohomo-
logically big Cohen-Macaulay. Suppose Q ∈ SpecR has height h. Take
x1, . . . , xh ∈ R a system of parameters for RQ so that dimR/(x1, . . . , xh) =
dimR − h, which we can do using the equidimensional and excellent (and
hence catenary) hypothesis and prime avoidance. Thus we can extend this
sequence to x1, . . . , xh, xh+1, . . . , xd, a full system of parameters of R. Note
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x1, . . . , xh are still a regular sequence on B and thus on BQ, which proves
our first statement.

For the converse, we follow the proof of [HL07, Corollary 2.3(b)] or
[Bha20, Lemma 2.7] and proceed by induction on x1, . . . , xi part of a system
of parameters x1, . . . , xd (the base case of i = 0 is clear). We want to show
that xi is not a zerodivisor on B/(x1, . . . , xi−1)B. Let Q be a minimal
associated prime of

K = ker
(
B/(x1, . . . , xi−1)B

·xi−→ B/(x1, . . . , xi−1)B
)

and note that 0 6= H0
Q(KQ) ⊆ H0

Q(BQ/(x1, . . . , xi−1)BQ). But then chasing
exact sequences implies that

Hj
Q(BQ/(x1, . . . , xi−2)BQ) 6= 0 for some j = 0, 1

and in general we see that

Hj
Q(BQ) 6= 0 for some j = 0, . . . , i− 1.

Now, since every element of K is annihilated by (x1, . . . , xi), see that Q ∈
V (x1, . . . , xi) and soQ has height at least i. Thus by hypothesisHj

Q(BQ) = 0
for j = 0, . . . , i− 1. A contradiction.

For the final statement, notice that if B is a weakly cohomologically big
Cohen-Macaulay then so is BQ as an RQ-module for any Q. Hence BQ is
also weakly balanced big Cohen-Macaulay. �

If (A,m) is regular and M is a finitely generated module. If M is faith-
fully flat over the regular and hence Cohen-Macaulay A, then it is Cohen-
Macaulay since the regularity of a sequence will be preserved by base change
to M . Conversely, it can be shown that any (maximal) Cohen-Macaulay
module over A is flat, then M is faithfully flat. This follows, for instance,
from the Auslander-Buchsbaum formula for modules of finite projective di-
mension:

projdimM + depthM = depthR

which forces M to be projective or equivalently flat. We generalize this to
balanced big Cohen-Macaulay modules.

Proposition 5.22 ([HH92, Page 77], [Bha20, Lemma 2.9]). Suppose (A,m)
is a regular local d-dimensional ring and B is an R-module. Then B is a
balanced big Cohen-Macaulay module if and only if it is faithfully flat over
A.

Proof. Arguing as above, if B is faithfully flat over A, then it is bal-
anced big Cohen-Macaulay (non-triviality follows since 0 6= B ⊗ A/m ∼=
B/mB).
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Thus we assume that B is a balanced and hence weakly cohomologically
big Cohen-Macaulay, and we essentially follow the proof of [Bha20, Lemma
2.9] to show it is flat. By induction on dimension, we may assume that BQ
is flat over RQ for every non-maximal Q ∈ SpecA. By hypothesis, and since
A is regular, there exists an i such that Torj(B,N) = 0 for all j > i but
such that Tori(B,N) 6= 0 for some finitely generated N . Hence Tori(B,−)
is a left-exact functor.

Claim 5.23. If k = R/m then Tori(B, k) 6= 0.

Proof of claim. Choose f ∈ m. Since Tori(B,N) 6= 0 is supported
at m (since B is flat away from m), we see that f is not a regular element on
Tori(B,N). Factoring the multiplication-by-f -map, N � fN ↪→ N , since

Tori(B,N) −→ Tori(B, fN) ↪→ Tori(B,N)

is not injective, we see that Tori(B,N) −→ Tori(B, fN) is also not injec-
tive. From the short exact sequence 0 −→ K −→ N −→ fN −→ 0 we see
Tori(B,K) 6= 0 as well. But K = 0 :N f is the f -torsion part of N and so
repeating this process for a set of generators of m produces a finitely gen-
erated m-torsion module N with desired non-vanishing. Since N is a direct
sum of copies of k claim follows. �

We now have that k ∼= RΓm(k) and so

B ⊗L k ∼= B ⊗L RΓm(k) ∼= RΓm(B ⊗L k) ∼= RΓm(B)⊗L k

where second two isomorphisms follow from [Sta19, Tag 0ALZ]. However, we
assumed the complex B⊗L k has cohomology in degree −i < 0 (Tori(B, k)).
On the other hand RΓm(B) ∼= Hd

m(B)[d]. Thus since, A is regular, N has
a free resolution of length ≤ d and so RΓm(B ⊗L k) ∼= Hd

m(B)[d] ⊗L k has
cohomology only in degree ≥ 0. We have obtained our desired contradiction.

�

One of the consequences of the existence of big Cohen-Macaulay algebras
is a proof of the direct summand theorem (due to Hochster in characteristic
p > 0 [Hoc73c] and André in mixed characteristic [And18]). The proof is
a simple application of Proposition 5.22.

Corollary 5.24. Suppose (A,m) −→ (R, n) is a finite extension of Noether-
ian local rings with A regular. If R maps to a balanced big Cohen-Macaulay
algebra B, then A −→ R splits.

Proof. Consider the composition A −→ R −→ B. It is straightforward
to see that B is also a balanced big Cohen-Macaulay A-algebra and so A −→
B is faithfully flat, and hence pure. Thus A −→ R is also pure, and hence
split, by Appendix A Lemma 2.7 and Proposition 2.3. �

https://stacks.math.columbia.edu/tag/0ALZ
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We began this section by proving that in characteristic p > 0, R+ is
cohomologically big Cohen-Macaulay (note that mR+ 6= R+ since 1 /∈ mR+,
since 1 /∈ mS for any finite R ⊆ S and so any weakly modifier can be
removed). In the previous section, we considered a closure operation on on
ideals I ⊆ R by defining I+ = IR+∩R. Of course, for any R-algebra B also
leads to a closure in the same way.

Definition 5.25. Suppose R is a ring and N ⊆M are R-modules. For any
algebra B, we define the B-closure of N in M to be

N clB
M := ker

(
M

m7→1⊗m−−−−−→ B ⊗RM/N
)
.

which in the case of ideals specializes to the extension-contraction: IclB :=
IB ∩R.

Note, +-closure is exactly B = R+-closure. Closure with respect to a
sufficiently large big Cohen-Macaulay algebra shares many common proper-
ties with tight closure (and in fact agrees with tight closure in characteristic
p > 0, under moderate hypotheses [Hoc94, Theorem 11.1]). We highlight
two facts about closures with respect to bing Cohen-Macaulay algebras.

Proposition 5.26 (cf. [Hoc94, Corollary 2.4], [Die05, Lemma 7.2.2],
[RG18, Theorem 8.1]). Suppose that (R,m) is a Noetherian local ring and
B is a balanced big Cohen-Macaulay algebra.

(a) If x1, dots, xd is a system of parameters of R, then (x1, . . . , xi−1)clB :R
xi ⊆ (x1, . . . , xi)

clB .
(b) Suppose that the m-adic completion R̂ is an integral domain (which

is automatic if R is normal and excellent). Then for any ideal J ⊆ R
we have that JclB ⊆ J , where J is the integral closure of J .

Proof. For (a), notice that (x1, . . . , xi−1)B :B xi = (x1, . . . , xi−1)B
since B is balanced big Cohen-Macaulay. Hence we have that

(x1, . . . , xi−1)clB :R xi ⊆ (x1, . . . , xi−1)B :B xi ⊆ (x1, . . . , xi)
clB .

Intersecting back with R proves the desired result.

Now we consider (b), we only use the non-triviality condition of B. Let
R̂ denote the completion of R (which we assumed is a domain). Consider
the algebra B′ = B ⊗R R̂. It is certainly still weakly big Cohen-Macaulay
(for instance, with respect to the systems of parameters of R, since R −→ R̂
is flat) and satisfies the non-triviality condition since 0 6= B/mB ∼= B′/mB′

since R −→ R̂ is faithful.
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Claim 5.27 ([Hoc94, Corollary 2.4, Proposition 10.5]). Since B′ is big
Cohen-Macaulay over R̂, there is a non-zero R̂-linear map f : B′ −→ R̂ (that
is, B′ is solid as an R̂-module, see [Hoc94]).

Proof of claim. Note Hd
m(B′) 6= 0 by (5.19.2).

By the Cohen Structure Theorem there exists a regular local ring (A, n) ⊆
(R̂,mR̂). Thus 0 6= Hd

m(B′) = Hd
n (B′) = Hd

n (A) ⊗A B′. Since any map
B′ −→ A factors as B −→ HomA(R′, A) −→ A by Lemma 5.1 in Appendix A,
and there exists a nonzero map HomA(R′, A) −→ R′, it suffices to show that
there is a nonzero map B′ −→ A.

Let E = Hd
n (A) denote the injective hull of A = A/n so that E⊗AB′ 6= 0.

Since HomA(−, E) is faithfully exact (Appendix C Remark 1.7) we see that
HomA(B′ ⊗A E,E) 6= 0. But using Appendix C Example 1.6, we see that

HomA(B′ ⊗A E,E) ∼= HomA(B′,HomA(E,E)) ∼= HomA(B′, A)

and so there exists a non-zero map as desired. �

Now, we observe that JclB ⊆ JclB′ ⊆ (JR̂)clB′ . On the other hand,
J = JR̂ ∩ R by [SH06, Proposition 1.6.2] and so it suffices to show that
(JR̂)clB′ ⊆ JR̂. In particular, we may assume R = R̂ is complete and replace
B with B′.

Since JB = JclBB, we see that JnB = (JclB )nB for every n. Thus we
have that we have that

Jnf(B) = f(JnB) = f((JclB )nB) = (JclB )nf(B).

Since f(B) is nonzero, we see that JclB and J have the same integral closure
J by [SH06, Corollary 6.8.12]. In particular, JclB ⊆ JclB = J . �

For a domain R, one might ask if there are any intermediate algebra
R ⊆ B ⊆ R+ that is also big Cohen-Macaulay in characteristic p > 0, and
the obvious thing to consider might be the perfection Rperf =

⋃
e>0R

1/pe .
While the perfection is not in general Cohen-Macaulay, it is very close to
being Cohen-Macaulay.

Example 5.28. Suppose (R,m) is an Noetherian F -finite local domain of
characteristic p > 0 and 0 6= c ∈ R is such that Rc is Cohen-Macaulay (for
instance, if c is a strong test element).

Now, Rperf =
⋃
e>0R

1/pe need not be big Cohen-Macaulay. For instance
if R is F -injective but not Cohen-Macaulay with H i

m(R) 6= 0 for some i <
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d = dimR, then H i
m(Rperf) = lim−→H i

m(R1/pe) 6= 0 as well. See for instance
Chapter 3 Subsection 5.3 for the construction of such examples.

However, Rperf is close to being big Cohen-Macaulay in several senses.

We first show that (c)1/peH i
m(Rperf) = 0 for every e. Because Rc is

Cohen-Macaulay, there exists an integer n > 0 such that cpnH i
m(R) = 0 by

Appendix C Corollary 6.5. Hence

c1/pe−nH i
m(R1/pe) = 0

for e ≥ n. Thus taking direct limits, the ideal

(c1/p∞) =
⋃
e>0

(c1/pe)Rperf =
⋃
e≥n

(c1/pe−n)Rperf

annihilates H i
m(Rperf).

Similarly, if c is a tight closure test element, and x1, . . . , xd is a regular
sequence, by colon capturing we have that

c
(
(xp

e

1 , . . . , x
pe

i−1) :R x
pe

i

)
⊆ c(xp

e

1 , . . . , x
pe

i−1)∗ ⊆ (xp
e

1 , . . . , x
pe

i−1)

for all e > 0. In other words, since R ∼= R1/pe as rings, we have that

c1/pe
(
(x1, . . . , xi−1)R1/pe :R1/pe xi

)
⊆ (x1, . . . , xi−1)R1/pe

Hence, by taking direct limits, we claim that

(5.28.1) c1/pe
(
(x1, . . . , xi−1)Rperf :Rperf

xi
)
⊆ (x1, . . . , xi−1)Rperf

for every e > 0. To see this, observe any element in colon in (5.28.1) comes
from a finite level and hence c1/pb “captures” it for all b � 0. Furthermore,
notice that if b > e and c1/pb captures the colon in the sense of (5.28.1)
above, then so does c1/pe , since c1/pb

∣∣ c1/pe . The claim follows.

This example leads us to the notion of almost mathematics and almost
balanced big Cohen-Macaulay algebras.

Definition 5.29 ([Fal88, Fal02, GR03, And18], cf. [Rob10, RSS07,
Shi11]). Suppose T is a ring and J ⊆ T is an ideal such that J = J2 and in
fact the stronger condition20 that J ⊗T J is a flat R-module.

If N ⊆ M are T -modules, we say that x ∈ M is J-almost in N if
Jx ⊆ N .

We say that a T -module M is J-almost zero if JM = 0.

20By [GR03, Proposition 2.1.7(ii)] J ⊗T J being flat implies J = J2
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We say that an element x ∈ T is J-almost weakly regular on a module
M , if ker(M

·x−→M) is J-almost zero.

If (R,m) is a Noetherian local ring and T is a R-algebra, we say that T
is J-almost weakly balanced big Cohen-Macaulay if for every system
of parameters x1, . . . , xd for R, we have that xi is J-almost weakly regular
on T/(x1, . . . , xi−1)T . If additionally we have that T/mT is not J-almost
zero, then we say that T is J-almost balanced big Cohen-Macaulay.

Note that the non-triviality condition in Definition 5.29 is stronger than
the one in Definition 5.14 (something can be almost zero while not being
zero) while the condition on systems of parameters is weaker (one can be
almost weakly regular without being regular).

Example 5.30. Suppose (R,m) is an excellent Noetherian local domain
of characteristic p > 0 and c ∈ m ⊆ R a tight closure test element. Set
J = (c1/p∞) ⊆ Rperf . It straightforward to see that J2 = J and even more
that J ⊗T J is flat (since it is a direct limit of flat modules).

Example 5.28 shows that the perfection Rperf is an (c1/p∞)-almost weakly
balanced big Cohen-Macaulay. Let us quickly observe that Rperf also satisfies
the almost variant of the non-triviality condition. If c1/pe(Rperf/mRperf) = 0
for all e > 0, then

c1/pe1 ∈ mRperf

for all e > 0. We prove this as follows. Take v : K(R) \ 0 −→ Z a discrete
valuation such that v(R) ≥ 0 and R∩v≥0 = m. One way to construct such a
v is to blow up m and normalize, and on some chart, localize at a height one
prime lying over m to find such a valuation ring with the desired property.

We can extend v uniquely to a valuation v : K(R)perf \ 0 −→ Q. Since
c ∈ m is not a unit, we have that v(c) > 0, and so the sequence of positive
numbers v(c1/pe) limits to zero. On the other hand, v(mRperf) ≥ 1 since
v(x) ≥ 1 for every x ∈ m. This is a contradiction.

Finally we note that, thanks to Gabber, there is a straightforward way
to map an almost big-Cohen-Macaulay algebra to an honest big-Cohen-
Macaulay algebra (also see [Hoc02]).

Proposition 5.31 (Gabber, [Gab18, Page 2]). Suppose (R,m) is a local
Noetherian ring and T is an R-algebra and c ∈ T has a compatible system of
p-power roots c1/pe ∈ T . Suppose that T is J = (c1/p∞)-almost (weakly) bal-
anced big Cohen-Macaulay. Let T ′ =

∏
N T (with the diagonal map T −→ T ′)

and let W ⊆ T ′ be the multiplicative set generated by c := (c, c1/p, c1/p2
, . . . ).

Then B := W−1T ′ is (weakly)balanced big Cohen-Macaulay.
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Proof. Before beginning, observe that because (x1, . . . , xi−1) is finitely
generated, (x1, . . . , xi−1)T ′ =

∏
N(x1, . . . , xi−1).

We first handle the case where T is only weakly balanced big Cohen-
Macaulay. Consider (x1, . . . , xd) a system of parameters for R. Suppose
t ∈ ker(T/(x1, . . . , xi−1)

·xi−→ T/(x1, . . . , xi−1)) lifting to some t ∈ T . We
know that (c1/p∞)xi ∈ (x1, . . . , xi−1). Consider the diagonal map d : T −→
T ′, identifying an element with its image, we see that cxi = cd(xi) ∈
(x1, . . . , xi−1)T ′. Hence, if we invert c we see that xi ∈ (x1, . . . , xi−1)B
as desired. This proves that B is weakly balanced big Cohen-Macaulay.

We now prove the non-triviality condition (a) from Definition 5.14. Sup-
pose 1 ∈ mB = W−1mT ′. But by properties of localization this means that
cp

l ∈ mB′ for some pl > 0. This implies that cpl/pe ∈ mT for all e � 0. In
particular, we have that c1/pe ∈ mT for all e � 0 and so T/mT is (c1/pe)-
almost zero, a contradiction. �

Remark 5.32. The same construction can also be used for the following
purposes (which we will use, again see [Gab18]).

(a) x ∈ R, J ⊆ R has the property that (c1/p∞)x ∈ JT (that is x is
almost in JT ), then x ∈ JT ′. We verified this in the special case
that J = (x1, . . . , xi−1) above.

(b) If η ∈ H i
m(T ) is (c1/p∞)-almost zero (that is, c1/peη = 0 for all e > 0)

then the image of η, η′ ∈ H i
m(T ′) is zero.

We finally point out one important property of big Cohen-Macaulay al-
gebras over regular ring. Note that if a domain R is essentially of finite type
type over a field, or complete, there exists a Noether(-Cohen) normalization
A ⊆ R (a finite extension) and so a balanced big Cohen-Macaulay algebra
for R also becomes a balanced big Cohen-Macaulay algebra for A.

Theorem 5.33. Suppose (A,m) is a regular local ring and B is an R-algebra.
Then the following are equivalent.

(a) B is R-flat.
(b) B is weakly cohomologically big Cohen-Macaulay.
(c) B is weakly balanced big Cohen-Macaulay.

Proof. First suppose that B is R-flat. Then for any Q ∈ SpecR we
have that H i

Q(BQ) = H i
Q(RQ)⊗RQBQ since BQ is a flat RQ-module21. Now,

21essentially by flat base change for cohomology on SpecRQ or by [BS98, Lemma
4.3.1] which asserts that the target is Noetherian – this is not needed in the proof.
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if i < dimRQ, then we immediately see that H i
Q(RQ) = 0, since regular ring

are Cohen-Macaulay, and H i
Q(BQ) = 0 as well. This shows that (a) ⇒ (b).

Since regular local rings are catenary (we did not need the full power of
excellence), we see that (b) and (c) are equivalent by Lemma 5.21. �

5.3. Characterizations of tight closure via almost mathematics
and big Cohen-Macaulay algebras. We can characterize tight closure of
ideals via big Cohen-Macaulay algebras.

Theorem 5.34 (cf. [Hoc94]). Suppose that (R,m) is a Noetherian complete
local domain of characteristic p > 0 and I ⊆ R is an ideal. Then x ∈ I∗ if
and only if x ∈ IclB (that is, x ∈ IB) for some balanced big Cohen-Macaulay
R-algebra B.

Proof. First, suppose x ∈ I∗. Then for some test element c ∈ R we
have that cxpe ∈ I [pe] so that c1/pex ∈ IR1/pe ⊆ IRperf . Set T = Rperf

and apply the construction of Proposition 5.31 to construct B. Using the
notation from that result, cx ∈ IT ′ and so x ∈ IB ∩R.

Next suppose that x ∈ IB for some balanced big Cohen-Macaulay R-
algebra B. We must prove that x ∈ I∗. We follow the argument of [HH94b].
Our hypothesis implies that xpe ∈ (IB)[pe] = I [pe]B for all e > 0. We note by
Claim 5.27 that there exists a nonzero map φ : B −→ R with c = φ(b) 6= 0,
hence since bxpe ∈ I [pe]B, applying the R-linear map φ we see that

cxp
e ∈ I [pe]φ(B) ⊆ I [pe]

for all e > 0. Hence x ∈ I∗ as desired. �

Remark 5.35. Again, the hypothesis that R is complete can be weakened
in various ways, see for instance [Hoc94, Theorem 11.1]. However, since
containment in tight closure may be checked after completion Exercise 2.2,
and a balanced big Cohen-Macaulay algebra over R maps to one over R̂, the
above tends to be enough for applications.

Almost mathematics can be used to characterize tight closure.

Theorem 5.36 ([HH90, Theorem 6.9], cf. [HH91]). Suppose that (R,m)
is a Noetherian complete local domain ring of characteristic p > 0 and c ∈ R
is a tight closure test element. Suppose I ⊆ R is an ideal. Then

x ∈ I∗ if and only if (c1/p∞)x ⊆ IRperf .

The condition on the right side of the displayed equation could be phrased
as saying that x is (c1/p∞)-almost in IRperf .
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Proof. If x ∈ I∗, then c1/pex ∈ (I [pe])1/pe = IR1/pe for all e > 0. Hence
taking a union we see that (c1/p∞)x ⊆ IRperf . We needed no completeness
hypothesis.

For the reverse, suppose that (c1/p∞)x ⊆ IRperf . By the hypothesis that
(c1/p∞)x ⊆ IRperf , we know that for each e > 0, there exists a e′ (which we
may assume satisfies e′ ≥ e) such that c1/pex ∈ IR1/pe

′
, however there is no

clear (for instance even linear) relation between e and e′. Instead, we simply
apply Theorem 5.34.

Consider T := Rperf , which we know is an almost balanced big Cohen-
Macaulay algebra by Example 5.30. Now apply the construction of Proposi-
tion 5.31 to form a big Cohen-Macaulay algebra B. By Remark 5.32 we see
that x ∈ IB and hence x ∈ I∗ by Theorem 5.34. �

The proof we gave above is not the original proof, which instead relied
upon the ideas around Chapter 6 Theorem 7.4. We sketch the original proof
in Exercise 5.9

5.4. Mixed characteristic. One of the applications of the existence of
big Cohen-Macaulay algebras in mixed characteristic (cf. [And20, HM18])
is that it allows one to develop a theory of singularities in mixed charac-
teristic. From the perspective of closure operations (−)clB , a theory of test
ideals was introduced in [PRG21]. Another approach closer in spirit with
the earlier chapters of this book can be found in the work of Ma-Schwede
(cf. [MS18, MS21]). Compare also with [INS23]. These ideas have been
developed further by numerous authors, see for instance [ST21, TY23,
BMP+23, Rob22, HLS22, Mur22b, CLM+23].

On the other hand, a number of people have explored closure-theoretic
definitions which mimic tight closure, see for instance [Hoc94, Hei01,
BS12, EH18, HM21, Jia21]. Also see Definition 5.42 below for addi-
tional discussion.

We will not delve into any of this mixed-characteristic theory too deeply
but we will briefly highlight some definitions and results which give a flavor
of some of this work and which closely connect to earlier chapters of this
book

Definition 5.37. Suppose (R,m) is a complete Noetherian local ring and B
is a balanced big Cohen-Macaulay algebra. We can define the test module
of R along B to be:

τB(ωR) :=
(

Image
(
Hd

m(R) −→ Hd
m(B)

))∨
= AnnωR ker

(
Hd

m(R) −→ Hd
m(B)

)
.
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If R is in characteristic p > 0, or in mixed characteristic and one restricts
to perfectoid22 big Cohen-Macaulay algebras B, then it turns out there there
is a “big enough” B so that

τB(ωR) =
∑
B

τB(ωR),

see [Die07, MS21] (again, in mixed characteristic we sum over perfectoid
B). The point is that, in those cases, two big Cohen-Macaulay algebras R
can map to a third.

Regardless, this gives a notion of rational singularities defined from big
Cohen-Macaulay algebras.

Definition 5.38. A Noetherian local ring (R,m) is (perfectoid23) big
Cohen-Macaulay rational (or simply (p)BCM-rational) if

(a) R is Cohen-Macaulay and
(b) Hd

m(R) −→ Hd
m(B) injects for every (perfectoid) balanced big Cohen-

Macaulay R-algebra B (this is equivalent to τ
B̂

(ω
R̂

) = ω
R̂
).

BCM-rational singularities agree with F -rational singularities (by argu-
ments essentially the same as those in the section above) and are always
pseudo-rational, see [MS21] and cf. [Smi97a] as well as Definition 2.28 and
[?] in Chapter 6.

Conjecture 5.39 (Ma-Schwede). Suppose (R,m) is a Noetherian local ring
of characteristic 0 that has rational singularities. Then R is BCM-rational.

To conclude this section, we mention that big Cohen-Macaulay rational
singularities deform.

Theorem 5.40. Suppose (R,m) is a Noetherian local ring and f ∈ m is a
non-zerodivisor. If R/(f) is BCM-rational, then so is R.

Proof. Left to the reader in Exercise 5.11. �

Remark 5.41. As an application, it can be shown that if (R,m) is a ring
finite type over Q, and after reduction to characteristic p > 0, we have that
(Rp,mp) is F -rational for a single p (that does not have to be sufficiently
large), then R has rational singularities in characteristic zero. This means
one can effectively confirm rationality of singularities in characteristic 0 using
a computer to check in characteristic p > 0. (Also compare with [Zhu17]
from which similar results can also be obtained).

22The definition is not important here, it is enough to know this is a mixed charac-
teristic analog of perfect.

23if R is mixed characteristic
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The rough idea is that if (RZ,mZ) is the family of models of R over
Z (note mZ is not maximal), then R(mZ+(p))/(p) is F -rational, and hence
BCM -rational. Thus R(mZ+(p)) is BCM-rational and hence pseudo-rational.
If follows that the localization R = (RZ)(mZ+(p))⊗ZQ is also pseudo-rational
and hence has rational singularities. See [MS21, MST+22, ST21] for
details and generalizations.

We conclude this section with some alternate closure constructions in
mixed characteristic, related to the above, and inspired by tight closure.

Definition 5.42 ([Hei01]). Suppose (R,m) is a Noetherian local domain
with p ∈ m. If I ⊆ R is an ideal then the extended plus closure of I, is
the set

Iepf := {x ∈ R | ∃c 6= 0, ∀N ∈ N,∀ε > 0, cεx ∈ (I, pN )R+}.

By the sorts of arguments above, it is easy to see that extended plus
closure agrees with tight closure in characteristic p > 0. It is closely related
to closures induced from perfectoid BCM algebras, as in Theorem 5.34, see
[CLM+23, Proposition 5.2.5]. Other properties of extended plus closure
have been developed here: [HM21]. A variant of the above, weak epf
closure is defined in [Jia21]:

Iwepf :=
⋂
N

(I, pN )epf

These closure operations, and the theory developed around them in the
above references, was used in [Mur22a] to give new proofs of certain sym-
bolic power containments in mixed characteristic (more closely related to the
proofs of Hochster-Huneke via tight closure, [HH02]).

Remark 5.43. Closure operations in general have been a topic of sub-
stantial study in commutative algebra. For instance, having a sufficiently
good closure operation implies the existence of big Cohen-Macaulay mod-
ules and algebras. To learn more, see for instance: [Die10, RG18, DRG19,
ERGV23]. Some other related closure operations not mentioned here can
be found in [Eps12, EH18, BS12, HV04].

5.5. Exercises.

Exercise 5.1.

Exercise 5.2. Suppose R is an integral domain and Q ⊆ R is a prime ideal.
Show that for any prime Q+ ⊆ R+ lying over Q (which necessarily exist
since R ⊆ R+ is integral) we have that

R+/Q+ ∼= (R/Q)+.



482 7. TIGHT CLOSURE

Exercise 5.3. Prove that a version Theorem 5.5 holds when R is not nec-
essarily a domain but is instead reduced, locally equidimensional, and has
connected Spec.

Hint: Reduce to the domain case by lettingQ1, . . . , Qt be the minimal primes
of R and considering the finite extension R −→

∏
iR/Qi.

Exercise 5.4. Prove the conclusion of Theorem 5.7 still holds if instead
of assuming that R is an F -finite domain, one assume that R is F -finite,
reduced, is locally equidimensional and has connected Spec.

Exercise 5.5. The equational lemma can be generalized to schemes:

Exercise 5.6 (cf. [Bha12, Proposition 4.2]). Suppose that X is an integral
Noetherian scheme and with A = H0(X,OX) is a Noetherian ring. Suppose
further that J ⊆ A is an ideal with Z = V (JOX) ⊆ X (note, an interesting
case is when Z = X). Suppose M ⊆ H i

Z(X,OX) is a Frobenius stable
submodule24 that is finitely generated as an A-module. Then there exists a
finite surjective map π : Y −→ X such that M is sent to zero via

H i
Z(X,OX) −→ H i

π−1Z(Y,OY ).

Exercise 5.7 ([Bha12]). Using Exercise 5.6, prove the following globaliza-
tion of Theorem 5.5.

Suppose that X −→ SpecR is a proper birational map between integral
Noetherian schemes. Show that for every i > 0 there exists a finite surjective
map π : Y −→ X of Noetherian integral schemes such that:

(a) H i(X,OX) −→ H i(Y,OY ) is the zero map for i > 0.
(b) H i(Y, ωY ) −→ H i(X,ωX), induced by π∗ωY −→ ωX (dual to OX −→
OY ) is the zero map for i > 0.

Hint: For the first statement, take Z = X. For the second work locally to
assume (R,m) is local and set J = m. The second statement becomes easier
if you assume that X is Cohen-Macaulay (and since Macaulayfications exist
by [Kaw00]), you are invited to do so.

Exercise 5.8. A domain R is called a derived splinter if for every proper
surjective map π : X −→ SpecR we have that OSpecR −→ Rπ∗OX splits
(in the derived category). Prove that a strongly F -regular ring is a derived
splinter.

24Meaning that F (M) ⊆M where F is the Frobenius action on Hi
Z(X,OX).
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Exercise 5.9. Use the following steps to give another proof of Theorem 5.36
which doesn’t mention big Cohen-Macaulay algebras – following the strat-
egy of [HH90, Theorem 6.9] (which proves a more general result, see Exer-
cise 5.10). In this proof you will give another proof that

if (c1/p∞)x ∈ JRperf then x ∈ J .

First note that by Gabber’s generalization of the Cohen-Structure theo-
rem, [Ill14, Théroème VI.2.1.1] (cf. [KS18, Ska16]), there exists A ⊆ R a
Noether normalization which is generically étale (K(A) ⊆ K(R) is separable).

(a) Prove that we may assume, without loss of generality, that c ∈
A ∩ J (R/A) (see Definition 7.1 in Chapter 6).

(b) Prove that Aperf [R] ∼= Aperf ⊗A R, and hence the left side is a flat
R-module (cf. Chapter 6 Lemma 7.9)

(c) Use (7.10.1) in Chapter 6 to show that

c1/peRperf ⊆ Aperf [R
1/pe ]

for every e > 0
(d) Use the previous to parts to prove that c2/pex ∈ IR1/pe for all e > 0

and to then conclude that x ∈ I∗.

Exercise 5.10 ([HH90, Theorem 6.9]). Consider the following generaliza-
tion of Theorem 5.36.

Suppose that (R,m, k) is a Noetherian complete local domain of charac-
teristic p > 0 with generically étale25 Noether-Cohen-Gabber normalization
kJx1, . . . , xdK = A ⊆ R. Consider the mA-adic discrete valuation v on A (ge-
ometrically, the one coming from the blowup of mA). This extends uniquely
to a Q-valuation on Rperf .

Fix x ∈ R and I ⊆ R is an ideal. Show that

x ∈ I∗

if and only if there exist a sequence of non-unit elements c1, c2, · · · ∈ Aperf

with
lim
e−→∞

v(ce) = 0

and such that cex ∈ IRperf for all e > 0.

For further generalizations, see [HH91].

Hint: You can either generalize Proposition 5.31 and the proof of Theo-
rem 5.36, or you can mimic the argument given above in Exercise 5.9.

25Such Noether normalizations exists by what is usually called the Cohen-Gabber
theorem, [Ill14, Théroème VI.2.1.1] also see [KS18, Ska16].
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Exercise 5.11. Prove Theorem 5.40. That is, show that if R/(f) is BCM-
rational and f ∈ m is a nonzero divisor in (R,m), then R is also BCM-
rational.

Hint: R is certainly Cohen-Macaulay. Next observe that for any balanced big
Cohen-Macaulay R-algebra B, we have that R/(f) is balanced big Cohen-
Macaulay over R/(f). Use a strategy similar to that of Theorem 5.12.



CHAPTER 8

Cartier modules and modules with Frobenius action

Warning, this chapter is likely to undergo very substantial revision.

1. p−1-linear maps and Cartier modules

Suppose R is a ring of characteristic p > 0 and thatM,N are R-modules.

Definition 1.1 (p-linear maps). A pe-linear map is a map φ : M −→ N
such that:

(a) φ is additive (meaning φ(x+ y) = φ(x) + φ(y) for all x, y ∈M)
(b) for any x ∈M and r ∈ R, we have φ(rx) = rp

e
φ(x).

More generally, for any integer e ≥ 0 a pe-linear map is an additive map
φ : M −→ N satisfying the property that φ(rx) = rp

e
x.

We see that a pe-linear map is nothing more than a R-module homomor-
phism ψ : M −→ F e∗N with different notation. The advantage of using this
language is it really shrinks the notation. The disadvantage of course is it
can be hard to keep track of which R-module action is being used where.

Now we move onto p−1-linear maps which are defined by taking roots
instead of raising to powers.

Definition 1.2 (p−e-linear maps). Fix an integer e ≥ 0, a p−e-linear map
is a map φ : M −→ N such that

(a) φ is additive,
(b) for any x ∈M and r ∈ R, we have φ(rp

e
x) = rx.

As above, a p−e-linear map is simply an R-module homomorphism ψ :
F e∗M −→ N .

485
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Example 1.3. The most common example of a p-linear map is Frobenius
itself F : R −→ R. The Frobenius splittings studied since Chapter 1 give
excellent examples of p−1-linear maps.

Given a p−d-linear map φ : L −→M and a p−e-linear map ψ : M −→ N ,
the composition

φ ◦ ψ : L
ψ−→M

φ−→ N

is a p−e−d-linear map since

φ
(
ψ
(
rp
e+d
x
))

= φ
(
ψ
(
(rp

d
)p
e
x
))

= φ
(
(rp

d
)ψ
(
x
))

= rφ
(
ψ
(
x
))
.

Throughout the rest of this section, we largely consider p-linear and p−1-
linear maps from a module to itself. One advantage of this assumption is that
it allows us to self-compose these maps without the notation complications
of (2.0.1). In particular, if φ : L −→ L is a p−e-linear map, then by self-
composition, φn : L −→ L is a p−ne-linear map.

Definition 1.4 (Cartier modules, [BB11]). Suppose R is a ring of charac-
teristic p > 0.

(a) A Cartier module (of degree e) is an R-module with a given
p−e-linear map φ : M −→M called the structural morphism (of
the Cartier module). It is usually denoted by the pair (M,φ) or
if the φ is obvious, simply by the module M .

(b) A morphism of Cartier modules h : (M,φ) −→ (N,ψ) is an R-
module map, also denoted by h : M −→ N , such that the following
diagram commutes:

M
φ
//

h
��

M

h
��

N
ψ
// N.

Implicitly, both φ and ψ are p−e-linear maps for the same same e.
(c) A Cartier submodule of a module (M,φ) is a sub-R-module N ⊆

M such that φ|N (N) ⊆ N .
(d) A Cartier module is called finite (respectively finitely presented)

ifM is a finiteR-module (respectively a finitely presentedR-module).
(e) A Cartier module (M,φ) is called F -pure if φ(M) = M (i.e. , if φ

is surjective).
(f) A Cartier module (M,φ) is called nilpotent if φn(M) = 0 for some

n� 0. The minimal n with this property is called order of nilpo-
tence.

Lemma 1.5 ([BB11]). If (M,φ) is an F -pure Cartier module and z2M = 0,
then zM = 0. In particular, AnnRM is a radical ideal.
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Proof. If z2M = 0, then zpeM = 0 so that 0 = φ(zp
e
M) = zφ(M) =

zM completing the proof. �

Example 1.6. Suppose that k is a perfect field and that S = k[x1, . . . , xn].
Then it is easy to see that HomS(F e∗S, S) ∼= F e∗S see Chapter 1 ?? and
more generally Chapter 2 Corollary 3.16. Hence the evaluation-at-1 map
HomS(F e∗S, S) −→ S can be identified with some map φ : F e∗S −→ S, which
turns out to be a generating map, and hence a Cartier map which we also
label φ : S −→ S.

More generally, if S is any ring such that HomS(F e∗S, S) ∼= F e∗S, then
the same set of identifications yield a Cartier map φ : S −→ S whose corre-
sponding element in HomS(F e∗S, S) generates that set as a F e∗S-module, see
Exercise 2.1.

The terminology F -pure comes from the definition of an F -pure ring, see
Chapter 1 Subsection 7.6, but there is no pure map of modules necessarily
involved.

Example 1.7. Consider an F -injective F -finite ring R. Then the map
F∗ωR −→ ωR is surjective and so we may view ωR as an F -pure Cartier
module. However, the Frobenius map on R is not always pure since there
are F -injective singularities that are not F -pure, see Chapter 4 Example 2.16.

Definition 1.8 (Modules with a Frobenius action). Dually, a module M
with a pe-linear map φ : M −→M is called a module with a(n e-iterated)
Frobenius action. A morphism of modules with Frobenius action is defined
analogously as above.

Lemma 1.9. Suppose that (M,φ)
h−→ (N,ψ) is a map of Cartier modules.

Then the following inherit Cartier-module structure.

(a) The R-module kernel, K = kerh with structural map φ|K .
(b) The R-module cokernel, C = N/h(M) with structural map ψC de-

fined by ψc(x)) = ψ(x).
(c) The R-module image I = φ(M) with structural map ψ|I .

Proof. This follows immediately from the displayed diagram in Defini-
tion 1.4. �

Cartier modules behave well with respect to completion and localization.

Lemma 1.10 (Localization and completion of Cartier modules). Suppose
(M,φ) is a Cartier module.

(a) Suppose thatW ⊆ R is a multiplicative system, thenW−1M inherits
the structure of a Cartier-module with (W−1φ)(x/wp

e
) = φ(x)/w.
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(b) Suppose that b ⊆ R is an ideal and let ̂ denote completion with
respect to this ideal. Then M̂ inherits the structure of a Cartier-
module.

Proof. Part (a) is easy, notice that any x/w ∈W−1M can be rewritten
as xwpe−1/wp

e . Alternately, one can view φ as φ : F e∗M −→ M and then
simply apply the functor ⊗RW−1R.

For part (b), tensoring by R̂may not work because F∗M is not necessarily
a finiteR-module, note we are not even assuming thatR is F -finite. However,
consider the completion (and compare with Lemma 1.14)

F̂ e∗M
= lim

←−
F e∗M/(bnF e∗M)

= lim
←−

F e∗M/(F e∗ (b[pe])nM)

∼= F e∗ lim
←−

M/((b[pe])nM)

∼= F e∗ lim
←−

M/(bnM)

= F e∗ M̂.

Thus applying the completion to F e∗M −→ M yields the desired Cartier
structure on the completion M̂ . �

We also observe the following important fact closely related to localiza-
tion.

Lemma 1.11 (Lifting Cartier submodules from localizations). Suppose (M,φ)
is a module, W ⊆ R is a multiplicative set, and N ′ ⊆ W−1M is a Cartier
submodule. Then there exists a Cartier submodule N ⊆M such thatW−1N =
N ′.

Proof. First let N1 ⊆ M be any submodule such that W−1N1 =
N ′. Of course N1 is probably not a Cartier submodule since we may have
φ(N1) 6⊆ N1, so set N2 = N1 + φ(N1). This still may not be Cartier so
set N3 = N2 + φ(N2) = N1 + φ(N1) + φ2(N1). This process yields an as-
cending chain of submodules so let N =

⋃
eNe. By construction, this is a

Cartier module. Furthermore, since direct limits commute with localization
W−1N =

⋃
eW

−1Ne. But each W−1Ne = W−1N1 + W−1φ(N1) + · · · +
W−1φn−1(N1) = N ′ and hence W−1N = N ′. �

Inspired by the previous proof, we make the following definition.

Definition 1.12. Fix a Cartier module (M,φ) and a submodule N1 ⊆ M .
Then N =

⋃
e≥0 φ

e(N1) is the Cartier submodule generated by N1. In
the case that M is Noetherian, we can take N =

⋃n
e=0 φ

e(N1) for some n.
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1.1. Matlis duals of Cartier modules – modules with Frobenius
action. Suppose (R,m, k) is an F -finite complete local ring of characteristic
p > 0. We fix E to be an injective hull of the residue field k. Recall Matlis
duality (apply Hom(−, E)) from Appendix C Section 1.

By Appendix C Lemma 1.8 HomR(F∗R,E) is an injective hull of the
residue field of F∗R, hence

(1.12.1) HomR(F∗R,E) ∼= F∗E.

We fix this isomorphism once and for all. Based on this choice we have:

Lemma 1.13 (Matlis duality and Frobenius pushforward). For any Noe-
therian or Artinian module M over (R,m, k) an F -finite complete local ring
of characteristic p > 0 with E the injective hull of k, we have a functorial
isomorphism for every e > 0

(F e∗M)∨ = HomR(F e∗M,E) ∼= F e∗ (M∨) = F e∗ HomR(M,E) = (F e∗M)∨.

This depends on the choice of isomorphism (1.12.1) (for e = 1) but on no
other choices.

Proof. We begin with the special case that M = R and induct on e.
The base case is given. Then by Hom-⊗ adjointness and induction:

HomR(F e∗R,E)
∼= HomR((F e∗R)⊗F e−1

∗ R F
e−1
∗ R,E)

∼= HomF e−1
∗ R(F e∗R,HomR(F e−1

∗ R,E))
∼= HomF e−1

∗ R(F e∗R,F
e−1
∗ E)

∼= F e−1
∗ HomR(F∗R,E)

∼= F e∗E.

Now for a general case of M we likewise have
HomR(F e∗M,E)

∼= HomR(F e∗M ⊗F e∗R F
e
∗R,E)

∼= HomF e∗R(F e∗M,HomR(F e∗R,E))
∼= HomF e∗R(F e∗M,F e∗E)
∼= F e∗ HomR(M,E)

which completes the proof. �

Suppose now that φ : F e∗M −→ M is an R-module map with M a Noe-
therian module (which of course makesM into a Cartier module). We apply
the functor HomR( , E) and obtain a map using Lemma 1.13

φ∨ : M∨ = HomR(M,E) −→ HomR(F e∗M,E) ∼= F e∗ (M∨).

On the other hand, given an Artinian module N with a pe-linear map, which
we represent by φ : N −→ F e∗N , we apply Matlis duality again and obtain

F e∗ (N∨) ∼= HomR(F e∗N,E) −→ N∨.
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Hence, we obtain:

Proposition 1.14. Over an F -finite complete Noetherian local ring (R,m, k),
Matlis duality induces an equivalence of categories between finite Cartier
modules and Artinian modules with a Frobenius action.

Example 1.15. Consider the e-iterated Frobenius map R −→ F e∗R. Set
d = dimR and apply the functor Hd

m( ) and obtain

Hd
m(R) −→ Hd

m(F e∗R).

Using Čech cohomology (or any number of other arguments), for instance,
it is easy easy to see that Hd

m(F e∗R) = F e∗H
d
m(R). In particular, Hd

m(R) is a
module with Frobenius action.

The Matlis dual of Hd
m(R) is ωR, a canonical module of R. Hence dual to

the Frobenius action on Hd
m(R) we have a canonical p−e-linear map ωR −→

ωR.

We should check that the induced p−e-linear map on ωR = (Hd
m(R))∨ is

the same as the usual trace map F e∗ωR −→ ωR. Note that the usual map

(1.15.1) F e∗ωR −→ ωR

is defined by choosing an isomorphism F e∗ωR
∼= HomR(F e∗R,ωR) and then

applying evaluation-at-1. First we need the following.

Lemma 1.16. For an F -finite Noetherian complete local ring (R,m, k),
the choice of isomorphism HomR(F∗R,E) ∼= F∗E induces an isomorphism
HomR(F∗R,ωR) ∼= F∗ωR.

Proof. Given an isomorphism HomR(F∗R,E) ∼= F∗E, we see that

HomR(F∗R,ωR)
∼= HomR(F∗R,HomR(Hd

m(R), E))
∼= HomR((F∗R)⊗R Hd

m(R), E)
∼= HomR(Hd

m(F∗R), E)
∼= F∗HomR(Hd

m(R), E)

where the last isomorphism is Lemma 1.13 and the second to last isomor-
phism is Lemma 7.2. But HomR(Hd

m(R), E) = (Hd
m(R))∨ is ωR. Thus the

choice of an isomorphism HomR(F∗R,E) ∼= F∗E determines an isomorphism
HomR(F∗R,ωR) ∼= F∗ωR. �

Proposition 1.17. Suppose that (R,m, k) is an F -finite complete local ring
with a fixed isomorphism F e∗E

∼= HomR(F e∗R,E) inducing an isomorphism
F e∗ωR

∼= HomR(F e∗R,ωR) as in Lemma 1.16. Then the map F e∗ωR −→ ωR
obtained in Example 1.15 coincides with the usual map from (1.15.1).



1. p−1-LINEAR MAPS AND CARTIER MODULES 491

Proof. It is sufficient to show that the Matlis dual of the map

F e∗ωR
∼= F∗HomR(Hd

m(R), E) ∼= HomR(F∗R,ωR)
eval@1−−−−→ ωR

coincides with the map Hd
m(R) −→ Hd

m(F e∗R) induced by Frobenius.

Notice that the evaluation at 1 map HomR(F∗R,ωR) −→ ωR is iden-
tified with HomR(F∗R,ωR) −→ HomR(R,ωR) induced by the Frobenius
map R −→ F e∗R. Hence the Matlis dual of the map labeled eval@1 is just
HomR(HomR(R,ωR), E) −→ HomR(HomR(F∗R,ωR), E) which is naturally
identified with Hd

m(R) −→ Hd
m(F e∗R) by local duality. �

Remark 1.18 (Virtues of Matlis duality). The notion of Cartier module
seems best well behaved for F -finite schemes. However Artinian modules
over a local ring with a Frobenius action are pleasant to deal with even
outside of the F -finite case. Thus commutative algebraists especially have
developed a great deal of theory of F -singularities in the local (excellent)
not necessarily F -finite case.

1.2. Anti-nilpotence. One notion which has shown to be quite impor-
tant for Artinian modules with a Frobenius action is anti-nilpotence.

Definition 1.19 (Anti-nilpotent, [EH08]). Suppose (N,F ) is an Artinian
module with a Frobenius action (i.e. F : N −→ N is a pe-linear map). Then
(N,F ) is called anti-nilpotent if for every F -compatible submodule L ⊆ N
(that is, F (L) ⊆ L) one has that the induced action F : N/L −→ N/L is
injective.

Dually a Cartier module (M,φ) is calledCartier anti-nilpotent if every
Cartier submodule (N,φ|N ) of (M,φ) is F -pure (that is, φ|N is surjective).

We first observe that Cartier anti-nilpotence behaves well for Cartier
modules over F -finite rings.

Lemma 1.20. Suppose (M,φ) is a Cartier module. Then the following are
equivalent.

(a) (M,φ) is Cartier anti-nilpotent.
(b) For every multiplicative set W ⊆ R, (W−1M,W−1φ) is also Cartier

anti-nilpotent.
(c) For every Q ∈ SpecR, (MQ, φQ) is Cartier anti-nilpotent.
(d) For every maximal m ∈ m-SpecR, (Mm, φm) is Cartier anti-nilpotent.

Proof. Suppose (a) holds and W ⊆ R is a multiplicative set. Further
suppose that N ′ ⊆ W−1M is a Cartier submodule such that the induced



492 8. CARTIER MODULES AND MODULES WITH FROBENIUS ACTION

Cartier action on N ′ is not surjective. By Lemma 1.11 there exists a Cartier
submodule N ⊆ M such that N ′ = W−1N . Hence the Cartier action on N
is not surjective. This proves that (a) implies (b).

Certainly (b) ⇒ (c) ⇒ (d) and so it remains to show that (d) implies
(a). Thus suppose that N ⊆M is a Cartier submodule and φ(N) 6= N . But
then N/φ(N) is non-zero and hence non-zero at some maximal ideal m. �

We have the following connection between anti-nilpotence of modules
with Frobenius action and Cartier modules.

Lemma 1.21. Suppose (R,m) is a Noetherian F -finite local ring and (M,φ)
is a finite Cartier module. Let (M∨, F ) denote the dual module with Frobe-
nius action. If (M∨, F ) is anti-nilpotent, then (M,φ) is Cartier anti-nilpotent.
The converse also holds if R is complete.

Proof. A Cartier submodule N ⊆M is F -pure if and only if the Matlis
dual quotientM∨/N∨ has injective F -action. This proves the first statement.
The second statement follows from Proposition 1.14. �

Note that for a non-complete ring, the completion of a Cartier (or Matlis
dual) of a Cartier module can create submodules inaccessible over R. See
Exercise 1.4.

If the Cartier module is (M = R,φ) is F -pure, then it is Cartier anti-
nilpotent.

Lemma 1.22. Suppose that R is a ring and (R,φ) is an F -pure Cartier
module. Then (R,φ) is anti-nilpotent.

Proof. Suppose that J ⊆ R is a Cartier submodule. Choose x ∈ R
such that φ(x) = 1. Next choose z ∈ J . Notice that zpex ∈ J and so
φ(zp

e
x) = zφ(x) = z and so φ|J is surjective. This proves that (R,φ) is

anti-nilpotent. �

However, F -pure Cartier modules are generally not anti-nilpotent. In-
deed, even in the case that of the Cartier module ωR, there is an example
in [EH08, Example 2.16] where F∗ωR −→ ωR is surjective but not anti-
nilpotent.

1.3. Anti-nilpotence as a measure of singularities. It turns out
that if R is F -split, the canonical Frobenius action on the H i

m(R) is anti-
nilpotent (and hence so is the Frobenius action on ωR). First we first need
a Lemma.
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For motivation, suppose that f : R −→ S is a map of rings and φ : S −→ R
is an R-linear map. Then for any ideal I ⊆ R, consider the extension to S,
IS = f(I) · S. It is easy to see that φ(IS) ⊆ I by the R-linearity of φ and
the fact that I is an ideal. Below, we generalize this simple observation to
local cohomology.

Lemma 1.23. Suppose that f : R −→ S is a morphism of Noetherian rings,
I ⊆ R is an ideal and N ⊆ H i

I(R) is a submodule. Let (f(N))S ⊆ H i
I(S)

denote the S-submodule of H i
I(S) generated by (H i

I(f))(N). Suppose that
φ : S −→ R is an R-linear map, then we have that

(H i
I(φ))((f(N))S) ⊆ N,

in other words, the map on local cohomology induced by φ sends (f(N))S
back into N .

Proof. By tensoring the sequence R f−→ S
φ−→ R with L and H i

I(R), we
obtain the following diagram where at this point we know the top rectangle
is commutative:

N ⊗R S

ρ
��

N⊗φ
// N� _

��

H i
I(R)⊗R S

φ′=Hi
I(R)⊗ψ

//

µ
&&

H i
I(R)

H i
I(S)

Hi
m(φ)

::

We next need to explain what the map µ is and why the diagram commutes.
The existence of µ follows from tensoring the Čech descriptions of local
cohomology H i

I(R) with a ring extension (in this case R −→ S). Indeed, if
x1, . . . , xn generate I, then explicitly for Čech classes and b ∈ S we define µ
to be:

(1.23.1)
[⊕

j1,...,ji

aj1,...,ji
x
n1
j1
...x

ni
ji

]
⊗ b �

µ
//

[⊕
j1,...,ji

f(aj1,...,ji )b

x
n1
j1
...x

ni
ji

]
Tensoring the Čech complex for H i

I(R) with S we see that cycles get mapped
to cycles and boundaries to boundaries, hence the map µ exists.

The map φ′ sends the left side of (1.23.1) to
[⊕

j1,...,ji

aj1,...,ji
x
n1
j1
...x

ni
ji

]
· φ(b)

which equals
[⊕

j1,...,ji

aj1,...,jiφ(b)

x
n1
j1
...x

ni
ji

]
. The right side of image of (1.23.1) also

agrees with
[⊕

j1,...,ji

(aj1,...,ji ).b

x
n1
j1
...x

ni
ji

]
where the (aj1,...,ji).• denotes action by an
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R-module element. Hence H i
I(φ) sends this to

[⊕
j1,...,ji

aj1,...,jiφ(b)

x
n1
j1
...x

ni
ji

]
and so

the diagram commutes.

Now, we claim that the image of µ ◦ ρ : N ⊗R S −→ H i
I(S) is (f(N))S .

To see that, notice that the diagram below commutes and the composition
in the bottom row is H i

I(f).

N

��

// N ⊗ S
ρ
��

µ◦ρ

&&

H i
I(R)

Hi
I(f)

77

// H i
I(R)⊗R S µ

// H i
I(S)

It follows immediately that (µ ◦ ρ)(N ⊗S) is the S-module generated by the
image of N as claimed.

Finally, the commutativity of the first diagram then implies the lemma.
�

Theorem 1.24 ([Ma12]). Suppose that R is F -pure and m ⊆ R is a max-
imal ideal. Then for every i, H i

m(R) is anti-nilpotent with respect to the
canonical Frobenius action F . Dually, if R is F -finite and F -split, then
(ωR,Φ : F e∗ωR −→ ωR) is an anti-nilpotent Cartier module.

Proof. The local cohomology along m of R and its completion R̂ are
the same, hence we may assume R is complete. But since R is F -pure, and
hence by Appendix A Corollary 2.5 we have that R is F -split.

If H i
m(S) is not anti-nilpotent, then there exists N ⊆ H i

m(R) which is F -
compatible and some z ∈ H i

m(R) such that z /∈ N but F (z) ∈ N . Consider
the descending chain of F -compatible submodules:

(F (N))R ⊇ (F 2(N))R = (F ((F (N))R))R ⊇ (F 3(N))R ⊇ . . .

Since H i
m(R) is Artinian, this chain stabilizes at some N ′ = (F e(N))R and

so N ′ = (F (N ′))R. Note z /∈ N ⊇ N ′ but F e(z) ∈ N ′, and hence replacing
z by an image under some iterated Frobenius if necessary, we may assume
that z /∈ N ′ but F (z) ∈ N ′. Now, since R is F -split, we fix a splitting
R

F−→ R
φ−→ R. We apply Lemma 1.23 and see that H i

m(φ)((F (N ′))R) ⊆ N .
Since F (z) ∈ (F (N ′))R, we see that z = φ(F (z)) ∈ N ′, a contradiction. This
proves the local statement.

Now, notice if all a Cartier module’s localizations are anti-nilpotent, the
Cartier module itself is anti-nilpotent. �
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We have the following (admittedly confusing) definition.

Definition 1.25. A ring of characteristic p > 0 is called F -anti-nilpotent
if for every maximal ideal m ⊆ R, we have that the Frobenius action on
H i

m(R) is anti-nilpotent for every i. If R is F -finite, we say that R is Cartier
anti-nilpotent if each H−i(ω q

R) is Cartier anti-nilpotent.

Certainly if R is F -anti-nilpotent (or F -finite and Cartier anti-nilpotent)
then R is F -injective (0 is always a Cartier/F -submodule) and so we have:
(1.25.1)
(F -split) ⇒ (F -pure) ⇒ (F -anti-nilpotent) ⇒ (Cartier anti-nilpotent) ⇒ (F -injective)

Lemma 1.26. A Noetherian local ring (R,m) of characteristic p > 0 is F -
anti-nilpotent if and only if the completion R̂ is F -anti-nilpotent. Further-
more, if R is F -finite and F -anti-nilpotent then it is Cartier anti-nilpotent.

Proof. The first statement follows since H i
m(R) = H i

m(R̂). The second
follows from Lemma 1.21. �

However, we do not know the answer to the following questions

Question 1.27. (a) If (M,φ) is a finite anti-nilpotent Cartier mod-
ule over an F -finite local ring (R,m) is the completion of M anti-
nilpotent as well?

(b) If R is F -finite and Cartier anti-nilpotent, is it F -anti-nilpotent?
(c) If R is F -anti-nilpotent, are its localizations also? Is the F -anti-

nilpotent locus open?

Throughout this book, we have been considering questions like the fol-
lowing, if (R,m) is local, f ∈ m is a regular element and R/(f) is F -split
(respectively F -injective), then is R F -split (respectively F -injective)? See
for instance Chapter 1 Corollary 7.24 and Chapter 1 Theorem 7.14. The fol-
lowing is among the best results so far towards Chapter 1 Conjecture 7.16.

Theorem 1.28 ([MQ18], cf. [HMS14]). Suppose (R,m) is a Noether-
ian local ring and f ∈ m is a regular element such that R/(f) is F -anti-
nilpotent (for example, if it is F -pure) then R is F -anti-nilpotent and hence
F -injective.

The following proof closely follows those in [HMS14] and [MQ18].
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Proof. Consider the diagram of local cohomology:

. . . // H i
m(R)

F e

��

α // H i
m(R/(f))

F e
R/(x)

��

β
// H i+1

m (R)

(·fp−1)◦F e
��

·f
// H i+1

m (R)

F e

��

// . . .

. . . // H i
m(R) α

// H i
m(R/(f))

β
// H i+1

m (R)
·f
// H i+1

m (R) // . . .

Claim 1.29. In the diagram above, the following equivalent statements hold
for every i:

(a) α is zero.
(b) β is injective.
(c) ·f is surjective.

Proof of claim. We have the following factorization of α for any a.

α : H i
m(R) −→ H i

m(R/(fa))
αa−→ H i

m(R/(f))

Now, we may factor FR/(x) as
(1.29.1)

F eR/(f) : H i
m(R/(f))

F eR−−→ H i
m(R/(fp

e
)) −→ H i

m(R/(fa))
αa−→ H i

m(R/(f))

for some 1 ≤ a ≤ pe where the later are maps are just induced by the
surjections R/(fpe) −→ R/(fa) −→ R/(f).

For each a, the imageNa ofH i
m(R/(fa)) −→ H i

m(R/(f)) is a F -submodule
(and hence an F e-submodule) of H i

m(R/(f)). Choose z ∈ H i
m(R/(f)) and

image z ∈ H i
m((f))/Na. If we choose e ≥ a, we see that the image of z in

H i
m(R/(fa)) via (1.29.1), maps to F e(z) in H i

m(R/(f)). Hence F e(z) ∈ Na.

H i
m(R/(fa))

��

// H i
m(R/(f))

F e

��

(1.29.1)

xx

H i
m(R/(fa)) // H i

m(R/(f))

Thus z ∈ Na as well since Frobenius acts anti-nilpotently on H i
m(R/(f)).

This shows that each

H i
m(R/(fa)) −→ H i

m(R/(f))

is the zero map. Hence we have just shown thatH i
m(R/(fa))

·f−→ H i
m(R/(fa))

surjects for each a.
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Now, consider the direct system . . . −→ R/(fa)
1 7→f−−−→ R/(fa+1) −→ . . . ,

the direct limit of this system is H1
(f)(R) and so

limH i
m(R/(fa)) ∼= H i

m(H1
(f)(R)) ∼= H i+1

m (R)

where the last equality comes from a spectral sequence or composition of
derived functors argument and the fact that H0

(f)(R) = 0 since R is a reg-
ular element (that is, RΓ(f)(R) = H1

(f)(R)[−1]). Applying this limit to the
surjective maps

H i
m(R/(fa))

·f−→ H i
m(R/(fa))

we obtain that H i+1
m (R)

·f−→ H i+1
m (R) surjects for every i. This proves

Claim 1.29. �

We now have short exact sequence for every i > 0:

0 −→ H i
m(R/(f))

β−→ H i+1
m (R)

·f−→ H i+1
m (R) −→ 0

In fact, if we mimic the proof of Chapter 1 Theorem 7.14, we obtain directly
that R is F -injective. Instead, we generalize that proof to prove that R itself
is anti-nilpotent.

Choose N ⊆ H i+1
m (R) an F -stable submodule. Fix L =

⋂
a f

a · N and
observe that f ·L = L, because H i+1

m (R) is finite, this intersection is actually
a finite intersection L = fa · N for some a � 0 and in fact, in a little bit,
we shall see that N = L (but it is a convenient device for now). Notice that
since F (faN) = fap

e
F (N) ⊆ fap

e
N , we have that L is also F -stable. Let

L′ = β−1(L) = L ∩H i
m(R/(f)) ⊆ H i

m(R/(f)) denote its inverse image. L′ is
an F -stable submodule as well.

Claim 1.30. 0 −→ H i
m(R)

/
L′

β−→ H i+1
m (R)

/
L
·f−→ H i+1

m (R)
/
L −→ 0 is exact.

Proof of claim. The only place where this might not be exact is in the
middle. Suppose then that z ∈ H i+1

m (R)
/
L has the property that f · z = 0,

that is f · z ∈ L. But then because f · L = L, there exists y ∈ L so that
f · y = f · z and thus f · (z − y) = 0. Hence there is some element mapping
to z − y, let us call it w ∈ ker(H i+1

m (R)
·f−→ H i+1

m (R)) = H i
m(R/(f)). Since

H i
m(R/(f))

L′
=

H i
m(R/(f))

L ∩H i
m(R/(f))

∼=
H i

m(R/(f)) + L

L

we see that w + y ∈ Hi
m(R/(f))+L

L maps to z. This proves Claim 1.30. �

Suppose now that z ∈ H i+1
m (R)

/
L and that fpe−1F e(z) = 0. Without

loss of generality we can assume that mz = 0 (otherwise replace z with
multiples until this is true). Hence f · z = 0 and z has a preimage in
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H i
m(R)

/
L′ ⊆ H i

m(R)
/
L. But Frobenius acts injectively there and so z = 0.

This proves that fpe−1 ◦ F is injective on H i+1
m (R)

/
L.

We finally show that N = L which will complete the proof. Notice

L = fp
e−1 · N for some e � 0. The map N/L

(·fpe−1)◦F−−−−−−−→ H i+1
m (R)

/
L is

injective because it is the restriction of injective map to a smaller domain.
But fpe−1F (N) ⊆ fp

e−1N = L and so our injective map is zero. Thus
N/L = 0 and so N = L. �

Remark 1.31. An element f such that H i
m(R)

·f−→ H i
m(R) is surjective for

every i is called a surjective element. The key part of the above proof
was showing that if R/(f) is anti-nilpotent, then f is a surjective element
for R. For a more detailed illumination of the theory of such elements, see
[MQ18].

1.4. Exercises.

Exercise 1.1. Suppose that (M,φ) is a Cartier module and Q ⊆ R is a
finitely generated ideal. Show that

ΓQ(M) = {x ∈M | Qmx = 0 for some m > 0}
is Cartier submodule of M .

Exercise 1.2. Suppose (N,φ) is a module with an e-iterated Frobenius
action φ. Show that (N,φ) is anti-nilpotent if and only if for each z ∈ N ,
we have that z ∈ (φ(z), φ2(z), . . . )R.

Exercise 1.3. Suppose (R,m) is a Noetherian local ring and E is the injec-
tive hull of the residue field R/m, show that any injective pe-linear map F
on E is anti-nilpotent.

Hint: Reduce to the case that R is complete. Suppose N ⊆ E is an F -
submodule and z ∈ E is such that F (z) ∈ N . For any a ∈ AnnRN and
notice that aF (z) = 0. Use the injectivity to deduce that az = 0 as well.

Remark 1.32. Exercise 1.3, which is a dual version of Lemma 1.22 was
pointed out to us by Neil Epstein.

Exercise 1.4. Consider the ring R = Fp[x, y]/(y2 − x2(x − 1)) defining
a nodal singularity, and observe the completion at (x, y) is isomorphic to
FpJu, vK/(uv) =: R̂, see [Har77, Chapter I, Section 4].

Consider the Φ ∈ HomR(F∗R,R) a generating homomorphism. Viewing
Φ as a p−1-linear map, show that (R,Φ) is an F -pure Cartier module and
that (m,Φ|m) is a “simple” Cartier module. However, show that the same
module under completion is not simple. Likewise show that the Matlis dual
(m∨, F ) is not simple as a module with Frobenius action.
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2. Finiteness properties of Cartier modules

Cartier modules have remarkably strong finiteness properties. The first
fundamental finiteness result for Cartier modules is as follows, and observe
it is a generalization of Chapter 4 Theorem 6.18 from rings to modules.

As in the previous section, we omit the F∗s frequently working with p−e-
linear maps instead of R-linear maps. We will try to avoid confusion by
referring to φ : M −→M explicitly as a p−e-linear map in such cases.

Suppose (M,φ) is a Cartier module where φ is a p−e-linear map. Notice
that for every integer n > 0, we obtain a p−ne-linear map

(2.0.1) φn : M
φ−→M

φ−→ · · · φ−→M︸ ︷︷ ︸
n−times

.

Certainly we have the chain of containments

· · · ⊆ φn+1(M) ⊆ φn(M) ⊆ · · · ⊆ φ(M) ⊆M.

Of course these containments might all be equality if M = R and φ is
a Frobenius splitting, but in general this descending chain of submodules
always stabilizes if M is Noetherian. We actually proved this a slightly
different context in Chapter 4 Theorem 6.18 so we simply recall the result.

Theorem 2.1. Suppose (M,φ) is a finite Cartier module, with respect to a
p−e-linear map φ : M −→ M , over a (not necessarily F -finite) Noetherian
ring R. Then the descending chain of submodules

M ⊇ φ(M) ⊇ φ2(M) ⊇ . . .

eventually stabilizes. In other words there exists an n0 such that φn(M) =
φn0(M) for all n ≥ n0.

This stabilization is one of the foundational theorems in the theory of F -
singularities. Versions of it were due to Hartshorne-Speiser, Lyubeznik and
Gabber it is sometimes called HSLG stabilization [HS77, Lyu97, Gab04].

Definition 2.2. The smallest n such that φn+1(M) = φn(M) is called the
HSLG-number. Dually, if (N,F ) is a module with a Frobenius action,
then smallest n such that ker(Fn) = ker(Fn+1) is called the HSL-number.

Notice that if φn+1(M) = φn(M), then by applying φ to both sides we
have φn+d(M) = φn(M) for all d > 0.

Definition 2.3. For a Cartier module (M,φ), with p−e-linear φ, the stable
image φn(M) for n� 0 is denoted by M = σ(M) = σ(M,φ).
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Example 2.4. Suppose R = Z/3Z[x, y, z], let M = R and Φ : M −→ M
be the p−1-linear map which sends the monomial x2y2z2 7→ 1 and sends the
other monomials xiyjzk 7→ 0, 0 ≤ i, j, k ≤ 2. This is exactly the generating
map Chapter 2 Remark 1.4 (although we are suppressing the F∗ notation in
this example).

Next let f = x4+y4+z4 and consider the map φ( ) = Φ(f3−1 · ). This
is corresponds to the generating map of Hom(F∗R/(f), R/(f)) via Chapter 4
Theorem 2.1. We want to understand the image of φ. First we expand

f2 = x8 + 2x4y4 + 2x4z4 + y8 + 2y4z4 + z8.

We need to understand what Φ does to f2 and multiples of f2. As an R-
module F∗(f2) is generated by xiyjzkf2 for 0 ≤ i, j, k ≤ 2 = p − 1. Hence
we see that

Image(φ) =
∑

0≤i,j,k≤2

(Φ(xiyjzkf2)).

This computation is summarized in the following table, only the products
with non-zero image are included.

Monomial Product Image
y2z2 x8y2z2 + 2x4y6z2 + 2x4y2z6 + y10z2 + 2y6z6 + y2z10 x2

xyz2 x9yz2 + 2x5y5z2 + 2x5yz6 + xy9z2 + 2xy5z6 + xyz10 2xy
xy2z x9y2z + 2x5y6z + 2x5y2z5 + xy10z + 2xy6z5 + xy2z9 2xz
x2z2 x10z2 + 2x6y4z2 + 2x6z6 + x2y8z2 + 2x2y4z6 + x2z10 y2

x2yz x10yz + 2x6y5z + 2x6yz5 + x2y9z + 2x2y5z5 + x2yz9 2yz
x2y2 x10y2 + 2x6y6 + 2x6y2z4 + x2y10 + 2x2y6z4 + x2y2z8 z2

and so φ(M) = (x2, 2xy, 2xz, y2, 2yz, z2)·M . Let us explain the computation
done in the table in slightly more detail. In the first row, when we multiply
f2 by y2z2. The first (bold) monomial term is x8y2z2 = (x2)3(x2y2z2) and
then Φ of that monomial is x2 ·1 = x2. The other monomials in the first row
are sent to zero. The other rows are similar.

But now we must also compute φ2(M). However, each entry in the left
“Monomial” column is already an element of (x2, 2xy, 2xz, y2, 2yz, z2) and so
we see that φ2(M) = φ((x2, 2xy, 2xz, y2, 2yz, z2)·M) = (x2, 2xy, 2xz, y2, 2yz, z2)·
M .

Definition 2.5 ([BB11]). A Cartier module (M,φ) is called nilpotent if
φi(M) = 0 for some i. It is called locally nilpotent if it is a union of its
nilpotent Cartier submodules.

We have the following important observation whose proof is immediate
from the definition.
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Proposition 2.6 ([BB11]). If M is a finite Cartier module over a Noe-
therian ring R, then the module M/M is nilpotent, furthermore M is the
smallest Cartier submodule with this property.

In other words, M/M is the maximal nilpotent quotient of M .

Of course, we can also consider nilpotent submodules.

Proposition 2.7. Suppose R is Noetherian and (M,φ) is a finite Cartier
module. Then there existsMnil ⊆M the maximum nilpotent Cartier submod-
ule. Furthermore, we have that M/Mnil has no nilpotent Cartier submodules.

Proof. Since a sum of nilpotent Cartier submodules is nilpotent, the
existence of Mnil is clear. If N ⊆M is such that N/(Mnil ∩N) is nilpotent,
then φn(N) ⊆Mnil for some n. Hence N is itself nilpotent and so N ⊆Mnil

and we have proven the proposition. �

2.1. Adjoint Cartier module structures. Blickle and Böckle proved
several important finiteness results for Cartier modules which we now attack.
First however we need to describe an adjoint approach to Cartier modules.

Given any Cartier module (M,φ), we can view φ ∈ HomR(F e∗M,M).
But we have natural isomorphisms

HomR(F e∗M,M)
∼= HomR(F e∗M ⊗F e∗R F

e
∗R,M)

∼= HomF e∗R(F e∗M,HomR(F e∗R,M))

= F e∗ HomR(M, (F e)[M).

Recall that for any map of rings f : R −→ S and R-module, we have f [M =
HomR(S,M) as an the S-module . In our case, S = F e∗R, which is abstractly
isomorphic to R. Hence we view (F e)[M as an R-module.

Thus the choice of a φ is the same data as a choice of κ = κφ ∈
HomR(M, (F e)[M). Notice that since (F e)[ ◦ (F d)[ = (F e+d)[ one can com-
pose

M
κ−→ (F e)[M

(F e)[κ−−−−→ (F 2e)[M

and obtain the map we call κ2. More generally, we define κi = ((F e)[κi−1)◦κ.
If we are keeping track for F e∗ structures, then we can identify κi with an
element of HomF ie∗ R

(
F ie∗ M,HomR(F ie∗ R,M)

)
.

Lemma 2.8. If a p−e-linear map φ : M −→ M is adjoint to κφ : M −→
(F e)[M (in the sense above) then φi is adjoint to κi, in other words κiφ = κφi

(also defined as above).
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Proof. This is left as an exercise to the reader in Exercise 2.5. �

Example 2.9 (The Cartier module structure of F [M). Applying F [ to κ
corresponding to φ, we obtain the following.

F [M
F [κ−−→ F [(F e)[M ∼= (F e+1)[M ∼= (F e)[F [M

which implies immediately that F [M is a Cartier module.

Explicitly, from the non-adjoint perspective, we also can see this struc-
ture as follows. Apply HomR(F∗R, •) to the map φ : F e∗M −→M to obtain

HomR(F∗R,F
e
∗M) −→ HomR(F∗R,M).

Now, we have the map of rings F∗R −→ F e+1
∗ R and so we obtain the com-

position:

HomF e∗R(F e+1
∗ R,F e∗M) ⊆ HomR(F e+1

∗ R,F e∗M) −→ HomR(F∗R,F
e
∗M) −→ HomR(F∗R,M)

where the first inclusion exists because every F e∗R-module homomorphism is
anR-module homomorphism. Now, HomF e∗R(F e+1

∗ R,F e∗M) ∼= F e∗ HomR(F∗R,M)
and hence we obtain our Cartier module structure on HomR(F∗R,M), which
we identify with F [M .

We have the following simple but crucial observation.

Lemma 2.10. Suppose that (L, φ) is a Cartier module. Then φi = 0 if and
only if the adjoint map κφi = κiφ is zero.

Proof. This follows from the isomorphism:

HomR(F ie∗ L,L) ∼= F ei∗ HomR(L, (F ie)[L).

�

Besides yielding a straightforward way to see the Cartier-module struc-
ture on F [M as in Example 2.9, the adjoint approach has another large
advantage.

Say that we would like to identify Mnil ⊆M . The kernel of F e∗M −→M
is not an F e∗R-submodule, but only an R-submodule, and so it is unlikely
to be a Cartier submodule. However, the kernel of the adjoint κ is already
an R-module. Furthermore, if Ki = kerκi, then since we can factor κi+1 =
(F ei)[κ ◦ κi, we see that

(2.10.1) Ki = kerκi ⊆ Ki+1 = kerκi+1.
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On the other hand, from the diagram:

Ki+1
//

� _

��

κ(Ki+1)
� _

��

// κi+1(Ki+1) = 0
� _

��

M κ
// (F e)[M

(F e)[κi
// (F ie)[M

We see that κ(Ki+1) ⊆ ker
(
(F e)[κi

)
. Since (F e)[ is left exact, we have that

ker
(
(F e)[κi

)
= (F e)[(kerκi) = (F e)[Ki. Thus combining this with (2.10.1),

we see that:

(2.10.2) κ(Ki+1) ⊆ (F e)[Ki ⊆ (F e)[Ki+1.

Thus we can view κ|Ki+1 ∈ HomR(Ki+1, (F
e)[Ki+1). In other words, we

have just shown the following.

Theorem 2.11. If (M,φ) is a Cartier module with adjoint structural map
κ : M −→ (F e)[M , then Ki = kerκi ⊆M is a Cartier submodule of M .

We thus also obtain the following.

Proposition 2.12. Suppose that R is Noetherian and (M,φ) is a finite
Cartier module with adjoint action κ as above. Then Mnil =

⋃
i kerκi is the

maximal nilpotent Cartier submodule of M .

Proof. We already know each kerκi is a Cartier submodule, and by
Lemma 2.10, we see it is nilpotent. On the other hand, if N ⊆ M is a
Cartier submodule and φi(N) = 0, then κi(N) = 0 as well and so N ⊆ Ki.
This completes the proof. �

We also obtain the following way to detect if Mnil = 0.

Corollary 2.13. Suppose R is Noetherian and (M,φ) is a finite Cartier
module and κ is the adjoint map as above. Then Mnil = 0 if and only if κ is
injective.

Proof. If Mnil = 0 then certainly κ is injective. Conversely, if κ is
injective, then so is (F e)[κ (since (F e)[ is left exact), and hence so is κ2 as
it is a composition of injective maps. Continuing in this way shows that κi
injects for all i and hence Mnil = 0 by Proposition 2.12. �

2.2. Descending chains of Cartier submodules. Our next goal is to
show that finite Cartier modules satisfy the DCC property up to nilpotence.
First we need the following which should be compared to the locus a test
ideal cuts out in the Spec of a ring.
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Proposition 2.14. Let R be an F -finite ring and (M,C) a finite F -pure
Cartier module. Then there exists a closed set Y = V (I) ⊆ X = SpecR
such that:

(a) X \ Y is dense.
(b) For all Cartier-module quotients M/N whose support also does not

contain an irreducible component of X we have that Supp(M/N) ⊆
Y and that IM ⊆ N .

Proof. We first show that we may assume that X is irreducible. In-
deed, if the proposition is true for irreducible X, then let {Xj} denote the
irreducible components of X and let Uj be an open dense affine1 subset of
{z ∈ Xj | z /∈ Xi, i 6= j}. Obviously

⋃
j Uj =

∐
j Uj is a dense affine open set

of X and so we may replace X by
⋃
j Uj . But then X is the disjoint union

of its irreducible components and the result follows.

We now assume that X is irreducible and in fact we can assume that X
is reduced since M has radical annihilator by Lemma 1.5. Next we claim
that we may assume that Mnil = 0.

To show this claim, suppose we can prove the proposition for M =
M/Mnil, a Cartier submodule which has no nilpotent submodules. Choose
Y a subset for M . Suppose that N ⊆ M is a Cartier submodule such that
Supp(M/N) does not contain all of X and is not contained in Y . Choose a
point x ∈ X \ Y a generic point of the support of M/N and replace X by
SpecOX,x, so that Y = ∅ and replace M and N by Mx and Nx respectively.
It follows that M/(Mnil + N) ∼= M/(N/(N ∩ Mnil)) must be zero since
M has no non-trivial quotients on Y . In other words Mnil + N = M . It
immediately follows that M/N is nilpotent, which is impossible since M/N
is F -pure (since M is). Hence we can replace M by M .

We let U = SpecR[f−1] ⊆ X be an open affine set where

(1) U ⊆ Xreg and F e∗R[f−1] is a free R[f−1]-module.
(2) M |U is a free R[f−1]-module.
(3) κ|U : M |U −→ (F e)[M |U is surjective.

and set Y = X \ U . Only (3) might be non-obvious, indeed, κ is already
injective since Mnil = 0. But (F e)[M |U is also locally free, of the same
rank as M |U , and so since κ|U is generically injective, it is also generically
surjective and so we can satisfy (3) shrinking U further if necessary.

1We only assume affine because so far we are talking about Cartier modules over a
ring, and not on schemes.
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Suppose now that N ⊆M is a Cartier submodule such that Supp(M/N)
does not contain X and is not contained in Y . Localizing at the generic point
η of Supp(M/N) and so replacingX by SpecOX,η = SpecR allows to assume
that U = X, Y = ∅ and that M/N is a finite length F -pure Cartier module.
Consider the diagram

M
κM //

α

��

(F e)[M

β
��

M/N κM/N
// (F e)[(M/N)

Note β is surjective since F e∗R is free. Thus κM/N is also surjective since κM
is. Hence `R(M/N) ≥ `R

(
(F e)[M/N

)
where again `R( ) is the R-module

length. We claim that this is impossible for finite length modules. Indeed
since (F e)[ is exact (since F e∗R is free) by taking a Jordan-Hölder resolution
of M , it suffices to show that `R

(
(F e)[(R/m)

)
> 1. Note that

`R
(
(F e)[R/m

)
= `F e∗R(HomR(F e∗R,R/m))

= `F e∗R
(
HomR/m(F e∗ (R/m[pe]), R/m)

)
= `F e∗R

(
F e∗ (R/m[pe])

)
> 1

where the final inequality holds because R has dimension ≥ 1. The fact
that IM ⊆ N follows immediately from the fact that AnnR(M/N) is radical
(since M/N is F -pure, since M is). �

We come to our promised theorem.

Theorem 2.15 ([BB11, Proposition 4.6]). Suppose thatM is a finite Cartier
module over an F -finite Noetherian ring R. Then any descending chain of
Cartier submodules

(2.15.1) M = M0 ⊇M1 ⊇M2 ⊇ . . .
stabilizes up to nilpotence, meaning that for all i� 0 the quotients Mi/Mi+1

are nilpotent.

Proof. First consider the chain

(2.15.2) M = M0 ⊇M1 ⊇M2 ⊇ . . .
and notice that Mi/Mi+1 is nilpotent if and only if φn(Mi) ⊆ Mi+1 for all
n � 0 but then φn(Mi) = Mi+1 for all n � 0 as well (for even larger n).
Hence Mi/Mi+1 is nilpotent if and only if Mi = Mi+1. In particular (2.15.1)
stabilizes up to nilpotence if and only if (2.15.2) honestly stabilizes. Hence
we replace (2.15.1) by (2.15.2) and assume that each Mi is F -pure. Thus we
can also assume that R is reduced.
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We now proceed on the induction of of the dimension of R (the base case
of dimR = 0 being clear since then M is Artinian). Note that each Mi has
finite rank on each irreducible component of SpecR and so these finite ranks
must eventually stabilize, say for all i ≥ i0. Let Y = V (J) ⊆ SpecR denote
the closed set for Mi0 coming from Proposition 2.14 so that for any i ≥ i0
we have JMi0 ⊆ Mi. By truncating (2.15.1) before i0 we may henceforth
assume that JM ⊆Mi for all i.

Consider M ′ =
∑

i≥0 φ
i(JM), the unique smallest Cartier module con-

taining JM and observe M ′ ⊆ Mi for all i ≥ 0. But now (2.15.1) stabilizes
if and only if

(2.15.3) M/M ′ = M0/M
′ ⊇M1/M

′ ⊇M2/M
′ ⊇ . . .

stabilizes. Hence we can replace R by a quotient R/J since Supp(M/M ′) ⊆
V (I). Our induction hypothesis then completes the proof. �

As a consequence, we obtain the following Jordan-Hölder theory.

Corollary 2.16 (Jordan-Hölder for Cartier modules). Suppose R is an F -
finite Noetherian ring and M is a finite Cartier module. Then there exists a
chain of Cartier submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mt = M = σ(M)

where each submodule Mi is F -pure, and each Qi+1 = Mi+1/Mi is simple up
to nilpotence (that is, every proper Cartier submodule of Qi+1 is contained
in (Qi+1)nil). Furthermore, the length of any such chain is constant and the
factors

Qi+1

(Qi+1)nil

are unique up to ordering and isomorphism in any such chain.

Proof. The proof is essentially the same as Jordan-Hölder decomposi-
tion for finite length modules, and so follows from Theorem 2.15. We leave
it as an exercise to the reader in Exercise 2.3. �

Definition 2.17. We say the length of a Cartier module (M,φ) is the
number t appearing in a Jordan-Hölder decomposition of Cartier modules as
in Corollary 2.16.

2.3. Finiteness properties of morphisms between Cartier mod-
ules and consequences. The main goal of this section is to show that the
set of Cartier-module homomorphisms between two Cartier modules is a fi-
nite set. Once this is achieved, we obtain that there are finitely many Cartier
submodules up to nilpotence in Theorem 2.23. We begin with an example.
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Example 2.18. Suppose R is an F -finite integral domain. Suppose M is a
torsion free rank-1 R-module with p−e-linear maps φ : M −→ M making it
into a Cartier module. Then we claim that HomCartier(M,M) is a finite set.

We observe that an R-module map α : M −→ M is multiplication by
some element λ ∈ R. If α is also map of Cartier modules we then have the
following commutative diagram:

M
α //

φ
��

M

φ
��

M α
// M.

Hence φ(α(m)) = α(φ(m)) for allm ∈M . In other words φ(λm) = λφ(m) =
φ(λp

e
m) for all m ∈ M . Now consider Homp−e(M,M) as an R-module by

pre-multiplication (in other words, consider HomR(F e∗M,M) as an F e∗R-
module). We see that HomR(M,M) with this R-action is still a rank-1
torsion free R-module and so if the two elements φ(λ · ) = φ(λp

e · ) are
equal, then λ = λp

e and so λ ∈ Fpe . This proves that HomCartier(M,M) ⊆
Fpe and is finite as claimed.

We next consider what happens when R = k is a field.

Theorem 2.19. Suppose k is an F -finite field and (M,φ) and (N,ψ) are
finite Cartier modules over k (in particular M and N are finite dimensional
k-vector spaces). Then HomCartier(M,N) is a finite dimensional Fp-vector
space.

Proof. Suppose m = rankkM and n = rankkN . This is a linear
algebra problem.

�

Now our goal is to generalize these results by reducing to the case where
R is a field. We start by considering what occurs when (M,φ) is a simple
Cartier module; meaning thatM has exactly one proper Cartier submodule,
0.

Lemma 2.20. Suppose R is Noetherian and (M,φ) is a simple Cartier mod-
ule, then M has exactly one associated prime.

Proof. Suppose Q is an associated prime. There exists some x ∈ M
with AnnR x = Q and so the submodule ΓQ(M) ⊆M is nonzero. It is also a
Cartier submodule by Exercise 1.1 and thus ΓQ(M) = M since M is simple.
If Q′ = AnnR y is another associated prime then we see that Qmy = 0 for
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some m and thus Qm ⊆ Q′ and so taking radicals Q ⊆ Q′. Reversing roles
shows that Q′ ⊆ Q and completes the proof. �

Lemma 2.21. Suppose R is Noetherian and (M,φ) is a finite simple nilpo-
tent Cartier module. Then φ = 0 andM is a simple R-module (in particular,
M = R/m for some maximal ideal m ∈ m- SpecR).

Proof. Let κ : M −→ (F e)[(R) denote the adjoint map. EachK = kerκ
is a Cartier submodule by Theorem 2.11. Since φ is nilpotent, we have that
κ cannot be injective by Corollary 2.13 and hence K = M . Thus φ = 0, and
the Cartier submodules of M are simply the ordinary submodules and so M
must be simple as an R-module as well. �

Using the above, we can obtain the following.

Theorem 2.22. If (M,φ) and (N,ψ) are Cartier modules with respect to
p−e-linear maps φ, ψ with M F -pure and Nnil = 0, then HomCartier(M,N)
is a finite dimensional vector space over Fpe and in particular a finite set.

Proof. Since φ(M) = M , for any f : M −→ N a map of Cartier
modules, we have that ψ(f(M)) = f(M). Hence f(M) ⊆ N and so we may
replace N by N and so assume that N is F -pure. Likewise since f(Mnil) ⊆
Nnil = 0, we may replace M by M/Mnil and so assume that Mnil = 0. In
other words, we may assume that both M,N are F -pure and both Mnil = 0
and Nnil = 0.

Let s, t be the Cartier module lengths of M and N respectively. We
proceed by induction on the sum s+ t. If M or N are zero, there is nothing
to do and so we assume s, t > 0. We begin with the base case where s, t = 1,
and so M,N are simple. In this case any non-zero map f : M −→ N is
an isomorphism (since M and N are simple) and so M,N have the same
unique associated prime Q by Lemma 2.20. We may replace R by R/Q.
Furthermore, sinceM andN are then torsion free, any mapM −→ N induces
a unique map on the localizations MQ −→ NQ. But now RQ is a field, and
so we can apply Theorem 2.19. This proves the base case.

Suppose first that s > 1 and take a decomposition 0 = M0 ⊆ M1 ⊆
. . . ⊆Ms = M = M of Cartier modules with each Mi F -pure and such that
the quotients Mi+1/Mi are simple up to nilpotence. We have the following
diagram with exact bottom row:

0 // HomCartier(M/M1, N)� _

��

// HomCartier(M,N) //
� _

��

HomCartier(M1, N)� _

��

0 // Hom(M/M1, N) // Hom(M,N) // Hom(M1, N).
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We also claim that the top row is exact. Indeed, if M −→ N is a map of
Cartier modules that restricts to the zero map M1 −→ N , then it factors
through some M/M1 −→ N .

Notice that HomCartier(M1, N) is finite by induction. As above, since
Nnil = 0, if P = M/M1 then Hom(P,N) = Hom(P/Pnil, N) and so Hom(M/M1, N)
is also finite by induction. Hence the finiteness of HomCartier(M,N) follows.

Suppose t > 1 and a decomposition 0 = N0 ⊆ N1 ⊆ . . . ⊆ Nt = N = N ,
of F -pure Cartier modules with simple quotients up to nilpotence. Let Q =
N/N1 and fix N ′ to be the preimage in N of Qnil. Then N ′ ⊇ N1, N ′ = N1,
and N/N ′ is no nilpotent submodules. Form the diagram

0 // HomCartier(M,N ′)� _

��

// HomCartier(M,N)� _

��

// HomCartier(M,N/N ′)� _

��

0 // Hom(M,N ′) // Hom(M,N) // Hom(M,N/N ′)

As before, it is straightforward to see the top row is exact. We see that
HomCartier(M,N ′) is finite by induction. Furthermore, since (N/N ′)nil = 0,
we see that HomCartier(M,N/N ′) is also finite. Hence HomCartier(M,N) is
finite as well. �

Theorem 2.23. If (M,φ) is a finite Cartier module, then there are finitely
many F -pure Cartier submodules of (M,φ).

Proof. We consider a Jordan-Hölder decomposition 0 = M0 ⊆ M1 ⊆
. . . ⊆Mt = M = σ(M) of (M,φ) via F -pure Cartier submodules as in Corol-
lary 2.16. The quotients {Qj/(Qj)nil} which are simple Cartier modules, are
independent of the decomposition. Of course every F -pure simple Cartier
submodule N of M is one of these quotients Qj and since HomCart(N,M)
is a finite set, there are only finitely many submodules of M isomorphic to
N . Thus there are finitely many simple F -pure Cartier submodules of M .

We thus proceed by induction on the length ofM = σ(M) in the category
of F -pure Cartier modules, and N1, . . . , Nt the finitely many simple F -pure
Cartier submodules of M . By induction, there are finitely many F -pure
Cartier modules in each of the M/Nj . These correspond bijectively to the
F -pure Cartier submodules of M containing Nj . Since every F -pure Cartier
submodule of M certainly contains one of the Nj , we are done. �

2.4. Exercises.

Exercise 2.1. SupposeR is a Noetherian F -finite ring such that HomR(F e∗R,R) ∼=
F e∗R. Show that the map φ : F e∗R

∼= HomR(F e∗R,R) −→ R induced by
evaluation-at-1 generates HomR(F e∗R,R) as an R-module.
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Exercise 2.2. Suppose R is Noetherian and (M,φ) is a finite Cartier mod-
ule. Show that M is nilpotent if and only if it is locally nilpotent.

Exercise 2.3. Prove Jordan-Hölder for Cartier modules as in Corollary 2.16.

Exercise 2.4. Suppose R is an Noetherian ring and (M,φ) is a Cartier
module. Suppose that R −→ S is a ring homomorphism. Give Hom(S,M) a
structure of a Cartier module over S.

Hint: We did this for the Frobenius map in section Example 2.9.

Exercise 2.5. Prove Lemma 2.8.

Exercise 2.6. Consider R = F52 [x, y, z], let m = (x, y, z), f = x4 + y4 + z4

and set φ = f5−1 · Φ similar to Example 2.4 where Φ corresponds to a
generating homomorphism of HomR(F∗R,R). Let λ ∈ F52 \ F5 and show
that

m2 + (x+ λy)

is an (R,φ2) Cartier-submodule but that it is not an (R,φ)-Cartier submod-
ule. More generally, for any λ ∈ F5e \ F5, we have that m2 + (x+ λy) is an
(M,φe) Cartier submodule but not a (M,φ) Cartier submodule.

3. Cartier algebras and test modules

We have seen various notions of singularities of pairs (R,∆) and (R, at).
We defined these pairs by only considering special maps φ : F e∗R −→ R (or
equivalently considering a p−e-linear map). If one is considering a set of such
maps Ce ⊆ Homp−e(R,R) for various e, there is one property of such maps
has been implicitly used more than any other.

(Composition) If φ ∈ Ce and ψ ∈ Cd, then φ ◦ ψ ∈ Ce+f .

For example if R −→ F∗R is split with a fixed splitting φ, then φ2 = φ◦(F∗φ)
splits R −→ F 2

∗R. Blickle pointed out the following general framework for
thinking about such actions on modules in general.

Definition 3.1 ([Bli13, Sch11]). Suppose R is a ring of characteristic
p > 0. A Cartier algebra (over R) is a (typically non-commutative)
graded ring C =

⊕
e≥0 Ce such that r · φe = φe · rp

e for all r ∈ R and where
C0 = R. Note that a Cartier algebra is not an R-algebra as R is typically
not central, although it is an Fp-algebra.

A principal Cartier algebra is a Cartier algebra that is generated as
a ring by C0 and some fixed φ ∈ Ce. In this case we write C = C0(φ).
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Typically, we have that Ce ⊆
⊕

e≥0 Homp−e(R,R) (where the ring mul-
tiplication φ · ψ = φ ◦ ψ is composition as in Section 3), but this is not
always the case. Indeed, the choice of a graded ring homomorphism C −→⊕

e≥0 Homp−e(R,R) is the same as the choice of C -module structure on R.

Example 3.2 (Cartier algebras we have already seen). If R is an F -finite
ring, then C =

⊕
e≥0 Homp−e(R,R) is a Cartier algebra, called the full

Cartier algebra. This is written as CR =
⊕

CR
e .

Ideal pairs. Next suppose that a is an ideal and t ≥ 0 is a real number.
For each e consider

(F e∗ a
dt(pe−1)e) ·HomR(F e∗R,R) ⊆ HomR(F e∗R,R).

Viewing this as p−e-linear maps, we are considering sums of φ ∈ Homp−e(R,R)

that are pre-composed by multiplication an element of adt(pe−1)e. Hence we
have the corresponding

C at

e ⊆ CR
e = Homp−e(R,R).

We see that
C at :=

⊕
e≥0

C at

e

is a Cartier algebra. To see it is closed under composition one must observe
that

pfdt(pe − 1)e+ dt(pf − 1)e ≥ dt(pe+f − 1)e
which implies that

(adt(p
e−1))[pf ]adt(p

f−1)e ⊆ adt(p
e+f−1)e

and hence that
C at

e · C at

f ⊆ C at

e+f .

Divisor pairs. Finally, suppose that R is F -finite and normal and ∆ ≥ 0
is a Q-divisor on X = SpecR. We set

C ∆
e := Homp−e(R(d(pe − 1)∆e)) ⊆ CR

e .

In other words, we are considering maps φ ∈ HomR(F e∗R,R) such that ∆φ ≥
∆ just as in Chapter 5 Setting 5.17 (notice that in this chapter, we use p−e-
linear maps instead of R-linear maps F e∗R −→ R, but as we have seen this is
only a notation distinction).

It follows from Chapter 5 Lemma 2.3 (or a computation similar to the
ideal case above) that C ∆

e ·C ∆
f ⊆ C ∆

e+f and hence we have a Cartier algebra:

C ∆ =
⊕
e≥0

C ∆
e .
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Thus another natural property one might desire for maps on a ring, we
have also sometimes restricted them. For instance if R −→ F 2

∗R splits, then
we restrict that splitting to F∗R to see that R −→ F∗R splits as well. This is
only reasonable when the module we are working with has a canonical map
M −→ F∗M , but that does happen often enough.

(Restriction) If φ ∈ Ce and f ≤ e, then φ|
F f∗ R

: F f∗ R −→ F e∗R
φ−→ R

is in Cd (here F f∗ R −→ F e∗R is identified with the e − f -iterated
Frobenius).

Unfortunately, when dealing with Cartier algebras defined by pairs, re-
striction and composition are not always compatible, as the next example
shows.

Example 3.3 (Restriction vs composition). Suppose R = Fp[x] is an F -
finite ring, x ∈ R and t ≥ 0. We consider the Cartier algebra C xt

e . Let us
explore what it means for this collection of p−e-linear maps to satisfy the
restriction condition Section 3. Let Φe ∈ Homp−e(R,R) denote a generating
homomorphism, choose φ ∈ C xt

e and write

φ(−) = Φe(xdt(p
e−1)ev · −)

for some v ∈ R. For any f ≤ e, we have the composition (the restriction
map)

ψ : R
F e−f // R

φ

99
·xdt(pe−1)ev // R

Φ // R

and we are asking whether or not ψ ∈ C xt

f . We can write this composition ψ
as Φf (w ·−). We see that w is a multiple of xdt(pf−1)e if and only if ψ ∈ C xt

f .
This is equivalent to requiring that wpe−f is a multiple of (xdt(p

f−1)e)p
e−f

=

xp
e−f dt(pf−1)e. Now, we already know that wpe−f is a multiple of xdt(pe−1)e.

Thus we are reduced to asking whether being a multiple of xdt(pe−1)e implies
you are a multiple of xpe−f dt(pf−1)e, that is, whether or not

dt(pe − 1)e ≥ pe−fdt(pf − 1)e.
Indeed, this does not always happen, if t(pf − 1) is an integer, this follows.
But in general, it is not true. For instance if f = 1, e = 2 and t = 1/(pe−1),
then dt(pe − 1)e = 1 but pe−fdt(pf − 1)e = p · 1 = p.

Perhaps though there is a different choice of rounding. Indeed, if one
sets Dxt,e ⊆ Homp−e(R,R) to be the maps obtained by pre-composition
with multiplication by xbtpec, then we see that

btpec ≥ pe−fbtpfc
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for any e > f . Hence φ ∈ Dxt,e restricts to ψ ∈ Dxt,f .

It is worth noticing that if 0 < t < 1 and (pe − 1)t is an integer, then
btpec = dt(pe − 1)e and so Dxt,e = C xt

e .

Indeed, the same composition works for divisors. For R a normal domain
and ∆ ≥ 0 a Q-divisor, set

D∆,e = Image
(

Homp−e(R(btpe∆c), R) −→ Homp−e(R,R)
)
.

We obtain that elements of D∆,e restrict to D∆,f , indeed, this may be
checked in codimension 1 at DVRs where the computation is the same as
the above.

In general, D∆,e and C ∆,e are incomparable and D∆ is setup to be closed
under restriction while C ∆ is closed under composition.

In summary:

◦ The choice of rounding dt(pe − 1)e is the natural choice for compo-
sition of maps.
◦ The choice of rounding btpec is the natural choice for restriction of
maps.

3.1. Modules of a Cartier algebra.

Definition 3.4 ([Bli13]). Suppose that R is a ring and C is a Cartier
algebra. We say that M is a Cartier module (of C ) or simply a C -
module if M is a left C -module. An R-submodule N ⊆ M is called a
Cartier submodule if the restricted action makes N into left C -module.

Example 3.5 (Test ideals as Cartier submodules). If R is a ring, and C is
a Cartier-module, then R is a C -module. Indeed for each φ ∈ Ce and x ∈ R,
then φ · x = φ(x) ∈ R.

Next suppose that R is F -finite and reduced. Then the test ideal τ(R)
is an C -module, for any C . Indeed, it suffices to show that τ(R) is an CR-
module where CR is the full Cartier algebra. But in fact, by definition, τ(R)
is the smallest ideal J ⊆ R, not contained in any minimal prime of R, such
that φ(J) ⊆ J for all homogeneous φ ∈ CR. Hence τ(R) is the smallest ideal
not contained in any minimal prime of R that is also a CR-submodule of R.

If R is F -finite normal domain and ∆ ≥ 0 is a Q-divisor, then we likewise
have that τ(R,∆) is the smallest non-zero ideal that is a C ∆-submodule of
R.
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Likewise if R is a regular domain, then using the notation from Chapter 4
Section 5, it is not difficult to see that τ(R, at) is a C at-submodule of R
(indeed, the smallest non-zero C at-module).

Finally, assuming R is F -finite and reduced, suppose that φ ∈ CR is
a homogeneous element (of degree e). Let R(φ) ⊆ C denote the principal
Cartier algebra generated by φ. Then we immediately see that τ(R,φ) =
τ(R,∆φ) is the smallest non-zero R(φ)-submodule of R.

Observation 3.6. Suppose R is a ring of characteristic p > 0 and C is a
Cartier algebra. IfW ⊆ R is a multiplicative set andM is a C -module, then
W−1M is an C -module as well. Indeed, if φ ∈ Ce and x/wn ∈W−1M , then
we may define

φ · (x/w) = φ · (xwpe−1/wp
e
) = (φ(xwp

e−1))/w.

Finally, we consider what happens when a C -moduleM satisfies I ·M = 0
for some ideal of R.

Lemma 3.7. Suppose R is a Noetherian ring and C is a Cartier algebra.
If I ⊆ R is an ideal, then C · I is a two-sided ideal of C and in particular,
C /(C · I) is an R/I-Cartier algebra. Finally, if M is an C -module and
I ·M = 0, then we obtain that M/I is also canonically a C /(C · I)-module.

Proof. We have that I · Ce = Ce · I [pe] ⊆ Ce · I which proves it is a
two-sided ideal. The other statements follow. �

3.2. Nilpotence, F -pure submodules and HSLGB-stabilization.
Suppose that R is a ring and C is a Cartier algebra. We write C+ :=⊕

e≥1 Ce. Notice that if M is a C -module, then C+ ·M ⊆M is a C -module
as well, as is C 2

+ ·M = C+ · C+ ·M , etc.

Definition 3.8 ([Bli13]). Suppose R is a Noetherian ring, C is a Cartier
algebra and M is a Cartier module of C . We say that M is nilpotent if
C i

+ ·M = 0 for some i ≥ 0. A map of C -modules g : M −→ N is called a
nil-isomorphism if the kernel and cokernel of g are nilpotent.

Lemma 3.9. Suppose R is Noetherian, C is a Cartier algebra, and M is a
Cartier module that is finitely generated as an R-module. Then there exists
Mnil ⊆ M , the maximal nilpotent Cartier submodule of R. Furthermore,
M/Mnil has no nilpotent submodules.

Proof. Indeed, if M1,M2 are nilpotent C -submodules of M , then we
see that M1 + M2 is also nilpotent (choose i so that both C i

+M1 = 0 and
C i

+M2 = 0). Since M is Noetherian, the sum of the nilpotent submodules
stabilizes, and so stays nilpotent. This completes the proof of the first part.
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For the second part, suppose that N ⊆ M/Mnil is nilpotent. Then
C jN = 0. Let N ′ ⊇ Mnil be the corresponding C -submodule of M . Then
we see that C jN ′ ⊆Mnil and hence N ′ is nilpotent, and so N ′ ⊆Mnil. Thus
N = 0. �

We have the notion of F -pure Cartier module.

Definition 3.10 ([Bli13]). Suppose C is a Cartier algebra and M is a
C -module. We say that (M,C ) is F -pure if C+ ·M = M .

Lemma 3.11. Suppose that R is a ring of characteristic p > 0, C is a
Cartier algebra and M an C -module. Then for any multiplicative subset
W ⊆ R we have that W−1(C+ ·M) = C+ · (W−1M) ⊆W−1M .

Proof. For φ ∈ Ce, notice we may write (φ.x)/w = (φ.(x/wp
e
)) for

x ∈M and w ∈W . The result follows. �

Lemma 3.12. Suppose that R is a ring of characteristic p > 0, C is a
Cartier algebra and M an C -module. Then for any finitely generated ideal
I ⊆ R, we have that H0

I (M) is a Cartier submodule of M .

Proof. Suppose x ∈ H0
I (M). Then since Inx = 0, we see that InCe·x =

Ce · ((In)[pe]x) = Ce · 0 = 0. Hence H0
I (M) is a Cartier submodule as

desired. �

We then have the following generalization of Theorem 2.1 which we call
HSLGB-stabilization (the added“B” stands for M. Blickle, who first proved
it).

Theorem 3.13 (HSLGB stabilization). Suppose that R is a Noetherian ring
of characteristic p > 0, C is a Cartier algebra, and M is a Cartier module
that is finitely generated as an R-module. Then the descending chain

M ⊇ C+ ·M ⊇ C 2
+ ·M ⊇ C 3

+ ·M ⊇ . . .
eventually stabilizes.

Proof. The proof mimics Theorem 2.1 and we repeatedly use Lemma 3.11
among the first steps. If (C i

+ ·M)Q = (C i+1
+ ·M)))Q for some Q ∈ SpecR,

then that equality holds on a neighborhood U of Q since M is Noetherian.
Hence applying C+ to both sides repeatedly, we see that

(C j
+ ·M)Q′ = (C j+1

+ ·M)))Q′

for all Q′ ∈ U and all j ≥ i. Thus the locus where where C i
+ ·M is not

equal to C i ·M is a closed subset of SpecR that decreases as i increases. By
Noetherian induction this stabilizes, and so we have a closed set Z ⊆ SpecR
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such that Supp
(

C i+·M
C i+1

+ ·M

)
= Z for all i� 0. Replacing M by C iM for some

large i, we may assume that Supp
(

C i+·M
C i+1

+ ·M

)
= Z for all i. We let η ∈ Z be

a generic point of the now constant Zi and now we replace R by Rη.

We have reduced to the case that (R,m) is local and Supp
C i+·M

C i+1
+ ·M

)
= {m}

for all i > 0. As in Theorem 2.1, we write m = (x1, . . . xt) and choose
N so that xjM ⊆ C+ · M for every j. We shall show by induction that
x2N
j M ⊆ C n

+M for all n (the base case n = 0 is clear). Assuming the case
for n we have that

x2N
j M ⊆ xNj (C+ ·M) ⊆ C+ · (xpNj M) ⊆ C+ · (C n

+ ·M) = C n+1
+ .

In particular, we see that M
/

(x2N
1 , . . . , x2N

t )M has finite length and hence
C i

+ ·M
/

(x2N
1 , . . . , x2N

t )M must eventually stabilize. The result follows. �

Definition 3.14 ([Bli13]). With notation as in Theorem 3.13, we define
M = σ(M,C ) to be C i

+ ·M for i � 0. We call it the maximal F -pure
submodule of (M,C ).

It is worth noticing that, in the notation aboveM/M , is nilpotent, indeed
it is the maximal nilpotent quotient. Indeed M −→ M is a nil-isomorphism
as is M −→M/Mnil.

Remark 3.15. While we regularly use the M notation, when working with
more than one Cartier algebra simultaneously, we will switch to the σ(M,C )
notation.

Example 3.16 (R in a non-reduced ring). Let S = Fp[x] and consider the
ring R = Fp[x]/(xn) and let C be the full Cartier algebra on R. Consider
the p−1-linear map φ(−) = ΦS(xn(p−1)−) where ΦS generates Homp−1(S, S).
By Fedder’s Lemma Chapter 4 Theorem 2.1, this induces φ ∈ Homp−1(R,R)
which generates that Hom-set and so C is a principal Cartier algebra gener-
ated by φ.

We consider the image of φm which we compute by taking the image of
φm, which is Φm((xn(pm−1))). We may assume that pm ≥ n and so write
n(pm − 1) = (n− 1)pm + (pm − n). It follows from Chapter 1 ?? that

Φm((xn(pm−1))) = (xn−1).

In particular, we see that R is the ideal generated by xn−1. This perhaps
should not be surprising in view of Lemma 1.5.

3.3. Test modules.
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Definition 3.17 (Test modules, [Bli13]). Suppose R is an F -finite Noe-
therian ring, C is a Cartier algebra and M is a C -module that is finitely
generated as an R-module. We define the test module

τ(M,C )

to be the smallest C -submodule (if it exists) N of M so that H0
Q(NQ) −→

H0
Q(MQ) is a nil-isomorphism for all Q an associated prime of M .

Furthermore, under the same hypotheses, additionally let P be a col-
lection of prime ideals of R, so that each Q ∈ P is an associated prime of
M/N for some C -submodule N . We define the adjoint submodule

adjP(M,C )

to be the smallest C -submodule (if it exists) N of M so that NQ = MQ for
all Q ∈P.

Remark 3.18 (Alternate definitions). In case that P is the set of minimal
associated primes of M , our definition of adjoint submodule agrees with
the original definition of test submodule in [Bli13]. Our definition of test
submodule is taken from [BS19].

It is not clear that test modules and adjoint modules exist in this general-
ity even if R is F -finite, and in fact, it is an open question, see Conjecture 3.23
below.

Example 3.19. If R is F -finite and reduced, we showed that τ(R,C ) exists
when C is a principal Cartier algebra in Chapter 5 Section 5, and of the full
Cartier algebra in Chapter 5 ??. When R is additionally normal and ∆ ≥ 0
is a Q-divisor, we also showed that the test ideal τ(R,C ∆) exists in the same
section.

Next assume that R is normal and that that ∆ = D + Γ where D is
prime, Γ ≥ 0 and the D-coefficient of Γ is zero. Suppose that Q is the prime
ideal defining D and set P = {Q}. Then the ideal defined in of Chapter 5
Exercise 5.13 is adjP(R,C ∆), see also Chapter 5 Section 7.

Definition 3.20 (F -regularity, [Bli13]). Given a Noetherian ring R, a
Cartier algebra C and an C -module M that is finitely generated as an R-
module, we say that (M,C ) is F -regular if τ(M,C ) = M .

Example 3.21. Suppose R is an F -finite Noetherian domain, C is the full
Cartier algebra, and set M = R. Then since there is only a single associated
prime of R, we see that (M,C ) is F -regular if and only if R is strongly
F -regular in the usual sense.

In general however, τ(R) ⊆ R is an C -submodule and we always have
that (τ(R),C ) is F -regular.
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Corollary 3.22. We have that τ(M,C ) ⊆M if it exists and so if τ(M,C ) =
M then (M,C ) is F -pure.

Proof. Certainly we have that M ⊆ M and this inclusion is a nil-
isomorphism and hence stays that way after applying H0

Q(−Q) for any Q an
associated primeM , proving the first statement. Hence if we have τ(M,C ) =
M then M = τ(M,C ) ⊆M ⊆M proving the corollary. �

Conjecture 3.23 (Blickle). If R is an F -finite Noetherian ring, C is a
Cartier algebra and M is an C -module, then τ(M,C ) exists.

There are three main cases where test modules of (M,C ) are known to
exist.

(a) If every associated prime Q of M is minimal and the R/Q-rank of
MQ equals 1 for all such Q. [Bli13]

(b) If every associated prime Q of M is minimal and C is a principal
Cartier algebra. [Bli13]

(c) If R is finite type over an F -finite field. [BS19]

We shall only prove the first case. The final case uses ideas similar to
[BMS08].

We now begin to tackle the existence of test modules.

Proposition 3.24 ([Bli13, Theorem 3.9]). With notation as in Defini-
tion 3.17, the test module τ(M,C ) exists if there is some c /∈ Q for any
Q an associated prime of M such that for the localizations Rc,Cc and Mc we
have that τ(Mc,Cc) exists and agrees with M c. In this case:

τ(M,C ) =
∑
i≥0

C i
+(c ·M).

Proof. We may assume that M = M by Corollary 3.22. Suppose N ⊆
M is an C -submodule such that H0

Q(NQ) −→ H0
Q(MQ) is a nil-isomorphism

for all Q an associated prime of M . We then have that Nc = Mc since
this property is preserved after localizing at c. Hence since M is finitely
generated, there is a t such that ctM ⊆ N , or in other words ct(M/N) = 0.
But now since M = M , we have that M/N = M/N and so c(M/N) = 0 by
Exercise 3.3. Thus cM ⊆ N . Now, the sum

L =
∑
i≥0

C i
+(c ·M)

is a Cartier submodule of M and is contained in N . Furthermore, we have
that H0

Q(LQ) = H0
Q(MQ) by construction again, proving that τ(M,C ) =

L. �
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Remark 3.25. The above is not quite the most general statement, as
explained in [BS19]. Indeed, it might happen that R is a domain and
M = M1⊕M2 where M1 = R needs a test element c1 ∈ Q for some prime Q
(perhaps Q defines the singular locus), but that Supp(M2) ⊆ V (Q). Hence
c1 can’t be used as a test element for the M2 side of the direct sum. This
issue is addressed by using a multiple test elements (one for each associated
prime). Instead, we choose to work in a simpler setting where instead we
frequently assume that every associated prime of M is minimal. For more
general results see [BS19].

Example 3.26. Suppose for instance that M = R has a unique associated
prime but is non-reduced. Then the c we must select in Proposition 3.24
will not be in the minimal prime. But then it (or its powers) will not be
in R since we expect that R will be contained in the minimal prime, see
Example 3.16.

Proposition 3.24 above roughly says that test modules exist if we have a
theory of test elements. A partial converse can be found in Exercise 3.5.

Lemma 3.27. With notation as in Definition 3.17, suppose M = M has a
single associated prime Q and that rankR/QM = 1. Then τ(M,C ) exists.

Proof. We may replace R by R/Q and C by C /(C ·Q) via Lemma 3.7.
Since M is a single associated prime and is rank 1, we may assume that
M ⊆ R is a non-zero ideal. Hence, if we choose 0 6= c1 ∈ M ⊆ R, we have
that Mc1 = Rc1 .

Next suppose that C ′ = R(φ) ⊆ C is a principal Cartier algebra gener-
ated by R = C0 and some non-zero φ ∈ Ce. The action of φc on Mc = Rc
may be identified with an element of Homp−e(Rc, Rc). Thus, by Chap-
ter 5 Corollary 5.9 we see that τ(Mc1 ,C

′
c2) ⊆ Mc1 = Rc1 exists. Choose

0 6= c2 ∈ τ(Mc1 ,C
′
c1) set c = c1c2 we see that τ(Mc,C ′c) = Mc. It follows

since any C -module is also a C ′-module, that τ(Mc,Cc) = Mc. Now apply
Proposition 3.24. �

Theorem 3.28 ([Bli13]). Suppose R is an F -finite Noetherian ring, C is a
Cartier algebra and M is an C -module. Suppose that every associated prime
Q of M is minimal and rankR/QMQ ≤ 1 for each such Q. Then τ(M,C )
exists.

Proof. We may assume that M = M by Corollary 3.22 (notice the set
of associated primes might change, but if Q is an associated prime of M by
not of M , then H0

Q(M) = 0). For each associated (hence minimal) prime Q
of M , we have that H0

Q(M) is a C submodule of M with a single associated
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prime. Hence τ(H0
Q(M),C ) exists. It follows that

L =
∑
Q

τ(H0
Q(M),C )

is a C -submodule of M . Note that H0(LQ) = H0(τ(H0
Q(M),C )Q) =

H0(MQ) completing the proof. �

3.4. Test modules as sums of test modules of principal Cartier
algebras. Our goal in this section is to show that the test ideal τ(R,C ) is
the sum of the test modules generated by principal sub-Cartier algebras of
C , at least when R is reduced (which implies that every associated prime of
R, or any submodule I ⊆ R, is minimal).

Proposition 3.29. Suppose that R is an F -finite reduced Noetherian ring,
C is a Cartier algebra and we have that I ⊆ R is an C -module. Then there
exists a finitely generated Cartier C ′ ⊆ C so that

τ(I,C ′) = τ(I,C ).

Proof. We have a map C −→ CR (the full Cartier algebra), and so
replacing C by its image, we may assume that C ⊆ CR. Since the test
modules exist by Theorem 3.28, by Exercise 3.1, for each finitely generated
C ′′ ⊆ C ′ ⊆ C we have that τ(I,C ′′) ⊆ τ(I,C ′). On the other hand, suppose
x ∈ τ(I,C ). Then choosing c in R not in any minimal prime of the module
I so that Ic = Rc and also that (Rc,Cc) and (Rc,Kc) are both F -regular by
Exercise 3.5, we have that

x ∈
∑
i≥0

C i
+(cI) = τ(I,C ).

It follows that x ∈
∑t

i=1 φicI for some φi ∈ Cei . Now then, if L is the Cartier
algebra generated by the φi’s, we see that x ∈ τ(I,L ). Hence τ(I,C ) is the
filtered union of the τ(I,C ′) for C ′ finitely generated. This proves the result
by the Noetherian property. �

Now suppose that φ1, · · · , φm ∈ C+ are homogeneous elements gener-
ating the C ′ we constructed in Proposition 3.29. If Ci is the Cartier alge-
bra generated by φi, we can find ci not in any minimal prime of I so that
τ(Rci , (Ci)ci) = σ(Rci , (Ci)ci). The product c = c1 · · · cm will not be in any
associated prime of I and so τ(Rc, (Ci)c) = σ(Rc, (Ci)c) as well. What now
if you took φ1 ◦ φ2, or more generally an arbitrary monomial φ in the φi?
We will need to find a c so that τ(Rc, (Ci)c) = σ(Rc, (Ci)c) for all c.

Lemma 3.30. With notation as in Proposition 3.29, suppose C is a finitely
generated Cartier algebra generated by homogeneous φ1, . . . , φm. Then there
exists a c not in any minimal prime of the module I such that for any
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φ = φi1 ◦ · · · ◦ φis a monomial in the φi, we have that τ(Ic, (R(φ))c) =
σ(Ic, (R(φ))c).

Proof. We may assume that C ⊆ CR, the full Cartier algebra. Choose
c0 not in any minimal prime of the module I such that

Ic0 = Rc0 =
∏

Rj

is a finite product of regular domains (on for each minimal prime Qj of the
module I). Let R′ = Rc0 , C ′ = Cc0 , and φ′i the image of φi in C ′. Notice
that each φ′i induces a Cartier action on each Rj = H0

Qj
(Rc0).

For each minimal prime Qj of I and each φi, we have two cases:

(a) φi is zero on Rj , in which case set ci,j = 1.
(b) φi non-zero on Rj , in which case choose ci,j ∈ R not in any minimal

prime of I so that if R̃ = (Rj)ci,Q , then the image of φi generates
Homp−ei (R̃, R̃).

Let c = c0 ·
∏
i,j ci,j . Then Ic = Rc is a product of regular domains Rc,j .

Consider a monomial φ as in the statement of the lemma, and its induced
Cartier action φc,j on Rc,j . Either we have that φc,j is a composition of
generators of Hom-sets and so φc,j also generates a Hom-set, or we have that
φc,j = 0. In either case we have that

τ(Rc,j , R(φc,j)) = σ(Rc,j , R(φc,j)).

The result follows. �

Theorem 3.31. Suppose that R is an F -finite reduced Noetherian ring and
that C is a Cartier algebra with an action on an ideal I ⊆. Then

τ(I,C ) =
∑
e>0

∑
φ∈Ce

τ(I,R(φ)).

In particular, since R is Noetherian, τ(I,C ) is a finite sum of test modules
of principal Cartier algebras.

Proof. The containment ⊇ is clear. We may assume that C is finitely
generated by φi ∈ Cei by Proposition 3.29.

Choose c ∈ R not in any minimal prime of the module I, as in Lemma 3.30
and so that τ(Ic,Cc) = σ(Ic,Cc) using Exercise 3.5. Then

τ(I,C ) =
∑
i≥0

C i
+(cI)
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by Proposition 3.24. In particular, we thus obtain that

τ(I,C ) =
∑
ψ

ψ(cI)

where ψ runs over monomials in the φi. But on the other hand, each ψ(cI) ⊆
τ(I,R(ψ)) again by Proposition 3.24. Thus

τ(I,C ) ⊆
∑
ψ

τ(I,R(ψ)) ⊆
∑
e>0

∑
φ∈Ce

τ(I,R(φ)).

where the inner sum runs over ψ monomials in the φi. This completes the
proof. �

We immediately obtain the following corollary.

Corollary 3.32. Suppose R is an F -finite normal domain and C is a Cartier
algebra with an action on R. Then

τ(R,C ) =
∑
e≥0

∑
φ∈Ce

τ(R,∆φ).

Proof. If φ ∈ Ce, then τ(R,∆φ) = τ(R,φ) = τ(R,R(φ)) where the
first equality is Chapter 5 Theorem 5.24 and the second is essentially by
definition. The result now follows from Theorem 3.31. �

Conjecture 3.33. With notation as in Theorem 3.31, there exists a single
principal Cartier algebra R(ψ) so that τ(I,C ) = τ(I,R(ψ)).

3.5. Exercises.

Exercise 3.1. Suppose that R is F -finite and Noetherian, C is a Cartier
algebra, and M is a C -module. If C ′ ⊆ C is a sub-Cartier-algebra, show
that σ(M,C ′) ⊆ σ(M,C ) and show that τ(M,C ′) ⊆ τ(M,C ) assuming the
test modules exist.

Exercise 3.2. Prove the analog of Lemma 1.11 for Cartier algebras. Explic-
itly, suppose R is an F -finite Noetherian ring, C is a Cartier algebra, and
M is an C -module. Suppose further that W ⊆ R is multiplicative set and
N ′ ⊆W−1M is an W−1C -submodule. Show that there exists an C -module
N ⊆M such that W−1N = N ′.

Exercise 3.3. Suppose that R is an Noetherian ring, C is a Cartier algebra
and M is an F -pure C -module. Show that if c ∈ R is such that ctM = 0,
then cM = 0, generalizing Lemma 1.5.

Exercise 3.4. Suppose R is an F -finite Noetherian ring with a unique as-
sociated prime Q, but that R is non-reduced. Suppose that C is a Cartier
algebra and R is an C -module. Prove that R ⊆ Q.
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Exercise 3.5. Suppose that R is F -finite and Noetherian, C is a Cartier
algebra andM is an C -module that is finite as an R-module. Suppose further
that every associated prime ofM is minimal and that τ(M,C ) exists. Prove
that there exists a c ∈ R such that c /∈ Q for every associated prime of M ,
and such that (Mc,Cc) is F -regular. This can be viewed as a partial converse
of Proposition 3.24.

Exercise 3.6. Suppose that R is F -finite and Noetherian, C is a Cartier
algebra and M is an C -module that is finite as an R-module and such that
every associated prime of R is minimal. If C ′ ⊆ C is a Cartier subalgebra
and τ(M,C ′) exists, show that τ(M,C ) exists as well.

4. Lyubeznik’s F -modules

Warning, this section is not yet written.





CHAPTER 9

Hilbert-Kunz multiplicity and F -signature

In Chapter 1 we saw that an F -finite local ring (R,m) is regular if and
only if F e∗R is a free R-module for some, or equivalently every, e > 0. F -
signature and Hilbert-Kunz multiplicity are measurements of how free F e∗R
is, asymptotically.

Suppose for the moment that (R,m, k = kp) is an F -finite local domain
of dimension d with perfect residue field k, then

Hilbert-Kunz mulitiplicity: measures µR(F e∗R), the number generators
it takes to generate F e∗R as an R-module, compared to a regular
ring of the same dimension. Explicitly:

eHK(R) = lim
e−→∞

µR(F e∗R)

ped
.

Slogan: More singular rings have larger Hilbert-Kunz multiplicity.
See Definition 1.4 and Example 1.7.

F -signature: measures how many simultaneous free R-module summands
F e∗R has (denoted frk(F e∗R)), compared to a regular ring of the same
dimension. In other words, it measures the percentage of F e∗R that
is a free R-module (asymptotically).

s(R) = lim
e−→∞

frk(F e∗R)

ped

Slogan: More singular rings have smaller F -signature.
See Definition 1.9

Note if R is regular and k is perfect, F e∗R is free of rank ped – reduce to the
complete case and then see Example 1.19 in Chapter 1.

1. Definitions of Hilbert-Kunz multiplicity and F -signature

Both Hilbert-Kunz multiplicity and F -signature are defined as limits,
whose existence is not obvious. Indeed, Kunz studied the ratio defining
Hilbert-Kunz multiplicity in [Kun76] but its existence as a limit was shown

525
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by [Mon83]. Likewise Smith-Van Den Bergh [SVdB97] implicitly studied
the limit defining F -signature, Huneke-Leuschke [HL02] explicitly defined
it as an object of interest, but it was not shown to exist until work of Tucker
[Tuc12] (although several special cases were known before [HL02, Yao06,
AE06, Abe08], for instance of the ring was Q-Gorenstein outside a set of
codimension ≤ 1). We will not cover all we might about these important
topics: for additional reading see the surveys [Hun13, Cha21].

We follow the approach of Polstra-Tucker [PT18] to show that F -signature
and Hilbert-Kunz multiplicity both exist.

Before embarking on that, we need some preliminaries related to lengths
of modules.

1.1. Preliminaries on lengths of modules. We begin with some sim-
ple observations about fields K of characteristic p > 0. In what follows, note
that we can identify Kpe ⊆ K with K ⊆ F e∗K, or with K ⊆ K1/pe .

Proposition 1.1. Suppose that K is an F -finite field.

(a) For any e > 0,

[F e∗K : K] = [F∗K : K]e or equivalently [K : Kpe ] = [K : Kp]e.

(b) For any finite extension L ⊇ K we have that [F∗L : L] = [F∗K : K].

(c) If L ⊇ K is a finite separable extension of K, then, working in a
fixed algebraic closure, L⊗K K1/pe ∼= LK1/pe = L1/pe.

Proof. For (a), notice that [K : F 2
∗K] = [K : F∗K][F∗K : F 2

∗K] = [K :
F∗K]2, now repeat.

For (b), the commutative diagram

L K? _oo

Lp
� ?

OO

Kp,? _oo
� ?

OO

ensures that [L : K][K : Kp] = [L : Kp] = [L : Lp][Lp : Kp]. But [Lp : Kp] =
[L : K], now cancel.

Part (c) follows from linear disjointness (cf. Chapter 1 Proposition 5.9).
�
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We will need the following observations about lengths of modules over
Noetherian rings. We did a special case of this in Proposition 1.10 in Chap-
ter 1.

Proposition 1.2. Suppose (R,m, k) is a Noetherian local ring and M is a
finitely generated R-module (frequently M = R or a quotient thereof).

(a) If (R,m, k) −→ (S, n, l) is a faithfully flat extension of Noetherian
local rings with mS = n then for every e > 0,

`R

(
M

m[pe]M

)
= `S

(
(M ⊗R S)

n[pe](M ⊗R S)

)
.

Frequently we take S = R̂⊗kk (which has algebraically closed residue
field and hence is F -finite).

(b) If M has finite length and k is F -finite, then

`R(F e∗M) = [k : kp]e `R(M) and so(1.2.1)

µR(F e∗R) = [k : kp]e `R

(
R/m[pe]

)
.(1.2.2)

(c) If k is perfect, then `R(F e∗M) = `R(M) and µR(F e∗R) = `R
(
R/m[pe]

)

Proof. For Proposition 1.2 (a), since n[pe] = m[pe]S we have that
M

m[pe]M
⊗R S ∼=

M ⊗R S
n[pe](M ⊗R S)

.

The result follows by [Sta19, Tag 02M1].

For (b), since R → F e∗R is a module finite map of rings, we have, using
Proposition 1.1 (a), that

`R(F e∗M) = [F e∗ k : k]`F e∗R(F e∗M) = [k : kp]e`R(M),

so (1.2.1) follows. For the second statement, we use Nakayama’s Lemma to
see that

µR(F e∗R) = `R

(
F e∗R

mF e∗R

)
= `R

(
F e∗

R

m[pe]

)
So the statement follows from (1.2.1) applied to the finite length module
M = R/m[pe]. (c) is just a special case of (b). �

The following simple inequality will become quite important to us.

Lemma 1.3. Suppose that (R,m, k) is a Noetherian local ring of dimension
d. Then for every e > 0,

`R

(
R/m[pe]

)
≥ (pe)d.

If R is regular, this is equality.

https://stacks.math.columbia.edu/tag/02M1
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Proof. By Proposition 1.2 (a), we may assume that (R,m, k) is com-
plete with algebraically closed residue field k = k. Furthermore, modding
out a by a minimal prime will not increase length and so we may assume
that R is an integral domain.

Now, `R
(
R/m[pe]

)
= µR(F e∗R) (Proposition 1.2 (c)) and µR(F e∗R) ≥

[F e∗L : L], where L is the fraction field of R (module generators remain
generators after localization). By the Noether-Cohen normalization R ⊇
A = kJx1, . . . , xdK, and that [F e∗L : L] = [F e∗K : K] where K is the fraction
field of A by Proposition 1.1 (b). However, [F e∗K : K] = ped (Chapter 1
Example 1.19), so that `R

(
R/m[pe]

)
≤ [F e∗L : L] = [F e∗K : K] = ped,

completing the proof. �

We will see below in Corollary 1.12 (for domains, and then more generally
in Exercise 2.2) that

eHK(R) ≥ 1.

1.2. Hilbert-Kunz multiplicity. We are now ready to define Hilbert-
Kunz multiplicity.

Definition 1.4. Suppose (R,m) is a Noetherian local ring of dimension d.
We define the Hilbert-Kunz multiplicity of R to be the limit:

eHK(R) := lim
e−→∞

`R
(
R/m[pe]

)
ped

if it exists.1

We have already seen in Lemma 1.3 that `R
(
R/m[pe]

)
≥ ped and so

eHK(R) ≥ 1. It is immediate that R/m[pe] ∼= R̂/m̂[pe] where −̂ denotes the
m-adic completion. The following lemma is an immediate consequence.

Lemma 1.5. With notation as in Definition 1.4, we have that eHK(R) =

eHK(R̂).

Before moving on to F -signature, we give an example and then reinter-
pret Hilbert-Kunz multiplicity (as promised the introduction to the chapter)
when R is F -finite.

Example 1.6 (Regular rings). Suppose that (R,m) is a regular local ring.
By Lemma 1.5 we may assume R is complete and so R ∼= kJx1, . . . , xdK by
the Cohen-Structure Theorem. In this case `R

(
R/m[pe]

)
= ped since R/m[pe]

is generated by the monomials xa1
1 · · ·x

ad
d for 0 ≤ ai < pe. In particular, we

immediately see that
eHK(R) = 1.

1It does as we shall see.
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Example 1.7. (Perfect and imperfect residue fields) Suppose that (R,m, k)
is an F -finite Noetherian local ring with k a perfect field. Then for any
finitely generated module M , the minimal number of generators of M is
equal to `R(M/mM) by Nakayama’s lemma. By Proposition 1.2 (b) and
using that k is perfect, we have that the number of generators of F e∗M as an
R-module is equal to

`R((F e∗M)/mM) = `R

(
F e∗ (M/m[pe]M)

)
= `R

(
M/m[pe]M

)
.

In other words, the numerator of the fraction defining the Hilbert-Kunz
multiplicity is exactly the minimal number of generators of F e∗R as an R-
module. Hence, in view of Example 1.6, we see that

eHK(R) = lim
e−→∞

Number of generators of F e∗R
Expected number of generators of F e∗R if R was regular

.

Written out more tersely, in the case that k is perfect and R is dimension d,
we have that

eHK(R) = lim
e−→∞

µ(F e∗R)

ped
.

If the residue field in imperfect, then µ(F e∗R) is not the length of R/m[pe].
If k is F -finite, set pγ = [k : kp]. We have that

µ(F e∗R) = `R((F e∗R)/m) = `R

(
F e∗R/m

[pe]
)

= pγe `R

(
R/m[pe]

)
by Proposition 1.2 (b). Hence, even if k is imperfect but F -finite we have
that

(1.7.1) eHK(R) = lim
e−→∞

µ(F e∗R)

pe(d+γ)

We now move on to the definition of F -signature.

1.3. F -signature. Now we measure how free the module F e∗R is in a
different way. Suppose (R,m, k) is a local ring and M is a finite R-module
(we will shortly take M = F e∗R).

Definition 1.8. We define the free rank of M , denoted frk(M), to be
the maximal number a such that there exists a surjection of R-modules
M � R⊕a. Notice that this surjection must split since R⊕a is free and
hence projective.

In particular, if frk(M) = a, then we can write M ∼= R⊕a ⊕ N where
N has no free-module summands (this decomposition is not unique). Con-
versely, if M ∼= R⊕b ⊕ L where L has no R-module summand, then by
Lemma 1.13 below, we will see below that frk(M) = b.

We can now define F -signature.
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Definition 1.9 (F -signature). Suppose (R,m) is an F -finite local domain
of characteristic p > 0 and dimension d. The F -signature of R, is defined
to be (if the limit exists2):

s(R) := lim
e−→∞

frk(F e∗R)

rank(F e∗R)

where rank(F e∗R) = [F e∗K(R) : K(R)] is the generic rank.

Intuitively, s(R) is the fraction of F e∗R that is a free R-module, at least
as e −→∞. In other words:

0 ≤ s(R) ≤ 1.

Remark 1.10. We point out that if instead of assuming R is a domain we
assume it is reduced and equidimensional, then rankF e∗R still makes sense
(the number [F e∗K(R/Q) : K(R/Q)] is independent of the minimal prime
Q ⊆ R by Proposition 1.11 below). Hence one can still define F -signature
via the formula above (and the limit still exists). However, it turns out that
if s(R) > 0, even with this definition, then R is normal and hence R is a
domain.

Before diving into some alternate ways to measure free rank, we spend a
little time understanding (generic) rank for F -finite rings.

Proposition 1.11. Let R be a Noetherian F -finite ring. Suppose that Q, q ∈
SpecR with Q ⊆ q. Then for any e ≥ 0

[F e∗K(R/Q) : K(R/Q)] = [F e∗K(R/q) : K(R/q)] pe dim(Rq/QRq)

= [F∗K(R/q) : K(R/q)]e pe dim(Rq/QRq)

Proof. By modding out by Q we may assume that Q = 0 and by
localizing at q we may assume that q is maximal; hence we may assume
that (R,m = q, k = K(R/q)) is local. By Exercise 1.11 we may assume
that (R,m, k) is a complete domain. By taking a Noether normalization
A = kJx1, . . . , xnK ⊆ R and using Proposition 1.1 (b) as well as a direct
computation (Chapter 1 Example 1.19), the first equality follows. The sec-
ond equality is simply Proposition 1.1 (a). �

The argument above does not use the excellence of R. In fact, this is the
key observation needed to show that F -finite rings are catenary3 ([Kun76]),
a part of the definition of excellence, see Exercise 1.12.

2It does, as we shall see.
3For any two fixed primes, q, Q, the length of a maximal chain of intermediate primes

is constant.
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Regardless, it follows that if (R,m, k) is an F -finite domain of dimension
d, then by Proposition 1.11 (setting Q = (0) and q = m) we see that

(1.11.1) rankR(F e∗R) = ped[F e∗ k : k] = ped[F∗k : k]e.

Before continuing, we point out a corollary for Hilbert-Kunz multiplicity.

Corollary 1.12. Suppose (R,m) is a Noetherian F -finite local domain.
Then

eHK(R) = lim
e−→∞

µ(F e∗R)

rankF e∗R
.

In particular, eHK(R) ≥ 1.

Proof. We simply apply (1.11.1) to (1.7.1). The final statement follows
since the rank cannot exceed the minimal number of generators. �

1.4. Observations on free rank. We point out some basic facts about
free rank.

Lemma 1.13 ([PT18, Lemma 2.1]). Suppose that (R,m, k) is a Noetherian
local domain and M,M ′ are finite R-modules and N ⊆M .

(a) If M ∼= R⊕b ⊕ L where frk(L) = 0, then frk(M) = b.
(b) We have that frk(M ⊕M ′) = frk(M) + frk(M ′).
(c) We have frk(M/N) ≤ frk(M)
(d) We have frk(M) ≤ frk(N) + µ(M/N) where µ(−) is the minimal

number of generators of (−).

We closely follow the proof of [PT18, Lemma 2.1].

Proof. We first show (a). Indeed, suppose that there is a surjection

φ : R⊕b ⊕ L� R⊕a

where a > b and L has no free R-module summands. We view both R⊕b

and L as submodules of the source of φ and so we see that Image(φ) =
φ(R⊕b) + φ(L). Since L has no free R-module summands, we claim that
φ(L) ⊆ mR⊕a. This will complete the proof since then the image of φmodulo
m will be the same as φ(L) modulo m, and R⊕b −→ R⊕a cannot be surjective.
Thus to see the claim, observe that if an element of φ(L) ⊆ R⊕a has a unit
in some entry, then projecting on to that entry provides a surjection from
φ(L) to R, and hence a surjection from L to R. This is impossible since L
has no free R-module summands. This proves (a).

For (b), notice if we set a = frk(M) and a′ = frk(M), then we can write

M ⊕M ′ = R⊕a ⊕ L⊕R⊕b ⊕ L′
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where L,L′ have no free summands. It thus suffices to show that L⊕L′ has
no free R-module summands. Indeed, suppose that there was a surjective
map φ : L ⊕ L′ −→ R. By hypothesis, φ(L) ⊆ m and φ(L′) ⊆ m, but then
φ(L⊕ L′) = φ(L) + φ(L′) ⊆ m ( R, a contradiction.

For (b), let c = frk(M/N). Then we have a surjective map M/N �
⊕R⊕c. Hence we have a surjective map M � M/N � ⊕R⊕c and so
frk(M) ≥ c as desired.

Finally, for (d), write a = frk(M), b = frk(N). Let d be the maximal
number such that there exists a surjective:

φ : M � R⊕d

and such that φ|N is also surjective (that is, φ(N) = R⊕d). It may happen
that d = 0. Set K = kerφ and L = kerφ|N so that L ⊆ K and so that both
M ∼= R⊕d ⊕K and N ∼= R⊕d ⊕ L. Now, if ψ : K � R⊕ frk(K) is surjective,
then notice that ψ(L) ⊆ mR⊕ frk(K) as if not, we could have made d bigger.
In particular, we have a surjection induced by ψ:

ψ : K/L −→ (R/m)⊕ frk(K) = k⊕ frk(K).

But K/L ∼= M/N . Thus we have a surjection

M/N

m (M/N)
� k⊕ frk(K).

It follows that µ(M/N) ≥ frk(K) and so:

frk(M) = d+ frk(K) ≤ frk(N) + µ(M/N)

since d ≤ frk(N). �

Another useful way to compute the free rank is the following construc-
tion.

Definition 1.14. Suppose that (R,m) is a Noetherian local ring and M is
a finite R-module. Denote the set:

I(M) :=
{
x ∈M | φ(x) ∈ m for all φ ∈ HomR(M,R)

}
It is not difficult to verify that I(M) is a submodule, see Exercise 1.1.

Lemma 1.15. With notation as in Definition 1.14, we have that

frk(M) = `R(M/I(M)).

In fact, if we have an R-module decomposition M = R⊕ frk(M) ⊕ L, then
I(M) = mR⊕ frk(M) ⊕ L.
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Proof. The first statement is a consequence of the second, and so we
prove the second statement. Certainly L ⊆ I(M) as L has no free R-
summands. We also see that mR⊕ frk(M) has no free R-summands since mR
has none. Thus mR⊕ frk(M)⊕L ⊆ I(M). Now suppose that x = f⊕l ∈ I(M)

with f ∈ R⊕ frk(M) and l ∈ L. Hence f = x − l ∈ I(M) as well since I(M)

is a submodule of M . Thus f ∈ I(R⊕ frk(M)) = mR⊕ frk(M). This is what we
wanted to show. �

In the case that M = F e∗R, also have that I(F e∗R) is an F e∗R-submodule
of F e∗R by Exercise 1.1. In other words, it corresponds to an ideal of R. We
make the following definition, originally appearing in [AE05].

Definition 1.16. Suppose that R is an F -finite local ring of characteristic
p > 0. We define the ideal

Ie(R) = {x ∈ R | F e∗x ∈ I(F e∗R)}.
It follows from Lemma 1.15 that frk(F e∗R) = `R(R/Ie(R)).

By Lemma 1.15 and Proposition 1.2 (b) we know that

frk(F e∗R) = `R(F e∗R/Ie(R)) = [F e∗ k : k]`R(R/Ie(R)).

Hence, combining this with (1.11.1), we have that:

Lemma 1.17. Suppose (R,m) is a Noetherian F -finite local domain.

s(R) = lim
e−→∞

`R(R/Ie(R))

ped

The formula in Lemma 1.17 looks very similar to our definition of Hilbert-
Kunz multiplicity. We are just modding out by the m-primary4 ideal Ie(R)

instead of the m-primary ideal m[pe], see Exercise 1.2. We saw that Hilbert-
Kunz multiplicity is bounded below by 1 whereas F -signature is bounded
above by 1. The formula Lemma 1.17 for the F -signature in terms of these
ideals Ie(R) was first observed by Aberbach-Enescu and Yao in [AE05,
Yao06].

We need additional facts about the ideals Ie(R) which will be used in
the proof of the existence of F -signature.

Lemma 1.18. Suppose that (R,m) is an F -finite local domain of character-
istic p > 0. Then we have that

Ie(R)[p] ⊆ Ie+1(R).

Furthermore, for any φ ∈ HomR(F∗R,R), we have that

φ(F∗Ie+1(R)) ⊆ Ie(R).

4unless Ie(R) = R
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Proof. Suppose φ ∈ HomR(F e+1
∗ R,R) and consider φ|F e∗R ∈ HomR(F e∗R,R).

By definition
φ|F e∗R(F e∗x) ∈ m.

for each x ∈ Ie(R). Since under the inclusion F e∗R ↪→ F e+1
∗ R we have

F e∗x 7→ F e+1
∗ xp, we see that xp ∈ Ie+1(R). Hence Ie(R)[p] ⊆ Ie+1(R) as

desired.

The second statement we leave to the reader in Exercise 1.4. �

Note that the sequence ideals m[pe] also satisfy the containment from
Lemma 1.18.

1.5. Existence. We now follow the existence proof of Polstra-Tucker.
We begin with several lemmas.

Lemma 1.19. Suppose that R is an F -finite Noetherian domain and rank(F∗R) =
pm. Then there exists a short exact sequence of R-modules:

0 −→ R⊕p
m −→ F∗R −→M −→ 0

where M is torsion.

Proof. At the level of fraction fields, we have an isomorphism

K(R)⊕p
m −→ F∗K(R).

Restricting this to R⊕p
m ⊆ K(R)⊕p

m and clearing denominators (of the
images of a basis for R⊕pm) if necessary produces an injective map R⊕pm ↪→
F∗R. The cokernel is torsion since tensoring it with K(R) is zero. �

Lemma 1.20. Suppose (R,m) is an F -finite Noetherian local ring of char-
acteristic p > 0 and M is a finite R-module. If D = dim SuppM , there is a
constant C such that

`R

(
M/(m[pe]M)

)
≤ peDC

for all e > 0. In particular, if d = dimR > dim SuppM , then

lim
e−→∞

`R
(
M/(m[pe]M)

)
ped

= 0.

Proof. For the first statement, if J = AnnRM then the R-length of
M/m[pe]M is equal to its R/J-length, hence we can assume that R = R/J .
Now, if R⊕m −→ M is surjective, then it stays surjective after modding out
by m[pe] and it suffices to assume that M = R⊕m and hence that M = R.
Finally, notice that if t = µ(m) = `R

(
m/m2

)
then

mtpe ⊆ m[pe].
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Hence

lim
e−→∞

`R
(
R/m[pe]

)
peD

≤ lim
e−→∞

`R
(
R/mtpe

)
peD

= lim
i−→∞

`R
(
R/mti

)
iD

= lim
i−→∞

tD
`R
(
R/mti

)
(ti)D

= tDe(R)

where e(R) is the Hilbert-Samuel multiplicity of R, see for instance [Mat89,
Chapter 13]. The second part of the lemma is a direct consequence of the
first. �

We now need the following formal lemma which will imply existence.

Lemma 1.21. Suppose p is prime, d > 0 is an integer, and {ae}e≥0 is a
sequence of real numbers so that

{
ae
ped

}
e≥0

is bounded below. Suppose that

ae+1

p(e+1)d
≤ ae
ped

+
C

pe

for some constant C. Then the limit

lim
e−→∞

ae
ped

=: η

exists and is finite. Furthermore, η − ae
ped
≤ 2C

pe .

Proof. Consider what happens when we iterate our inequality:

ae+2

p(e+2)d
≤ ae+1

p(e+1)d
+

C

pe+1
≤ ae
ped

+
C

pe
+

C

pe+1
=

ae
ped

+
C

pe
(
1 +

1

p

)
.

Continuing in this way we obtain that
ae+f

p(e+f)d
≤ ae
ped

+
C

pe

(
1 +

1

p
+ · · ·+ 1

pf−1

)
≤ ae
ped

+
2C

pe
.

Thus, taking lim sup by sending f −→∞ we obtain:

a+ := lim sup
g−→∞

ag
pgd

= lim sup
f−→∞

ae+f

p(e+f)d
≤ ae
ped

+
2C

pe

Now, taking lim inf and sending e −→∞ we see that

a+ ≤ lim inf
e−→∞

ae
ped

+
2C

pe
= lim inf

e−→∞
ae
ped

=: a−
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Thus the limit η = a+ = a− exists as desired. For the final statement, we
actually proved above that a+− ae

ped
≤ 2C

pe in the displayed equation defining
a+. �

Theorem 1.22 ([PT18], cf. [Mon83, Tuc12]). Suppose (R,m) is an F -
finite local Noetherian domain of dimension d and that Je is a sequence of
m-primary ideals such that

J [p]
e ⊆ Je+1.

Then the limit

lim
e−→∞

1

ped
`R(R/Je)

exists. In particular, both F -signature and Hilbert-Kunz multiplicity exist for
Noetherian domains.

This only proves the existence of Hilbert-Kunz multiplicity for R an F -
finite domain, and we relegate the general proof to the next section (the
strategy is to reduce to the case of an F -finite domain), see Theorem 2.26.

Proof. Since J1 is m-primary, we have that m[pf ] ⊆ J1 for some f , and
so m[pf+e−1] ⊆ Je for all e > 0. Hence, truncating and then shifting the
numbering of our sequence Je, which does not impact the existence of the
limit, we may assume that m[pe] ⊆ Je for all e > 0.

Suppose k = R/m is the residue field and pγ = [k : kp]. By Proposi-
tion 1.11 we know that pγ+d = rank(F∗R). Therefore, by using Lemma 1.19,
we have the following:

0 −→ R⊕p
γ+d κ−→ F∗R −→M −→ 0

where M is torsion. This is the only place we used the property that R is a
domain, cf. Exercise 1.9.

Because we know that Je F∗R = F∗J
[p]
e ⊆ F∗Je+1, if we take κ and mod

out by F e∗Je, we obtain a map

κ : (R/Je)
⊕pd+γ � F∗(R/Je+1).

Hence, we have that:

(1.22.1)
pγ`R(R/Je+1) = `R(F∗(R/Je+1))

≤ `R

(
(R/Je)

⊕pd+γ
)

+ `R(cokerκ)

= pd+γ`R(R/Je) + `R(cokerκ).

where we used Proposition 1.2 (b) for the first equality.

Claim 1.23. `R(cokerκ) ≤ `R
(
M/m[pe]M

)
.
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Proof. Notice that cokerκ is a quotient of F∗(R/Je+1) and hence also a
quotient of F∗(R/m[pe+1]). Since we know thatm[pe] annihilates F∗(R/m[pe+1]),
it also must annihilate cokerκ.

Next, we observe that cokerκ is also a quotient of M . Hence it is a
quotient of M/m[pe]. This proves the claim. �

We return to the main proof. By Lemma 1.20, there exists a con-
stant C, depending on M , so that `R

(
M/m[pe]M

)
≤ Cpe(d−1) (recall that

dim SuppM < d = dimR). Combining this, Claim 1.23, and (1.22.1), we
see that

pγ`R(R/Je+1) ≤ pd+γ`R(R/Je) + Cpe(d−1).

We divide both sides by pγ+(e+1)d and so obtain that

`R(R/Je+1)

p(e+1)d
≤ `R(R/Je)

ped
+
Cp−γ−d

pe
.

This completes the proof by Lemma 1.21.

The existence of the F -signature limit follows from setting Je := Ie(R),
noting it is m-primary by Exercise 1.2, and then using the first part of
Lemma 1.18. �

We note one corollary of the proof for later use.

Corollary 1.24 ([PT18, Theorem 4.3]). With notation as in Theorem 1.22,
and additionally assuming that m[p] ⊆ J1, there exists a constant D depending
on R (but not on the sequence of Je) so that if η = lime−→∞ 1

ped
`R(R/Je),

then

η − 1

ped
`R(R/Je) ≤

D

pe

for all e > 0.

Proof. Use the final statement of Lemma 1.21 and set D = 2Cp−γ−d

where C is as in the proof (and note it does not depend on the Je). �

A similar strategy can also be used to prove the following result from
which the existence of F -signature and Hilbert-Kunz multiplicity also follows
(in the F -finite domain case).

Theorem 1.25 ([PT18], cf. [Mon83, Tuc12]). Suppose (R,m) is an F -
finite local Noetherian domain of dimension d and that Je is a sequence of
ideals satisfying two properties:
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(a) there exists a nonzero φ ∈ HomR(F∗R,R) such that φ(F∗Je+1) ⊆ Je
for every e > 0, and

(b) there exists a m-primary ideal I such that I [pe] ⊆ Je for every e > 0.

Then the limit

lim
e−→∞

1

ped
`R(R/Je) := η

exists. Furthermore, if I = m then there exists a constant D, depending on
φ (but not depending on the Je), such that

1

ped
`R(R/Je)− η ≤ D/pe.

Proof. We omit the proof as it is similar in flavor to that of Theo-
rem 1.22 and Corollary 1.24. As in the start of that proof, one may reduce
to the case that I = m. We do point out that one replaces Lemma 1.19
and Lemma 1.21 with Exercise 1.6 and Exercise 1.7 respectively. Also, the
second statement in Lemma 1.18 replaces the first for the application to
F -signature. See Exercise 1.8. �

1.6. Localization and semi-continuity. Suppose (R,m, k) is a Noe-
therian F -finite local domain. If Q ∈ SpecR, then we would like to compare
Hilbert-Kunz multiplicity and F -signature for R and for RQ. In general, we
expect the singularities of RQ to be no more severe than the singularities of
R, and so we should expect

(1.25.1) eHK(R) ≥ eHK(RQ) and s(R) ≤ s(RQ).

We prove this below.

Lemma 1.26. With notation as above, (1.25.1) holds.

Proof. F -signature is particularly easy. The point is that frkF e∗R ≤
frkF e∗RQ while generic rank stays the same. Taking the limit proves the
statement about F -signature.

For Hilbert-Kunz, the strategy is similar. A set of generators of F e∗R
as an R-module certainly localize to the set of generators of F e∗RQ as an
RQ-module, so µR(F e∗R) ≥ µRQ(F e∗RQ). Now, by (1.2.2) in Proposition 1.2
(b) we know that

(1.26.1)

[F∗k : k]e `R
(
R/m[pe]

)
= µR(F e∗R)
≥ µRQ(F e∗RQ)

= [F∗k(Q) : k(Q)]e `RQ
(
RQ/(QRQ)[pe]

)
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where k(Q) = K(RQ) = RQ/QRQ. By Proposition 1.11 we know that

pe dimR [F∗k : k]e = pe dimRQpe dimR/Q [F∗k : k]e = pedimRQ [F∗k(Q) : k(Q)]e.

Dividing (1.26.1) by this term and sending e to ∞ yields the desired

eHK(R) ≥ eHK(RQ).

�

It is then natural to ask if more is true. Suppose R is an F -finite but
not necessarily local domain. If q ∈ SpecR, one might actually hope that if
eHK(Rq) > a ∈ R, then there exists a neighborhood U of q such that for all
p ∈ U , we have that

eHK(Rp) > a

In other words, that the assignment SpecR
q 7→eHK(Rq)−−−−−−−→ R is upper semi-

continuous. This, and the analogous statement for F -signature, are both
true.

Theorem 1.27 ([Smi16, Pol18], cf. [PT18, ES05]). Suppose R is a
Noetherian F -finite domain5. Then the assignment

SpecR
q 7→eHK(Rq)−−−−−−−→ R

is upper semi-continuous and the assignment

SpecR
q 7→s(Rq)−−−−−→ R

is lower semi-continuous.

Proof. We omit the proof, referring to the above sources instead. How-
ever, we say a few words about the idea, following [PT18]. Suppose q ∈
SpecR with d = dimRq. By combining Corollary 1.24 and Theorem 1.25,
we constructed D(q) so that for the limiting value η we have that∣∣∣∣∣η − `Rq(Rq/Je)

ped

∣∣∣∣∣ =

∣∣∣∣∣η − [F e∗ k(q) : k(q)] `Rq(Rq/Je)

rank(F e∗R)

∣∣∣∣∣ ≤ D(q)

pe
.

Now we restrict to the ideals Je = (qRq)
[pe] or Je = Ie(Rq). It turns out one

can find a constant D that makes the above inequality simultaneously for
each Rq. Indeed, by looking at how we constructed D, it was based primarily
on properties of torsion cokernels M of short exact sequences, which can be
constructed before localization, 0 −→ R⊕ rank(F∗R) −→ F∗R −→ M −→ 0 or of
0 −→ F∗R −→ R⊕ rank(F∗R) −→ M −→ 0. For example, the Hilbert-Samuel
multiplicity of Rq/AnnRq(Mq) and number of generators of Mq show up,
which have upper bounds independent of q.

5these assumptions can be weakened
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With a D that produces the above displayed inequality simultaneously
at each prime q, the result then reduces to fixing a single e � 0 and then
showing things semicontinuity of

[F e∗ k(q) : k(q)] `Rq

(
Rq/q

[pe]
)

rank(F e∗R)
=
µRq(F

e
∗Rq)

rank(F e∗R)

or of
[F e∗ k(q) : k(q)] `Rq(Rq/Ie(Rq))

rank(F e∗R)
=

frkRqF
e
∗Rq

rank(F e∗R)
.

�

Remark 1.28. In [DSPY19], De Stefani, Polstra, and Yao showed that one
could naturally define Hilbert-Kunz multiplicity and F -signature for F -finite
domains that are not necessarily local. That is, they defined

eHK(R) = lim
e−→∞

µR(F e∗R)

rank(F e∗R)

and
s(R) = lim

e−→∞
frkR(F e∗R)

rank(F e∗R)

and showed that these notions behave in many of the same ways that we
will see that Hilbert-Kunz multiplicity and F -signature do. Furthermore,
they showed that eHK(R) is the maximum of the Hilbert-Kunz multiplicities
of the localizations, while s(R) is the minimum of the F -signature of the
localizations.

1.7. F -signature for Cartier algebras. We now briefly describe F -
signature for Cartier algebras. There is one rather annoying issue that comes
up. If C =

⊕
Ce is a Cartier algebra, then it can happen that Ce = 0 for

certain e > 0. Indeed, if φ : R −→ R is an p−2-linear map and C is the
Cartier algebra generated by φ, then Ce = 0 for all e odd.

To address this, we introduce the following notation.

Notation 1.29. Suppose that (R,m) is an F -finite local domain and that

C =
⊕
e≥0

Ce ⊆
⊕
e≥0

Homp−e(R,R)

is a Cartier algebra under composition. Set ΓC := {e ≥ 0 | Ce 6= 0}.

In what follows, we interpret Ce as a subset of HomR(F e∗R,R) instead
of using p−e-linear maps.

Now, if F e∗R ∼= R ⊕M , then the projection map onto the factor R may
or may not live in a given Cartier algebra C . It is possible to take this
approach to describe the R-summands of R that come from C , and use that
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to define F -signature for (R,C ). We leave this perspective to the reader in
Exercise 1.13 and instead directly define the ideals Ie.

Definition 1.30. Suppose that (R,m) is an F -finite local domain and C is
a Cartier algebra as in Notation 1.29. For each e ∈ ΓC , set

IC
e (R) = {x ∈ R | φ(F e∗x) ⊆ m for all φ ∈ Ce}.

With this definition in places, we can define F -signature for pairs.

Definition 1.31 ([BST11a]). Suppose (R,m) is an F -finite Noetherian
domain of dimension d and that C is a Cartier algebra with with ΓC as
above. We define the F -signature of (R,C ) as the limit (if it exists6)

s(R,C ) := lim
e∈ΓC

`R
(
R/IC

e

)
ped

.

In particular, we may define F -signature for pairs (R,∆) or (R, at) by defin-
ing it for the corresponding Cartier algebra.

Now, one might hope that IC
e (R)[p] ⊆ IC

e+1 but that is not the case
generally. However, for any φ ∈ C f , the fact that the Cartier algebra is
closed under composition (that is, it’s a non-commutative ring) guarantees
that

(1.31.1) φ(F f∗ I
C
e+f (R)) ⊆ IC

e .

See Exercise 1.4. This containment can play the same role as the containment
J

[p]
e ⊆ Je+1 did for the purpose of proving limits exist.

Theorem 1.32 ([BST11a, PT18]). Suppose (R,m) is an F -finite local
domain and C is a Cartier algebra with ΓC as in Notation 1.29. Then the
F -signature limit

lim
e∈ΓC

`R
(
R/IC

e

)
ped

exists.

Proof. We do not work out the details as they are similar to Theo-
rem 1.25 (and hence to Theorem 1.22). The key difference is that one must
keep track of the degrees ΓC where non-zero maps exist. �

Remark 1.33. There are other ways to generalize F -signature without
pairs. Taking the perspective of [SVdB97], consider an indecomposable
R-module M . One might ask how many times M occurs, in an indecompos-
able decomposition of F e∗R as e goes to infinity. This question is explored in
[HN15, HS17, HN21], for instance for certain quotient singularities.

6it still does
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Another approach is to what is the maximum value be such that F e∗R
surjects onto M⊕be . The case that M = ωR has been of particular interest,
see [San15].

1.8. Exercises.

Exercise 1.1. Prove that the set I(M) = IR(M) is an R-submodule of M .
Furthermore, show that IR(F e∗M) is an F e∗R-submodule of F e∗M .

Exercise 1.2. Suppose that R is an F -finite local ring. Prove that m[pe] ⊆
Ie(R) and conclude that Ie(R) is always m-primary (if it is a proper ideal).

Exercise 1.3. Suppose (R,m) is an F -finite regular ring. Explain why
Ie(R) = m[pe].

Exercise 1.4. Suppose that (R,m) is an F -finite local ring of characteristic
p > 0. Show that

φ(F d∗ Ie+d(R)) ⊆ Ie(R)

for all φ ∈ HomR(F d∗R,R). This completes the proof of Lemma 1.18.

Exercise 1.5. Verify the assertions of Remark 1.10. Namely, suppose that
(R,m, k) is a Noetherian F -finite reduced and equidimensional local ring of
dimension d.

(a) Show that the number [F e∗K(R/Q) : K(R/Q)] is independent of the
choice of minimal prime, and we call this number the rank of F e∗R.

(b) Verify that frkF e∗R = [F e∗ k : k] `R(R/Ie(R)).
(c) Show that if c ⊆ R is the conductor, that c ⊆ Ie(R) for all e.
(d) Conclude that if R is non-normal, that

0 = lim
e−→∞

1

ped
(R/Ie(R)) =: s(R).

Exercise 1.6. Suppose thatR is an F -finite Noetherian domain and rank(F e∗R) =
pm. Show there exists a short exact sequence of R-modules:

0 −→ F e∗R
ψ1⊕···⊕ψpm−−−−−−−−→ R⊕p

m −→M −→ 0

whereM is torsion. Furthermore, for any fixed nonzero φ ∈ HomR(F e∗R,R),
show that we may assume that each ψi = φ ? di for some 0 6= di ∈ R.
Exercise 1.7 ([PT18, Lemma 3.5(ii)]). Suppose p is prime, d > 0 is an in-
teger, and {be}e≥0 is a sequence of real numbers so that

{
be
ped

}
e≥0

is bounded
above. Suppose that

be
ped
≤ be+1

p(e+1)d
+
C

pe

for some constant C. Then the limit

lim
e−→∞

be
ped

exists.
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Exercise 1.8. Prove Theorem 1.25.

Exercise 1.9. Suppose that R is an F -finite Noetherian reduced ring and
rank(F∗R) = pm. Then show that there exists a short exact sequence of
R-modules:

0 −→ R⊕p
m −→ F∗R −→M −→ 0

where M is torsion. This generalizes Lemma 1.19 from out of the reduced
case. Conclude that eHK(R) exists for F -finite reduced local rings.

Exercise 1.10. Suppose (R,m) is a Noetherian local ring and f ∈ m is
a non-zerodivisor and that M is a finitely generated R/(f)-module. Prove
that `R

(
TorR1 (R/m[pe],M)

)
≤ O(pe(d−1)).

Hint: Take a R/(f)-module free-resolution of M and use that to reduce to
the case where M = R/(f). Now resolve M as an R-module.

Exercise 1.11. Suppose that (R,m) is an F -finite local domain with (R̂, m̂)

its completion. Choose Q a minimal prime of R̂. Let K = K(R) denote the
fraction field of R and L = K(R̂/Q) the fraction field of R̂/Q. Show that,
for any e ≥ 0

[F e∗K : K] = [F e∗L : L].

Hint: Choose an injection R⊕α ↪→ F e∗R whose cokernel is torsion. Tensor
this up with R̂.

Exercise 1.12. Use Proposition 1.11 to directly prove that F -finite rings are
universally catenary. In other words, ifR is F -finite, prove thatR[x1, . . . , xm]
is catenary.

Exercise 1.13. With notation as in Definition 1.30, define the free rank
of F e∗R with respect to Ce (denoted frkC (F e∗R)) to be the largest number
a so that there is a surjection

F e∗R
(ψ1⊕···⊕ψa)−−−−−−−→ R⊕a

where each individual ψi ∈ C .

Show that
`R

(
R

IC
e (R)

)
= frkC (F e∗R).

2. Perspectives on, and generalizations of, Hilbert-Kunz
multiplicity

In this section we explore some generalizations of Hilbert-Kunz multiplic-
ity with respect to non-maximal ideals and define Hilbert-Kunz multiplicity
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for modules. Before beginning on this however, it is instructive to recall the
theory of Hilbert-Samuel multiplicity. A nice treatment of this material can
be found in [SH06, Chapter 11].

Definition 2.1. Suppose that (R,m) is a Noetherian local ring of dimensiond,
I is m-primary, and M 6= 0 is a finite R-module.

The Hilbert-Samuel function of I on M is the function

n 7→ `R(M/InM),

it is eventually polynomial of degree dim SuppM for n � 0 (called the
Hilbert-Samuel polynomial).

We define the multiplicity of I on M , denoted e(I;M), to be d! times
the leading coefficient of the associated Hilbert-Samuel polynomial, that is:

e(I;M) := lim
n−→∞

d!

nd
`R

(
M

InM

)
.

When M = R, we simply write e(I) for e(I;M).

The multiplicity of R, e(R), is then defined to be e(m, R).

It is easy to see that Hilbert-Kunz multiplicity

eHK(R) := lim
e−→∞

`R

(
R/m[pe]

)
is modeled after the more classical Hilbert-Samuel multiplicity.

Our goal in this section is to generalize much of the theory of Hilbert-
Samuel multiplicity to Hilbert-Kunz multiplicity.

We begin with the following result characterizing multiplicity.

Theorem 2.2 ([Ree61]). Let (R,m) be a Noetherian excellent domain7 and
I ⊆ J are m-primary ideals. Then

I = J if and only if e(I) = e(J)

where (−) denotes the integral closure of (−). In fact, the implication ⇒
holds for any Noetherian local ring.

It is natural to ask whether there is a similar story for Hilbert-Kunz
multiplicity. The answer is yes, with tight closure replacing integral closure!

7or just that it’s completion is equidimensional
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2.1. Hilbert-Kunz multiplicity and tight closure. We begin with
a generalization of Hilbert-Kunz multiplicity to non-maximal ideals.

Definition 2.3. Suppose (R,m) is a Noetherian local ring of dimension d
and I is m-primary. We define the Hilbert-Kunz multiplicity of R to be
the limit:

eHK(I) := lim
e−→∞

`R
(
R/I [pe]

)
ped

.

Note, the limit exists by Theorem 1.22.

Let us take a moment to compare Hilbert-Kunz multiplicity with Hilbert-
Samuel multiplicity.

Proposition 2.4. Suppose (R,m) is Noetherian local ring of dimension d
and I is an m-primary ideal. Then

e(I)/d! ≤ eHK(I) ≤ e(I).

Furthermore, when I is generated by d-elements (a parameter ideal) we have
that eHK(I) = e(I).

Proof. Since Ipe ⊇ I [pe] we have that

`R
(
R/Ip

e) ≤ `R(R/I [pe]
)

Dividing by ped = (pe)d and taking a limit e −→∞ yields

e(I)/d! ≤ eHK(I).

For the next inequality, note that both Hilbert-Samuel and Hilbert-Kunz
multiplicity are agnostic to the completion of R (we are taking the length of
finite length modules) and so it is harmless to assume (R,m, k) is complete.
It is also not difficult to see that we may replace R by R⊗k k and so assume
that k is algebraically closed, see Lemma 2.17 below for more details. In
particular, since k is infinite, by [SH06, Proposition 8.3.7 and Corollary
8.3.9] there exists an ideal J ⊆ I with J = I where J is generated by d
elements (a minimal reduction of I). Since J ⊆ I we see that eHK(I) ≤
eHK(J) and by Theorem 2.2 we have that e(I) = e(J). Hence, it suffices to
show eHK(J) = e(J).

By a formula of Lech for computing multiplicity ([Lec57], [Mat89, The-
orem 14.12], [SH06, 11.2.10]) we have that

e(J) = lim
n−→∞

`R(R/(fn1 , . . . , f
n
d ))

nd
.

Note there is no d!-term, and we are only taking powers of the generators
(there are no cross-terms). Hence it immediately follows that

e(I) = eHK(I)
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and the proof is complete. �

Theorem 2.5 ([HH90, Theorem 8.17], cf. [Hun13, Theorem 5.5]). Sup-
pose that (R,m) is a Noetherian F -finite local domain8 of characteristic p > 0
and dimension d and that I ⊆ J are m-primary ideals. Then

I∗ = J∗ if and only if eHK(I) = eHK(J).

In fact, the implication ⇒ holds for any Noetherian local ring.

Proof. Suppose I∗ = J∗. We follow the argument of [Hun13, Propo-
sition 5.4]. Write J = (u1, . . . , ut). We can find c, not in any minimal prime,
such that cup

e

i ∈ J [pe] for e� 0 and i = 1, . . . , t. Hence

c(J [pe]
/
I [pe]) = 0

for e� 0. Mapping basis elements to generators, we have a surjection:( (R/(c))

I [pe](R/(c))

)⊕t
� J [pe]/I [pe].

As e −→ ∞, the length of the left grows like pe(d−1) t eHK(IR/(c)) since
dimR/(c) = d − 1. Thus the length of the left side is bounded above by
Cpe(d−1) for some constant C. From the short exact sequence:

0 −→ J [pe]/I [pe] −→ R/I [pe] −→ R/J [pe] −→ 0

we see that

`R

(
R/I [pe]

)
= `R

(
R/J [pe]

)
+ `R

(
J [pe]/I [pe]

)
≤ `R

(
R/J [pe]

)
+ Cpe(d−1).

Dividing by ped and sending e −→∞ proves the implication (⇒) without any

For the implication (⇐), we prove it first when (R,m, k) is a complete
local domain and then explain how to reduce to that case. Thus suppose
eHK(I) = eHK(J) where R is complete. Without loss of generality we may
assume that J = I + (u). We must prove that u ∈ I∗.

Let kJx1, . . . , xdK = A ⊆ R be a generically étale Noether-Cohen-Gabber
normalization (which exists by the Cohen-Gabber theorem, [Ill14, Théroème
VI.2.1.1], cf. [KS18, Ska16]) and let v : K(A) \ {0} −→ Z be the mA-adic
discrete valuation which we can extend to a Q-valuation on Rperf that we
also call v.

Claim 2.6 (cf. [Shi07, Proposition 2.15], [CLM+23, Lemma 4.0.13]).
There exists a sequence of elements c1, c2, · · · ∈ A such that lim v(c

1/pe

e ) =
lim v(ce)/p

e −→ 0 and such that

ceu
pe ∈ I [pe]

8or more generally that its completion is reduced and equidimensional and R has a
completely stable test element
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for all e > 0.

Proof of claim. Suppose not. Hence we can choose E > 0 so that
1

pE
≤ inf{v(b1/p

e
) = v(b)/pe | b ∈ A, bupe ∈ I [pe]}.

Let Ne = {c ∈ A | v(c1/pe) = v(c)/pe ≥ 1/pE}, an ideal of A. In fact, if
e > E then Ne = mpe−E . We notice that there exists an injection:

0 −→ (A/Ne)
17→upe−−−−→ J [pe]/I [pe]

We thus see that

lim
e−→∞

`A(A/Ne)

ped
= lim

e−→∞

`A

(
A/mpe−E

)
ped

=
e(A)

d!pE
> 0.

Furthermore,

`A

(
J [pe]/I [pe]

)
= `R

(
J [pe]/I [pe]

)
= `R

(
R/I [pe]

)
− `R

(
R/J [pe]

)
.

Dividing by ped and sending e −→ 0 contradicts our assumption that the
difference eHK(I)− eHK(J) = 0 and so proves the claim. �

With the claim in place, we simply apply Chapter 7 Exercise 5.10.

Now we explain how reduce to the case of a complete local domain.
As eHK is unaffected by completion (R/I [pe] = R̂/(IR̂)[pe]) and because
(IR̂)∗ = I∗R̂ by Exercise 2.3 in Chapter 7, we may assume that R = R̂ is
complete. Additionally, by Chapter 7 Exercise 1.2 and Exercise 2.8 (which
uses Proposition 2.22 below) we may assume that R is a domain. �

Remark 2.7. It is natural to ask if one can define a meaningful Hilbert-Kunz
multiplicity along non-m-primary ideals. This is done in [EY17], although
we will not explore it here.

Remark 2.8. If an ideal a ⊆ R is m-primary, Vraciu introduced a notion
of Hilbert-Kunz multiplicity for pairs (R, at) [Vra08]. She then showed an
analog of the above result for a better-behaved version of tight closure of
pairs.

2.2. F -signature as minimal relative Hilbert-Kunz multiplicity.
Under mild hypotheses, we learned that two m-primary ideals I ⊆ J ⊆ R
have the same tight closure if and only if e(I) = e(J). It is thus natural to
ask how close e(I) and e(J) can be in a weakly F -regular ring and J 6= I
(when I∗ = I). These sorts of questions were formally studied in [WY04]
and it was observed in [Yao06] that this notion is connected to F -signature.
This has been made precise in the following result.
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Theorem 2.9 ([PT18], cf. [WY04, Proposition 1.7, Question 1.10], [Yao06]).
Suppose that (R,m, k) is a Noetherian F -finite local ring, then

s(R) = inf
I(J

{eHK(I)− eHK(J)

`R(J/I)

}
= inf

I(J

{
eHK(I)− eHK(J)

}
where the infimums run over pairs m-primary ideals I ( J .

We will prove this in several steps.

Lemma 2.10 ([HL02, Proof of Theorem 11], [WY04, Proposition 1.7],
[PT18, Lemma 6.1]). With notation as in Theorem 2.9, if I ( J are m-
primary ideals, then

`R(R/Ie(R)) ≤
`R
(
R/I [pe]

)
− `R

(
R/J [pe]

)
`R(J/I)

and so

s(R) ≤ eHK(I)− eHK(J)

`R(J/I)
.

Proof. Consider a sequence of m-primary ideals

I = I0 ( I1 ( I2 ( · · · ( Im = J

where each Ii+1/Ii ∼= k. If we can show that s(R) ≤ eHK(Ii)−eHK(Ii+1)
1 then by

summing up and solving for s(R), the result will be proven. Hence, without
loss of generality we may assume that J = I + (x) and that J/I ∼= k.

We claim there is a map

J [pe]/I [pe] ψ−→ R/Ie(R)

where ψ(xp
e
) = 1 (and so ψ is surjective). Note J [pe]/I [pe] ∼= R

I[pe]:J [pe] is
cyclic (generated by xpe). Hence it suffices to show that I [pe] : J [pe] ⊆ Ie(R),
or in other words that if

(2.10.1) zxp
e ∈ I [pe]

then z ∈ Ie(R). But if z /∈ Ie(R), then there exists φ : F e∗R −→ R such that
φ(F e∗ z) = 1. Then applying φ to (2.10.1) we see that x ∈ I, a contradiction.
Thus ψ exists.

Since ψ is surjective:

`R

(
R/I [pe]

)
− `R

(
R/J [pe]

)
= `R

(
J [pe]/I [pe]

)
≥ `R(R/Ie(R)).

Dividing by ped and taking a limit proves the lemma. �
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We need another characterization of Ie(R). Recall that if a Noetherian
local ring (R,m, k) is approximately Gorenstein Appendix A Section 11, then
there exists a sequence of m-primary ideals, J1 ⊇ J2 ⊇ . . . such that each
R/Jj is Gorenstein. By Proposition 11.6, we see that

E =
⋃
j

AnnE Jj ∼=
⋃
j

ER/Jj
∼= lim−→R/Jj .

Note in each R/Jj we can find uj , a generator of the socle AnnR/Jj m =

0 :R/Jj m (the socle is 1-dimensional over k since R/Jj is Gorenstein). From
the construction we may assume that ujs map to each other in the direct
limit. We take uj ∈ R, a pre-image of uj .

Lemma 2.11. If (R,m) is an F -finite Noetherian domain, and J1 ⊇ J2 ⊇
. . . and u1, u2, . . . is as above. Then

Ie(R) = (I
[pe]
je

: up
e

je
)

for any je � 0 (depending on e > 0). Furthermore, for any fixed e, the ideals
(I

[pe]
j : up

e

j ) form an increasing sequence as j increases.

Proof. By Lemma 2.4 in Appendix A we see that

Ie(R) = {x ∈ R | E η 7→η⊗F e∗x−−−−−−→ E ⊗ F e∗R is not injective}

Note, checking whether the map above is injective is equivalent to checking
if u maps to zero, since u generates the socle.

If a map in the definition above is not injective, if must fail to be injective
after tensoring with some R/Jj (who direct limit together to get E). In other
words, we may check if x ∈ Ie(R) by checking if

R/Jj
y 7→y⊗F e∗x−−−−−−→ R/Jj ⊗ F e∗R ∼= F e∗ (R/J

[pe]
j )

satisfies uj 7→ F e∗xu
pe

j = 0. That is, if xup
e

j ∈ J
[pe]
j or in other words if

x ∈ J [pe]
j : up

e

j . Thus

Ie(R) =
⋃
j

(I
[pe]
j : up

e

j ).

Finally, to complete the proof it suffices to show that (I
[pe]
j : up

e

j ) ⊆
(I

[pe]
j+1 : up

e

j+1). We have a mapR/Ij −→ R/Ij+1 sending uj 7→ uj+1. Tensoring

with F e∗R gives us a map R/I [pe]
j −→ R/I

[pe]
j+1 sending up

e

j 7→ up
e+1

j+1 . Thus if
zup

e

j ∈ I
pe

j we see that zup
e

j+1 ∈ I
pe

j+1, which is what we wanted. �

We are now ready to prove our main result of the subsection.
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Proof of Theorem 2.9. We closely follow the proof of [PT18, Theo-
rem 6.4]. Using that R is approximately Gorenstein, we can choose Ij ’s and
uj ’s as in Lemma 2.11. By Lemma 2.10, it is sufficient to show that:

s(R) = lim
j−→∞

(
eHK(Ij)− eHK(Ij + (uj))

)
.

We consider the following sequences of ideals: Ij,e = (I
[pe]
j : up

e

j ) noticing
that Ie(R) = Ij,e for all e� 0 by Lemma 2.11. Certainly

I
[p]
j,e = (I

[pe]
j : u

[pe]
j )[p] ⊆ (I

[pe+1]
j : u

[pe+1]
j ) = Ij,e+1.

Similarly, since muj ∈ Ij we see that m[p] ∈ Ij,1.

The following claim is the crucial insight, and it uses the uniformity
statement Corollary 1.24.

Claim 2.12 ([PT18, Theorem 6.3]). We have that

s(R) = lim
j−→∞

lim
e−→∞

1

ped
`R(R/Ij,e).

Proof of claim. Using Theorem 1.22 and our observations on the Ij,e
above, we can write

ηj := lim
e−→∞

1

ped
`R(R/Ij,e)

and by Corollary 1.24, we have that there exists D, independent of j, such
that

ηj ≤
1

ped
`R(R/Ij,e) +

D

pe
.

Since, using Lemma 2.11, Ij,e ⊆ Ij+1,e ⊆ Ie(R), we have that `R(Ie(R)) ≤
`R(R/Ij+1,e) ≤ `R(R/Ij,e) and so

s(R) ≤ ηj+1 ≤ ηj ≤
1

ped
`R(R/Ij,e) +

D

pe
.

Note this forces lim
j−→∞

ηj to exist. Hence, sending j −→ ∞ and then sending

e −→∞ we see that
s(R) ≤ lim

j−→∞
ηj ≤ s(R).

But by definition:

lim
j−→∞

ηj = lim
j−→∞

lim
e−→∞

1

ped
`R(R/Ij,e)

and the claim is proven. �

With the claim in place, notice, using the short exact sequences:

(2.12.1) 0 −→ R

Ij,e

17→upe−−−−→ R

I
[pe]
j

−→ R

I
[pe]
j + (u

[pe]
j )
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that

s(R) = lim
j−→∞

lim
e−→∞

1

ped
`R(R/Ij,e) (Claim 2.12)

= lim
j−→∞

lim
e−→∞

1

ped

(
`R

(
R/I

[pe]
j

)
− `R

(
R

I
[pe]
j + (u

[pe]
j )

))
(2.12.1)

= lim
j−→∞

(
eHK(Ij)− eHK(Ij + (uj))

)
which completes the proof. �

There is an important open conjecture related to this work.

Conjecture 2.13 (Watanabe-Yoshida). There exist m-primary ideals I ( J
such that

s(R) = eHK(I)− eHK(J).

The infimum in Theorem 2.9 is a minimum.

Remark 2.14. Suppose (R,m) is a Noetherian F -finite local domain and
that s(R) > 0. One may check that a ring is weakly F -regular by checking
that all m-primary ideals are tightly closed (Chapter 7 Exercise 3.2). There-
fore, if I ( I∗ is m-primary, since eHK(I) − eHK(I∗) we see that s(R) = 0.
Thus if s(R) > 0, we see that R is weakly F -regular.

In Section 4 we will prove a result of Aberbach-Leuschke ([AL03]) which
shows that s(R) > 0 if and only if R is strongly F -regular. Hence, if R is a
weakly F -regular F -finite ring and Conjecture 2.13 has a positive answer for
some I ( J , then since I∗ = I, J∗ = J we have eHK(I) − eHK(J) 6= 0, and
so s(R) > 0 and so R is strongly F -regular. In other words,

Conjecture 2.13 (⇒)
(

weak implies strong F -regularity,
Chapter 7 Conjecture 3.8

)
.

Note there is a direct proof of Conjecture 2.13 when R is Gorenstein, see
Exercise 2.3, but we already knew that weak F -regularity and strong F -
regularity coincided in the Gorenstein (or even Q-Gorenstein) case: Chap-
ter 7 Theorem 5.10.

2.3. Further generalizations of Hilbert-Kunz multiplicity. In the
previous section, we showed that Hilbert-Kunz multiplicity existed for do-
mains. We will now generalize this to arbitrary Noetherian rings of char-
acteristic p > 0. In doing this, it will actually be convenient to generalize
Hilbert-Kunz multiplicities to modules.
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Definition 2.15 (Hilbert-Kunz multiplicity). Suppose (R,m) is a Noether-
ian local ring of dimension d, I is m-primary, and M is a finitely generated
R-module. We define the Hilbert-Kunz multiplicity of I on M to be

eHK(I;M) := lim sup
e−→∞

`R
(
M/I [pe]M

)
ped

.

When I = m, this is simply denoted by eHK(M) and called Hilbert-Kunz

multiplicity of M . The function pe 7→ `R(M/I[pe]M)
ped

is called the Hilbert-
Kunz function of I on M .

Note if R is an F -finite local domain, then then `R
(
M/m[pe]M

)
[F∗k :

k]e = µR(F e∗M) and ped[F∗k : k]e = rankF e∗R (see Proposition 1.2 (b) and
(1.11.1)). Hence

(2.15.1) eHK(m;M) = lim
e−→∞

µR(F e∗M)

rankF e∗R

so again we are simply comparing the numbers of generators of F e∗M to the
number we expect if R is regular.

Warning 2.16. The Hilbert-Kunz function is not typically eventually a
polynomial in pe. However, there exists a second coefficient when (R,m, k =
kp) is normal and excellent of dimension d. That is,

`R

(
M/I [pe]M

)
= eHK(I;M)(pe)d + β(pe)d−1 +O(qd−2).

For details, including a study of β, see [HMM04]. Also see [HY09, CK16]
for some generalizations and see [Hun13, Section 7] for an exposition.

We will show this lim sup is in fact a limit. The problem will eventually
reduce to the case whenM = R is an integral domain, which we have already
solved. We make some simplifying observations.

Lemma 2.17. Suppose (R,m) ⊆ (S, n) is a faithfully flat extension of Noe-
therian local rings of the same dimension and that n = mS. Suppose I ⊆ R
is m-primary. Then

eHK(I,M) = eHK(IS,M ⊗R S)

Furthermore, the associated Hilbert-Kunz functions are also the same.

Proof. This is a direct consequence of Proposition 1.2 (a). �

Remark 2.18 (Assuming our ring is F -finite). In view of Lemma 2.17,
when computing Hilbert-Kunz multiplicity of a module, or proving that the
lim sup in Definition 2.15 is a limit, we may assume that R is complete and
F -finite. In fact, we may assume it has an algebraically closed residue field.
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Simply notice that R −→ R̂⊗̂kk satisfies the conditions of the lemma where
k ⊆ R̂ is a coefficient field.

Our next goal is to create tools that let us reduce to the case that R is
reduced. We first state the following lemma.

Lemma 2.19. Suppose (R,m, k = kp) is a complete Noetherian d-dimensional
local ring with perfect residue field, I is an m-primary ideal, and M is any
finitely generated R-module. Then

eHK(I;F f∗M) = pfdeHK(I;M).

In fact, the associated Hilbert-Kunz functions differ by multiplication by pfd.

Proof. Since k has perfect residue field, the R-length of a module N is
the same as the R-length of F f∗ N . Hence

`R

(
(F f∗M)/I [pe]

)
ped

=
`R

(
F f∗ (M/I [pe+f ]M)

)
ped

= pfd
`R

(
M/I [pe+f ]M

)
p(e+f)d

.

Sending e −→∞ completes the proof. �

Lemma 2.20. Suppose (R,m) is a Noetherian local ring, J ⊆ R is an ideal
and (R = R/J,m = m/J) is the quotient. Suppose that dimR = dimR and
that M is a finite R-module such that

J ⊆ AnnR(M).

Then we may view M as an R-module and, for any m-primary ideal I (with
I := IR) we have

eHK(I,M) = eHK(I,M).

In fact, the associated Hilbert-Kunz functions are identical. In particular,
if J =

√
(0) is the nilradical and

√
(0)M = 0, then we may compute the

Hilbert-Kunz multiplicity over Rred = R = R/
√

(0).

Proof. The relevant lengths are identical. �

Remark 2.21 (Assuming our ring is reduced). Notice that for any finitely
generated module M , we have that AnnR(F e∗M) ⊇

√
0 for e � 0, since√

(0)
[pe]

= 0 for e � 0. Thus, by Lemma 2.19 and Lemma 2.20, if we want
to compute the Hilbert-Kunz multiplicity of I on M , or to prove that the
lim sup in Definition 2.15 is a limit, we may assume that R is reduced.

The next tool is also quite useful.
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Proposition 2.22 ([Mon83, Lemma 1.3], cf. [Hun13, Lemma 3.10]). Sup-
pose (R,m) is a Noetherian local ring and I is an m-primary ideal. Further
suppose that M,N are finitely generated R-modules such that Mq

∼= Nq for
each minimal prime of R such that dim(R/q) = dimR. Then

eHK(I;M) = eHK(I;N).

In fact, the associated Hilbert-Kunz functions agree up to a term of order
O(pe(d−1)).

Proof. There exists a map φ : M −→ N such that φq : Mq −→ Nq is an
isomorphism for all the minimal primes q as above, see Exercise 2.7.

We have a sequence M φ−→ N −→ C −→ 0 where dimC < d. By tensoring
with R/I [pe] we obtain the exact sequence

M/I [pe]M −→ N/I [pe]M −→ C/I [pe]M −→ 0.

Hence, by Lemma 1.20,

`R

(
N/I [pe]N

)
≤ `R

(
M/I [pe]M

)
+`R

(
C/I [pe]C

)
≤ `R

(
M/I [pe]M

)
+O(pe(d−1)).

Reversing the roles of M and N completes the proof. �

As a consequence, Hilbert-Kunz multiplicity of modules is essentially the
same as Hilbert-Kunz multiplicity of rings:

Corollary 2.23. Suppose (R,m) is a Noetherian local domain, I is an m-
primary ideal, and M is an R-module of generic rank n = rank(M). Then

eHK(I;M) = n eHK(I;R).

Next we prove that Hilbert-Kunz multiplicity behaves well with respect
to short exact sequences.

Proposition 2.24. Suppose (R,m) is a Noetherian local ring of dimension
d, I is an m-primary ideal, and

0 −→ L −→M −→ N −→ 0

is a short exact sequence of finite R-modules. Then

eHK(I;M) = eHK(I;L) + eHK(I;N).

Proof. It suffices to prove that

`R

(
M/I [pe]M

)
= `R

(
L/I [pe]I

)
+ `R

(
N/I [pe]N

)
+O(pe(d−1)).

ButM and L⊕N agree at the minimal primes ofR, now use Proposition 2.22.
�
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We can use this to obtain:

Corollary 2.25. Suppose (R,m) is a Noetherian local ring, I is an m-
primary ideal, and 0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M is a filtration of a finitely
generated R-module M with quotients Q1 = M1/M0, . . . , Qn = Mn/Mn−1.
Then

eHK(I;M) =

n∑
i=1

eHK(I;Qi).

Finally, we prove that Hilbert-Kunz multiplicity exists as a limit in gen-
eral.

Theorem 2.26. If (R,m) is a d-dimensional Noetherian local ring, I is an
m-primary ideal, and M is a finitely generated R-module, then

eHK(I;M) = lim
e−→∞

`R
(
M/I [pe]M

)
ped

.

In particular the limit exists and is finite.

Proof. Without loss of generality, using Remark 2.18 and Remark 2.21,
we may assume that R is complete, has perfect residue field, and is reduced.

Let q1, . . . , qt denote the minimal primes of R such that dim(R/qi) = d.
For each of these, may find a free Ri := R/qi-module Fi, of rank ri, so that
(Fi)qi

∼= Mqi . Set

L =

t⊕
i=1

Fi.

Hence, by Proposition 2.22,

`R

(
M/I [pe]M

)
≤ `R

(
L/I [pe]L

)
+O(pe(d−1)).

Next, notice that

`R

(
L/I [pe]L

)
=

t∑
i=1

`R

(
Fi/I

[pe]Fi

)
=

t∑
i=1

ri`Ri

(
Ri/I

[pe]Ri

)
.

But each limit

lim
e−→∞

`Ri
(
Ri/I

[pe]Ri
)

ped
= eHK(IRi;Ri)

exists by Theorem 1.22 since each Ri is an F -finite domain. The result
follows. �
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2.4. Exercises.

Exercise 2.1. Suppose (R,m) is a regular local ring and I is a m-primary
ideal. Prove that

eHK(I) = `R(R/I).

Hint: Frobenius is flat.

Exercise 2.2. Prove for a general Noetherian local ring (R,m) that eHK(R) ≥
1.

Hint: Reduce to the F -finite domain case and use Corollary 1.12.

Exercise 2.3 ([WY00, Theorem 2.1]). Suppose (R,m) is a Gorenstein F -
finite local domain and I = (x1, . . . , xd) is a system of parameters. Let u ∈ R
be an element that maps to the socle in R/I. Show that

s(R) = eHK(I)− eHK(I + (u)).

Hint: Notice that Ie := I [pe] forms an approximately Gorenstein sequence
with upe generating the socle in the quotients. Now use the (proof of) The-
orem 2.9.

Exercise 2.4. Suppose (R,m) is a Noetherian F -finite local domain. Show
that s(R) = s(R̂).

Hint: It is possible that R̂ is not a domain even if R is. However, if R̂ is
not a domain, then R is not normal, and so s(R) = 0, see Exercise 1.5 or
Remark 2.14.

Exercise 2.5. Suppose (R,m, k) is a Noetherian F -finite local ring and
E is the injective hull of the residue field k. Show that Ie(R) = {x ∈
R | E z 7→z⊗F e∗R−−−−−−→ E ⊗R F e∗R}.

Note the set above does not need an F -finite hypothesis. Hence, in
[Yao06], Yao defined the F -signature to be lime−→∞ 1

ped
`R(R/Ie(R)) for

Ie(R) as above.

Exercise 2.6. Suppose that (R,m, k) is a Noetherian complete F -finite local
domain and k ⊆ l is a field extension with l also F -finite. Show that

s(R) = s(R⊗̂kl).
For a vast generalizations see [Yao06, Theorem 5.6].

Exercise 2.7. Suppose R is a Noetherian ring, q1, . . . , qt is a finite set
of minimal primes, and M,N are finite R-modules such that Mqi

∼= Nqi
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for i = 1, . . . , t. Prove that there exists a map φ : M −→ N such that
φqi : Mqi

∼−→ Nqi is an isomorphism for i = 1, . . . , t.

Hint: Consider the multiplicative set W :=
⋂t
i=1(R \ qi) and use the fact

that W−1R = Rq1 × · · · ×Rqt .

Exercise 2.8. Suppose that (R,m) is a Noetherian local equidimensional
ring with minimal primes Q1, . . . , Qn and that J is m-primary. Write Ri =
R/Qi. Prove that

eHK(J) =
t∑
i=1

eHK(JRi).

Hint: Use Proposition 2.22.

Definition 2.27. A Noetherian local ring (R,m) (or a graded ring (R,m =
R>0)) is said to be of finite Frobenius representation type (or FFRT) if
when considering every decomposition of F e∗R into (graded)indecomposables:

F e∗R
∼= Me,1 ⊕ · · · ⊕Me,te

there are only finitely many modules Me,i up to isomorphism (running over
all e > 0).

Exercise 2.9.

3. Values of F -signature and Hilbert-Kunz multiplicity

Hilbert-Kunz multiplicity and F -signature are notoriously difficult to
compute, and no general technique for computing Hilbert-Kunz multiplic-
ity is known, although see for example [HM93, Con96, Sei97, Mon98,
BC97, CH98, Eto02, MT04, MT06, ?, BH06, MS13, Tri17, RS15,
ES19, GKV21] – a far from exhaustive list, where many interesting exam-
ples are computed.

In fact, we know that the Hilbert-Kunz multiplicity need not be rational
[Bre13] (cf. [Tri05, Bre06]). While that example is not so explicit, Monsky
[Mon08] has also conjectured that the Hilbert-Kunz multiplicity of R =
F2[x, y, z, u, v]/(uv + x3 + y3 + xyz) is

eHK(R) =
4

3
+

5

14
√

7
,

In fact, Monsky has also proposed an example with transcendental Hilbert-
Kunz multiplicity [Mon09].
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It is suspected that F -signature need not be rational (or even algebraic)
as well, indeed if Monsky’s proposed counter example above has irrational
Hilbert-Kunz multiplicity, it also has irrational F -signature by the following
proposition.

Proposition 3.1 ([HL02, Proposition 13]). Suppose (R,m, k) is a F -finite
Cohen-Macaulay local domain of dimension d. Then

(e(R)− 1)(1− s(R)) ≥ eHK(R)− 1.

Furthermore, if the Hilbert-Samuel multiplicity e(R) = 2, then

s(R) + eHK(R) = 2.

If s(R) = 0 then the above simply says that e(R) ≥ eHK(R), which we
already knew by Proposition 2.4.

Proof. Without loss of generality we may assume that R is complete
(Exercise 2.4). Furthermore, since all the relevant invariants are unchanged
when passing to R⊗̂Rk (Exercise 2.6) we may assume that k is infinite.

By [SH06, Proposition 8.3.7 and Corollary 8.3.9], there exists a m-
primary ideal I = (x1, . . . , xd) whose integral closure I = m (a minimal
reduction of m).

Now, e(R) := e(m) = e(I) = e(I) = `R(R/I) (see [SH06, Proposition
11.1.10(2)] for the final equality using that R is Cohen-Macaulay). Since
e(R)− 1 = `R(m/I), Lemma 2.10 implies that

s(R)(e(R)− 1) ≤ eHK(I)− eHK(m) = e(R)− eHK(R).

Manipulating the inequality yields

eHK(R)− 1 ≤ e(R)− 1− s(R)(e(R)− 1) = (e(R)− 1)(1− s(R))

as desired.

Finally, when e(R) = 2, since `R(m/I) = 1, we see that m is generated by
d+1 elements, and so R is a quotient of a (d+1)-dimensional regular ring by
the Cohen-Structure theorem. It follows that R is a complete intersection
and hence R is Gorenstein and furthermore that m = I + (u) for a socle
generator. By Exercise 2.3, and using that eHK(I) = e(I) = 2, we have

s(R) = eHK(I)− eHK(I + (u)) = 2− eHK(R)

as desired. �
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3.1. Using Hilbert-Kunz multiplicity and F -signature to char-
acterize regular rings. Of course, if R is regular, it follows from the defi-
nitions that

eHK(R) = s(R) = 1.

It is natural to ask about the converse. Recall that if e(R) = 1 then R is
regular ([Nag62, Theorem 40.6]).

The following should be viewed as a variant of Kunz’ criterion for regular
rings. For instance, for F -signature, it says that if the percentage of F e∗R
that is free limits to zero as e −→∞, then R is actually regular.

Theorem 3.2 ([WY00, HL02], cf. [HY02]). Suppose that (R,m, k) is a
Noetherian F -finite local domain9 ring. Then the following are equivalent.

(a) R is regular.
(b) eHK(R) = 1.
(c) s(R) = 1.

Proof. First suppose that s(R) = 1, we will show e(R) = 1. Note if
s(R) = 1 > 0 then R is weakly F -regular by Remark 2.14, and so R is Cohen-
Macaulay. Then Proposition 3.1 applies and we see that 0 = eHK(R)− 1.

We omit the proof that eHK(R) = 1 implies that R is regular. There
are at least two direct proofs of this fact: [WY00, HY02] (also see the
exposition in [Hun13]). Both proofs deduce that `R

(
R/m[p]

)
= pd, and from

there the result is straightforward. Since it is not difficult to reduce to the
case where R is complete with perfect residue field, then `R

(
R/m[p]

)
= pd

implies that F∗R is generated by rankF∗R elements. It follows that F∗R
is free and so R is regular by Kunz’ theorem. See the next section for
generalizations however.

A proof that s(R) = 1 implies that R is regular (without passing through
results on Hilbert-Kunz multiplicity) can be found in [MP20]. �

3.2. Lower bounds on Hilbert-Kunz multiplicity and upper bounds
on F -signature. It is natural to ask how close Hilbert-Kunz multiplicity
(or F -signature) can be to 1 without R being regular. This question has
been explored by many authors, see for instance [WY00, BE04, WY05,
AE08, CDHZ12, AE13, NnBS20, JNS+23].

The rest of this section has yet to be written.

9these conditions can be relaxed in various ways, see the references
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3.3. Toric singularities.

3.4. Various interesting Hilbert-Kunz functions.

3.5. Lech’s conjecture for Hilbert-Kunz multiplicity.

3.6. Limit Hilbert-Kunz and limit F -signature. [BLM12, Tri07,
Tri19, Shi18]

3.7. F -signature functions for pairs and p-fractals.

3.8. Exercises.

Exercise 3.1. Suppose thatR = kJx, y, zK/(x, y)∩(z). Prove that eHK(R) =
1 and explain why this is not a contradiction.

Exercise 3.2 (Curves).

Exercise 3.3.

Exercise 3.4 ([Tri18]).

4. Positivity of F -signature and an application to the étale
fundamental group

Our first goal in this section is to show that a strongly F -regular ring
(R,m) is strongly F -regular if and only if s(R) > 0, a result originally due
to Aberbach-Leuschke [AL03], see [HL02, Theorem 11] for the Gorenstein
case.

4.1. Rings with positive F -signature are strongly F -regular. We
have already seen that s(R) > 0 implies that R is weakly F -regular in
Remark 2.14. We now show it is strongly F -regular.

Theorem 4.1. Suppose (R,m) is a Noetherian F -finite local domain of di-
mension d > 0 such that s(R) > 0. Then R is strongly F -regular.

Proof. Suppose R is not strongly F -regular, then τ(R) ⊆ m. It follows,
since τ(R) is uniformly F -compatible, that for each integer e > 0, we have
that τ(R) ⊆ Ie(R). Now, as we have seen, m[pe] ⊆ Ie(R) and so

`R(R/Ie(R)) ≤ `R
(
R/(τ(R) + m[pe])

)
.
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But e 7→ `R
(
R/(τ(R) + m[pe])

)
is the Hilbert-Kunz function of the ring

R/τ(R), a ring of dimension < d = dimR. In particular, that function
is bounded above by a function e 7→ CpedimR/τ(R), see Lemma 1.20. Thus,
we see that

s(R) = lim
e−→∞

1

ped
`R(R/Ie(R)) = 0.

This completes the proof. �

Remark 4.2. The previous result also holds for R a non-domain if one make
the definition, as we have suggested before,

s(R) = lim
e−→∞

1

ped
`R(R/Ie(R)).

The proof is the same.

4.2. Strongly F -regular rings have positive F -signature.

Theorem 4.3 ([AL03]). Suppose (R,m) is a strongly F -regular F -finite
local ring of dimension d > 0. Then s(R) > 0.

We follow a a particularly insightful proof due Polstra-Tucker [PT18,
Theorem 5.1]. Another proof, using particularly simple methods (and which
avoids Gabber’s generalization of the Cohen structure theorem) can be found
in [Pol22], see [MP20] for an exposition.

Proof. Without loss of generality, we may assume R is complete (Exer-
cise 2.4). By Gabber’s generalization of the Cohen structure theorem, [Ill14,
Théroème VI.2.1.1], we can find a Noether normalization

kJx1, . . . , xdK ⊆ A ⊆ R

which is generically étale. Fixing some nonzero element c ∈ J (R/A) ∩ A
where J (R/A) is the Jacobian ideal of R over A, we see from Chapter 6
(7.10.1) that

c F e∗R ⊂ R⊗A F e∗A ∼= R[F e∗A]

for all e > 0. Since R is strongly F -regular, there exists some e0 ≥ 0 and
φ : F e0∗ R −→ R such that φ(F e0∗ c) = 1.

Fix a basis F e∗a1, . . . , F
e
∗am for F e∗A over A, with associated projection

maps πi : F e∗A −→ A. Note m = rankA(F e∗A) = [F e∗K(R) : K(R)] by
Proposition 1.1 (b).

We have the following compositions:

π′i : F e∗R
·c−→ R[F e∗A] ∼= R⊗A F e∗A

R⊗Aπi−−−−→ R
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which satisfies π′(F e∗ai) = c and π′(F e∗aj) = 0 for j 6= i. Now, the composi-
tions:

ψi := φ ? π′i : F e+e0∗ R −→ R

have the property that:

ψi(F
e+e0
∗ ai) = 1 and ψi(F

e+e0
∗ aj) = 0 for j 6= i.

Thus

F e+e0∗ R
ψ1⊕···⊕ψm−−−−−−−→ R⊕m

is surjective. In particular, frk(F e+e0∗ R) ≥ m = [F e∗K(R) : K(R)]. Hence

s(R) = lim
e−→∞

frk(F e+e0∗ R)

rank(F e+e0∗ R)
≥ lim

e−→∞
[F e∗K(R) : K(R)]

[F e+e0∗ K(R) : K(R)]
=

1

[F e0∗ K(R) : K(R)]

which is bigger than zero. �

The above gives an explicit, and even computable, upper bound for s(R),
namely 1

[F
e0
∗ K(R):K(R)]

.

Remark 4.4 (F -rational signature). One might ask whether there is a sim-
ilar way to control F -rationality. Indeed, that has been a topic of consider-
able study, starting with a preprint of Hochster-Yao from 2009 that became
[HY22], and continuing in [San15, ST23].

The relative F -rational signature (introduced by Smirnov-Tucker, cf.
Hochter-Yao’s F -rational signature) is the infimum:

srel = inf
(x)(I

eHK(x)− eHK(I)

`R(R/(x))− `R(R/I)

where the infimum runs over all systems of parameters x := x1, . . . , xd and
ideals containing (x). This turns out to be equal to the dual F -signature of
Sannai:

sdual(R) = lim
e−→∞

be
rankF e∗R

where be is the maximum value such that there exists a surjection F e∗R �
ω⊕beR . This equality was shown [ST23] who also showed that the limit exists.
These numbers detect F -rationality, in the same way that F -signature de-
tects F -regularity (indeed, that’s the motivation behind their introduction).

4.3. Transformation rules for F -signature under finite maps. If
R ⊆ S is finite, the goal of this subsection is to relate the F -signatures of R
and S. Perhaps the most important case is when R ⊆ S is quasi-étale, or
in other words étale in codimension 1.
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Theorem 4.5 ([CRST18], [VK12, Lemma 2.6.1], cf. [HL02, Proposition
19]). Suppose that (R,m, k) ⊆ (S, n, l) is a finite split inclusion of Noetherian
F -finite local normal domains that is étale-in-codimension-1. Then

s(S) =
[K(S) : K(R)]

[l : k]
s(R)

The condition that R ⊆ S is split is not very restrictive since strongly
F -regular rings are splinters, see Exercise 6.20 in Chapter 1 or see Chapter 7.

Proof. This proof will use the trace map Tr : S −→ R. There are three
key facts we need about Tr coming from Chapter 5 Section 7.

(a) Tr(n) ⊆ m.
(b) Tr generates HomR(S,R) as a S-module.
(c) Tr(S) = R.

Property (a) is Chapter 5 Exercise 7.3. Property (b) follows since the ram-
ification divisor is zero (since R ⊆ S is étale-in-codimension-1) and Tr cor-
responds to the ramification divisor by Chapter 5 Lemma 7.11. The final
condition (b) holds since R ⊆ S splits, and hence there must be some sur-
jective κ : S −→ R. But κ is a pre-multiple of Tr by (b), and so Tr must also
be surjective.

Write be = frkR(F e∗S) and notice that be = `R

(
F e∗S
I(F e∗S)

)
by Lemma 1.15.

Taking a short exact sequence (Lemma 1.19)

0 −→ R⊕[K(S):K(R)] −→ S −→ C −→ 0

where C is torsion, we thus see that

frkR(F e∗S) ≤ [K(S) : K(R)] frkR F
e
∗R+ µR(F e∗C)

Dividing by rankF e∗R and sending e −→∞ yields, since C is torsion,

lim sup
e−→∞

frkR(F e∗S)

rankF e∗R
≤ [K(S) : K(R)]s(R) + eHK(C) = [K(S) : K(R)]s(R).

On the other hand taking a short exact sequence (Exercise 1.6)

0 −→ S −→ R⊕[K(S):K(R)] −→ B −→ 0

and repeating the steps, proves the other inequality (with a lim inf), and
hence:

(4.5.1) [K(S) : K(R)]s(R) = lim
e−→∞

frkR(F e∗S)

rankF e∗R
.
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Our next goal is to show that

(4.5.2) lim
e−→∞

frkR(F e∗S)

rankF e∗R
= [l : k]s(S) =

which combined with (4.5.1) will complete the proof.

We first decompose as an S-module:

F e∗S
∼= S⊕ce ⊕Ne.

Claim 4.6. frkR(Ne) = 0.

Proof of claim. Indeed, thanks to (b), any map φ : Ne −→ R must
factor as

Ne
ψ−→ S

Tr−→ R

by Appendix A Lemma 5.1. Now, ψ(Ne) ⊆ n and thus using (a) we see that
φ(Ne) = Tr(ψ(Ne)) ⊆ Tr(n) ⊆ m which proves the claim. �

Similarly:

Claim 4.7. frkR(S) = [l : k].

Proof of claim. Notice that

I(S) := {x ∈ S | φ(x) ∈ m for all φ ∈ HomR(S,R)}
contains n since Tr generates HomR(S,R). On the other hand I(S) 6= S
since R ⊆ S splits. Hence I(S) = n. By Lemma 1.15 we see that frkR(S) =
`R(S/I(S)) = `R(S/n) = [l : k] proving the second claim. �

Combining the two claims, we see that frkR(F e∗S) = [l : k]ce = [l :
k] frkS(F e∗S) and so dividing by rankR(F e∗R) = rankS(F e∗S) (Proposition 1.1
(b)), and taking a limit we see that (4.5.2) holds. This completes the proof.

�

We didn’t actually need that R ⊆ S was étale-in-codimension 1, the
same proof works without change if we assume properties (a), (b), (c) for
some map T : S −→ R.

Corollary 4.8 ([VK12, CR22]). Suppose (R,m, k) ⊆ (S, n, l) is a finite
extension of Noetherian F -finite domains. Further suppose that there exists
T ∈ HomR(S,R) such that

(a) T (n) ⊆ m.
(b) T generates HomR(S,R) as a S-module.
(c) T (S) = R.
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Then
s(S) =

[K(S) : K(R)]

[l : k]
s(R)

Note that if R is strongly F -regular, then the third condition T (S) = R
follows from the fact that T generates HomR(S,R), see Chapter 5 Exer-
cise 7.12.

It immediately follows that if R is strongly F -regular, so that s(R) > 0,
then so is S. A fact we already knew from

Indeed, there such are extensions. For instance, any cyclic cover of degree
n associated to a divisor D of index n will satisfy the condition above. See
Appendix B Section 9.

The above results let people compute the F -signature of numerous exam-
ples. For instance, we can compute the F -signature of quotient singularities,
or even of quotients of rings whose F -signature we know. The following
example illustrates this.

Example 4.9 ([WY00, Theorem 5.4], [HL02, Example 18]). Consider
T = kJx, y, zK where k = k is an algebraically closed field of characteristic
p > 5. The hypersurface quotients R = T/(f) of multiplicity 2 are classified
(up to change of variables) in [Art77], and appear on the list below (these
singularities are called Du Val singularities or rational double points). Each
of them has a finite extension R ⊆ S that in most cases is étale in codi-
mension 1, and in the remaining cases S is a cyclic cover where p divides
the index as above (for An, this happens when p|(n − 1) and for Dn when
p|(n−2), also cf. [CRMP+21]). Hence, we can write down the F -signature,
and, by Proposition 3.1, we can write down the Hilbert-Kunz multiplicity
too.

name f [K(S) : K(R)] s(R) eHK(R)

An(n ≥ 1) x2 + y2 + zn+1 n+ 1 1/(n+ 1) 2− 1/(n+ 1)

Dn(n ≥ 4) x2 + y2z + zn−1 4(n− 2) 1/(4(n− 2)) 2− 1/(4(n− 2))

E6 x2 + y3 + z4 1/24 24 2− (1/24)

E7 x2 + y3 + yz3 1/48 48 2− (1/48)

E8 x2 + y3 + z5 1/120 120 2− (1/120)

One can weaken the strong conditions on T (for instance, the étale-in-
codimension-1) by instead working with pairs. We state such a result whose
proof is similar, but unavoidably more technical. For ∆ ≥ 0 a Q-divisor we
define s(R,∆) to be s(R,C ∆), as in Subsection 1.7.



566 9. HILBERT-KUNZ MULTIPLICITY AND F -SIGNATURE

Theorem 4.10 ([CRS23, Theorem C and Proposition 3.14], cf. [CRST18,
Theorem 4.4]). Suppose (R,m, k) ⊆ (S,m, l) is an F -finite extension of nor-
mal domains with induced f : SpecS −→ SpecR. Suppose T ∈ HomR(S,R)
is surjective and satisfies T (n) ⊆ m (many cases of interest, simply set
T = Tr). Set DT to be the divisor on SpecS corresponding to the map
T as in Chapter 5 Proposition 7.10 (so DT is the ramification divisor if
T = Tr). Then if ∆−DT ≥ 0, we have that

s(S, f∗∆−DT ) = s(R,∆).

Proof. We omit the proof referring above to [CRS23] who prove even
stronger results including general results on transformation of F -signature
of Cartier algebras. �

4.4. An application to the divisor class group. Recall that the
divisor class group Cl(R) of a Noetherian normal domain R, is the set Weil
divisors on SpecR modulo linear equivalence.

Theorem 4.11 ([Pol22, Corollary 3.3], [CR22, Corollary 5.1]). Suppose
(R,m, k) is a strongly F -regular local ring. If D is a Q-Cartier Weil divisor
on SpecR with index n (that is, n > 0 is the smallest integer such that
nD ∼ 0), then

n < 1/s(R).

Furthermore, the torsion part of the divisor class group of R is finite with

|Cl(R)tors| < 1/s(R).

Hence Cl(R) is torsion free if s(R) > 1/2.

Note that Polstra proved the finiteness of the divisor class group without
directly using F -signature.

Proof. The first statement simply follows since we can always take a
finite cyclic cover S of degree n associated to D, since then Corollary 4.8
applies, we have

1 ≥ s(S) = [K(S) : K(R)]s(R) = ns(R)

and so n≤1
s(R) . Note this already rules out any torsion in the divisor class group

of s(R) > 1/2.

For the second statement, we follow the strategy of [CR22, Corollary
5.1]. If D1 is a torsion divisor of index n1, let S1 ⊇ R be the associated
cyclic cover (of degree n1). By [TW92, Corollary 2.6], then kernel of the
induced

Cl(R)
f∗1−→ Cl(S1)
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is generated by the equivalence class of D, that is | ker(f∗1 )| = n. As above,
we have that s(S1) = n1s(R). Repeating this process, ifD2 is torsion another
divisor on SpecR, whose class is not in ker(f∗1 ), then f∗1D2 on SpecS1 is still
torsion, say of index n2. Hence we can find a further local extension S2 ⊇ S1,
a cyclic cover associated to f∗1D2, of degree n2. Again, s(S2) = n2s(S1) =
n1n2s(R). Since F -signature is bounded above by 1, this process must stop
and we thus have a sequence of maps of Abelian groups

Cl(R) −→ Cl(S1) −→ Cl(S2) −→ . . . −→ Cl(Sn)

where Cl(R)tors is in the kernel of the composition Cl(R) −→ Cl(Sn). But
each map in that sequence has finite kernel, by construction, and the result
follows. �

The goal of the remainder of the chapter is to take the above arguments
and apply them to the étale fundamental group.

4.5. An application of F -signature to the étale fundamental
group. A classical way to study a singularity in complex algebraic geom-
etry, especially an isolated one x ∈ X, is to study the fundamental group
of the link of the singularity10. This investigation began with Mumford,
who showed that for a normal surface singularity, having trivial fundamen-
tal group is equivalent to being nonsingular [Mum61], cf. [Fle75, CS93].

In characteristic p > 0, we lack such techniques, but one can use the
étale fundamental group of Grothendieck (and generalizations) to measure
something like the pro-finite completion of the fundamental group of the
link in the complex setting. Unfortunately, regularity of a normal surface
singularity is not equivalent to triviality of the étale fundamental group in
characteristic p > 0 [Art77], cf. [CS93], although with more general funda-
mental groups which we won’t define here, one can characterize smoothness
for p > 3 [EV10]. Our goal is to study the étale fundamental group of
strongly F -regular singularities.

We define the étale fundamental group in a very special setting relevant
to us. For more general definitions, see for instance [Gro63, Mur67].

Definition 4.12. Suppose U is a Noetherian integral normal scheme with
fraction field K. The étale fundamental group of U to be

πt
1(U) = lim←−Gal(K(V )/K)

where the inverse limit runs over connected V with finite étale V −→ U
which are generically Galois and with a compatible map from SpecKsep. In

10If X ⊆ AC, the link is a small euclidean ball B centered at x intersected with X,
that is B ∩ (X \ {x}), if x is not an isolated singularity, it is natural to instead consider
B ∩Xnonsing
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other words, the fraction field of the scheme V comes with an embedding
into Ksep, K(V )/K is Galois, and the induced V −→ U is Galois. Note V is
normal and hence integral in our special setup.

Example 4.13. If R = k is a field then the étale fundamental group of
SpecR is simply the absolute Galois group of k,

πt
1(Spec k) = Gal(ksep/k)

On the other hand if (R,m, ksep) is a Noetherian complete local domain
with separably closed residue field, then

πt
1(SpecR) = {1}

Indeed, a finite R ⊆ S is a product of local rings by the Henselian property,
(9) in [Sta19, Tag 04GG] and so we may assume S is local. Now suppose
(R,m, k) ⊆ (S, n, l) is finite étale. We know that n = mS (étale implies
unramified) and so the base change k = R/m −→ S/n = l is also finite étale,
hence k = l since k is separably closed. But then µS(=) dimk(S/mS) =
1, and so S is a free R-module of rank 1. Hence R = S and the étale
fundamental group is trivial since the limiting set is trivial.

If k is a field of characteristic zero, then A1
k is trivial (the complex plane is

simply connected). However, in characteristic p > 0 the fundamental group
of A1

k is not trivial, there are étale coverings of A1, Artin-Schreier coverings,
that are wildly ramified at infinity.

In our case, we will assume that R is a Noetherian F -finite normal do-
main, and U ⊆ SpecR. Then for any finite V −→ U with V integral, we
can take the integral closure of R in K(V ) and so obtain a finite extension
R ⊆ S of normal domains with V = f−1(U) if f : SpecS −→ SpecR is the
induced map. Thus studying finite étale

V −→ U

as above is the same as studying finite extensions of normal domains R ⊆ S
where are étale over U . In other words,

πt
1(U) = lim←−Gal(K(S)/K(R))

where S ⊆ K(R)sep runs over normal finite generically Galois extensions of
R which are tale over U .

Theorem 4.14 ([CR22]). Suppose (R,m, k = ksep) is a strongly F -regular
complete local ring of dimension ≥ 2 with separably closed residue field. Sup-
pose U ⊆ SpecR is an open set whose complement has codimension ≥ 2, for
instance set U to be the regular locus of SpecR or U = SpecR \m.∣∣πt

1(U)
∣∣ ≤ 1

s(R)
.

https://stacks.math.columbia.edu/tag/04GG
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In particular, the étale fundamental group is finite.

Proof. If S, S′ ⊇ R are finite normal domain extensions in K(R)sep

which are generically Galois and étale over U . Consider S ⊗R S′. This is
étale over U but it need not be irreducible. Normalizing and then modding
out by minimal prime we obtain a map S⊗RS′ � S′′ ⊆ K(R)sep. Since even
S⊗RS′ is étale over U (being a composition of étale maps over U), we see that
R ⊆ S′′ is finite étale11 over U and generically Galois (K(S′′) = K(S′)K(S)).

Because of the above, if we find an absolute bound N on [K(S) : K(R)]
for such extensions S ⊇ R, there is a unique maximal such extension S ⊇ R.
It would then follow that πt1(U) is finite of order bounded by N .

Finally, suppose (R,m, k) ⊇ (S, n, l) is a finite extension of local domains
which is étale over U . By Exercise 4.1 and the fact that k = ksep, we see
that k = l. Therefore, by Theorem 4.5 we see that

1 ≥ s(S) = [K(S) : K(R)]s(R)

and so [K(S) : K(R)] ≤ 1/s(R). This provides our absolute bound and
completes the proof. �

Remark 4.15. The results above were originally inspired by a conjecture
of Kollár
cite[Question 26]KollarNewExamples that for KLT singularities over C, the
étale fundamental group of the link is finite (see also [GZ94, FKL93,
KM99] for earlier related results). This was proven by Braun [Bra21] (and
even more that B∩Xnonsing has finite fundamental group where B is a small
ball around the point x ∈ X of interest). Earlier work in characteristic zero
includes [Xu14] (cf. [GKP16, TX17]) who proved finiteness of the étale
fundamental group of the singularity (which equals the profinite completion
of the fundamental group of the link). In fact, using normalized volume in-
stead of F -signature, there are similar bounds on the size fundamental group
in characteristic zero since,

(a) Normalized volume is positive for KLT singularities, [Li18, Corol-
lary 3.4].

(b) Normalized volume is bounded above by dd if d = dimX.cf. [Blu18].
(c) Normalized volume satisfies a transformation rule analogous to The-

orem 4.5, [XZ21].

Indeed, it is expected that normalized volume and F -signature are quite
closely related [LLX20, Zhu23]. However, as mentioned in, we do not even
know if, for a KLT singularity (R,m) of essentially finite type over a field of

11For more general versions of this, useful for computing étale fundamental groups in
general, see [Mur67].
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characteristic 0 (so that R has open strongly F -regular type by Chapter 6
Theorem 4.23), we know that, if

lim sup
p

s(Rp) > 0.

Other related results on étale fundamental groups can be found in, for
example, [BCRG+19, Sti17, BJNnB19, JS22, BGO17, CLM+23].

4.6. Exercises.

Exercise 4.1. Suppose that (R,m, k) ⊆ (S, n, l) is a finite, étale-in-codimension-
1, and split extension of Noetherian domains with R normal (so that Tr(S) ⊆
R). Show that k ⊆ l is separable.

Hint: Show that there is an induced map Tr : l −→ k and show that it is a
multiple of the field trace for k ⊆ l. If you get stuck, see [AR63, Proposition
3.1].

Exercise 4.2. Let R ⊆ S = k[x, . . . , xd] be an nth Veronese subring of S
(that is, R is the k-algebra generated by the monomials of degree n). Prove
that s(S) = 1/n.

Exercise 4.3. Consider the subring R = k[un+1, un+1, uv] ⊆ k[u, v] = S.
Show that S can also be obtained as a cyclic cover of index n + 1 from R.
Conclude that s(R) = 1/(n+ 1).



CHAPTER 10

Geometric and global applications of Frobenius

Warning, this chapter will likely undergo substantial revision and additions (numerous
references are also missing). We also hope to generalize some of the results written here.

The insight into singularities in prime characteristic documented in ear-
lier chapters of this book ultimately helped enable progress in the minimal
model program for prime characteristic threefolds and fourfolds; [HX15,
Bir16, BW17, Wal18, DW19, HW22, HW23, Cas21].

Suppose X is a F -finite Noetherian scheme. Then on each affine chart
Ui = SpecRi we can define a test ideal τ(Ri).Because the formation of the
test ideal commutes with localization, we then obtain a test ideal sheaf

τ(X) ⊆ OX ,
a coherent sheaf so that Γ(Ui, τ(X)) = τ(Ri). Likewise if X is normal and
∆ ≥ 0 is an R-divisor, then we can define τ(X,∆) analogously. If ωX is a
canonical sheaf on X, then similar statements can be made for τ(ωX) ⊆ ωX ,
the sheaf such that Γ(Ui, τ(ωX)) = τ(ωRi). Analogous statements hold for
other variants.

In this chapter, we are going to use this construction

1. Special Frobenius-stable global sections

Suppose that k is an F -finite field of characteristic p > 0 and X is a
projective variety over k. Further suppose that L a Weil divisor on X. Now,
the Frobenius map induces

F e∗OX(KX) = F e∗ωX −→ ωX = OX(KX)

as we have seen and so twist this map by OX(L) (and S2-ify/reflexify if
necessary) to obtain

F e∗ (OX(KX + peL)) = ((F e∗ωX)⊗L )S2 −→ (ωX ⊗L )S2 = OX(KX + L).

We are going to use this map produce a special sub-vector space ofH0(X,OX(KX+
L)), in other words, a special linear system in |H0(X,OX(KX + L))|.

571
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Definition 1.1 (Frobenius stable special sections). With X and L as above,
we define

S0(X,OX(KX+L)) := Image
(
H0(X,F e∗ (OX(KX+peL))) −→ H0(X,OX(KX+L))

)
for e� 0. This is the set of (dual) Frobenius stable sections ofH0(X,OX(KX+
L)).

Notice that H0(X,ωX ⊗L ) is a finite dimensional k-vector space, and
so the images that appear in Definition 1.1 are descending submodules of a
finitely generated k-vector space. Hence Definition 1.1 does not depend on
the choice of e� 0. We do not even need to apply any variant of the HSLG
theorem Chapter 8 Theorem 2.1.

In a slightly different direction, assume now that L is a Cartier divisor
(so we didn’t need to S2ify). The construction above only used that ωX had
the structure of a Cartier module since we just twisted F e∗ωX −→ ωX by L,
and took global sections. Indeed, suppose that (M , φ) is a Cartier-module
on X, that is, an OX -module with a given structural map φ : F e∗M −→M ,
then we make the following definition.

Definition 1.2 (Frobenius stable special sections for Cartier modules). If
(M , φ) is any Cartier-module on X and L is a line bundle, we define

S0(X,φ,M ⊗L ) := Image
(
H0(X,Fne∗ (M ⊗L pne)) −→ H0(X,M ⊗L )

)
for n� 0.

There are some important cases when S0 = H0. First, whenX is globally
F -split they are the same.

Lemma 1.3. With notation as above, if X is globally F -split, then S0(X,OX(KX+
L)) = H0(X,OX(KX + L)) for any Weil divisor L.

Proof. Each map F e∗OX(KX) −→ OX(KX) is split surjective. Hence it
stays split surjective after tensoring by OX(L), S2-ifying, and after taking
cohomology. �

Proposition 1.4. Suppose L = OX(L) is an ample line bundle and (M , φ)
is an F -pure Cartier module. Then S0(X,φ,M ⊗Lm) = H0(X,M ⊗Lm)
for m� 0. In particular, if X is F -injective then S0(X,OX(KX +mL)) =
H0(X,OX(KX +mL)) for m� 0.

Proof. Using that L is ample, we have that for m � 0, the map
induced by φ

F e∗ (M ⊗Lmpe) ∼= (F e∗M )⊗Lm −→M ⊗Lm
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is surjective on global sections (it was already surjective locally by the F -
purity hypothesis). Hence the map

F
(n+1)e
∗ (M ⊗Lmp(n+1)e

) −→ Fne∗ (M ⊗Lmpne)

surjects on global sections as well for all n. Composing these maps yields
that

F
(n+1)e
∗ (M ⊗Lmp(n+1)e

) −→ Lm −→M ⊗Lm

is surjective on global sections as desired. The result follows. �

Some of the key F -pure Cartier modules we will work with include τ(ωX)
and σ(ωX) = ωX .

In the next subsection we will show that we can choose this m � 0
effectively if instead of requiring that S0 = H0, we simply require that S0

globally generates M ⊗Lm. First however, we consider some examples.

Example 1.5 (Projective space). Suppose that X is Pn. Then X is Frobe-
nius split and so S0(X,ωX ⊗OX(n)) = H0(X,ωX ⊗OX(n)).

Example 1.6 (Elliptic curves). Suppose now that X is a smooth curve over
an algebraically closed field of characteristic p > 0 (notice that OX = ωX).
If X is ordinary, it is Frobenius split and so H0(X,L ) = S0(X,L ) for any
line bundle L . If X is supersingular, then S0(X,OX) = 0.

Next suppose that D is any divisor of positive degree on X, then we
claim that:

S0(X,OX(D)) = H0(X,OX(D)).

Indeed, it is sufficient to show that H0(X,F∗OX(pD)) −→ H0(X,OX(D)) is
surjective, or Serre-dually that

H1(X,OX(−D)) −→ H1(X,F∗OX(−pD))

injects. However, it was shown in [Oda71, Theorem 2.17] that this is injec-
tive as long as degD > 0 (in fact, similar results for vector bundles are also
shown there).

Example 1.7 (Higher genus curves). Suppose that X is a smooth projective
curve over an algebraically closed field of characteristic p > 0. Suppose that
L is a line bundle of degree ≥ 2. Then we claim that |S0(X,ωX ⊗L )| is
a base point free linear system. Fix a closed point Q ∈ X. We must show
that S0(X,ωX ⊗L ) ⊆ H0(X,ωX ⊗L ) has a section that does not vanish
at Q. We form the following diagram for e � 0, where Q′ := peQ is the
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corresponding non-reduced scheme.

H0(X,F e∗ (ωX ⊗L pe))

����

// H0(Q′, F e∗ (ωQ′ ⊗L pe))

����

// 0

��

S0(X,ωX ⊗L )� _

��

H0(X,ωX ⊗L ) // H0(Q,ωQ ⊗L ) // H1(X,ωX ⊗L ⊗OX(−Q))

The top right entry H1(X,F e∗ (ωX ⊗ L pe ⊗ OX(−peQ))) is zero by Serre
vanishing since deg(L ⊗ OX(−Q)) ≥ 1 and hence L ⊗ OX(−Q) is ample.
The middle vertical arrow is surjective since Q is a point and in particular
Frobenius split so that F e∗ωQ −→ F e∗ωQ′ −→ ωQ is surjective. The diagram
then immediately implies that S0(X,ωX ⊗L ) has a section that does not
vanish at Q.

In fact, it was also shown in [Tan72, Theorem 15] that H1(X,L −1) −→
H1(X,L −p) injects as long as deg L > 2g−2

p where g is the genus of X.
Hence by Serre duality, S0(X,ωX ⊗L ) = H0(X,ωX ⊗L ) for all L with
deg L > 2g−2

p .

We will generalize the diagram in the previous example in various ways
in the next section.

1.1. Effective global generation. We first recall that a sheaf F is
said to be 0-regular with respect to an ample globally generated line bundle
L if H i(X,F ⊗ L −i) = 0 for all i > 0. In which case, we have that F
is globally generated. See Chapter 6 Definition 3.18 or [Laz04b] for more
details.

Theorem 1.8 (cf. [Kee08, Smi97b]). Suppose that X is projective over
an F -finite field k and suppose that (M , φ) is an F -pure Cartier module on
X with dim Supp M = d. Assume that L is ample and globally generated1

and A is ample. Then
M ⊗L d ⊗A

is globally generated by S0(X,φ,M ⊗L d ⊗A ).

Proof. Consider the surjective map

Fme∗ (M ⊗L dpme ⊗A pme) ∼= ((Fme∗ M )⊗L d ⊗A ) −→M ⊗L d ⊗A .

If we can show that the left side is globally generated as an OX -module, we
see that the images of those global sections (that is, S0(X,M ⊗L d ⊗ A )

1Meaning that H0(X,L ) globally generates L as an OX -module
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assuming m � 0) will also globally generate M ⊗L d ⊗A . We thus show
that Fme∗ (M ⊗L dpme ⊗A pme) is 0-regular as a OX -module.

Now,

H i(X,L −i⊗Fme∗ (M⊗L dpme⊗A pme)) = H i(X,⊗Fme∗ (M⊗L (d−i)pme⊗A pme))

which is zero by Serre vanishing for i ≤ d and for i > d by dimension reasons.
The result follows. �

Corollary 1.9. Suppose that X is a projective d-dimensional F -injective
over an F -finite field. Suppose that L is globally generated ample and A is
ample. Then ωX ⊗L d ⊗A is globally generated by S0(X,ωX ⊗L d ⊗A ).

It is a conjecture for smooth d-dimensional varieties in characteristic
zero that ωX ⊗ L d+1 is globally generated for any ample line bundle L ,
including the case that L is not globally generated. This is called Fujita’s
freeness conjecture. Some progress on it in low dimensions can be found
in [], []. The theorem of Angerhrn and Siu [AS95] (cf. [Laz04b, Section
10.3]) gives a quadratic (as opposed to linear, d+1) bound on what power of
L is needed so that ωX ⊗L is globally generated. In characteristic p > 0,
Fujita’s freeness conjecture is known to be false even for surfaces [].

1.2. Connections with section rings. We now provide an alternate
description of S0(X,ωX⊗L ) when L is ample. We work with graded rings,
see ?? for more details.

Suppose X is a normal projective variety of dimension > 0 over an F -
finite field. Set

S =
⊕
i≥0

H0(X,L i).

This is a graded ring. The module

ωS =
⊕
i∈Z

H0(X,ωX ⊗L i)

is a graded canonical module for S. See ?? ??. The maps

F e∗ (ωX ⊗L pei) −→ ωX ⊗L i

induce maps F e∗ωS −→ ωS , which is in fact the dual to Frobenius on S, ??.

Based on these observations, we see that S0(X,ωX ⊗L i) is nothing else
but ith graded pieces of the F -pure Cartier module σ(ωS) = ωS . Explicitly:

Proposition 1.10. With notation as above, S0(X,ωX ⊗L i) = [σ(ωS)]i.

It is of course possible to likewise describe S0(X,φ,M⊗L i) for a Cartier
module (M , φ). See Exercise 1.5.
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1.3. Special sections for pairs and alternate formulations. There
is another common formulation of S0 which hides the divisor KX . Suppose
that X is a normal projective variety over an F -finite field. Fix L to be a
Weil divisor and ∆ ≥ 0 is a Q-divisor such that (pe − 1)(L − KX − ∆) is
Cartier (in particular, (pe − 1)∆ has integer coefficients).

In this case, we have maps dual to Frobenius:

. . . −→ F 2e
∗ OX(KX) −→ F e∗OX(KX) −→ OX(KX).

Twisting by L−KX , and reflexifying we have:

. . . −→ F 2e
∗ OX(p2eL+(1−p2e)KX) −→ F e∗OX(peL+(1−pe)KX) −→ OX(L).

Finally, using that ∆ ≥ 0 and that (pe − 1)∆ has integer coefficients we
obtain:

. . . −→ F 2e
∗ OX(L+(p2e−1)(L−KX−∆)) −→ F e∗OX(L+(pe−1)(L−KX−∆)) −→ OX(L).

Since (pe − 1)(L − KX − ∆) is Cartier, then locally this gives OX(L) the
structure of a Cartier module (although the global structure is twisted).
Suppose that N ⊆ OX(L) is locally a Cartier-submodule with respect to the
action above. For instance, if L is Cartier, then τ(X,∆)⊗OX(L) ⊆ OX(L)
is such a module. Furthermore, if ∆ = D+B where D is reduced and B ≥ 0
has no common components with D, then τD(X,∆) ⊗ OX(L) is also such
a module where τD(X,∆) is the adjoint test ideal of ?? ??. Regardless, we
have the following.

(1.10.1) . . . −→ F 2e
∗
(
N ⊗OX((p2e − 1)(L−KX −∆))

)
−→ F e∗

(
N ⊗OX((pe − 1)(L−KX −∆))

)
−→ N .

Definition 1.11. With notation as above then we define:

S0(X,∆,N ) = Image
(
H0
(
X,Fne∗ (N ⊗OX((pne−1)(L−KX−∆)))

)
−→ H0

(
X,N

))
For n� 0.

This is independent of the choice of n since it is a submodule of a finitely
generated vector space. Notice that N implicitly determines L since N ⊆
OX(L).

We also obtain the following variant of effective global generation.

Theorem 1.12. Suppose that X is a normal projective d-dimensional variety
over an F -finite field and that L = OX(L) is a globally generated ample line
bundle. Suppose that A is a Cartier divisor, ∆ ≥ 0 is a Q-divisor, and that
(pe − 1)(A−KX −∆) is a big and nef Cartier divisor. Then

τ(X,∆)⊗OX(A+ dL)

is globally generated by S0(X,∆, τ(X,∆)⊗OX(A+ dL)).
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Proof. Since A−KX −∆ is big and nef, there exists a Cartier divisor
G > 0 so that A−KX −∆− εG is ample for all 1� ε > 0, see Exercise 1.4.
We can choose ε > 0 small enough so that τ(X,∆) = τ(X,∆ + εG) by
Chapter 5 ?? ??. We may also select this ε so that (pe − 1)ε is an integer
after possibly replacing e by a multiple. Since

S0(X,∆+εG, τ(X,∆+εG)⊗OX(A+dL)) ⊆ S0(X,∆, τ(X,∆)⊗OX(A+dL))

we may now assume replace ∆ by ∆ + εG so that A−KX −∆ is ample.

The proof now follows that of Theorem 1.8. We must show that Fne∗
(
τ(X,∆)⊗

OX(pedL+peA+(pne−1)(−KX−∆))
)
is globally generated as a OX -module

for n� 0. But it is 0-regular by the same argument. The result follows. �

Let us briefly compare the hypothesis of Theorem 1.12. We implicitly
assumed that (pe− 1)(KX + ∆) was Cartier for some e > 0. In other words,
we assumed the index of KX + ∆ was not divisible by p > 0. If one is
willing to remove the statement about S0, we can perturb our way out this
hypothesis.

Corollary 1.13. Suppose that X is a normal projective d-dimensional vari-
ety over an F -finite field and that L = OX(L) is a globally generated ample
line bundle. Suppose that A is a Cartier divisor, ∆ ≥ 0 is a Q-divisor, and
that A−KX −∆ is big and nef. Then

τ(X,∆)⊗OX(A+ dL)

is globally generated

Proof. In the proof of Theorem 1.12, we were able to assume that
A − KX − ∆ is ample, and we can again use Exercise 1.4 again here to
accomplish the same.

Suppose H is a Cartier divisor such that KX +H is effective. Choose an
integer n > 0 and e0 ≥ 0 so that npe0(A−KX −∆) is Cartier where p does
not divide n. Then for e > e0, form

Γe =
H +KX + ∆

pe − 1
.

For e� e0, notice that A−KX−∆−Γe is still ample and that τ(X,∆+Γe) =
τ(X,∆ + Γe) by Chapter 5 ?? ??.

However,

n(pe − 1)(KX + ∆ + Γe)
= n(pe − 1)(KX + ∆) + n(H +KX + ∆)
= nH + npe(KX + ∆)
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is Cartier. Hence we can apply Theorem 1.12 for e � 0 to complete the
proof. �

1.4. An application to projective space. Fix k to be an algebraically
closed field and suppose that S is a collection of closed points of Pnk . Sup-
pose further that H ⊆ Pnk is a hypersurface of degree d that vanishes to order
≥ ` for each x ∈ S. What is the smallest degree hypersurface that passes
through all the points of S?

A refined version of this question that we will not state here is known
as Chudnovsky’s conjecture. Some notable work on this problem includes
[Wal87, EV92], [] [] []. Our result below can was first shown by by B. Har-
bourne [HH11] where it was deduced from Chapter 4Theorem 7.8. We shall
take this approach in ??. Instead, we will explore this question via the same
approach as [Laz04b, Proposition 10.1.1] used in characteristic zero. In fact,
that is a reformulation of a part of the proof of the main result of [EV92]
mentioned above.

Theorem 1.14. Suppose k is an algebraically closed field of characteristic
p > 0. Fix a reduced closed subscheme S ⊆ Pnk where each irreducible compo-
nent of S has codimension ≤ e. Suppose that H is a hypersurface of degree
d such that multxH ≥ ` for all x ∈ S (including non-closed points). Then
S lies on a hypersurface of degree bde` c.

Proof. Set X = Pnk and ∆ = e
`H. Then ∆ vanishes to order e > 0 at

each point of S. Let IS denote the radical ideal sheaf defining S.

Claim 1.15. τ(X,∆) ⊆ IS

Proof of claim. Suppose π : Y −→ X = Pn is the normalization of the
blowup of one of the generic points x of S. After localizing at x and replacing
X by SpecOX,x, we see that Y is non-singular (it is the blowup of a closed
point on a non-singular variety) and also that KY = (r−1)E+π∗KX where
E is the exceptional divisor and r ≤ e is the codimension of that component
of S in X = Pn. We know that

τ(X,∆) ⊆ π∗OY (dKY − π∗(KX + ∆)e).

by Chapter 6 Proposition 4.22. But the right side can be rewritten as

π∗OY (dπ∗KX+(r−1)E−π∗KX−∆̃− e
`
mEe) = π∗OY (d(r−1− e

`
m)E−∆̃e)

where ∆̃ is the strict transform of ∆ and m = multxH ≥ `. Since

r − 1− e

`
m ≤ e− 1− e

`
` = −1,
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we see that π∗OY (dπ∗KX + (r − 1)E − π∗KX − ∆̃− e
`mEe) is contained in

the maximal ideal at x, and thus so is τ(X,∆). This completes the proof of
the claim. �

If A is a hyperplane on X = Pn, then notice that

tA−KX −∆ ∼Q tA+ (n+ 1)A− de

`
A

is ample as long as t > de
` − (n + 1). If we choose t to be an integer this

occurs exactly when

t ≥ bde
`
c+ 1− (n+ 1) = bde

`
c − n.

We thus see that

τ(X,∆)⊗OX((bde
`
c − n)A+ nA) ∼= τ(X,∆)⊗OX(bde

`
c)

is globally generated, and so there exists a non-zero element

s ∈ H0
(
X, τ(X,∆)⊗OX(bde

`
c)
)
⊆ H0

(
X,IS⊗OX(bde

`
c)
)
⊆ H0

(
X,OX(bde

`
c)
)
.

This corresponds to a divisor of degree bde` c that vanishes on S. �

1.5. Exercises.

Exercise 1.1. Suppose that X is a globally F -split variety over an F -finite
field. Suppose that L is a Weil divisor so that iL is an ample Cartier divisor
for some i > 0. Show that S0(X,OX(KX +mL)) = H0(X,OX(KX +mL))
for all m� 0.

Exercise 1.2. Suppose that X is a d-dimensional projective variety over a
field of characteristic zero with rational singularities. Suppose that L is a
globally generated ample divisor on X. Show that ωX ⊗ L d+1 is globally
generated by using Castelnuovo-Mumford regularity and Kodaira vanishing
for rational singularities Chapter 6 Exercise 2.8.

Exercise 1.3. If L is a globally generated ample line bundle on X, a pro-
jective variety over a field, show that the induced map to projective space
φ|L | : X −→ PN is finite onto its image.

Exercise 1.4. Suppose that M is a big and nef Cartier divisor on a normal
projective variety X over a field. Show that there exists an effective Cartier
divisor G > 0 so that M − εG is ample for all 1� ε > 0.

Hint: Choose A ample, then nM − A is still big for n � 0 and so for
m sufficiently divisible, there exists an effective D ∼ m(nM − A). Now use
the fact that nef cone is the closure of the ample cone. For more on big and
ample divisors see for instance [Laz04a]. For the second statement,
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Exercise 1.5. Suppose that X is a projective variety over an F -finite field
and that L is an ample line bundle on X. Let S =

⊕
i≥0H

0(X,L i). If
(M , φ : F e∗M −→ M ) is a Cartier module that is also a coherent OX -
module. Use this to construct a graded Cartier module M on S. Then show
that [M ]i = S0(X,φ,M ⊗L i).

Exercise 1.6. Suppose that X is an F -rational n-dimensional projective
variety over an F -finite field. Suppose that L is ample and globally generated
and that N is big and nef and Cartier. Show that OX(KX + nL + N) is
globally generated.

Exercise 1.7. Suppose X = ProjS is a normal projective variety over a
field, U = D(f) ⊆ X is an affine open set (the complement of the vanishing
set of some homogeneous f ∈ S>0), and HU = divU (g) is a principal divisor
on U . Prove that there exists a Cartier divisor H on X such that H|U =
HU . Furthermore, show that if HU is effective, you can assume that HU is
effective.

Conclude that if X has characteristic p > 0 and ΓU is a Q-divisor on U
such that (pe − 1)Γ is Cartier, then there exists a Q-divisor Γ on X such
that Γ|U = ΓU . Further show that if ΓU is effective, you can assume that Γ
is effective.

Exercise 1.8. Suppose (R,m) is a regular local ring of dimension r and
f ∈ ma \ma−1. Without blowing up, directly prove that τ(R, f t) ⊆ m for all
t ≥ r

a . Use this to give an alternate proof of Theorem 1.14.

Hint: Show that m ·f dtpee is contained in mrpe+1 which itself is contained
in m[pe].

Exercise 1.9. Suppose k is an algebraically closed field and let S = k[x0, . . . , xn]
so that ProjS = Pnk . Suppose S is a reduced closed subscheme of Pnk where
every irreducible component of S has codimension ≤ e. Let IS ⊆ S denote
the corresponding saturated radical ideal. Use Chapter 4Theorem 7.8 to see
that

I
(em)
S ⊆ ImS

for all m > 0. Now, suppose that there exists a hypersurface H of degree d
that vanishes to order ≥ ` for all points on S. Use the above observations
to see that S lies on a hypersurface of degree bde` c.

2. Lifting sections and applications to Seshadri constants

One substantial utility of the sections S0 is that they can be “lifted”
as if Kodaira vanishing holds true. Indeed, suppose that X is a smooth
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projective variety over a field of characteristic 0 and D ⊆ X is a reduced
divisor. Further suppose that L is ample. Then we have that

H0(X,ωX(D)⊗L ) −→ H0(X,ωD ⊗L ) −→ H1(X,ωX ⊗L ) = 0

by Kodaira vanishing. This is particularly useful because sometimes it is
easier to prove that H0(X,ωD ⊗L ) has a section is non-vanishing at some
point x ∈ D ⊆ X. The surjectivity above then proves that H0(X,ωX(D)⊗
L ) also must have a section non-vanishing at x. In characteristic p > 0
Kodaira vanishing is false even for smooth surfaces [Ray78], and so there
exist examples where the map above is not surjective (since ifD is sufficiently
ample, we certainly have H1(X,ωX(D)⊗L ) = 0).

Our goal in this section is to prove an analog of the above surjection for
S0 and then to derive a consequence for Seshadri constants. We actually first
prove a much more general statement that works for more general Cartier
modules.

Theorem 2.1. Suppose that (M , φ) −→ (N , ψ) is a surjective map of co-
herent Cartier OX-modules on a projective variety X over an F -finite field
k. If L is ample, then the induced map

S0(X,φ,M ⊗L ) −→ S0(X,ψ,N ⊗L )

is surjective.

Proof. Fix (K , φ|K ) to be the kernel of (M , φ) −→ (N , ψ). By Serre
vanishing, we know that

H1(X,K ⊗L pe) = 0

for all e� 0. Hence we have the following diagram for e� 0:

H0
(
X,F e∗ (M ⊗L pe)

)
����

// H0
(
X,F e∗ (N ⊗L pe)

)
����

// 0

��

S0(X,φ,M ⊗L ) //
� _

��

S0(X,ψ,N ⊗L )� _

��

H0(X,M ⊗L ) // H0(X,N ⊗L ) // H1(X,K ⊗L )

The desired surjectivity follows immediately from the diagram. �

Example 2.2 (A simple application). Suppose that X is a projective variety
and φ : F e∗OX −→ OX is a map compatible with a normal subscheme Z ⊆
OX . Suppose that φZ : F e∗OZ −→ OZ is the induced map and that (Z,∆Z)
is globally F -split (for instance, if Z is a finite collection of closed points).
Then S0(Z, φZ ,L ) = H0(Z,L ) for every ample line bundle L . Hence

H0(X,L ) −→ H0(Z,L )
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is surjective.

Suppose now that X is a normal projective variety over an F -finite field
and D is a reduced Weil divisor on X. Then the map F e∗ωX −→ ωX induces

ψ : F e∗ωX(D) ⊆ F e∗ωX(peD) −→ ωX(D)

making ωX(D) into a Cartier module. By construction, we have an induced
map of Cartier modules

(ωX(D), ψ) −→ (ωD, ψD)

which is surjective if X is Cohen-Macaulay (or at least Cohen-Macaulay
near D) since the next term in the sequence is H−d+1ω

q
X where d = dimX.

Furthermore, this map is surjective if KX + D is Cartier and D is S2 see
Exercise 2.2 below. In particular, we have the following.

Corollary 2.3. Suppose that X is a normal projective variety and D ⊆ X is
a reduced Weil divisor on X so that X is Cohen-Macaulay in a neighborhood
of D. Then for any line ample bundle L , we have that S0(X,ωX(D)⊗L ) −→
S0(X,ωD ⊗L ) surjects.

Remark 2.4 (A warning about notation). It is important to point out that
if L = OX(L), then

S0(X,ωX(D)⊗L )

is not quite the same as

S0(X,ωX ⊗OX(D + L)).

The point is that the underlying Cartier modules are different ωX(D) and
ωX respectively. However, we have the following containments:

F e∗ (ωX(D)⊗L pe) ⊆ F e∗ (ωX ⊗OX(peL+ peD)).

After taking global sections, and assuming that e� 0, the left side surjects
onto S0(X,ωX(D)⊗L ) and the right side surjects onto S0(X,ωX⊗OX(L+
D)), hence we have that

S0(X,ωX(D)⊗L ) ⊆ S0(X,ωX ⊗OX(L+D)).

There are other statements that do not have the Cohen-Macaulay hy-
pothesis. We suggest the reader briefly recall the adjoint test ideal τD and
the (F -)different from ?? ??. In particular, Suppose X is normal, D is a
reduced divisor on X with normalization µ : DN −→ D, and B ≥ 0 is a Q-
divisor on X, without common components with D, such that KX+D+B is
Q-Cartier. In this case, the map OX −→ OD −→ µ∗ODN induces a surjection

τD(X,∆) −→ µ∗τDN(ODN ,DiffDN(D +B))

by ?? ??. We can use this to obtain the following result.
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Theorem 2.5. Suppose that X is a normal projective variety and D is a
reduced divisor on X. Further suppose that B ≥ 0 is a Q-divisor such that
KX + D + B is Cartier. Further suppose that L is a Cartier divisor such
that (pe − 1)(L−KX −D −B) is an ample Cartier divisor.Then

S0
(
X, τD(X,D+B)⊗OX(L)

)
−→ S0

(
DN, τ(DN,DiffDN(D+B))⊗OX(L)

)
surjects.

Proof. Write µ : DN −→ D the normalization map. The idea is that
the surjection τD(X,D + B) −→ µ∗τ(DN,DiffDN(D + B)) is a surjection of
twisted Cartier modules. We have the following commutative diagram where
we set Ld = (pd − 1)(L−KX −D −B):

F d∗ τD(X,D +B)⊗OX(L− Ld) // //

��

F d∗ µ∗τ(DN,DiffDN(D +B))⊗ µ∗OX(L− Ld)

��

τD(X,D +B)⊗OX(L) // // µ∗τ(DN,DiffDN(D +B))⊗OX(L)

If K is the kernel of the bottom row, then for d� 0 sufficiently divisible, we
see that H1(X,K ⊗ OX(Le)) = 0 by Serre vanishing. Since the images of
the vertical maps are the desired S0’s, the same argument as in Theorem 2.1
completes the proof. �

Indeed, the main point is that D is an F -pure center of the pair (X,D+
B) in the sense of ?? ??.

The surjectivities we have produced let us compare S0 on X and on a
subscheme. We also have the following containment for blowups.

Lemma 2.6. Suppose that X is a normal projective variety over an F -finite
field of characteristic p > 0. Suppose that π : Y −→ X is a proper birational
map and L is a line bundle on X. Then we have that

S0(Y, ωY ⊗ π∗L ) ⊆ S0(X,ωX ⊗L ).

Proof. Since π∗ωY ⊆ ωX , we can use the projection formula to obtain
that H0(Y, ωY ⊗ π∗L n) = H0(X,π∗ωY ⊗L n) ⊆ H0(X,ωX ⊗L n). Setting
n = pe, pushing forward via Frobenius, and taking images then produces the
desired containment. �

2.1. Seshadri constants. We now briefly introduce Seshadri constants
and show they can be used to show that certain sheaves are globally gener-
ated at certain points, by S0. For a complete treatment of Seshadri constants
in characteristic 0, see [Laz04a, Chapter 5].



584 10. GEOMETRIC AND GLOBAL APPLICATIONS OF FROBENIUS

Definition 2.7. Suppose X is a d-dimensional projective variety and x ∈ X
is a non-singular closed point and L is an nef divisor on X. Let π : Y −→ X
be the blowup of x with exceptional divisor E ∼= Pd−1

k(x), see Exercise 2.4. The
Seshadri constant of L at x, denoted ε(L;x) is defined to be

max{ε ≥ 0 | π∗L− εE is nef}.

Seshadri constants are a local measure of positivity, that is they measure
how positive (for instance nef or ample) the line bundle OX(L) is at the
point x.

We point out the following facts:

Lemma 2.8 (Initial facts about Seshadri constants). With notation as in
Definition 2.7:

(a) ε(mL;x) = mε(L;x) for every integer m.
(b) ε(L;x) depends only on the numerical class of L.
(c) If L is ample, then ε(L;x) = sup{ε ≥ 0 | π∗L− εE is ample}.

Proof. These are left to the reader in Exercise 2.5. �

Suppose first that L is ample, then we know from [Har77, Chapter II,
Section 7] that mL− E is ample (and hence nef) for m� 0. In particular,
L− 1

mE is ample as well. Hence ε(L;x) ≥ 1
m > 0.

Example 2.9. Suppose k = k and X = P2
k. For any closed point x ∈ X,

we compute ε(H;x) where H is a hyperplane. Then ε(H;x) = 1. Indeed,
notice that mx ⊗ OX(H) is globally generated and hence OY (π∗H − E) is
also globally generated, and thus ε(H;x) ≥ 1. On the other hand, for any
integers m > n, it is straightforward to see that π∗nH −mE is not globally
generated, and hence not very ample. Thus H− m

nE cannot be ample either,
which shows that ε(H;x) ≤ 1.

In characteristic zero, the following result is one of the main reasons for
studying Seshadri constants.

Theorem 2.10 ([Dem93]). Suppose that X is a d-dimensional projective
smooth variety over a field of characteristic zero, x ∈ X is a closed point and
L is an ample divisor on X. If ε(L;x) > d, then OX(KX+L) ∼= ωX⊗OX(L)
is globally generated at the point x.

We leave the proof to the reader in Exercise 2.6.

We will prove an analogous result in characteristic p > 0.
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Theorem 2.11 (cf. [MS12, PST17, Mur18]). Suppose that X is a d-
dimensional projective variety over an F -finite field of characteristic p > 0,
x ∈ X is a non-singular closed point, and L is an ample divisor on X. If
ε(L;x) > d, then OX(KX + L) ∼= ωX ⊗ OX(L) is globally generated at the
point x by S0(X,ωX ⊗OX(L)).

Proof. Let π : Y −→ X denote the blowup of x ∈ X and set E ∼= Pd−1
k(x)

to be the reduced exceptional divisor. By hypothesis, we know that M =
π∗L − dE is ample. Since Y is non-singular and hence Cohen-Macaulay
along E, we know that ωY (E) −→ ωE is a surjective. Thus we know by
Corollary 2.3 that S0(Y, ωY (E)⊗OY (M)) −→ S0(Y, ωE ⊗OY (M)) surjects.
Since E is globally Frobenius split, we see that

S0(Y, ωE ⊗OY (M)) = H0(Y, ωE ⊗OY (M)).

We now analyze what this means.

Notice that

ωY (E)⊗OY (M) = OY (π∗KX+(d−1)E+E+π∗L−dE) = OY (π∗(KX+L)).

On the other hand, since E maps to a point and OX(KX +L)|{x} is trivial,
OE ⊗OY (π∗(KX + L)) ∼= OE . Notice also that E ∼= Pd−1 = Pd−1

k(x) so that

ωE ⊗OY (M) ∼= ωY (E)⊗OE ⊗OY (M) ∼= OPd−1

In particular, we see that

(2.11.1) S0(Y, ωE ⊗OY (M)) ∼= H0(Pd−1,OPd−1) = k(x).

Therefore S0(ωY (E) ⊗ OY (M)) ⊆ H0(Y,OY (π∗(KX + L))) has a section
mapping to 1 in (2.11.1). In particular, S0(Y, ωY (E) ⊗ OY (M)) is globally
generated along every point of E. Thus so is S0(Y, ωY ⊗OY (M+E)), which
is even larger by Remark 2.4. By Lemma 2.6 and the fact that π∗ωY = ωX
(since X has pseudo-rational singularities at x) we see that S0(X,ωX ⊗
OX(L)) also has a global section non-vanishing at x. This completes the
proof. �

2.2. Exercises.

Exercise 2.1. Suppose that X is a projective variety over a perfect field k
and (M , φ : F e∗M −→ M ) is a Cartier module. Let k denote the algebraic
closure of k. Show that we can give the base change Mk = M ⊗kk a Cartier-
module structure via base change and we have a canonical identification

S0(X,M ⊗OX L )⊗k k ∼= S0(Xk,Mk ⊗OXk Lk)

for any line bundle L with base change Lk.
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Hint: Exhibit an isomorphism (F e∗M )⊗k k′ ∼= F e∗Mk′ for any algebraic
extension k′ ⊇ k.
Exercise 2.2. Suppose X is a normal projective variety and D > 0 is a
reduced S2 and G1

2 Weil divisor on X. If KX +D is Cartier, prove that the
canonical map:

ωX(D) −→ ωD
is surjective even if X is not Cohen-Macaulay.

Hint: Since ωX(D) is locally free of rank 1, so is its image in ωD (as
a OD-module). Next show that the map ωX(D) −→ ωD is surjective in
codimension 2 on X (and so 1 on D).

Exercise 2.3. Suppose that X is a normal projective variety over an F -
finite field of characteristic p > 0 and that ∆ ≥ 0 is a Q-divisor such that
(pe−1)(KX +∆) is Cartier. Suppose further that Z ⊆ X is a normal F -pure
center for (X,∆) in the sense of ?? ??. Let ∆Z on Z denote the F -different
of KX + ∆ on Z. For any ample Cartier divisor L, we have consider the
maps Fne∗ OX(peL + (1 − pne)(KX + ∆)) −→ OX(L) as in (1.10.1). Show
there is a surjection:

S0(X,∆,OX(L)) −→ S0(Z,∆Z ,OX(L)|Z).

Furthermore, if Z is a closed point, show that ∆ = 0 and that S0(Z,∆Z ,OX(L)|Z)
is the residue field at x.

Exercise 2.4. Suppose that (R,m, k) is a d-dimensional regular local ring
and π : Y −→ X = SpecR is the blowup of m. Write m · OY = OY (−E)

where E is the exceptional divisor. Show that E ∼= Pd−1
k .

Hint: Consider the associated graded algebra of m.

Exercise 2.5. Prove Lemma 2.8.

Exercise 2.6. Prove Theorem 2.10 in characteristic zero without reducing
to characteristic p > 0. In other words, assume that X is a d-dimensional
smooth projective variety over a field of characteristic zero and x ∈ X is
a closed point. Suppose additionally L is an ample line bundle and that
ε(L;x) > d. Show that

OX(KX + L)

is globally generated at x.

Hint: Use Kodaira vanishing on the blowup π : Y −→ X. See the proof
of Theorem 2.11 for some inspiration.

Exercise 2.7. Suppose that X is a projective variety over an algebraically
closed field of characteristic p > 0. Suppose that V = {x1, x2} is a set of
two distinct non-singular points. Let Y −→ X be the blowup of both xi.

2Gorenstein in codimension 1
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3. An application to discreteness of F -jumping numbers

Warning 3.1. This section will likely undergo substantial revision, eventu-
ally handling discreteness of pairs (X, at). Suppose that X is a normal
projective variety over an F -finite field of characteristic p > 0. Further sup-
pose that ∆ ≥ 0 is a Q-divisor such that KX + ∆ is Q-Cartier and that H
is any Cartier divisor on X. Consider the test ideal

τ(OX ,∆ + tH)

as t varies. Certainly as t gets larger, τ(OX ,∆ + tH) becomes smaller.
Indeed, in Chapter 4 Subsection 6.3 we showed that if X is regular and ∆ is
zero, then τ(OX , tH) only changed at a discrete set of rational numbers t.
Recall that t > 0 is an F -jumping number (for (X,∆, H)) if τ(OX ,∆+tH) 6=
τ(OX ,∆+(t−ε)H) for any 1� ε > 0. Our goal is to generalize discreteness
and rationality results to our setting. In fact, the methods of Chapter 4
Subsection 6.3 can be generalized to the setting of τ(OX ,∆+ tH). However,
we can obtain a very short proof of discreteness of F -jumping numbers via
the global generation results of the previous section. First we need a short

Theorem 3.2. Suppose X is a normal projective variety over an F -finite
field k, ∆ ≥ 0 is a Q-divisor on X such that KX+∆ is Q-Cartier, and H is a
Cartier divisor on X. Then the set of F -jumping numbers of τ(OX ,∆+ tH)
has no accumulation points.

Proof. First notice that if t = n + r where n ∈ Z and r ∈ [0, 1), then
τ(OX ,∆+ tH) = τ(OX ,∆+rH) ·OX(−nH) by Chapter 5 Exercise 5.11. In
particular, if we can show that there are only finitely many jumping numbers
in the interval [0, 1], then we are done.

Choose A sufficiently ample so that A−KX −∆− tH is ample for every
t ∈ [0, 1], note the ample cone is convex see [Laz04a, Section 1.4.C]. Fix
L globally generated and ample and suppose that d = dimX. By Corol-
lary 1.13, we know that τ(X,∆ + tH) ⊗ OX(A + dL) is globally generated
by

H0(X, τ(X,∆ + tH)⊗OX(A+ dL)) ⊆ H0(X,OX(A+ dL)).

Notice that the right side is a finite dimensional vector space. As t increases,
H0(X,∆, τ(X,∆ + tH)⊗OX(A+ dL)) becomes smaller, and hence form a
descending sequence of subspaces in a finite dimensional k-vector space. In
particular, there can be only finitely many H0(X,∆, τ(X,∆+tH)⊗OX(A+
dL) for t ∈ [0, 1]. Thus they can globally generate only finitely many test
ideals for t ∈ [0, 1]. This proves the theorem. �

We next need rationality. First we point out the following result on
F -jumping numbers which generalizes Chapter 4 ??.
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Lemma 3.3. Suppose that R is a normal F -finite Noetherian domain, X =
SpecR, ∆ ≥ 0 is a Q-divisor such that KX + ∆ is Q-Cartier, and H is any
Cartier divisor on X. If t is an F -jumping number for (X,∆, H), then so
is tp, and so is the fractional part {tp} = tp− btpc.

Proof. The second statement about the fractional part follows imme-
diately from the first via Chapter 5 Exercise 5.11.

Write div(f) = n(KX + ∆) and set S to be the normalization of R[f1/n]
(embedded in an algebraic closure of the total field of fractions) with induced
map π : Y = SpecS −→ SpecR = X. Notice that π∗(KX + ∆) = divY (f1/n)
is Cartier. Fix T ∈ HomR(S,R) non-zero with corresponding divisor DT ∼
KS − π∗KR (if p does not divide n, you can let T = Tr and so DT is the
ramification divisor). Choose G ≥ 0 Cartier so that π∗(∆ + G) ≥ DT , the
ramification divisor. Since τ(X,∆ + G + tH) = τ(X,∆ + tH) ⊗ OX(−G),
we see that the F -jumping numbers of (X,∆ + G,H) and the F -jumping
numbers of τ(X,∆, H) are the same and so we may replace ∆ with ∆ +G.
At this point, we have

π : Y = SpecS −→ SpecR = X

a finite map so that π∗(KX + ∆) is Cartier and so that π∗∆ ≥ DT .

By ?? ??, we know that

T (τ(S, π∗∆−DT + tπ∗H)) = τ(R,∆ + tH).

Hence, every F -jumping number of (X,∆, H) is also an F -jumping number of
(Y, π∗∆−DT , π

∗H). Notice thatKS+π∗∆−DT ∼ KS+π∗∆−KS+π∗KX =
π∗(KX + ∆) which is Cartier. Hence, replacing X with Y , replacing ∆ with
π∗∆−DT , and replacing H by π∗H, we may assume that KX +∆ is Cartier.

Without loss of generality, since R is affine, we may assume thatKX ≥ 0.
Now, from Chapter 5 Theorem 6.14 and ??, we know that

τ(X,∆ + tH) = τ(ωX ,KX + ∆ + tH) = τ(ωX , tH)⊗OX(−KX −∆).

To prove the first statement, it suffices to show that if τ(ωX , tH) 6= τ(ωX , (t−
ε)H), then τ(ωX , tpH) 6= τ(ωX , (tp− ε)H).

Finally, let T : F e∗ωR −→ ωR denote the dual to Frobenius. Notice we
have the transformation rule:

T (F e∗ τ(ωR, tpH)) = τ(ωR, tH)

by ?? (since F ∗H = pH). Hence if τ(ωX , tH) 6= τ(ωX , (t − ε)H), then
τ(ωX , tpH) 6= τ(ωX , (tp− ε)H). This completes the proof. �

Theorem 3.4. Suppose X is a normal projective variety over an F -finite
field k, ∆ ≥ 0 is a Q-divisor on X such that KX + ∆ is Q-Cartier, and H
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is a Cartier divisor on X. Then the (finite) set of F -jumping numbers of
τ(OX ,∆ + tH) is a set of rational numbers.

Proof. Again, it suffices to show that the F -jumping numbers in [0, 1]
are rational. Notice that if t is an F -jumping number, so is {tpe} = tpe−btpec
by Lemma 3.3. However, there are only finitely many distinct F -jumping
numbers in the range [0, 1] by Theorem 3.2. �

Conjecture 3.5 (Discreteness). Suppose R is an F -finite normal Noether-
ian domain, ∆ ≥ 0 is a Q-divisor on X = SpecR and H is any Weil divi-
sor. Then the set of F -jumping numbers of (R,∆, H) have no accumulation
points.

Conjecture 3.5 open when ∆ = 0 and H is Cartier, even for R finite type
over a field.

The state of the art is essentially as follows. If X is finite type over a field
and KX + ∆ is Q-Gorenstein except at finitely many points 3 then for any
Cartier divisor 4 H, the jumping numbers of (X,∆, H) have no accumulation
points. The proof is a generalization of the proof we have just presented and
is based upon similar results in characteristic zero, see [Urb12, Gra16,
GS18]. For things not of finite type over a field, the strongest results are
contained in [BSTZ10] [STZ12] [?] [?] where the results are proven for
F -finite rings where KX + ∆ is Q-Cartier (or satisfies the finite generation
condition in the footnote above).

Question 3.6 (Rationality?). Does there exist a normal F -finite domain R,
and a Cartier divisor H on X = SpecR such that an irrational number t
is an F -jumping number for (X,H)? That is, is it true that τ(X, tH) 6=
τ(X, (t− ε)H) for 1� ε > 0?

Exercises.

Exercise 3.1. Suppose X is a normal projective variety over an F -finite
field k. Suppose that X is also Q-Gorenstein. Prove that the images

Image
(

H omOX (F e∗OX ,OX)
eval@1−−−−→ OX

)
stabilize for e� 0. See also Chapter 4 Question 2.9.

The following exercises explore F -jumping numbers in general gives a
different proof of discreteness of F -jumping numbers that works for any

3In fact, one only needs that ring
⊕

n≥0OX(b−n(KX + ∆)c)) is finitely generated
except at finitely many points.

4It even works for triples (X,∆, at) defined as in Chapter 5 Exercise 5.16.
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F -finite normal domain. In particular, it does not require any finite type
hypothesis over a field.

Setting 3.7. Suppose R is an F -finite normal domain, X = SpecR, and
∆ ≥ 0 is a Q-divisor on X. We also suppose that H is a Cartier divisor on
X.

Exercise 3.2. To show that the F -jumping numbers of (X,∆, H) have no
accumulation points, show that one may reduce to the case that the coeffi-
cients of ∆ are integers.

Hint: Take a finite extension R ⊆ S and argue similarly to the proof of
Lemma 3.3. Note, we are not assuming that KX + ∆ is Q-Cartier (yet).

Exercise 3.3. Define a test-module F -jumping number of (ωX , H) to be a
real number t ≥ 0 such that τ(ωX , tH) 6= τ(ωX , (t− ε)H) for all 1� ε > 0.
Show that to prove discreteness or rationality of F -jumping numbers for
triples of the form (X,∆, H) if KX + ∆ is Q-Cartier, it suffices to prove dis-
creteness or rationality of test-module F -jumping numbers for pairs (ωX , H).
Note the X for the triples is not necessarily the same as the X for pairs.

Exercise 3.4. Show that τ(ωX , tH) = τ(ωX , (t+ ε)H) for all 1� ε > 0.

Exercise 3.5. Suppose that t1 = a
pe−1 . Prove that there exists t0 < t1 such

that τ(ωX , tH) is constant for all t ∈ [t0, t1). Use transformation rules for
finite maps to deduce the same thing for any rational t1.

Hint: Reduce to the case where H = div(f). Suppose that T e :
F e∗ωX −→ ωX is the canonical map. Observe that

T e(F e∗ f
aτ(ωX)) = τ(ωX ,

a

pe
H)

and that
T e(F e∗ f

aτ(ωX ,
a

pe
H)) = τ(ωX , (

a

p2e
+
a

pe
)H)

etc. Continuing in this way, use Chapter 8 Theorem 2.1 to show that these
images eventually stabilize.

Exercise 3.6. Use Chapter 4 Exercise 6.8 to show that the test module F -
jumping numbers of (ωX , H) are rational and have no limit points. Conclude
that the F -jumping numbers of (X,∆, H) are rational and have no limit
points.

4. Applications to linear systems

This has not been written yet.



APPENDIX A

Background facts on commutative algebra

This appendix is incomplete. It will be expanded and revised.

1. Colons and submodules

Suppose R is a ring,M is a module, andN,N ′ ⊆M are subsets (typically
submodules). Then by

N : N ′ = N :R N
′

we mean the set
{x ∈ R | xN ′ ⊆ N}.

Very frequently, N ⊆ N ′ are nonzero ideals in a domain R with fraction field
K(R). In this case

N :R N
′ ⊆ N :K(R) N

′ ∼= HomR(N ′, N).

Indeed, there is certainly a map N :K(R) N
′ −→ HomR(N ′, N). On the other

hand, any map N ′ −→ N , when tensored with ⊗RK(R) becomes a map
K(R) = N ′ ⊗K(R) −→ N ⊗K(R) = K(R) and hence may be identified with
multiplication by an element x ∈ K(R).

Lemma 1.1. Suppose R −→ S is a ring map and N,N ′ ⊆M are R-modules.
Then

(N :R N
′)S ⊆ N ⊗R S :S N

′ ⊗R S.
Furthermore, if R −→ S is flat and N ′ is finitely generated, then this is an
equality.

Proof. Certainly if xN ′ ⊆ N , then this is preserved after tensoring
with S. Now assume that R −→ S is flat and that N ′ is finitely generated
with generators x1, . . . , xm. Then N :R N

′ is the intersection of the kernels
Ki of:

0 −→ Ki −→ R
r 7→rxi−−−−→ N ′ +N

N
.

The formation of these kernels Ki commutes with base change by the flat
S, and so the statement reduces to the fact that finite intersections of ideals

591
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are preserved under flat ring extensions (ie, M1 ∩M2 = ker(M −→M/M1 ×
M/M2) and the formation of that kernel commutes with flat ring extensions).

�

2. Pure maps of modules

Definition 2.1. Let R be an arbitrary commutative ring. A homomorphism

M
φ

−→ N of R-modules is pure (or universally injective) if for every R-module
Q, the induced map

M ⊗R Q −→ N ⊗R Q
is injective.

Example 2.2. Two main examples of pure maps are split maps and faith-
fully flat maps:

(a) If the map M
φ

−→ N splits in the category of R-modules, then it is
pure.

(b) If R −→ S is a faithfully flat map of commutative rings, then R −→ S
is a pure map of R-modules.

Indeed, statement (a) is immediate, while (b) is easy as well; see [Sta19,
Tag 05CK].

Purity of a finite map of Noetherian modules over a Noetherian ring is
very close to splitting:

Proposition 2.3. Let M
ϕ

−→ N be a pure map of A-modules where A is a
commutative ring. Then ϕ is split if the cokernel N/ϕ(M) is finitely pre-
sented.

Proof. See [HR76, Corollary 5.2] or [Sta19, Tag 058L]. �

The next lemmas are useful when checking for purity.

Lemma 2.4. Let (R,m) be a Noetherian local ring, and let E be an injective
hull of its residue field. Suppose R φ−→ M is an R-module homomorphism.
Then φ is pure if and only if the map

E
E⊗Rφ−−−−→ E ⊗RM

induced by tensoring with E is injective.

Proof. See [HR76, Prop 6.11]. �

https://stacks.math.columbia.edu/tag/05CK
https://stacks.math.columbia.edu/tag/058L
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Corollary 2.5. If (R,m) is a Noetherian complete local ring and R −→ M
is pure, then R −→M is split.

Proof. By Lemma 2.4 E −→ E ⊗M injects where E is the injective
hull of the residue field. Applying the exact functor HomR(−, E) we from
Hom−⊗ adjointness that

HomR(M,HomR(E,E)) ∼= HomR(E ⊗M,E) −→ HomR(E,E)

surjects. Since R is complete, HomR(E,E) ∼= R, and the surjective map
above becomes

HomR(M,R) −→ R

which one can check is the dual of R −→M , in other words its the evaluation-
at-1 map and R −→M splits. �

Lemma 2.6. Suppose R is a commutative ring and M −→ N is a map of
R-modules. The following are equivalent.

(a) M −→ N is pure.
(b) M −→ N is pure if and only if

M ⊗R Q −→ N ⊗R Q
injects for every finitely presented R-module Q.

(c) For every finitely presented R-module P , the R-module map

HomR(P,N) −→ HomR(P,N/M)

surjects.

Proof. See [Sta19, Tag 058K], or prove it yourself (notice that any
failure to be injective only involves finitely many equations). �

The following general fact about pure maps follow immediately from the
definition.

Lemma 2.7. Let R be an arbitrary ring. Consider a composition

M
φ

−→ N
ψ

−→ P

of R-modules.

(a) A composition of pure R-module maps is pure. That is, if φ and ψ
are both pure, then so is ψ ◦ φ.

(b) If the composition ψ ◦ φ is pure, then also M
φ

−→ N is pure.

Perhaps the most commonly used consequence of pure maps in commu-
tative algebra is the following, also see Chapter 1 Lemma 3.11.

https://stacks.math.columbia.edu/tag/058K
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Proposition 2.8. Suppose that R −→ S is a pure map of rings. Then for
any ideal I ⊆ R, (I · S) ∩R = I.

Proof. Tensor R −→ S with the R-module R/I. �

We also have the converse statement under the approximately Gorenstein
hypothesis, see Section 11 below.

3. Normality

Definition 3.1. Let A ↪→ B be any inclusion of rings. We say an element
b ∈ B is integral over A if b satisfies a monic polynomial with coefficients
in A:

bn + a1b
n−1 + · · ·+ an−1b+ an = 0

where ai ∈ A. The ring A is said to be integrally closed in B if whenever
b ∈ B is integral over A, then b ∈ A.
Definition 3.2. A reduced ring R is normal if it is integrally closed in
its total quotient ring W−1R, where W is the multiplicative set of non-
zerodivisors of R.

Normalness is usually defined only for domains, in which case normal is
the same as integrally closed in its field of fractions.1. On the other hand,
for local rings, this concern about reduced vs integral domain is not an issue.

Lemma 3.3. If a reduced local ring (R,m) is normal, then R is an integral
domain.

Proof. �

3.1. Weak Normality. Maybe move stuff from Chapter 5 ??.

4. Regular sequences and Cohen-Macaulayness

We recall what it means for a local Noetherian ring (R,m) to be Cohen-
Macaulay.

First recall the definition of a regular sequences:

1For rings with infinitely many minimal primes (necessarily not Noetherian), there
are some subtleties in defining normality, and therefore, there are competing definitions
that may not agree with this one. In particular, a ring satisfying Definition 3.2 may not
have the property that each RP also does as well. See [Sta19, Tag 037B]

https://stacks.math.columbia.edu/tag/037B
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Definition 4.1. [BH93, Definition 1.1.1] A sequence of elements x1, . . . , xd
generating a proper ideal in a ring R is a regular sequence if x1 is not
a zero divisor on R, and the image of xi in R/(x1, . . . , xi−1) is not a zero
divisor on R/(x1, . . . , xi−1) for each i = 2, 3, . . . , d.

Definition 4.2. [BH93, Definition 2.1.1] A local Noetherian ring (R,m) is
Cohen-Macaulay if any of the following equivalent conditions holds

(a) There is a regular sequence contained in m of length equal to the
dimension of R.

(b) Some system of parameters for R is a regular sequence.
(c) Every system of parameters for R is a regular sequence.
(d) The Koszul complex on some (equivalently, every) system of param-

eters for R is exact.
(e) The local cohomology modules H i

m(R) are all zero for i < dimR.

If R is a Noetherian but not necessarily local ring, we say that R is Cohen-
Macaulay if all of its localizations are Cohen-Macaulay.

We summarize below some well-known (easy to prove) facts about Cohen-
Macaulayness:

Theorem 4.3. Let (R,m) be a Noetherian local ring.

(a) The ring R is Cohen-Macaulay if and only if its completion R̂ is
Cohen-Macaulay.

(b) If R is regular, then R is Cohen-Macaulay.
(c) Let f ∈ R be a non-zerodivisor. Then R is Cohen-Macaulay if and

only if R/(f) is Cohen-Macaulay.
(d) Suppose R is a finite local extension of a regular local subring2 A.

Then R is Cohen-Macaulay if and only if R is free as module over
A.

4.1. Manipulations with regular sequences.

5. Maps and tensor-hom adjointness

Lemma 5.1. Suppose R ⊆ S is an extension of rings andM is an S-module.
Any mapM −→ R factors asM −→ HomR(S,R) −→ R where the first map is
S-linear. Suppose further that HomR(S,R) ∼= S as S-modules. Then every

2a “Noether normalization" of R
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R-module homomorphism M −→ R factors as M −→ S
Φ−→ R. In particular,

the map
HomS(M,S)×HomR(S,R) // HomR(M,R)

(ψ, φ) � // ψ ◦ φ
is surjective.

Proof. This is a straightforward consequence of Hom-tensor adjoint-
ness. For instance, in the case that S ∼= S · Φ = HomR(S,R), we have
that

HomS(M,S) ∼= HomS(M,HomR(S,R)) ∼= HomR(M⊗SS,R) ∼= HomR(M,R).

The factorization asserted follows by tracing through the isomorphisms. �

Remark 5.2. The following generalization holds with nearly the same proof.
Suppose R ⊆ S is an extension of rings and M is an S-module. Then
every R-module map M −→ R factors through the evaluation-at-1 map
HomR(S,R) −→ R.

We will use Lemma 5.1 most frequently in the following setting.

Proposition 5.3. Suppose R −→ S −→ T is a sequence of finite ring maps.

HomR(S,R) = Φ · S and HomS(T, S) = Ψ · T,
that is, Φ and Ψ are S-module (respectively T -module) generators of their
respective Hom-sets. Then HomR(T,R) = (Φ ◦Ψ) · T as well. Furthermore,
if HomR(S,R) ∼= S and HomS(T, S) ∼= T , then HomR(T,R) ∼= T .

Proof. We prove the first statement first. By Lemma 5.1, we have that
for any γ ∈ HomR(T,R) that there exist s ∈ S and t ∈ T such that

γ(−) = Φ(sΨ(t−)) = (Φ ◦Ψ)(st−).

The first statement follows.

For the second statement, simply notice that

HomR(T,R) ∼= HomR(T⊗SS,R) ∼= HomS(T,HomR(S,R)) ∼= HomS(T, S) ∼= T.

�

The above will be particularly crucial for us for the interated Frobenius
morphism.

Corollary 5.4. Suppose R is an F -finite ring of characteristic p > 0 and
HomR(F e∗R,R) = Φe·(F e∗R) ∼= F e∗R. Then Φne := Φ◦F e∗Φ◦· · ·◦F ((n−1)e)

∗ Φ =
Φ?n satisfies

HomR(Fne∗ R,R) = Φne · (Fne∗ R) ∼= Fne∗ R.
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6. Symbolic powers

Definition 6.1. Suppose R is a ring and Q ⊆ R is prime. For every integer
n > 0, we define the nth symbolic power of Q as

Q(n) := R ∩ (QnRQ).

Here, if R −→ RQ is not injective, the intersection ∩ above means contraction
as in [AM69].

More generally, if I = Q1∩· · ·∩Qm is radical, and the Qi are its minimal
primes, then we define

I(n) := Q
(n)
1 ∩ · · · ∩Q(n)

m .

In other words, the nth symbolic power is the set of functions that vanish
to order n after localizing at Q.

For radical ideals, it is straightforward to see that I(n) is simply the
intersection of the minimal primary components in a primary decomposition
of In, see Exercise 7.7.

We should notice that if Q is maximal, Qn = Q(n).

Remark 6.2. There is an important result, due to Zariski and Nagata,
which can give another interpretation of symbolic powers. With notation as
above, assuming R is a polynomial ring over a field,

Q(n) =
⋂
m⊇Q

maximal

mn.

See [Zar49, Nag62, EH79], also see [DSGJ20] for a generalization to
mixed characteristic.

Let us consider several examples.

Example 6.3 (Principal ideals and complete intersections). Suppose f ∈ R
is a non-zerodivisor. It is easy to see that R ∩ ((f)nW−1R) = (f) where
W is the multiplicative set not containing any minimal prime of f , since
(fn) = (f)n is unmixed. More generally, if I = (f1, . . . , fl) where f1, . . . , fl,
is a regular sequence, then In is also unmixed by [Mat89, Exercise 17.6].

Example 6.4. Let S = k[x, y, z] and I = (x, y)∩(x, z)∩(y, z) = (xy, xz, yz).
Then for degree reasons, xyz /∈ I2 but xyz ∈ I(2) since

xyz ∈ (x, y)2 = (x, y)(2)

and likewise xyz ∈ (x, z)2, (y, z)2.
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In a non-regular ring it is even easier to construct interesting examples
of symbolic powers.

Example 6.5. Let R = k[x, y, z]/(xy − z2). Set Q = (x, z). Now, RQ is a
DVR with uniformizer z and x = y−1z2 is a unit multiple of z2 in RQ. Thus
Q(2) = (x) but x /∈ Q2.

7. S2-ness and reflexivity

Extension of sections over bigger open sets, maybe from Karl’s notes or
look in paper with

8. Gorenstein and quasi-Gorenstein rings

Definition 8.1. A local Noetherian ring (R,m) is Gorenstein if R has
finite injective dimension as an R-module. A Noetherian ring in general is
Gorenstein if RQ is Gorenstein for each Q ∈ SpecR.

While this definition of a Gorenstein ring we include some other charac-
terizations that will be crucial for us (and which also appear in Appendix C).

Lemma 8.2 (Corollary 6.6). A Noetherian local ring (R,m) of dimension d
is Gorenstein if and only if

(a) It is Cohen-Macaulay (equivalently, if H i
m(R) = 0 for all i < dimR).

(b) Hd
m(R) is an injective hull of the residue field R/m of R.

Requiring only condition (b) yields the following definition.

Definition 8.3. Suppose (R,m) is an equidimensional Noetherian local ring.
Then R is quasi-Gorenstein (or 1-Gorenstein) if Hd

m(R) is an injective
hull of the residue field of R/m. A Noetherian ring in general is quasi-
Gorenstein if all localizations RQ are quasi-Gorenstein.

Typically we work with quasi-Gorenstein rings with dualizing complexes,
see Appendix C.

Remark 8.4. In the case that (R,m) is local with dualizing complex ω q
R,

quasi-Gorenstein is equivalent to the condition that the canonical module ωR
is isomorphic to R. This follows from Matlis duality; see [BH93, Chapter
3], Appendix C Lemma 3.14 or Corollary 6.6.
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9. Complete local rings

Theorem 9.1 (Chevalley’s Lemma, [Che43, Section 2, Lemma 7]). Suppose
(R,m) is a complete local Noetherian ring and M is a finitely generated
module. Suppose further that M1 ⊇ M2 ⊇ . . . is a descending chain of
submodules such that

⋂
i>0Mi = 0. Then for every k > 0 there exists i > 0

such that Mi ⊆ mkM .

10. Local Cohomology

10.1. Derived functors.

10.2. The Čech description of local cohomology.

10.3. Local cohomology via direct limits.

Proposition 10.1. Suppose that J ⊆ R is an ideal that can be generated by
d elements. Then for any R-module N , we have a natural isomorphism:

Hd
J(R)⊗N −→ Hd

J(R).

11. Approximately Gorenstein rings

Approximately Gorenstein were introduced by Hochster in his study of
purity (as hinted at above). Two good sources for this material are [Hoc77]
and [Hoc07].

Definition 11.1 ([Hoc77, Definition Proposition 1.1, Proposition 2.1]).
Suppose (R,m) is a Noetherian local ring of dimension d. We say that R
is approximately Gorenstein if there is a sequence of m-primary ideals
In ⊇ In+1 ⊇ . . . , cofinal with the powers of m, and such that each R/In is
Gorenstein.

In general, a Noetherian ring is approximately Gorenstein if all lo-
calizations at maximal ideals are approximately Gorenstein.

Example 11.2. If (R,m) is a Gorenstein ring of dimension d and f1, . . . , fd
is a system of parameters. Then we can set In = (fn1 , . . . , f

n
d ). Each quotient

R/In is Gorenstein since we are modding out by a regular sequence.

It follows easily from the definition that Artinian rings are approximately
Gorenstein if and only if they are Gorenstein (the chain of ideals is even-
tually 0). In higher dimensions though, most rings we will care about are
approximately Gorenstein.
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Lemma 11.3 (cf. [Hoc77, Theorem 5.2]). Suppose that (R,m) is a local
Noetherian ring. If R satisfies either of the following conditions

(a) R is excellent (for instance complete) and reduced, or
(b) R is has depth ≥ 2 (for instance, is normal),

then R is approximately Gorenstein.

Suppose R and S is an R-module. Hochster defined a map R −→ M to
be cyclically pure cyclically pure if the map

R/I −→M/IM

injects for every ideal I ⊆ R. Or equivalently, if IM ∩R = I for every ideal
I ⊆ R.

Theorem 11.4 ([Hoc77, Theorem 2.6]). Suppose R is a Noetherian ring.
Then the following are equivalent.

(a) R is approximately Gorenstein.
(b) Every module extension R ↪→M that is cyclically pure is also pure.
(c) Every ring extension R ↪→ S that is cyclically pure is also pure.

Corollary 11.5. Suppose R is approximately Gorenstein and R ↪→ S is a
ring extension such that IS ∩R = I for every ideal I ⊆ R. Then R −→ S is
pure.

For us, the most useful thing about approximately Gorenstein local rings
(R,m, k) is that we can use the sequence of ideals In to construct an injective
hull of the residue field ER = ER(k). Notice that

AnnE R/In = ER/In
∼= R/In

where the final isomorphism is because R/In is Gorenstein Artinian ([BH93,
Proposition 3.2.12]). Hence, since every element of E is annihilated by some
mn, and hence some In, we see the following:

Proposition 11.6. Suppose (R,m, k) is an approximately Gorenstein local
ring with E an injective hull of k. Then we can write:

E =
⋃
n

AnnE R/In ∼= lim−→
n

R/In

where the direct limit is made up of injective maps so that the socle3 of R/In
is sent onto the socle of R/In+1.

3the 1-dimensional vector space annihilated by m
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Example 11.7. Again suppose (R,m) is a Gorenstein ring of dimension
d and f1, . . . , fd is a system of parameters (and hence a regular sequence
since Gorenstein rings are Cohen-Macaulay). Consider the sequence In =
(fn1 , . . . , f

n
d ). Let f = f1 · · · fd. We can construct the sequence:

R/I1
·f−→ R/I2

·f−→ R/I3

which we know limits to Hd
m(R). We know that Hd

m(R) = E (see Appendix C
Corollary 6.6). In other words, we can see that the construction of E as a
direct limit in Proposition 11.6, is simply another perspective on the direct
limit construction for local cohomology.





APPENDIX B

Review of divisors, invertible and reflexive sheaves

This appendix is incomplete. It will be expanded and revised.

1. Weil divisors

For simplicity, we begin with a normal Noetherian integral scheme X.
Let K denote the rational function field of X, and K× denote the units (non-
zero elements) in K. We also use the notation K and K× to denote the
corresponding constant sheaves of rational functions on X.

Definition 1.1. A prime divisor on X is a reduced irreducible closed
subscheme of codimension one on X. A (Weil) divisor on X is a formal
Z-linear combination

t∑
i=1

niDi

of prime divisors. The set of all Weil divisors on X forms a free abelian
group on the prime divisors, denoted Div(X). We say that D is effective if
all ni ≥ 0.

If D and E are two Weil divisors, we write D ≥ E if D −E ≥ 0, that is
if the coefficients of D are at least as large as those of E.

Remark 1.2 (A comment on codimension). A Noetherian scheme (or even
ring) need not have finite dimension, and so talking the codimension of a
subscheme Z ⊆ X is not as simple as taking dimX − dimZ. However,
we can require that at each point x ∈ Z ⊆ X we have a comparison of
dimOX,x − dimOZ,x equal to a desired value.

Definition 1.3 (Support). Suppose that D =
∑t

i=1 aiDi is a divisor on X
where ai 6= 0, then the support of D is is the closed subset of X:

SuppD =

t⋃
i=1

Di.

603
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Our assumption that X is normal ensures that local ring OX,D at any
prime divisor is a discrete valuation ring. The associated valuation

νD : K× −→ Z

describes the “order of zero or pole of a rational function along D." Because
a rational function f ∈ K× has at most finitely many D along which it has
a zero or a pole, the following definition makes sense:

Definition 1.4. For any normal Noetherian scheme X, the divisor asso-
ciated to f ∈ K× is

div(f) :=
∑

D prime divisor

νD(f)D.

A divisor of this form is said to be a principal divisor.

Remark 1.5. A rational function φ on a normal Noetherian scheme is regu-
lar if and only if the corresponding principal divisor div(φ) is effective. This
follows from the fact that a normal Noetherian domain is the intersection of
its localizations at all height one primes [Sta19, Tag 0AVB].

For any open set U ⊂ X, we can restrict a divisor D =
∑t

i=1 niDi to U
by

D|U :=

t∑
i=1

ni(Di ∩ U)

where we simply omit the term ni(Di ∩ U) if Di ∩ U is empty.

Definition 1.6 (Cartier divisors). A divisor D on a normal Noetherian
scheme is Cartier (or locally principal) if there exists a cover {Uλ} of X
such that each D|Uλ is principal on Uλ, that is, such that D|Uλ = div(φλ)
for some rational function φλ on Uλ. We call the rational functions φλ ∈ K
local defining equations for the divisor D.

Example 1.7. The prime divisor D = V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is
not locally principal at the singular point m = (x, y, z) since the ideal of D
can not be generated by one element at m. In this case, however, 2D = div x
is principal.

Remark 1.8. Let X be a normal Noetherian scheme, and U ⊂ X an open
set whose complement has codimension at least two. The restriction map
D 7→ D|U clearly defines an isomorphism between the groups Div(X) and
Div(U).

Definition 1.9 (Linear equivalence). Two divisors D,D′ on X are linearly
equivalent if there exists f ∈ K× such that D′ = D + div(f). In this case
we write D ∼ D′.

https://stacks.math.columbia.edu/tag/0AVB
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2. Sheaves associated to divisors

Associated to any divisor is a coherent subsheaf of K, which also deter-
mines the divisor D. Indeed, when we interact with divisors, typically work
with the associated sheaves.

Definition 2.1. The sheaf associated to the divisor D is the subsheaf
OX(D) of K defined by

OX(D)(U) =: {f ∈ K× | divf |U +D|U ≥ 0} ∪ {0},

where by ≥ 0 we mean that the divisor divf |U +D|U is effective on U .

Example 2.2. Let D be a Cartier divisor on a normal variety X, say with
local defining equation fλ on the open cover {Uλ}. Then on Uλ, the sheaf
OX(D) is generated as an OX(Uλ)-module by the fraction 1

fλ
∈ K. This

follows from Remark 1.5: div(φ)|Uλ + D|Uλ is effective if and only if ffλ is
regular on Uλ.

The next proposition summarizes the basic facts about the sheaves de-
termined by Weil divisors:

Proposition 2.3. For a Weil divisors D,D′ on a normal irreducible Noe-
therian scheme with function field K:

(a) The sheaf OX(D) is a coherent reflexive subsheaf of the constant
sheaf K;

(b) The sheaf OX(D) is invertible if and only if D is Cartier;
(c) Every reflexive subsheaf of K can be identified with OX(D) for some

Weil divisor D.
(d) There is an isomorphism OX(D) ∼= OX(D′) of OX-modules if and

only if D and D′ are linearly equivalent.
(e) Every rank one reflexive sheaf is isomorphic to some OX(D) for

some Weil divisor D on X.
(f) We have that D ≤ D′ if and only if OX(D) ⊆ OX(D′). In particu-

lar, D is effective if and only if OX ⊆ OX(D).

Proof. All statements, with the exception of (e), can be found in [Har77,
II §6]. We note that for (d), the isomorphism OX(D)→ OX(D′) is given by
multiplication by f , where D′ = D + div(f).

For (e), suppose that F is a rank one reflexive sheaf. Choose an open
subset U of regular points of X whose complement has codimension at least
two, so that F|U is invertible on U . Shrinking U if necessary, we may assume
that F has a global section f . Consider the map OU → F|U given by
multiplication by f . �
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Remark 2.4. For a normal integral scheme X, the non-singular locus Xreg

is an open set whose complement has codimension two or more. So there
is a bijection between Weil divisors on X and divisors on the non-singular
locus Xreg given by simply restricting to Xreg.

Because all divisors on a regular scheme are Cartier, an arbitrary divisor
D of X will become Cartier when restricted to over Xreg. Thus, on a normal
variety, we can think of Weil divisors as the closures (inX) of locally principal
divisors on the non-singular locus Xreg. Likewise, we can think of rank one
reflexive sheaves on X as extensions of invertible sheaves on the non-singular
locus of X.

Definition 2.5 (Canonical divisors). Let X be a normal Noetherian scheme
with a fixed canonical module ωX (see Appendix C Section 5). Then a
canonical divisor on X is any divisor D such that OX(D) ∼= ωX . We write
KX for the canonical divisor.

Remark 2.6 (Uniqueness of canonical divisors). Note canonical divisors
are only defined up to linear equivalence. Indeed, if KX and K ′X are two
canonical divisors, then OX(KX) ∼= ωX ∼= OX(K ′X). However, if π : Y −→ X
is a proper birational map between normal varieties, we always pick KY and
KX so that agree where π is an isomorphism.

3. Global sections and effective divisors

Let D be a Weil divisor on a normal irreducible Noetherian scheme X.

Each global section s ∈ H0(X,OX(D)), viewed as an element of K×,
gives rise to a unique effective divisor linearly equivalent to D, namely the
divisor

(3.0.1) Ds := div s+D,

which is effective by the definition of OX(D). Conversely, if D′ is an effective
divisor linear equivalent to D, then there is a rational function s such that
D′ = D+div s: by definition, s is a global section of OX(D). Note that the
section s uniquely determines the divisor D′ but the divisor D′ determines
s only up to unit multiple from H0(X,O×X). This proves:

Proposition 3.1. For a divisor D on a normal Noetherian scheme X, the
map

H0(X,OX(D))

H0(X,O×X)
// Div(X)

f � // div(f) +D

defines a bijection onto the complete linear system of all effective divisors on
X linearly equivalent to D.
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We will most frequently use the previous proposition in the following
way.

Corollary 3.2. Suppose X is a Noetherian normal scheme and D is a Weil
divisor on X. Then any global section s ∈ H0(X,OX(D)) that is non-zero
on every component of X determines an effective divisor linearly equivalent
to D. Furthermore, two sections s, s′ determine the same divisor if and only
if s = us′ for some unit u ∈ H0(X,OX).

Example 3.3. IfD is effective, then 1 ∈ K is a global section ofOX(D). The
divisor determined by this section is div 1+D = D. So an effective divisor D
determines a canonical choice of global section for OX(D)—namely 1 ∈ K—
which in turn recovers D. All other effective divisors linearly equivalent to
D are of the form div(s) +D for some global section s of OX(D).

Example 3.4. Consider P2 with homogeneous coordinates x, y, z. Let H be
the hyperplane in P2 defined by the homogeneous coordinate x = 0. Then
the global sections of OP2(H) are spanned by {1, yx ,

z
x}. An arbitrary global

section is ax+by+cz
x , whose associated divisor is div(ax+by+cz

x )+H; this is the
hyperplane defined by the vanishing of the linear form ax+ by + cz.

If H ′ is some other hyperplane, say defined by the homogeneous linear
form h, then the global sections of OX(H ′) are spanned by {xh ,

y
h ,

z
h}. Note

that h
x is a rational function on P2, and that H ′ = div(hx) +H.

There is another, more local, way to describe the assignment from global
sections s ∈ Γ(X,OX(D)) to effective Weil divisorsDs. Suppose E is a prime
divisor on X with generic point η ∈ E ⊆ X. Then we have an isomorphism
µ : OX(D)η ∼= OX,η. We claim that the coefficient of Ds along E is exactly
the vanishing order of µ(sη) ∈ OX,η, that is vη(µ(sη). To see this we work
locally and notice that OX(D)η = 1

gOX,η ⊆ K where div(g) and D have the
same cofficient of along E, and g ∈ K. We may also assume that the map
µ sends 1

g 7→ 1, in other words µ is multiplication to g. In this case, the
coefficient of Ds along E is

vη(s) + vη(g) = vη(sηg).

On the other hand vη(µ(sη)) = v(sηg).

As a consequence, we immediately obtain the following.

Proposition 3.5. Suppose D1, D2 are Weil divisors on a Noetherian normal
scheme with D1 ∼ D2 and let us fix an isomorphism ρ : OX(D1) ∼= OX(D2).
If s ∈ Γ(X,OX(D1)) determines an effective divisor G ∼ D1 ∼ D2 as in
Proposition 3.1, then ρ(s) ∈ Γ(X,OX(D2)) also determines G.
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4. Reflexive / S2 sheaves on normal schemes

The sheaves associated to divisors are rather unique as they are deter-
mined only by codimension 1 information. The theory of reflexive or S2
sheaves on a normal Noetherian scheme comes into play and can let us work
with those OX(D) as if they were line bundles.

First we record some definitions and some key lemmas. Some key refer-
ences for this include [Har94], [Har07] and [Sta19, Tag 0AVT].

Definition 4.1 (S2 sheaves). Suppose X is a Noetherian scheme and F is
a coherent sheaf on X. We say that F is S2 if for each (possibly non-closed)
point x ∈ X, we have that depthOX,x(F ) ≥ min(2, dimOX,x).

We now introduce some notation. Suppose X is a normal Noetherian
scheme. For any sheaf F we write

(4.1.1) F ∗ = H om(F ,OX)

for the OX -dual. Likewise, if R is a Noetherian normal ring and M is an
R-module, we write

(4.1.2) M∗ = HomR(M,R)

for the R-dual.

Definition 4.2 (Reflexive sheaves). Suppose X is a Noetherian scheme and
F is a coherent sheaf onX. Then we say that F is reflexive if the canonical
map

F −→ F ∗∗ = H omOX (H omOX (F ,OX),OX)

is an isomorphism.

Lemma 4.3 ([Har94, Corollary 1.8]). If X is Noetherian and normal1 and
F is coherent, then F ∗ is reflexive.

Lemma 4.4 ([Sta19, Tag 0AY6]). Suppose X is a normal Noetherian in-
tegral scheme and F is a coherent sheaf on X. Then the following are
equivalent:

(a) F is torsion free and S2.
(b) F is reflexive.
(c) There is a closed subset Z ⊆ X of codimension ≥ 2, such that

if U = X \ Z then F |U is locally free and if i : U ↪→ X is the
inclusion, then F −→ i∗F |U is an isomorphism.

Remark 4.5. In fact, the first two conditions are equivalent for non-normal
schemes X as long as X is Gorenstein in codimension 1 (G1) and S2, see
[Har94, Theorem 1.9].

1or more generally S1 and Gorenstein in dimension 0, G0

https://stacks.math.columbia.edu/tag/0AVT
https://stacks.math.columbia.edu/tag/0AY6
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The next statement will be extremely important for us as it implies that
if X is a scheme of characteristic p > 0 and F is a S2 sheaf on X, then the
Frobenius pushforward F∗F is also S2.

Corollary 4.6. Suppose f : Y −→ X is a finite surjective map of integral
Noetherian schemes (assume X is either locally excellent or normal). Then
a torsion-free coherent sheaf F on Y is Sn if and only f∗F is Sn on X. In
particular, if X and Y are normal then F is reflexive if and only if f∗F is
reflexive.

Proof. For any point P ∈ X with dimOX,P = n, we have that f−1P is
a finite collection of points Q of Y with dimOY,Q = n by either the going up
theorem and the excellence of OX,P [Sta19, Tag 02IJ] (actually we just need
universally catenary), or by both the going up and the going down theorem
for when X is normal.

Furthermore,

H i
P ((f∗F )P ) =

⊕
Q∈f−1(P )

H i
Q(FQ).

Since Sn is a condition on depth, and so can be checked by (non-)vanishing
of local cohomology, the first statement is immediate. The statement on
reflexivity is a consequence of Lemma 4.4. �

Phrased locally, this just says the following.

Corollary 4.7. Suppose (R,m) is a Noetherian local domain and R ⊆ S is
a finite extension of domains. Then an S-module M is Sn if and only if it
is Sn when viewed as an R-module.

The following is a useful tool for proving maps between sheaves are iso-
morphisms.

Lemma 4.8. Suppose X is a Noetherian integral scheme. Suppose that

φ : F −→ G

is a map of coherent sheaves on X. Further suppose that

(a) G is torsion free,
(b) φ is an isomorphism at every x ∈ X with dimOX,x ≤ 1 and,
(c) F is S2.

Then φ is an isomorphism.

Proof. This follows from [Sta19, Tag 0AV9], or see [Har94]. �

https://stacks.math.columbia.edu/tag/02IJ
https://stacks.math.columbia.edu/tag/0AV9
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What we have done so far also implies the following.

Theorem 4.9 ([Har94, Theorem 1.12]). Let X be a Noetherian normal (or
G1 + S2) scheme. Let Z ⊆ X a subscheme of codimension ≥ 2 and let
U = X \ Z with i : U −→ X the inclusion. Then the restriction of a sheaf
from X to U induces equivalence of categories between the reflexive coherent
sheaves on X and the reflexive coherent sheaves on U . Furthermore, for any
reflexive (equivalently S2) sheaf F on X, F −→ i∗F |U is an isomorphism.
In particular, if G is a reflexive coherent sheaf on U , then i∗G is a coherent
reflexive sheaf on X.

Definition 4.10 (Reflexive hulls & S2-ification). Suppose that X is a Noe-
therian normal scheme and F is a coherent sheaf on X. The target of the
canonical map

F −→H omOX (H omOX (F ,OX),OX) = F ∗∗

is called the reflexive hull or reflexification of F . It is also called the
S2-ification of F when F is torsion free, since if one chooses i : U ↪→ X an
open dense set whose complement has codimension ≥ 2, and such that F |U
is free, then the above map can be identified with

F −→ i∗(F |U ).

From here on out, when F is torsion-free, we will denote target of the dis-
played maps as F S2 . We realize that F ∗∗ is more common in the literature,
but we believe the notation F S2 carries more information.

For a more general notion of S2-ification outside the case when R is
normal, see Appendix C Proposition 6.9 or [Har07].

The sheaves associated to divisors are always reflexive.

Lemma 4.11. Suppose that X is a Noetherian normal scheme and D is a
Weil divisor on X. Then the sheaf OX(D) is reflexive (equivalently S2).

Proof. Since X is normal, at each point x ∈ X with dimOX,x = 1, we
see that OX,x is a DVR. We then see that OX(D) is free at all those points.
Taking U ⊆ X to be the locus where OX(D) is free (whose complement
then has codimension ≥ 2) we see that Lemma 4.4 (c) is satisfied. The
result follows. �

We now see how divisor operations work with divisorial sheaves.

Proposition 4.12. Suppose X is a normal Noetherian scheme and D,E are
Weil divisors on X.

(a) (OX(D)⊗OX(E))S2 ∼= (OX(D) · OX(E))S2 ∼= OX(D + E).
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(b) For any n > 0, (OX(D)⊗n)S2 ∼= OX(nD).
(c) H omOX (OX(D),OX(E)) ∼= OX(E − D). In particular, we have

that OX(D)∗ = H omOX (OX(D),OX) ∼= OX(−D).

Proof. We first notice that all these results are straightforward forD,E
Cartier and so all hold on the regular locus of X (whose complement has
codimension 2 sinceX is normal). The results all follow from Lemma 4.8. �

Example 4.13 (Symbolic powers). Suppose R is a normal integral do-
main and P is a height-one prime corresponding to a prime divisor D.
Set X = SpecR. Then OX(−D) is the sheaf corresponding to P , that
is Γ(X,OX(−D)) = P . Furthermore, OX(−nD) corresponds to the nth
symbolic power2 of P , that is Γ(X,OX(−nD)) = P (n). Indeed, the point is
that (−)S2 removes any non-height-one primary components of Pn by Propo-
sition 4.12 (b) above. That is also precisely what taking a symbolic power
does this case.

Another useful fact is that any rank-1 reflexive sheaf is isomorphic to a
divisorial sheaf.

Proposition 4.14. Suppose X is a Noetherian normal integral scheme. Sup-
pose F is a coherent (generically) rank-1 reflexive sheaf. Then there is an
inclusion of OX-modules into the fraction field sheaf of X:

i : F ↪→ K .

Furthermore, for any such inclusion i, there is a Weil divisor D on X such
that i(F ) = OX(D).

We conclude this section with a discussion of global sections of rank-1
reflexive sheaves.

Proposition 4.15. Suppose X is a normal Noetherian scheme and F is
a rank-1 reflexive sheaf on X. Any global section s ∈ Γ(X,F ) determines
an effective Weil divisor Ds such that OX(Ds) ∼= F . Furthermore, this
construction agrees with that of Proposition 3.1 in the case that F = OX(D).

Proof. We give two proofs of this.

For our first proof, we define Ds as in the discussion before Proposi-
tion 3.5. For a prime divisor E on X set η ∈ E ⊆ X to be it generic point.
We then have µ : Fη

∼= OX,η since X is normal and F is rank-1 and torsion-
free. The divisor Ds can then be defined by requiring that its coefficient

2The nth symbolic power can be defined as P (n) = PnRP ∩R, or equivalently as the
P -primary component in a primary decomposition of Pn.
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along E is the vanishing order of µ(sη) ∈ OX,η. For the final statement we
appeal to Proposition 3.5.

For the second proof, choose an embedding F ↪→ K as in Proposi-
tion 4.14 so that the image of F is OX(D). Then the global sections of F
are then identified with global sections of OX(D) and so determine effective
divisors satisfying the desired condition by (3.0.1). This is independent of
the choices by Proposition 3.5. �

5. Q-divisors, Z(p), and R-divisors

Suppose p is a prime and let Z(p) denote Z localized at the prime ideal
generated by p. In other words, Z(p) is the set of rational numbers that can
be written so that p does not appear in a denominator.

Definition 5.1. Suppose X is a normal Noetherian integral scheme. A
Q-divisor (respectively R-divisor, Z(p)-divisor) on X is a Q-linear (re-
spectively R-linear, Z(p)-linear) formal sum of prime divisors. They form a
group which we denote by DivQ(X) (respectively, DivR(X), DivZ(p)

(X)).

Note any Weil divisor is a Z-divisor, any Z(p)-divisor is a Q-divisor, and
any Q-divisor is a R-divisor.

Notation 5.2. For any R-divisor D =
∑t

i=1 aiDi where Di are prime divi-
sors, we write

bDc :=
t∑
i=1

baicDi and dDe :=
t∑
i=1

daieDi

for the round-down and round-up of D, respectively.

Definition 5.3 (Q-Cartier and R-Cartier divisors). A Q-divisor D is called
Q-Cartier (respectively, Z(p)-Cartier) if there exists an integer n > 0 (re-
spectively, such that n is not divisible by p) such that nD is a Cartier Weil
divisor. The smallest n > 0 such that nD is Cartier is called the index of
D.

A R-divisor D is called R-Cartier if there exist Cartier Weil divisors
D1, . . . , Dm such that D =

∑m
i=1 riDi for ri ∈ R.

Example 5.4. The divisor (1/3) div(x) + (1/4) div(y) on A2 = Spec k[x, y]
is Q-Cartier. It is not a Weil divisor though.

The prime Weil divisor D = div(x, y) on Spec k[x, y, z]/(x2 − yz) is Q-
Cartier, since 2D = div(y). The Q-divisor D = 1

3 div(x) = 1
3 div(x, y) +

1
3 div(x, z) is also Q-Cartier.
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Next consider X = Spec k[x, y, u, v]/(xy − uv). The prime divisor D =
div(x, u) is not Q-Cartier. Indeed, in this example OX(−nD) = (x, u)n for
every integer n.

Definition 5.5. A normal scheme X with a canonical module is called Q-
Gorenstein if the canonical divisor is Q-Cartier. The index of X is the
index of the canonical divisor KX . A normal Noetherian ring is called Q-
Gorenstein if SpecR is.

Example 5.6. Any Gorenstein normal variety is Q-Gorenstein.

The ring R = k[x3, x2y, xy2, y3] is not Gorenstein since the canoni-
cal divisor KR = div(x3, x2y, xy2) is a canonical divisor and the corre-
sponding ideal (x3, x2y, xy2) is not principal. On the other hand, it is Q-
Gorenstein since 3KR = div(x3). From a commutative algebra perspective,
P = (x3, x2y, xy2) ∼= ωR is not (locally) principal but its third symbolic
power is principal P (3) = (x3), see Example 4.13.

6. Pulling back divisors

Suppose f : Y −→ X is a map of normal integral Noetherian schemes.
In this section we describe how to take divisors D on X and turn them into
divisors on Y . Essentially, there are three main cases:

(a) D is Q-Cartier and f(Y ) is not contained in the support of D.
(b) f is flat.
(c) f is finite and surjective.

6.1. Pulling back (Q-)Cartier divisors. We first explain what to do
when D is Cartier, and f(Y ) 6⊆ Supp(D) (note that this condition holds
whenever f is dominant, for instance if f is birational). In this case we work
locally on some open U ⊆ X and assume that D|U = divU (g/h) for some
g, h ∈ Γ(U,OX). We may select g, h so that the of g, h under Γ(U,OX) −→
Γ(f−1(U),OY ) is nonzero, and so a non-zerodivisor since Y is integral. On
f−1(U) we then set

f∗D|f−1U = divf−1(U) g − divf−1(U) h.

It is not difficult to see that this is independent of the choice of g, h and that
these f∗D|f−1U glue together on intersections. This gives us a well defined
Cartier divisor f∗D on Y . Furthermore, it is not difficult to see that

(6.0.1) OY (f∗D) = f∗OX(D)

in this case when D is Cartier.
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Example 6.1. If X = A2, f : Y −→ X is the blowup of the origin and
D = div(y2 − x3). Then f∗D = D′ + 2E where D′ = f−1

∗ D is the strict
transform of D (that is the divisor determined by D from the locus where
f is an isomorphism) and where E is the exceptional divisor. This can be
checked explicitly in local coordinates. Indeed, Y is covered by two affine
charts

U1 = Spec k[x, y/x]

and
U2 = Spec k[x/y, y].

On U1, the equation defining D factors as

y2 − x3 = x2((y/x)2 − x)

and on U2 it factors as

y2 − x3 = y2(1− y(x/y)3).

In either case we see that it factors as

(something squared) · (something to the first power)

which is what we expected.

We now explain how to pullback Q-Cartier (or even R-)divisors. Indeed,
if D is Q-Cartier, then we find some n > 0 such that nD is Cartier. Then if
f : Y −→ X is as above, we simply define

f∗D =
1

n
f∗nD.

More generally, if D =
∑m

i=1 riDi for ri ∈ R and such that Di are Cartier
that do not contain f(Y ) in their support, we define

f∗D =
m∑
i=1

rif
∗Di.

Example 6.2. Consider X = Spec k[x, y, z]/(x2−yz) and set D = div(x, y).
Then 2D = Div(y) so that D is Q-Cartier of index 2. Let π : Y −→ X be
the blowup of the origin (x, y, z).

To compute π∗D we simply compute (1/2)π∗2D = (1/2) divY (y). In
particular, we need to compute the coefficient of π∗D along the exceptional
divisor E as we already know what happens on the strict transform of D,
DY = π−1

∗ D , where it has coefficient 1. We can do this on the chart

U1 = Spec k[x/y, y, z/y]/(1− (x/y)(z/y))
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where the exceptional divisor is E = divU1(y). In particular, π∗2D =
π−1
∗ 2D + E where π−1

∗ 2D = 2DY is the strict transform of 2D. Hence,
dividing by 2, we see that

π∗D = DY + (1/2)E.

In particular, even thoughD is a Weil divisor, we see that π∗D is a Q-divisor.

It is natural to ask how one might be able to pull back Weil divisors that
are not Q-Cartier. This is explored in [DH09].

6.2. Pulling back divisor under flat maps. Next suppose f : Y −→
X is flat, in this case, we see that f is dominant automatically. We have
an inclusion f−1K(X) ⊆ K(Y ) of fields of rational functions. Since the
sheaf OX(D) ⊆ K(X) then pulls back to a sheaf f−1OX(D) ⊆ f−1K(X).
Tensoring by ⊗f−1OXOY we obtain an inclusion f∗OX(D) ⊆ K(Y ). Next
we notice that since f is flat, f∗ commutes with H om, and f∗OX(D) is
S2/reflexive. In other words, f∗OX(D) ⊆ K(Y ) is a reflexive OY -subsheaf,
and so there exists a divisor DY with f∗OX(D)OY (DY ). We set

f∗D := DY .

It is not difficult to see that f∗(D + E) = f∗D + f∗E in this case (again,
these computations may be done off a set of codimension ≥ 2 where the
divisors D and E are Cartier)

If D is a Q-divisor (or R-divisor), we write D =
∑t

i=1 aiDi with Di prime
and ai ∈ Q (respectively R), then we set:

f∗D :=
∑

aif
∗D.

6.3. Pulling back divisors under finite surjective maps. Finally,
suppose that f : Y −→ X is finite surjective. Then, since X is normal,
there exist closed sets V ⊆ X and W = f−1V ⊆ Y , of codimension ≥ 2
respectively such that f ′ := f |Y \W : (Y \W ) −→ (X \ V ) is flat. For any
Weil divisor D on X, we let f∗D be the unique divisor on Y that agrees
with f ′∗D|X\V .

This can be made a bit more explicit as follows. Suppose we write
D =

∑t
i=1 aiDi where Di is prime, and let ηi ∈ X denote the generic point

of Di. We can take the normalization of OX,ηi ⊆ K(Y ) which will be a semi-
local ring where each maximal ideal corresponds to a point yij ∈ Y mapping
to ηi. The local inclusion OX,ηi ⊆ OY,yij is then an inclusion of DVRs. Let
r, s denote uniformizers so that r = usmij for some unit u ∈ OY,yij . If we let
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Eij denote the closure of {yij}, which makes it a prime divisor, we have that

f∗D =
∑
i,j

aimijEij .

Example 6.3. If F e : X −→ X is e-iterated Frobenius, then (F e)∗D = peD.
Indeed, this makes sense even if Frobenius is not finite since we can work on
the regular locus of X where Frobenius is flat on both the source and target.

Finally, we notice that for finite surjective maps

(6.3.1)
(
f∗OX(D)

)S2 = OY (f∗D).

7. Normal and simple normal crossings divisors

Definition 7.1. Suppose X is a normal Noetherian scheme and D is a
Z/Q/R-divisor on X with D =

∑
aiDi where the Di are prime divisors.

We say thatD has simple normal crossing (SNC) if eachDi is Cartier
and as a scheme each Di is regular. Furthermore, at each point x ∈ X with
associated stalk (OX,x,mx), if Di1 , . . . , Dim are the Di containing x, we have
that is defined by some fi ∈ mx and the fi are part of a minimal system of
generators of the maximal ideal mx. It is important to observe that if (X,∆)
is SNC, then X is nonsingular at each x ∈ Supp(∆) ⊆ X.

We say that D has normal crossings (NC) if for each x ∈ X with
completed stalk (R = ÔX,x, m̂x), we have that Supp(D)|SpecR = V(f) where
f =

∏n
i=1 gi and the g1, . . . , gn are part of a minimal system of generators of

the maximal ideal m̂x.

We say that (X,∆) is SNC (repsectively NC) if X is nonsingular and
∆ is SNC (respectively NC).

Example 7.2. Notice that an irreducible nodal curve (for example div(y2−
(x3 − x2)) ⊆ A2) is normal crossings but not simple normal crossings. On
the other hand a reducible nodal curve (for example div(xy) ⊆ A2) is both
normal crossings and simple normal crossings.

Note that if (X,∆) is a NC pair, and x ∈ X is a point with R = ÔX,x,
then (SpecR,∆|SpecR) is SNC.

Definition 7.3. Suppose that (X,∆ =
∑
Di) is a SNC pair where ∆ is a

reduced divisor. Then the strata (of (X,∆)) are the set of intersections:{ ⋂
Di∈S

Di

∣∣∣ S ⊆ {D1, . . . , Dm}
}
.
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By construction, the strata of a SNC pair are themselves nonsingular
schemes (they are locally defined by a part of a minimal set of generators of
the maximal ideal of a regular ring).

8. Ramification divisors and tame ramification

We begin in the ring theoretic setting.

Definition 8.1 (Wild and tame extensions). Suppose that R ⊆ R′ is a
essentially finite type, generically finite, and generically separable extension
of DVRs with uniformizers r ∈ R and r′ ∈ R′ respectively. Write r = ur′n

for some unit u ∈ R′ where n is the ramification index of the extension.
We say that R ⊆ R′ is tamely ramified (or simply tame) if

(a) p does not divide n, and
(b) The residue field extension R/(r) ⊆ R′/(r′) is separable.

The extension R ⊆ R′ is called wildly ramified or (simply wild) if it is not
tame. If R ⊆ R′ is tame and n = 1, then we say that R ⊆ R′ is unramified.

Now suppose R is a DVR and that R ⊆ S is a finite extension of normal
rings. We say that R ⊆ S is tame if for each of the (finitely many) maximal
ideals n ⊆ S we have that R ⊆ Sn is tame. We say that R ⊆ S is wild if it
is not tame (this means that at least one of the R ⊆ Sn is wild).

Finally, if R ⊆ S is a finite extension of normal Noetherian domains, we
say that it is tamely ramified in codimension 1, if for each height one
prime Q ∈ SpecR, we have that RQ −→ SQ is tamely ramified.

We also recall the ramification divisor.

Definition 8.2. Suppose that R ⊆ S is a finite extension of normal Noether-
ian domains. The ramification divisor is the divisor Ram on SpecS such
that for each height-one prime Q ⊆ S we have that the coefficient of Ram
along div(Q) is the same as the length of (ΩS/R)Q as an SQ-module. This
notion extends to ramification divisors for finite maps of schemes normal
Noetherian schemes in the natural way.

Proposition 8.3. With notation as in Definition 8.2, suppose P = Q ∩ R
and RP ⊆ SQ is tamely ramified. The coefficient of Ram at div(Q) is equal
to n− 1 where n is the ramification index of RP ⊆ SQ.

Proof. See []. �
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9. Cyclic covers

In this section we briefly review cyclic covers associated to divisorial
sheaves. Other good sources which cover most of the same material include
[TW92], [Kol97, Section 2], [EV92, Section 3.5], [KM98, Section 2.4],
[Kol13, Section 2.3], or [MP20, Appendix A.1].

Suppose X is a Noetherian normal integral scheme and D is a Weil
divisor on X. Suppose we pick z ∈ Γ(X,OX(nD)) a nonzero global section
for some n > 0. This section gives us a map OX

·z−→ OX(nD) and hence for
any other divisor E a map OX(E)

·z−→ OX(E+nD). That map lets us create
the following sheaf of rings:

R(X, z ∈ Γ(X,OX(nD))) := OX⊕OX(−D)⊕OX(−2D)⊕· · ·⊕OX(−(n−1)D)

where the multiplication is defined by the map

OX(−iD)×OX(−jD) −→ OX(−(i+ j)D)

if i + j < n and if i + j > n then we define further compose the above
multiplication with the inclusion OX(−(i+ j)D)

·z−→ OX(−(i+ j − n)D).

Definition 9.1. With notation as above, the cyclic cover of X associated
to z ∈ Γ(X,OX(nD)) is the scheme Y := SpecR(X, z ∈ Γ(X,OX(nD))).
By construction there is a map π : Y −→ X. The index of the cyclic cover
is the integer n > 0.

We record the following facts.

Lemma 9.2. Suppose X,Y, π and z ∈ Γ(X,OX(nD)) are as above and that
X has characteristic p > 0. Then the following hold.

(a) The map π : Y −→ X is finite with

π∗OY = R(X, z ∈ Γ(X,OX(nD))).

(b) Y is S2.
(c) If the divisor Dz ∼ nD associated to z is reduced, and p does not

divide n, then Y is also normal. .
(d) If p does not divide n, then Y −→ X is étale on the regular locus of

X \ SuppDz.
(e) If p does not divide n and z globally generates OX(nD) (so that
OX(nD) ∼= OX)), then π is étale in codimension 1.

(f) If p does not divide n and Dz is reduced, then the ramification divisor
of the map π is given by

Ramπ = π∗Dz − (π∗Dz)red = b(1− ε)π∗Dzc
for 1� ε > 0.
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Proof. (a) is immediate from the construction. (b) follows from Corol-
lary 4.6 since it suffices to check that π∗OY is S2, which is also clear since a
direct sum of S2 modules is S2. Property (c) is proved in []. The proof of (d),
which immediately implies (e), can be found in []. Part (f) is a consequence
of [], or our local computations below. �

Example 9.3. If Y −→ X is a cylic cover of index n and p|n where p is
the characteristic of X, then it can happen that Y is not even reduced. For
example, consider X = A1

k = Spec k[x] where k is a field of characteristic
p > 0. Suppose we pick D = div(x) and z = 1 ∈ Γ(X,OX(pD)) = 1

xpk[x].
Now, using t as a dummy-variable, we set:

Y = Spec
(
k[x]t0 ⊕ (x)t1 ⊕ · · · ⊕ (xp−1)tp−1

)
and we see that (xt)p = xp ∈ k[x] via our choice of z = 1. In particular, we
have that

Y = Spec k[x, T ]/(T p − xp) = Spec k[x, T ]/(T − x)p

by declaring T = xt. Hence Y is not reduced even though X is nonsingular.
Note also Dz = pdiv(x).

Now we specialize this to the local setting, generalizing the work of the
previous example. Since any cyclic cover remains a cyclic cover after passing
to an open cover or stalk, let us consider what happens when X = SpecR
and (R,m = (r)) is a DVR with uniformizer r. In that case D = j div(r) for
some integer j which may be negative. We then pick

z = urc ∈ rjnR

with c ≥ jn. Set b = c − jn and note Dz = (c − jn) divX(r) = bdivX(r).
We create a ring (using t as a dummy variable)

S := R⊕ r−jRt⊕ · · · ⊕ r−j(n−1)Rtn−1

with the relation (r−jt)n = urc−jn for some unit u. In other words, setting
T := r−jt, we see:

S ∼= R[T ]/(Tn − urb)
In particular, if b = 1, we are just adjoining the nth root of the uniformize
ur, and so S is regular. However, if b = 0, then we are adjoining the nth
root of u, which may make S non-reduced (if u already has a pth root).

Of particular interest for us is the case when Dz = 0, D = KX and
X = SpecR where R is local.

Proposition 9.4. Suppose (R,m) is a Noetherian normal local domain, D
is a Weil divisor on X = SpecR such that nD ∼ 0 for some n > 0. Pick
0 6= z ∈ Γ(X,OX(nD)) so that Dz = 0 and let π : Y = SpecS −→ X be the
associated cyclic cover (S = R⊕R(−D)⊕ . . . R(−(n− 1)D)).
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(a) If n is the index D (that is, n > 0 is the smallest integer such
that nD ∼ 0) then S is also local with unique maximal ideal mS =
m ⊕ R(−D) ⊕ dots ⊕ R(−(n − 1)D) and the projection onto the
degree 0 piece of S, ρ ∈ HomR(S,R) generates HomR(S,R) as a
free S-module.

(b) The map ρ sends the maximal ideal mS into the maximal ideal m.
(c) (π∗ωX)§2 = (π∗OX(KX))§2 is a canonical module of Y . In particu-

lar, if Y is normal, then π∗KX ∼ KY .
(d) If D has index n, then (π∗OX(D))§2 ∼= OY . In particular, if Y is

normal then π∗D is a Cartier divisor.
(e) If D = KX has index n, then ωY ∼= OY . In particular, Y is quasi-

Gorenstein.

Proof. Proofs of part (a) can be found in [TW92, Lemma 2.1] (par-
tially), or [CR22] or [MP20, Proposition A.5]. Part (b) follows immediately.

We now consider (c). By [TW92, Theorem 3.2(i)], or a direct computa-
tion, we know that

ωS = HomR(S, ωR) =
n−1⊕
i=0

R(KR − iD)

which is the same as (π∗ωR)§2 = R(KX)⊕R(KR−D)⊕· · ·⊕R(KR−(n−1)D)
(also see [MP20, Lemma A.7]).

Property (d) follows since (π∗R(D))§2 = (R(D)⊗R S)§2 is simply

R(D)⊕R(D −D)⊕ · · · ⊕R(D − (n− 1)D)

and we have the degree zero part R(D) ∼= zR(D) = R(D− nD) = R(−(n−
1)D) and so (π∗R(D))§2 is isomorphic to S as an R-module. Consider then
the map S −→ (π∗R(D))§2 sending 1 to 1 ∈ R(D − D) = R which is then
easily seen to be an S-module isomorphism.

Finally, ?? is well known, variants can be found in [TW92, Theorem
3.2], or [MP20, Lemma A.7]. It also follows from (c) and (d). �

The map π : Y −→ X as in Proposition 9.4 is typically called a canonical
cover, even though it is not canonical (it is built using a canonical divisor
however).

One key use of cyclic covers is to take a Q-Cartier Weil divisor and pull
it back to a Cartier divisor. However, as we have noted, if the index n of
D is divisible by p, the associated cyclic cover Y can be non-reduced. Even
in the case that S is a domain, it need not be normal, and the extension
K(R) ⊆ K(S) of fraction fields is inseparable (so there is no ramification
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divisor). There is a way to construct separable extensions R ⊆ S of normal
integral domains that preserves this property.

Lemma 9.5 ([BST11b, Lemma 4.5]). Suppose Γ is a Q-Cartier Q-divisor
on a normal integral scheme X. Then there exists a finite generically sepa-
rable map g : W −→ X from a normal integral scheme W such that g∗W is
a Cartier divisor.

Proof. Working locally with X = SpecR and Γ = 1
n divX(f). Set

K = K(R) to be the fraction field of R and let L = K[X]/(Xn + fX + f), a
separable extension of K. Then let S be the normalization of R in S, SpecS
satisfies the desired properties. �

One should note that the construction above, while generically separable,
is typically wildly ramified if p|n.





APPENDIX C

Matlis, local and Grothendieck Duality

This appendix is incomplete. It will be expanded and revised.

In this appendix we review Matlis, local and Grothendieck Duality.

1. Matlis duality

We give a brief overview of Matlis duality. Our primary reference is
[BS98, Chapter 10] which makes a number of statements in greater gener-
ality than most other modern sources such as [BH93, Chapter 3], [Hoc11,
Section 5] or [Sta19, Tag 08Z1].

Throughout this section of the appendix we fix the following notation.

Notation 1.1. Suppose that (R,m, k) is a Noetherian local ring. We let
E := ER(k) denote the injective hull of the residue field k. We use (−)∨ to
denote the functor HomR(−, E). This is called theMatlis duality functor.
We let R̂ denote the completion of R.

Before stating Matlis duality, we record some preliminary helpful facts.

Lemma 1.2. For any R-module M , there is a natural map M −→ M∨∨ =
HomR(HomR(M,E), E) defined by sending m to the function φ 7→ φ(m).
This map is injective.

Proof. See [BS98, Remark 10.2.2]. �

Lemma 1.3. E is an Artinian R-module. Furthermore, for any Artinian
R-module N , there is an injection

N ↪→ E⊕n

for some integer n.

Proof. See [BS98, Theorem 10.2.5, Corollary 10.2.8]. �

623

https://stacks.math.columbia.edu/tag/08Z1
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Lemma 1.4. For any Artinian R-module M , we may also view M as a R̂-
module. From this perspective, an injective hull of R/m (as an R-module),
when viewed as an R̂-module, is also an injective hull of R̂/m̂ (as an R̂-
module).

Proof. See [BS98, Remark 10.2.9 and Exercise 10.2.10]. �

The Matlis duality functor HomR(−, E) is certainly exact since E is
injective, but it also induces a duality between Noetherian and Artinian
modules.

Theorem 1.5 (Matlis Duality). Suppose that (R,m, k) is a Noetherian local
ring with injective hull of the residue field E. Then the Matlis duality functor
(−)∨ = HomR(−, E) is a faithful functor from the category of Noetherian R-
modules to the category of Artinian R-modules. Furthermore, it is a fully
faithful functor from the category of Artinian R-modules to the category of
Noetherian R̂-modules. Additionally:

◦ For any Noetherian module M , we have a natural isomorphism
M∨∨ ∼= M̂ and the canonical maps fromM to both of these commute
with this isomorphism.

Finally, if R = R̂ is complete, then the Matlis duality functor induces two
anti-equivalences1 of categories:{

Noetherian
R-modules

}
↔
{

Artinian
R-modules

}
.

(a) From Noetherian R-modules and Artinian R-modules.
(b) From Artinian R-modules to Noetherian R-modules.

Proof. See [BS98, Theorem 10.2.12, Remark 10.2.18, Theorem 10.2.19].

The final statement, when R is complete, can also be found in [Sta19,
Tag 08Z9] or [BH93, Chapter 3]. �

Example 1.6. Using the first bulleted property of Theorem 1.5 we see that
HomR(E,E) ∼= HomR(HomR(R,E), E) ∼= R̂.

Remark 1.7. In fact, Hom(−, E) is a faithfully exact functor in general. It
is exact since E is injective and ifM 6= 0, there exists an injection R/I ↪→M
into M for some ideal I. Hence

HomR(M,E)� HomR(R/I,E)

1In other words, an equivalence of one category with the opposite of the other.

https://stacks.math.columbia.edu/tag/08Z9
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surjects and since HomR(R/I,E) 6= 0, we see that HomR(M,E) 6= 0.

The following explains Matlis duality for finite ring maps, something that
will be quite useful for us in the case of the Frobenius.

Lemma 1.8 ([Hoc11, 3.3]). Suppose (R,m, k) −→ (S, n, l) is a finite local
morphism of Noetherian local rings. Let ER denote an injective hull of the
residue field of R. Then HomR(S,ER) is an injective hull of the residue field
of S.

In particular, if S = R/J , then the injective hull of the residue field of
S is identified with 0 :E J = {z ∈ E | Jz = 0} ⊆ E.

2. Derived categories and relations between derived functors

We will assume that the reader has some familiarity with derived cate-
gories and will not provide a detailed introduction or definition here. See for
instance [Wei94, Chapter 10], [Har66], or [Huy06].

For most of the text, the key point is that the objects in the derived
category are complexes of R-modules or OX -modules, homotopic maps of
complexes are declared to be the same, and quasi-isomorphisms of com-
plexes (maps of complexes that are isomorphisms on cohomology) are for-
mally inverted. For us complexes mean cochain complexes (that is, indices
increase). , If A q is in some derived category of an Abelian category, by
A

q
[1] we mean A q shifted 1 to the left so that Hi(A q

[1]) = Hi+1(A
q
). Re-

call that if A q −→ B
q −→ C

q −→ A
q
[1] is a triangle in our derived category,

then we have a long exact sequence:

. . . −→ Hi(A q
) −→ Hi(B q

) −→ Hi(C q
) −→ Hi+1(A

q
) −→ . . .

In various parts of the book, we will consider derived functors of⊗,Hom,ΓI =
ΓV (I),Γ(X,−) and more. The following is a key general fact about compo-
sition of derived functors.

Theorem 2.1 (Composition of derived functors). Suppose F : A −→ B and
G : B −→ C are left-exact functors between Abelian categories and suppose
that F sends injective objects to G-acyclic objects. Then R(G◦F ) = RG◦RF

Example 2.2. Suppose that f : Y −→ X is a map of schemes and F is a
sheaf of OX -modules on Y . Then for every integer i we claim that

H i(Y,F ) = HiRΓ(X,Rf∗F ).

Indeed, since f∗ sends injective sheaves to flasque sheaves, and since

Γ(Y,−) = Γ(X, f∗−)
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we have that
RΓ(Y,−) = RΓ(X,Rf∗−)

by Theorem 2.1. Taking ith cohomology provides the desired result. In
particular, if2 Rf∗F ∼= f∗F and so H i(Y,F ) = H i(X, f∗F ) for all i ∈ Z.

Similarly, if Z ⊆ X is a closed subscheme (for instance X = SpecR for
(R,m) local and Z = V (m))

Hiπ−1Z(Y,F ) = HiRΓZ(X,Rπ∗F ).

We recall the following relations between various common derived func-
tors, in the case of rings.

Proposition 2.3 (Useful relations between derived functors for rings). Sup-
pose R is a ring and X,Y, Z are complexes of R-modules.

(a) There is a canonical isomorphism in D(R),

RHomR(X,RHomR(Y,Z)) ∼= RHomR(X ⊗L Y,Z)

which is functorial in X,Y, Z, [Sta19, Tag 0A65].
(b) There is a canonical morphism

RHomR(X,Y )⊗L Z −→ RHomR(X,Y ⊗L Z)

which is functorial in X,Y, Z, [Sta19, Tag 0BYN]. Furthermore, in
the case that R is Noetherian, X ∈ D−coh(R), Y ∈ D+(R), and Z
is isomorphic to a bounded complex of flat modules (Y ∈ Db

fTd(R)),
this map is an isomorphism [Har66, Chapter II, Proposition 5.14],
[Fox77, Proposition 1.1].

(c) There is a canonical morphism

X ⊗L RHomR(Y, Z) −→ RHomR(RHomR(X,Y ), Z)

which is functorial in X,Y, Z, [Sta19, Tag 0A67]. Furthermore, in
the case that R is Noetherian, X ∈ D−coh(R), Y ∈ Db(R) and Z is
isomorphic to a bounded complex of injectives (Z ∈ Db

fId(R)), this
map is an isomorphism [Fox77, Proposition 1.1].

If f : R −→ S is a map of rings and U ∈ D(S), then we also have the
following.

(d) There is a canonical isomorphism

RHomR(X,U) = RHomS(X ⊗L S,U)

functorial in X and U (here we view U as an R-module via f , we
could have also written f∗U), [Sta19, Tag 0E1W].

2if X is a variety of characteristic zero, π is a resolution of singularities and F = ωY ,
this is the statement of Grauert-Riemenschneider vanishing

https://stacks.math.columbia.edu/tag/0A65
https://stacks.math.columbia.edu/tag/0BYN
https://stacks.math.columbia.edu/tag/0A67
https://stacks.math.columbia.edu/tag/0E1W
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(e) There is a canonical map

RHomR(X,Y )⊗L
R S −→ RHomS(X ⊗L S, Y ⊗L S)

functorial in X,Y , [Sta19, Tag 0E1X]. It is an isomorphism if X
is perfect or R′ is perfect as an R-module (perfect means quasi-
isomorphic to a bounded complex of projectives, for instance if R
is regular of finite dimension) [Sta19, Tag 0A6A]. It is also an
isomorphism if R′ is a flat R-module, R is Noetherian, X ∈ D−coh(R)
and Y ∈ D+(R), [Har66, Chapter II, Proposition 5.8].

3. Dualizing complexes

For this, our primary reference is [Har66], however the local theory,
which is most important for us, is also found here [Sta19, Tag 08XG].

Definition 3.1 (Dualizing complexes for rings). For a Noetherian ring R,
we say that a complex in ω q

R ∈ Db
coh(R)3 is a dualizing complex (for R)

if it:

(a) has finite injective dimension (meaning it is quasi-isomorphic to a
bounded complex of injectives) and,

(b) the natural map R −→ RHomR(ω
q
R, ω

q
R) is a quasi-isomorphism.

If ω q
R is a dualizing complex on R, then the functor which sends C q ∈ D(R)

to RHomR(C
q
, ω

q
R) is called the Grothendieck duality functor (with

respect to ω q
R). It is denoted by D(C

q
).

Applying Grothendieck duality twice returns you to where you began.

Lemma 3.2 ([Sta19, Tag 0A7C]). Suppose R is a Noetherian ring with a
dualizing complex ω q

R. Then for any C q ∈ Dcoh(R) we have that the natural
map:

C
q −→ D(D(C

q
))

is a quasi-isomorphism.

Dualizing complexes do not always exist but do for most examples we
care about.

Theorem 3.3 ([Kaw02]). A Noetherian ring R has a dualizing complex if
and only if R is the homomorphic image of a finite dimensional Gorenstein
ring.

Theorem 3.4 ([Sta19, Tag 0A80]). Suppose R is a Noetherian ring with a
dualizing complex. Then R is universally catenary and of finite dimension.

3The bounded derived category of R-modules with finitely generated cohomology

https://stacks.math.columbia.edu/tag/0E1X
https://stacks.math.columbia.edu/tag/0A6A
https://stacks.math.columbia.edu/tag/08XG
https://stacks.math.columbia.edu/tag/0A7C
https://stacks.math.columbia.edu/tag/0A80
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If R is local and regular or more generally Gorenstein4, then R itself is
a dualizing complex. However, frequently we want to shift this dualizing
complex.

Definition 3.5 (Normalized dualizing complexes). Suppose (R,m) is a Noe-
therian local ring. A dualizing complex ω q

R for R is called normalized if
H−i(ω q

R) = 0 for i > dimR and H−d(ω q
R) 6= 0.

For local rings, normalized dualizing complexes have cohomology starting
in degree −d, and may have cohomology up to degree 0. For instance, this
follows from local duality Theorem 6.1.

Example 3.6. For example, if k is a field and R = kJx1, . . . , xdK, then R[d]
is a normalized dualizing complex for R. This choice of normalization is
particularly valuable for local duality, see Section 6. Note in particular, k is
a normalized dualizing complex over itself.

Lemma 3.7. Suppose (R,m) −→ (S, n) is a finite map of Noetherian local
rings (for instance if S is a quotient of R) and ω q

R is a normalized dualizing
complex for R. Then

RHomR(S, ω
q
R)

is a normalized dualizing complex for S.

Example 3.8. Suppose that (R,m) is a Noetherian local ring with a du-
alizing complex ω

q
R and f ∈ R is a non-zerodivisor. By applying the

Grothendieck duality functor RHomR(−, ω q
R) to the short exact sequence

0 −→ R
·f−→ R −→ R/(f) −→ 0

and using Lemma 3.7, we obtain via the triangle of normalized dualizing
complexes:

ω
q
R/(f) −→ ω

q
R
·f−→ ω

q
R

+1−−→ .

However, when taking cohomology, because these dualizing complexes are
normalized, we have the long exact sequence:

0 −→ H−d(ω q
R)
·f−→ H−d(ω q

R) −→ H−d+1(ω
q
R/(f)) −→ H

−d+1(ω
q
R) −→ . . .

where d = dimR.

Lemma 3.9 ([Sta19, Tag 0A7G], Dualizing complexes and localization). If
R is a ring with a dualizing complex ω q

R and W ⊆ R is a multiplicative set,
then

W−1ω
q
R
∼= ω

q
R ⊗RW−1R

is a dualizing complex for W−1R.

4A local ring R is Gorenstein if R has finite injective dimension

https://stacks.math.columbia.edu/tag/0A7G
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Caution 3.10 (Localization does not preserve normalized dualizing com-
plexes). Suppose that (R,m) is a Noetherian local ring with normalized
dualizing complex ω q

R. Then for any Q ∈ SpecR we have that (ω
q
R)Q is a

dualizing complex as above, but it is not normalized since RQ has dimen-
sion lower than R. For instance, if k is a field and R = kJxK then, the
R[1] is a normalized dualizing complex. If Q = (0) is the zero ideal then
R[1]Q = RQ[1] is not normalized since RQ is zero dimensional.

Remark 3.11 (Normalized dualizing complexes on non-local rings). For
rings and schemes of finite type over a field, there is a choice of dualizing
complex that is normalized after localizing at every closed point, the one we
discuss below in Remark 4.4. However, if (V, (t)) is a DVR (for instance
V = k[t](t) or V = kJtK) then V [x] is an integral domain with maximal
ideals of different heights (for instance (x, t) and (xt − 1)) and so there
cannot be a dualizing complex for V [x] that is normalized after localizing at
each maximal ideal.

For rings R of finite type over a field k however, there is such a dualizing
complex, namely if S −→ R is a k-algebra surjection from a polynomial ring
over k, then RHomS(R,S) = ω

q
R is a dualizing complex with the property

that for each maximal ideal m ⊆ R, we have that ω q
R ⊗R Rm is a normalized

dualizing complex for Rm.

Other common ring operations also behave well with respect to dualizing
complexes.

Lemma 3.12 ([Sta19, Tag 0E4D]). Suppose R is a ring with dualizing com-
plex ω q

R. Then ω q
R ⊗R R[x] is a dualizing complex for R[x]. More generally,

if R −→ S is faithfully flat with Gorenstein fibers, then ω q
R⊗RS is a dualizing

complex for S.

Lemma 3.13 (Completion and dualizing complexes, [Sta19, Tag 0AWD] or
[Sta19, Tag 0DWD]). Suppose that (R,m) is a Noetherian local ring with a
dualizing complex ω q

R. Then ω q
R ⊗R R̂ is a dualizing complex for the m-adic

completion R̂.

Lemma 3.14 (Dualizing complexes and homological conditions on rings).
Suppose that (R,m) is a d-dimensional Noetherian local ring with a nor-
malized dualizing complex ω q

R. Suppose M is a finitely generated R-module.
Then

(a) M is Cohen-Macaulay of dimension d if and only if the Grothendieck
dual D(M) = RHomR(M,ω

q
R) is quasi-isomorphic to a module cen-

tered in degree −d. In particular, R is Cohen-Macaulay if and only
if ω q

R
∼= H−dω q

R[d], see [Sta19, Tag 0B5A].
(b) More generally,M has depth ≥ i if and only if H0D(M), . . . ,H−i+1D(M)

are all zero. [Sta19, Tag 0DWZ]

https://stacks.math.columbia.edu/tag/0E4D
https://stacks.math.columbia.edu/tag/0AWD
https://stacks.math.columbia.edu/tag/0DWD
https://stacks.math.columbia.edu/tag/0B5A
https://stacks.math.columbia.edu/tag/0DWZ
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(c) R is Gorenstein if and only if ω q
R
∼= R[d], [Sta19, Tag 0DW9].

(d) R is quasi-Gorenstein if and only if H−dω q
R
∼= R.

The following can be thought of as a generalization of the description of
the dualizing complex in a Cohen-Macaulay ring.

Proposition 3.15 (cf. [KK20, Proposition 8.1]). Suppose (R,m) is a d-
dimensional equidimensional Noetherian local ring with a normalized dual-
izing complex ω q

R. We have that (R,m) is Sn for some n ≤ d if and only
if

dim SuppH−d+iω
q
R ≤ d− i− n

for every i > 0. Here we interpret the dimension of the empty set to be −∞.

Proof. Suppose first that (R,m) is Sn. Fix i > 0 and choose some
Q ∈ SpecR of height k < d − (d − i − n) = i + n. We need to show that
(H−d+iω

q
R)Q = 0. Now, RQ has dimension k and depth at least min(k, n) by

hypothesis. Since R is equidimensional, we see that (ω
q
R)Q[−d + k] is then

a normalized dualizing complex for RQ, and so we have, for j < min(k, n)
that

0 = H−j((ω q
R)Q[−d+ k]) = H−d+k−j(ω

q
R)Q.

by Lemma 3.14 (b). In particular, if we pick j = k− i, then we see that both
j < k and j < i + n − i = n (since k < i + n) and our desired vanishing is
satisfied.

For the converse, suppose that Q ∈ SpecR is of height k (and so of co-
height d − k). We must show that RQ has depth at least min(k, n). Since
dim SuppH−d+iω

q
R ≤ d− i− n for all i > 0, we see that

dim Supp(H−d+iω
q
R)Q ≤ d− i− n− (d− k) = k − i− n.

In particular, if i > k − n (or equivalently if i− d > k − n− d) then

(H−d+iω
q
R)Q = 0.

Again, since R is equidimensional, we see that (ω
q
R)Q[−d+k] is a normalized

dualizing complex for RQ. Hence for j < min(k, n), we have that j − k < 0
so that k − j > 0 and also that k − j > k − n, and so

H−j
(
(ω

q
R)Q[−d+ k]

)
= H−d+(k−j)(ω

q
R)Q = 0

which is what we wanted to prove by Lemma 3.14 (b). �

Example 3.16. The previous result needs the equidimensionality of R. In-
deed, suppose R = kJx, y, zK/(xz, yz) with normalized dualizing complex
ω
q
R. Then dim SuppH−2ω

q
R = 2 and dim SuppH−1ω

q
R = 1 since there are

components of those dimensions. However, it is true that H0ω
q
R = 0 so that

dim SuppH0ω
q
R = −∞.

https://stacks.math.columbia.edu/tag/0DW9
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Corollary 3.17. Suppose (R,m) is a d-dimensional equidimensional Noe-
therian local ring with a normalized dualizing complex ω q

R. Then the non-
Cohen-Macaulay locus of SpecR is the support of M :=

⊕d−1
i=0 H−iω

q
R. In

particular, if I = AnnRM then V (I) defines the non-Cohen-Macaulay locus
of SpecR.

The reason that the equidimensional hypothesis is needed is that if
SpecR has irreducible components of different dimensions, say d′ < d with
corresponding ideal I ′ ⊆ R defining such a closed component, then there
is a map of normalized dualizing complexes ω q

R/I′ −→ ω
q
R which is an iso-

morphism at the generic points of SpecR/I ′. Of course, R/I ′ is generically
Cohen-Macaulay (as is every ring) but because of that isomorphism, the
dualizing complex will live in the wrong degrees relative to d to detect that.

Definition 3.18 (Dualizing complexes for schemes). For a Noetherian scheme
X, we say that a complex in ω q

X ∈ Db
coh(X)5 is a dualizing complex for

X if it:

(a) has finite injective dimension6 and,
(b) the natural mapOX −→ RH omOX (ω

q
X , ω

q
X) is a quasi-isomorphism.

Lemma 3.19 (Uniqueness of dualizing complexes, [Har66, Chapter V, The-
orem 3.1]). On a connected Noetherian scheme, if D q

, E
q are both dualizing

complexes, then there exists a line bundle L and an integer n such that

D
q
[n] ∼= E

q ⊗L .

In particular, if X = Spec(R,m) is a local scheme, then dualizing complexes
are unique up to quasi-isomorphism and shift.

We also have the following global version of Lemma 3.14.

Lemma 3.20 (Dualizing complexes and homological conditions on rings).
Suppose that X is a Noetherian connected locally equidimensional scheme
with a dualizing complex ω q

X . Then

(a) X is Cohen-Macaulay if and only if ω q
X is quasi-isomorphic to a

module centered in a single degree.
(b) X is Gorenstein if and only if ω q

X is quasi-isomorphic to a line
bundle centered in a single degree.

(c) X is quasi-Gorenstein if and only if the first non-zero cohomology
of ω q

X is a line bundle.
5The bounded derived category of OX -modules with coherent cohomology
6Either in the category of OX -modules or equivalently the category of quasi-coherent

OX -modules, see [Har66, Chapter II, Proposition 7.20]
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4. Grothendieck duality

Theorem 4.1 (Grothendieck duality). Suppose f : Y −→ X is a finite type
separated morphism of Noetherian schemes. Then there is a functor between
the triangulated categories

f ! : D+
qcoh(X) −→ D+

qcoh(Y )

which commutes with localization. Furthermore, if f is proper, it is right
adjoint to Rf∗ in the following sense. There is a functorial isomorphism:

RH omOX (Rf∗A
q
, B

q
) ∼= Rf∗RH omOY (A

q
, f !B

q
)

for A q ∈ D−coh(Y ) and B q ∈ Dqcoh(X).

Remark 4.2 (f ! in key cases). There are two key cases where the functor
f ! is particularly easy to understand.

Suppose f : Y −→ X is a finite map. Then f∗ induces an equiva-
lence of categories between quasi-coherent OY modules on Y and quasi-
coherent f∗OY -modules on X, and their derived categories see [Sta19, Tag
0AVW]. By utilizing this equivalence, we may identify f !− with the functor
RH omOX (f∗OY ,−) by [Har66, Chapter III] or [Sta19, Tag 0AX2] (here
we use this equivalence of categories to take sheaves on X to sheaves on Y ).
For maps between affine schemes f : SpecS −→ SpecR (corresponding to a
finite ring map R −→ S) this is even easier. In that case we may identify
f ! : Db

qcoh(R) −→ Db
qcoh(S) with RHomR(S,−).

On the other hand if f : Y −→ X is a smooth map of relative dimension
n, then f !− can be identified with Ωn

Y/X [n] ⊗ f∗− [Har66, Chapter III].
Combining these two facts lets us define f ! for projective morphisms since
given Z g−→ Y

f−→ X finite type maps between separated Noetherian schemes,
we have

(4.2.1) g! ◦ f ! = (f ◦ g)!.

The other important thing to know about is f ! is that it take dualizing
complexes to dualizing complexes.

Theorem 4.3 ([Har66], [Sta19, Tag 0AU3]). Suppose that f : X −→ Y
is a finite type separated morphism of Noetherian schemes and that ω q

Y is
a dualizing complex on Y . Then f !ω

q
Y is a dualizing complex on X. In

particular, if f is finite (for instance a closed immersion), then

RHomY (f∗OX , ω
q
Y )

is the pushforward of a dualizing complex on X via the finite affine map f .

https://stacks.math.columbia.edu/tag/0AVW
https://stacks.math.columbia.edu/tag/0AVW
https://stacks.math.columbia.edu/tag/0AX2
https://stacks.math.columbia.edu/tag/0AU3
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Remark 4.4 (Dualizing complexes when finite type over a field). Because
of this for schemes X of finite type over a field k, one always picks

ω
q
X = f !k

Thus for varieties over a field, in view of (4.2.1), we always have a canonical
choice of dualizing complex which is compatible with maps between varieties.

For instance, suppose j : X −→ W is a finite map of varieties over a
field and W is a smooth variety (for instance X ⊆ Pnk = W ). Suppose
f : X −→ Spec k and g : W −→ Spec k are the structural maps:

X

f ##

j
// W

g

��

Spec k.

Then we see that ω q
W = Ωn

W/k[n] = g!k. Hence by (4.2.1) we see that

j∗ω
q
X = j∗f

!k
= j∗(g ◦ j)!k
= j∗j

!g!k
= j∗j

!ω
q
W

= RH omOW (j∗OX , ω
q
W )

= RH omOW (j∗OX , ω
q
W ).

Since j is a finite and hence affine map, we typically leave off the leading j∗
and simply write

ω
q
X = RH omOW (j∗OX , ω

q
W ).

Remark 4.5 (Dualizing complexes for schemes of finite type over an F -finite
field). Suppose that X is a quasi-projective scheme over an F -finite field k
with structural map f : X −→ Spec k. Consider the following diagram with
horizontal maps the e-iterated Frobenius:

X

f
��

F e // X

f
��

Spec k
F e
// Spec k.

A direct computation shows that (F e)!k = k (this is just the observation
that Homk(F

e
∗ k, k) ∼= F e∗ k since both are rank-1 vector spaces). Thus we see

that
ω
q
X = f !k = (F e ◦ f)!k = (f ◦ F e)!k = (F e)!ω

q
X .

In other words:
F e∗ω

q
X
∼= RH om(F e∗OX , ω

q
X)
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and taking cohomology (assuming X is a variety and hence connected and
equidimensional‘’) we obtain:

F e∗ωX
∼= H om(F e∗OX , ωX)

Remark 4.6 (Dualizing complexes when finite type over a nice ring). More
generally, if f : X −→ SpecS is a finite type map and R has a particularly
obvious choice of dualizing complex ω q

R (for instance, if S is a Gorenstein
local ring one might pick ω q

S = S[dimS]) then we set ω q
X = f !ω

q
SpecS . For

instance, suppose that R = S/I and X = SpecR with the induced closed
immersion into SpecS. In view of our description of f ! for finite maps, we
have that

(4.6.1) ω
q
R = RHomS(R,ω

q
S ).

The most common case is when (R,m) is a regular local ring in characteristic
p > 0 which is then a quotient of S = kJx1, . . . , xnK and we have that

ω
q
R = RHomS(R,S[n]).

Regardless, we have the following special case of Grothendieck duality:

Theorem 4.7 (Grothendieck duality with dualizing complexes). Suppose
that f : Y −→ X is a proper morphism of Noetherian schemes. Fix ω q

X a
dualizing complex on X and ω q

Y = f !ω
q
X . In this case we have

RH omOX (Rf∗A
q
, ω

q
X) ∼= Rf∗RH omOY (A

q
, ω

q
Y )

for A q ∈ D−coh(Y ).

5. Canonical sheaves and modules

Definition 5.1 (Canonical sheaves and modules). Suppose (R,m) is a Noe-
therian d-dimensional local ring with normalized dualizing complex ω q

R. If
R is equidimensional, then we call ωR = H−d(ω q

R) the canonical module.

SupposeX is a Noetherian and locally equidimensional connected scheme
with a fixed dualizing complex ω q

X . Then we call the first non-zero cohomol-
ogy

ωX := Hiω q
X

the associated canonical sheaf. If X = SpecR, then the associated R-
module is called the canonical module.

Remark 5.2. If (R,m) is not equidimensional, then H−d(ω q
R) is supported

on those components of SpecR that have dimension d, and is zero on the
other components [Sta19, Tag 0AWN]. In particular, if X is not locally
equidimensional, there cannot be a canonical sheaf that is defined locally cor-
responding to the first non-zero cohomology of a dualizing complex. Hence
we avoid using the terms canonical module and canonical sheaf in such cases.

https://stacks.math.columbia.edu/tag/0AWN
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Remark 5.3. SupposeX is connected, equidimensional, and finite type over
a field k (so that locally equidimensional and equidimensional coincide). Set
h : X −→ Spec k to be the structural morphism and set ω q

X = h!k as before.
Then the canonical module of X is simply

ωX := H− dimXω
q
X .

This follows from Remark 4.4.

In view of Lemma 3.19, since dualizing complexes are only unique up
to twisting by a line bundle, this might seem to not be a very useful no-
tion. However, for schemes X of finite type over a field k, there are other
approaches as we shall see.

The following fact about canonical modules will be used frequently.

Lemma 5.4 ([Sta19, Tag 0AWN]). Suppose (R,m) is a Noetherian local
ring with a canonical module ωR. Then ωR is S2 as an R-module and is
supported on all of SpecR.

Corollary 5.5 ([Har07, Proof of Proposition 1.5]). Suppose (R,m) is S1

with canonical module ωR. For any finitely generated R-module M , the mod-
ule

HomR(M,ωR) = M∨ω

is S2.

We next record a transformation rule for canonical modules with respect
to finite ring maps.

Proposition 5.6. Suppose R ⊆ S is a finite inclusion of locally equidimen-
sional rings with connected spectra. Suppose ωR is a canonical module for
R. Then

HomR(S, ωR)

is a canonical module for S. It comes with an evaluation map

ωS = HomR(S, ωR)
eval@1−−−−→ ωR

which may be identified with the map HomR(S, ωR) −→ HomR(R,ωR) and
hence is the Grothendieck dual of R ↪→ S.

Proof. Suppose ωR = Hiω q
R for our fixed dualizing complex. We know

that RHomR(S, ω
q
R) is a dualizing complex for S. The first degree that

RHomR(S, ω
q
R) can possibly have cohomology in is degree i. Furthermore,

since the inclusion is finite, we have that Hom(S, ωR) 6= 0. The result follows.
�

We also have the following.

https://stacks.math.columbia.edu/tag/0AWN
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Proposition 5.7. With notation as in Proposition 5.6, If R is S1 and S is
S2, then the map T : ωS −→ ωR from above, the Grothendieck dual of R ⊆ S,
generates HomR(ωS , ωR) as an S-module.

Proof. By [Har07, Proposition 1.5], or by Proposition 6.9 below, the
natural map µ : S −→ HomR(HomR(S, ωR), ωR) is an isomorphism. By
construction, µ sends 1 to the (−)∨ω of R ↪→ S. �

We also record the following basic properties of canonical modules.

Lemma 5.8. Suppose ωR is a canonical module for a Noetherian ring R.

(a) If W ⊆ R is a multiplicative set, the W−1ωR is a canonical module
for W−1R.

(b) If (R,m) is local, then the m-adic completion of ωR is a canonical
module for R̂.

Proof. These follow from the corresponding statements for dualizing
complexes, Lemma 3.9 and Lemma 3.13. �

5.1. Alternate definition of canonical sheaves and modules. There
is another important way to compute the canonical module for varieties over
a field, which essentially follows immediately from our description for f ! for
smooth maps Remark 4.2 plus Lemma 5.4.

Proposition 5.9 (Dualizing complex via differential forms). Suppose X is
a normal variety over a perfect field of characteristic p > 0. Then ωX =(
ΩdimX
X/k

)S2 is a canonical sheaf for X. In particular, if i : U −→ X is the
inclusion of the smooth locus of X then i∗ΩdimX

U/k is a canonical sheaf for X.

6. Local duality and consequences

Local duality relates the dualizing complex of a local ring with local
cohomology.

Theorem 6.1 (Local duality). Suppose that (R,m) is a Noetherian local
ring with normalized dualizing complex ω q

R and injective hull of the residue
field E. For any A q ∈ Db

coh(R) we have a functorial isomorphism in the
derived category:

RΓm(A
q
) ∼= HomR(RHomR(A

q
, ω

q
R), E) =

(
RHomR(A

q
, ω

q
R)
)∨
.
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Here ∨ denotes Matlis duality as above. Alternately, if R = R̂ is complete,
then for any A q ∈ Dcoh(R), we have that(

RΓm(A
q
)
)∨ ∼= RHomR(A

q
, ω

q
R).

We also state the following variant that avoids the notation of derived
categories.

Corollary 6.2 (Local duality). Suppose that S is a Gorenstein local ring of
dimension n and (R = S/I,m) a quotient ring, and M is a finitely generated
R-module. Then for all i ∈ Z,(

Extn−iS (M,S)
)∨

= H i
m(M).

Restricting to the case where A q
= R, we have the following special cases

relating the dualizing complex and canonical modules with local cohomology.

Lemma 6.3 (The dualizing complex and local cohomology). Suppose (R,m)
is a Noetherian local ring with normalized dualizing complex ω q

R . Then(
ω
q
R

)∨ ∼= RΓm(R) and
(
RΓm(R)

)∨ ∼= ω
q
R ⊗R R̂ = ω

q̂
R
.

Lemma 6.4 (The canonical module and local cohomology). Suppose (R,m)
is a d-dimensional equidimensional Noetherian local ring with a canonical
module ωR. Then the Matlis dual of the canonical module is the top local
cohomology module of R. That is:

ω∨R
∼= Hd

m(R) and
(
Hd

m(R)
)∨ ∼= ω

R̂
.

Because of this, in much of the literature, a canonical module is defined
to be any finitely generated R-module whose Matlis dual is isomorphic to
Hd

m(R) (note this makes sense even if R does not have a dualizing complex).
We will work in the case that R has a dualizing complex though as that covers
most cases of interest to us, notably F -finite rings and complete rings.

Combining local duality with Corollary 3.17 we obtain the following.

Corollary 6.5. Suppose that (R,m) is a d-dimensional equidimensional
Noetherian local ring with a dualizing complex. Then the ideal

AnnR

( d−1⊕
i=0

H i
m(R)

)
defines the non-Cohen-Macaulay locus of SpecR. In particular, its annihi-
lator is a proper ideal of SpecR.

We also obtain the following characterization of (quasi-)Gorenstein rings.



638 C. MATLIS, LOCAL AND GROTHENDIECK DUALITY

Corollary 6.6. Suppose that (R,m) is a d-dimensional equidimensional
Noetherian local ring with a dualizing complex and E is an injective hull
of the residue field. Then

(a) R is quasi-Gorenstein if and only if Hd
m(R) has a 1-dimensional

socle7, in which case Hd
m(R) ∼= E.

(b) R is Gorenstein if and only if RΓm(R) ∼= E[−d].

We also have the following interpretations of depth.

Proposition 6.7. Suppose (R,m) is a d-dimensional Noetherian local ring
with a dualizing complex ω q

R and M is a finitely generated R-module.. Then
the following are equivalent:

(a) depthM ≥ t.
(b) H i

m(M) = 0 for i = 0, . . . , t− 1.
(c) H−iRHomR(M,ω

q
R) = 0 for i = 0, . . . , t− 1.

In particular, if R is Cohen-Macaulay so that ω q
R = ωR[d], then depthM ≥ t

if and only if Extd−iR (M,ωR) = 0 for i = 0, . . . t− 1.

It is worth noting thatH i
m(M) = 0 or dually thatH−iRHomR(M,ω

q
R) =

0 for i > dimM .

Proof. See [Sta19, Tag 0DWZ]. Note (b) and (c) are simply Matlis
dual to each other. �

Thanks to our interpretation of depth above, it is not difficult to show
the following, although we simply cite [BH93].

Corollary 6.8 ([BH93, Theorem 3.3.10]). Suppose (R,m) is a Cohen-
Macaulay local ring with canonical module ωR. Suppose depthM = dimR,
that is that M is (maximal) Cohen-Macaulay. Then HomR(M,ωR) is also
Cohen-Macaulay.

What we have done so far also lets us define a more general S2-ification
functor than what was introduced in Appendix B Definition 4.10 when R
was normal.

Proposition 6.9 (General S2-ification). Suppose (R,m) is a S1 local ring
with canonical module ωR. Then for any R-module M , we have that

M∨ω∨ω = HomR(HomR(M,ωR), ωR)

7The socle of a module over a local ring (R,m) is the submodule annihilated by m.

https://stacks.math.columbia.edu/tag/0DWZ


6. LOCAL DUALITY AND CONSEQUENCES 639

is S2. Furthermore, if M has depth 1 in codimension 1, for instance if M
is S1, the canonical map M −→ M∨ω∨ω is an isomorphism in codimension
1, and so may be viewed as the S2-ification map of Definition 4.10 if R is
normal. In particular, it is an isomorphism if M is S2.

Finally, in the case that M = R, we have that HomR(ωR, ωR) is the
ring-theoretic S2-ification of R.

Proof. Notice that M∨ω∨ω is S2 by Corollary 5.5. To complete the
proof, it suffices to prove that M −→ M∨ω∨ω is an isomorphism in codi-
mension 1 assuming that Mq has depth 1 for each height one prime q ⊆ R.
Hence we may assume that R is 1-dimensional and that both R, M , and
M∨ω are Cohen-Macaulay since they are both S1. But now HomR(M,ωR) ∼=
RHomR(M,ωR) and likewise we have HomR(M∨ω , ωR) = RHomR(M∨ω , ωR)
by Proposition 6.7. The first result follows.

Finall, when M = R, we see that HomR(ωR, ωR) is an S2 R-module.
It has a ring structure under composition which commutes with localiza-
tion and since it is S2, the canonical localization map HomR(ωR, ωR) −→
HomK(R)(K(R),K(R)) ∼= K(R) is an injection where K(R) is the total ring
of fractions of R. �

For any finitely generated R-module M , the natural transformation of
functors id(−) 7→ (−)∨ω∨ω =: (−)S2 can be viewed as an S2-ification. While
we will generally work in the normal case, this does appear in more general
settings [].

Lemma 6.10. Suppose (R,m) is a quasi-Gorenstein local ring, f ∈ m is a
regular element, and R/(f) is S2. Then R/(f) is also quasi-Gorenstein.

Proof. By applying Grothendieck duality to the short exact sequence

0 −→ R
·f−→ R −→ R/(f) −→ 0

we obtain

0 // H−dω q
R

·f
// H−d+1ω

q
R

κ // H−dω q
R/(f)

// H−d+1ω
q
R

where we have zeros on the right for dimension reasons (the Matlis dual is
Hd

m(R/(f)), but R/(f) has dimension d − 1). By assumption, H−d(ω q
R) =

ωR ∼= R, and so it suffices to prove that the map labelled κ are surjective.
Of course, if R was Cohen-Macaulay, we would be done, snce the right most
column would be zero (its Matlis dual is Hd−1

m (R)). Since R/(f) is S2,
R/(f) is Cohen-Macaulay in codimension 2, and so R� R/(f) ↪→ ωR/(f) is
surjective at codimension-1 points of SpecR/(f), hence R/(f) −→ ωR/(f) is
an isomorphism at those codimension-1 points, and thus it is an isomorphism
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since both modules are S2, see Lemma 4.8. This proves that R/(f) is quasi-
Gorenstein. �

Notice that local duality also implies that

RΓm(ω
q
R) = E

since RHomR(ω
q
R, ω

q
R) = R. If R is S2, for instance if it is normal, then a

spectral sequence argument also yields the following.

Corollary 6.11. Suppose (R,m) is Noetherian d-dimensional, local, S2 and
has a normalized dualizing complex ω q

R. Then Hd(ωR) = E.

Proof. Notice that H0(RΓm(ω
q
R)) ∼= E. We consider the associated E2

spectral sequence:

0 0 0 . . .

Hd
m(H−dω q

R)

++

0 0 . . .

Hd−1
m (H−dω q

R) 0 0 . . .

Hd−2
m (H−dω q

R) Hd−2
m (H−d+1ω

q
R) 0 . . .

. . . . . . . . . . . .

where the zeros are due the dimension of the support of the dualizing complex
in the S2 case, Proposition 3.15. The statement follows since the spectral
sequence converges to Hi+j(RΓm(ω

q
R)). �

7. Other useful results on local cohomology

Lemma 7.1. Suppose (R,m) is a Noetherian local ring of dimension d and

0 −→ K −→M −→ N −→ C −→ 0

is an exact sequence sequence of finitely generated R-modules such that dim SuppK,dim SuppC ≤
d− 2. Then

Hd
m(M) −→ Hd

m(N)

is an isomorphism.
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In particular, if R is normal and M is a finitely generated module such
that SuppM = SpecR, then

Hd
m(M) −→ Hd

m(MS2)

is an isomorphism.

Proof. Form the short exact sequences 0 −→ K −→ M −→ B −→ 0
and 0 −→ B −→ N −→ C −→ 0 and use the long exact sequence of local
cohomology, noting that

0 = Hd−1
m (K) = Hd

m(K) = Hd−1
m (C) = Hd

m(C).

�

Lemma 7.2. If (R,m) is a d-dimensional Noetherian local ring. Then for
any R-modules M,N we have a canonical homomorphism

Hd
m(M)⊗N ∼= Hd

m(M ⊗N).

In particular, if (R,m) ⊆ (S, n) is a local homomorphism between d-dimensional
Noetherian local rings, then we have a canonical isomorphism

Hd
m(R)⊗R S ∼= Hd

mS(S) ∼= Hd
n (S).

Proof. If we choose a system of parameters (x1, . . . , xd) for m ⊆ R, we
see that

Hd
m(M) ∼= coker

( d⊕
i=1

Mx̂i −→Mx1···xd

)
where Mx̂i is Mx1···xi−1xi···xd . Since localization commutes with tensor prod-
ucts, we see immediately that

Hd
m(M)⊗N ∼= Hd

m(M ⊗N).

The question is whether this isomorphism is independent of the choice of
xi. Fix y such that y1 = yx1, y2 = x2, . . . , yd = xd also form a system of
parameters. It is easy to see that there is a commutative diagram⊕d

i=1Mx̂i

��

// Mx1···xd

��⊕d
i=1Mŷi

// My1···yd .

Hence there is a canonical map (which is clearly an isomorphism) between
the two cokernels, this is preserved after tensoring with N . �
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absolute trace ideal, 454
adjoint test ideal, 408
adjunction map, 135
almost

big Cohen-Macaulay, 475
regular sequence, 475
zero elements, 475

approximately Gorenstein, 599
associated primes
are uniformly compatible, 75

balanced big Cohen-Macaualay, 468
big Cohen-Macaulay
algebra, 468
balanced, 468
cohomologically, 470
implies flat over a regular ring, 471
module, 468
weakly, 468

big Cohen-Macaulay modules
if balanced, are flat over regular
rings, 477

canonical canonical module
of an F -finite regular ring, 121
of an F -finite ring, 122

canonical cover, 620
canonical module
finite type over a field, 102
for a Noetherian local ring, 112
for a quasi-projective variety over a
field, 108

for normal varieties over a perfect
field, 107

of a smooth variety over a field, 105
canonical singularities, 374
Cartier algebra
full Cartier algebra, 53

Cartier module, 486

Castelnuovo-Mumford regularity, 367
consequences of, 368

colon capturing, 439
compatible
compatible ideals and maps, 72
compatible submodules and maps,
129

compatible subschemes and maps,
164

compatibly F -split ideal, 78
compatibly F -split subscheme, 164
uniformly compatible ideals in a ring,
75

compatible ideals
and completion, 74
and localization, 74
are closed under intersection, 73
are closed under sum, 73
are finite in F -split rings, 298

φ-compatible submodule, 129
conductor, 83
correspondence
between Q-divisors ∆ ∼Z(p)

−KX and
maps φ : F e∗OX −→ OX , 263

between Weil divisors
D ∼ (1− pe)KX and maps
φ : F e∗OX −→ OX , 259

cyclic cover, 618

deformation
of F -rational rings, 88
of F -rational rings (proof), 467
of Cohen-Macaulay F -injective rings,
88

of test modules, 136
deformation of
Gorenstein Frobenius split rings, 92
Gorenstein strongly F -regular rings,
92

dense F -injective type
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implies Du Bois, 394
dense P-type, 336
differential basis, 363
discrepancy

of (X,∆), 372
divisor

associated to a p−e-linear map, 262
Du Bois plus quasi-Gorenstein
implies log canonical, 393

Du Bois singularities, 390
implies dense F -injective type,
assuming weak ordinarity, 397

dual-to-Frobenius
for Noetherian F -finite local rings,
115

for normal varieties over a perfect
field, 107

for rings finite type over a F -finite
field, 102

for smooth varieties over a perfect
field, 106

dualizing complex
canonical dualizing complex of an
F -finite regular ring, 121

embedded resolution of singularities,
342

equational lemma, 462
Étale, 63
extended plus closure, 481
extending p−e-linear maps and the

ramification divisor, 309
extending p−e-linear maps over field

extensions, 305

F-adjuction
F -adjunction, 282

F-adjunction
F -adjunction, 283

F -finite, 24
F -finite rings
and completion, 24
are quotients of regular rings, 121
basic properties, 25
have nice properties, 25
have open regular locus, 29

F -injective, 87
F -injective (quasi-)Gorenstein rings
are Frobenius split, 90

F -injective rings
are weakly normal, 125

F -jumping number, 241
in the test module, 250

F -jumping numbers
are discrete and rational in

Q-Gorenstein rings, 318
are discrete and rational in
quasi-Gorenstein rings, 244

F -pure, 91
F -pure F -finite rings
are F -split, 91

F -pure threshold
as supremum of t with τ(R, at) = R,
240

is the supremum of t with (R, f t)
sharply F -split, 211

of a pair (R, at), 218
of a principal ideal, 201

F -rational, 87
implies normal, 134

F -rational Gorenstein rings
are strongly F -regular, 90
are stronglyF -regular, 448
are weakly F -regular, 448

F -rational rings
are F -injective, 88
are Cohen-Macaulay, 448
are pseudo-rational, 352

F -rational signature, 562
dual, 562
relative, 562

F -regular
implies Cohen-Macaulay, 86
implies normal, 57
locally F -regular, 56
purely, 410
strongly F -regular ring, 54

F -signature
characterizes regular rings, 559
characterizes strongly F -regular
rings, 561

exists as limit, 536
is lower semi-continuous, 539
of an F -finite local ring, 530
versus minimal relative Hilbert-Kunz,
548

F -split hypersurface
if and only if the F -pure threshold is
1, 201

F -splitting
at the F -pure threshold, 220

Fedder’s criterion, 184
Fedder’s Lemma, 190
finitistic tight closure, 426
finitistic tight closure vs tight closure,

452
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free rank, 529
F -different, 281
Frobenius is flat
if and only if the ring is regular, 28,
30

F -regular
globally F -regular pair, 270
globally F -regular scheme, 153
strongly F -regular map pair, 289
weakly, 442

Frobenius root, 225
Frobenius split
F -split ring, 38
(eventually) Frobenius split along an
element, 49

Frobenius split ring, 38
globally e-Frobenius split along D for
a divisor pair, 269

globally e-Frobenius split along a
divisor, 150

globally eventually Frobenius split
along a divisor, 150

globally Frobenius split divisor pair,
268

globally Frobenius split scheme, 139
implies weakly normal, 60
locally e-Frobenius split along D for a
divisor pair, 269

locally F -split scheme, 44
locally Frobenius split divisor pair,
268

locally Frobenius split scheme, 44
Frobenius split locus
is open, 43, 45

Frobenius split rings
and localization, 45
are F -injective, 88
are F -pure, 91
are log canonical, 376
are reduced, 39
lift to W2(k), 47

Frobenius splitting
and completion, 43
extends along cyclic covers, 316

general restriction theorem
for adjoint test ideals in characteristic
p > 0, 409

generating map, 100
generic freeness, 331
Glassbrenner’s criterion
for strong F -regularity, 187

globally F -regular

criterion for on top cohomology, 155
if section ring is strongly F -regular,
171

implies log Fano, 275, 385
only if section ring is strongly
F -regular, 176

globally F -regular varieties
cohomology vanishing for nef line
bundles, 159

globally F -split
if section ring is locally F -split, 171
only if section ring is locally F -split,
176

globally F -split varieties
cohomology vanishing for adjoint line
bundles, 273

cohomology vanishing for ample line
bundles, 142

globally F -split variety
criterion for on top cohomology, 146

globally F -split varities
have pseudo-effective −KX , 157

globally Frobenius split
implies log Calabi-Yau, 385

Gorenstein
Gorenstein local ring, 90
Gorenstein ring, 598

Grauert-Riemenschneider vanishing,
345

Hartshorne-Speiser-Lyubeznik-Gabber
(HSLG) stabilization, 245

Hilber-Kunz multiplicity
characterizes regular rings, 559

Hilbert-Kunz multiplcity
is upper semi-continuous, 539

Hilbert-Kunz multiplicity, 528
exists as a limit (for domains), 536
for modules, 552
of an m-primary ideal, 545

Jacobian ideals
are contained in test ideals, 412, 413

Jacobian of an A-algebra, 412

Kawamata log terminal singularities,
374

implies rational singularities, 379
Kempf’s criterion for rational

singularities, 349
Kodaira vanishing
for Cohen-Macaulay globally F -split
schemes, 143

for globally F -split schemes, 161
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Kodaira-Nakano-Akizuki vanishing, 367
Kunz’ theorem, 28, 30

lift of R modulo p2, 45
log Calabi-Yau, 385
log canonical
implies Du Bois, 393

log canonical singularities, 374
log canonical threshold
of a pair (R, f), 384
vs the F -pure threshold, 384

log Fano, 385
implies open globally F -regular type,
386

log resolution of singularities, 342
for pairs (X,∆), 344

log terminal singularities
Kawamata, 374
purely, 374

multiplier ideal, 378
agrees with the test ideal mod p� 0,
381

for triples (X,∆, as) agrees with the
test ideal mod p� 0, 387

of a triple (X,∆, as), 386
multiplier submodule, 347

non-degenerate φ, 286
non-finitistic tight closure test ideal, 433
non-KLT-center of (X,∆), 387
normalized dualizing complex
of a Noetherian local, 113

open P-type, 336

p-basis, 126
p-e linear map
p−e-linear map, 41

p-e-linear map
p−e-linear map, 485

p-linear map
p-linear map, 485

perfect ring or scheme, 33
perfection of a ring, 34
plus closure
is contained in tight closure, 451
of a module, 450
of an ideal, 449

plus closure test ideal, 456
pseudo-rational singularities, 351
purely F -regular, 410
purely log terminal singularities, 374

quasi-Gorenstein
quasi-Gorenstein local ring, 90
quasi-Gorenstein ring, 598

ramification divisor, 617
rational singularities, 349
are Du Bois singularities, 391
if and only if dense F -rational type,
356

resolution of singularities, 341
embedded, 342
log, 342
strong, 341

restriction theorem
for test ideals in regular rings, 251

section ring, 175
seminormal, 60, 400
sharply F -split locus
is open, 217

sharply Frobenius split
for a pair (R, at), 216
for a pair (R, f t), 210

Skoda’s theorem
for test ideals, 232

splinter, 452
implies strong F -regularity?, 458

splinter locus
is open, 454

splinters that are Q-Gorenstein
are strongly F -regular, 465

splitting prime
of a map pair, 296
of a ring, 297

strong F -regularity
and étale maps, 63
and completion, 62
extends along cyclic covers, 316
localizes, 55

strong test elements
exist for pairs (R,∆), 290
strong test elements for a pair (R,φ),
285

strongly F -regular
for a pair (R, at), 216
pair (R, f t), 212

strongly F -regular locus
is open, 64

strongly F -regular pair
if and only τ(R, at) = R, 237

strongly F -regular rings
are F -rational, 88
are Kawamata log terminal, 376
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have finitely generated anticanonical
Rees algebras?, 445

subadditivity for test ideals, 252
subintegral extension R ⊆ S, 400
summand of Frobenius split is

Frobenius split, 39
summand of strongly F -regular rings

are strongly F -regular, 54

tamely ramified
extension of DVRS, 617

terminal singularities, 374
test element
for tight closure, 430
strong test element for a divisor pair,
290

strong test element for a ring, 65
test elements
completely stable, 433
for tight closure exist?, 431

test ideal
defines the non strongly F -regular
locus, 68

for a divisor pair, 291
for a pair (R, at) for F -finite reduced
R, 226

for plus closure, 456
for tight closure of ideals, 432
is the smallest uniformly compatible
ideal, 76

non-finitistic tight closure test ideal,
433

of a pair (R, at11 · · · atmm ), 252
test ideal of a pair (R,φ), 286
test ideal of a ring, 66

test ideals
and étale maps, 77
and completion, 77
and localization, 77
are radical in F -split rings, 68
are tight closure test ideals, 434
contain Jacobian ideals, 412, 413
have positive height in F -finite
reduced rings, 66

of (R,φ) vs (R,∆), 291
of pairs (R,φ) vs (R, f t), 288
transformation under finite maps, 312

test ideals of pairs
vs test submodules of pairs,
τ(ωR,KR + ∆) = τ(R,∆), 299

test module
agrees with the multiplier module
mod p� 0, 360

in an F -finite ring, 130
is contained in the multiplier module,
352

is contained in the multiplier module
mod p, 358

is the smallest compatible module,
130

is the trace image for a single finite
extension, 464

of a divisor pair, 299
of ideal pairs in an F -finite ring, 250

test module F -jumping number, 250
test submodules of pairs
vs test ideals of pairs,
τ(ωR,KR + ∆) = τ(R,∆), 299

the different
of Shokurov, 405

tight closure
Briançon-Skoda theorem, 427
and integral closure, 427
contains plus closure, 451
equals plus closure for parameter
ideals, 450

finitistic, 426
for pairs, 429
of ideals, 422
of submodules, 423
via almost mathematics, 478
vs big Cohen-Macaulay closure, 478

tight closure test ideal, 432
trace ideal, 454
trace map
induces the ramification divisor, 308

T -transpose, 305

weak F -regularity
completes?, 446
localizes?, 445

weakly F -regular, 442
weakly F -regular implies

Cohen-Macaulay, 443
weakly F -regular implies normal, 443
weakly F -regular rings
are strongly F -regular?, 444

weakly F -regular rings that are
Q-Gorenstein

are strongly F -regular, 465
weakly cohomologically big

Cohen-Macaulay, 470
weakly normal, 60
Weil divisor
associated to a p−e-linear map, 258

wildly ramified
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extension of DVRS, 617
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