# Copyright 2018 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. name: Deploying a trained model to Cloud Machine Learning Engine description: | A Kubeflow Pipeline component to deploy a trained model from a Cloud Storage path to a Cloud Machine Learning Engine service. metadata: labels: add-pod-env: 'true' inputs: - name: model_uri description: >- Required. The Cloud Storage URI which contains a model file. Commonly used TF model search paths (export/exporter) will be used if they exist. type: GCSPath - name: project_id description: 'Required.The ID of the parent project of the serving model.' type: GCPProjectID - name: model_id description: >- Optional. The user-specified name of the model. If it is not provided, the operation uses a random name. default: '' type: String - name: version_id description: >- Optional. The user-specified name of the version. If it is not provided, the operation uses a random name. default: '' type: String - name: runtime_version description: >- Optional. The [Cloud ML Engine runtime version](https://cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list) to use for this deployment. If it is not set, the Cloud ML Engine uses the default stable version, 1.0. default: '' type: String - name: python_version description: >- Optional. The version of Python used in the prediction. If it is not set, the default version is `2.7`. Python `3.5` is available when the runtime_version is set to `1.4` and above. Python `2.7` works with all supported runtime versions. default: '' type: String - name: model description: >- Optional. The JSON payload of the new [Model](https://cloud.google.com/ml-engine/reference/rest/v1/projects.models), if it does not exist. default: '' type: Dict - name: version description: >- Optional. The JSON payload of the new [Version](https://cloud.google.com/ml-engine/reference/rest/v1/projects.models.versions). default: '' type: Dict - name: replace_existing_version description: >- A Boolean flag that indicates whether to replace existing version in case of conflict. default: 'False' type: Bool - name: set_default description: >- A Boolean flag that indicates whether to set the new version as default version in the model. default: 'False' type: Bool - name: wait_interval description: 'A time-interval to wait for in case the operation has a long run time.' default: '30' type: Integer outputs: - name: model_uri description: 'The Cloud Storage URI of the trained model.' type: GCSPath - name: model_name description: 'The name of the deployed model.' type: String - name: version_name description: 'The name of the deployed version.' type: String - name: MLPipeline UI metadata type: UI metadata implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-gcp:1.7.0-rc.3 command: ["python", -u, -m, "kfp_component.launcher"] args: [ --ui_metadata_path, {outputPath: MLPipeline UI metadata}, kfp_component.google.ml_engine, deploy, --model_uri, {inputValue: model_uri}, --project_id, {inputValue: project_id}, --model_id, {inputValue: model_id}, --version_id, {inputValue: version_id}, --runtime_version, {inputValue: runtime_version}, --python_version, {inputValue: python_version}, --model, {inputValue: model}, --version, {inputValue: version}, --replace_existing_version, {inputValue: replace_existing_version}, --set_default, {inputValue: set_default}, --wait_interval, {inputValue: wait_interval}, --model_uri_output_path, {outputPath: model_uri}, --model_name_output_path, {outputPath: model_name}, --version_name_output_path, {outputPath: version_name}, ] env: KFP_POD_NAME: "{{pod.name}}"