# export to new table. # Copyright 2020 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: Bigquery - Query description: | A Kubeflow Pipeline component to submit a query to Google Cloud Bigquery service and dump outputs to new table. metadata: labels: add-pod-env: 'true' inputs: - name: query description: 'The query used by Bigquery service to fetch the results.' type: String - name: project_id description: 'The project to execute the query job.' type: GCPProjectID - name: dataset_id description: 'The ID of the persistent dataset to keep the results of the query.' default: '' type: String - name: table_id description: >- The ID of the table to keep the results of the query. If absent, the operation will generate a random id for the table. default: '' type: String - name: dataset_location description: 'The location to create the dataset. Defaults to `US`.' default: 'US' type: String - name: job_config description: >- The full config spec for the query job.See [QueryJobConfig](https://googleapis.github.io/google-cloud-python/latest/bigquery/generated/google.cloud.bigquery.job.QueryJobConfig.html#google.cloud.bigquery.job.QueryJobConfig) for details. default: '' type: Dict outputs: - name: MLPipeline UI metadata type: UI metadata implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-gcp:1.7.0-rc.3 args: [ --ui_metadata_path, {outputPath: MLPipeline UI metadata}, kfp_component.google.bigquery, query, --query, {inputValue: query}, --project_id, {inputValue: project_id}, --dataset_id, {inputValue: dataset_id}, --table_id, {inputValue: table_id}, --dataset_location, {inputValue: dataset_location}, --job_config, {inputValue: job_config}, ] env: KFP_POD_NAME: "{{pod.name}}"