name: ROC curve description: Calculates Receiver Operating Characteristic curve. See https://en.wikipedia.org/wiki/Receiver_operating_characteristic inputs: - {name: Predictions dir, type: GCSPath, description: 'GCS path of prediction file pattern.'} #TODO: Replace dir data + schema files # type: {GCSPath: {path_type: Directory}} - {name: True class, type: String, default: 'true', description: 'The true class label for the sample. Default is "true".'} - {name: True score column, type: String, default: 'true', description: 'The name of the column for positive probability.'} - {name: Target lambda, type: String, default: '', description: 'Text of Python lambda function which returns boolean value indicating whether the classification result is correct.\nFor example, "lambda x: x[''a''] and x[''b'']". If missing, input must have a "target" column.'} - {name: Output dir, type: GCSPath, description: 'GCS path of the output directory.'} #TODO: Replace dir with single file # type: {GCSPath: {path_type: Directory}} outputs: - {name: MLPipeline UI metadata, type: UI metadata} - {name: MLPipeline Metrics, type: Metrics} implementation: container: image: gcr.io/ml-pipeline/ml-pipeline-local-confusion-matrix:1.7.0 command: [python2, /ml/roc.py] args: [ --predictions, {inputValue: Predictions dir}, --trueclass, {inputValue: True class}, --true_score_column, {inputValue: True score column}, --target_lambda, {inputValue: Target lambda}, --output, {inputValue: Output dir}, --ui-metadata-output-path, {outputPath: MLPipeline UI metadata}, --metrics-output-path, {outputPath: MLPipeline Metrics}, ]