program main c*********************************************************************72 c cc VANDERMONDE_INTERP_1D_TEST tests VANDERMONDE_INTERP_1D. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 21 September 2012 c c Author: c c John Burkardt c implicit none integer prob integer prob_num call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'VANDERMONDE_INTERP_1D_TEST:' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) ' Test the VANDERMONDE_INTERP_1D library.' write ( *, '(a)' ) ' The R8LIB library is needed.' write ( *, '(a)' ) ' The QR_SOLVE library is needed.' write ( *, '(a)' ) ' This test needs the TEST_INTERP library.' write ( *, '(a)' ) ' This test needs the CONDITION library.' call p00_prob_num ( prob_num ) do prob = 1, prob_num call test01 ( prob ) end do c c Terminate. c write ( *, '(a)' ) '' write ( *, '(a)' ) 'VANDERMONDE_INTERP_1D_TEST:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) return end subroutine test01 ( prob ) c*********************************************************************72 c cc TEST01 tests VANDERMONDE_INTERP_1D_MATRIX. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 07 October 2012 c c Author: c c John Burkardt c implicit none integer nd_max parameter ( nd_max = 49 ) integer ni_max parameter ( ni_max = 501 ) double precision a(nd_max,nd_max) double precision c(nd_max) double precision condition logical debug parameter ( debug = .false. ) integer i double precision int_error double precision ld double precision li integer m integer nd integer ni integer prob double precision r8vec_norm_affine double precision xd(nd_max) double precision xi(ni_max) double precision xmax double precision xmin double precision xy(2,nd_max) double precision yd(nd_max) double precision yi(ni_max) double precision ymax double precision ymin write ( *, '(a)' ) '' write ( *, '(a)' ) 'TEST01:' write ( *, '(a,i2)' ) & ' Interpolate data from TEST_INTERP problem #', prob call p00_data_num ( prob, nd ) write ( *, '(a,i2)' ) ' Number of data points = ', nd call p00_data ( prob, 2, nd, xy ) if ( debug ) then call r8mat_transpose_print ( 2, nd, xy, ' Data array:' ) end if do i = 1, nd xd(i) = xy(1,i) yd(i) = xy(2,i) end do c c Choose the degree of the polynomial to be ND - 1. c m = nd - 1 c c Compute Vandermonde matrix and get condition number. c call vandermonde_interp_1d_matrix ( nd, xd, a ) call condition_hager ( nd, a, condition ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) & ' Condition of Vandermonde matrix is ', condition c c Solve linear system. c call qr_solve ( nd, nd, a, yd, c ) c c #1: Does interpolant match function at interpolation points? c ni = nd do i = 1, ni xi(i) = xd(i) end do call r8poly_value ( m, c, ni, xi, yi ) int_error = r8vec_norm_affine ( ni, yi, yd ) / dble ( ni ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) & ' L2 interpolation error averaged per interpolant node = ', & int_error c c #2: Compare estimated curve length to piecewise linear (minimal) curve length. c Assume data is sorted, and normalize X and Y dimensions by (XMAX-XMIN) and c (YMAX-YMIN). c call r8vec_min ( nd, xd, xmin ) call r8vec_max ( nd, xd, xmax ) call r8vec_min ( nd, yd, ymin ) call r8vec_max ( nd, yd, ymax ) ni = 501 call r8vec_linspace ( ni, xmin, xmax, xi ) call r8poly_value ( m, c, ni, xi, yi ) ld = 0.0D+00 do i = 1, nd - 1 ld = ld + sqrt & ( ( ( xd(i+1) - xd(i) ) / ( xmax - xmin ) ) ** 2 & + ( ( yd(i+1) - yd(i) ) / ( ymax - ymin ) ) ** 2 ) end do li = 0.0D+00 do i = 1, ni - 1 li = li + sqrt & ( ( ( xi(i+1) - xi(i) ) / ( xmax - xmin ) ) ** 2 & + ( ( yi(i+1) - yi(i) ) / ( ymax - ymin ) ) ** 2 ) end do write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) & ' Normalized length of piecewise linear interpolant = ', ld write ( *, '(a,g14.6)' ) & ' Normalized length of polynomial interpolant = ', li return end