name: Automl create model for tables inputs: - {name: gcp_project_id, type: String} - {name: gcp_region, type: String} - {name: display_name, type: String} - {name: dataset_id, type: String} - {name: target_column_path, type: String, optional: true} - {name: input_feature_column_paths, type: JsonArray, optional: true} - {name: optimization_objective, type: String, default: MAXIMIZE_AU_PRC, optional: true} - {name: train_budget_milli_node_hours, type: Integer, default: '1000', optional: true} outputs: - {name: model_path, type: String} - {name: model_id, type: String} - {name: model_page_url, type: URI} implementation: container: image: python:3.7 command: - sh - -c - (PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'google-cloud-automl==0.4.0' || PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location 'google-cloud-automl==0.4.0' --user) && "$0" "$@" - python3 - -u - -c - | def automl_create_model_for_tables( gcp_project_id , gcp_region , display_name , dataset_id , target_column_path = None, input_feature_column_paths = None, optimization_objective = 'MAXIMIZE_AU_PRC', train_budget_milli_node_hours = 1000, ) : from google.cloud import automl client = automl.AutoMlClient() location_path = client.location_path(gcp_project_id, gcp_region) model_dict = { 'display_name': display_name, 'dataset_id': dataset_id, 'tables_model_metadata': { 'target_column_spec': automl.types.ColumnSpec(name=target_column_path), 'input_feature_column_specs': [automl.types.ColumnSpec(name=path) for path in input_feature_column_paths] if input_feature_column_paths else None, 'optimization_objective': optimization_objective, 'train_budget_milli_node_hours': train_budget_milli_node_hours, }, } create_model_response = client.create_model(location_path, model_dict) print('Create model operation: {}'.format(create_model_response.operation)) result = create_model_response.result() print(result) model_name = result.name model_id = model_name.rsplit('/', 1)[-1] model_url = 'https://console.cloud.google.com/automl-tables/locations/{region}/datasets/{dataset_id};modelId={model_id};task=basic/train?project={project_id}'.format( project_id=gcp_project_id, region=gcp_region, dataset_id=dataset_id, model_id=model_id, ) return (model_name, model_id, model_url) def _serialize_str(str_value: str) -> str: if not isinstance(str_value, str): raise TypeError('Value "{}" has type "{}" instead of str.'.format(str(str_value), str(type(str_value)))) return str_value import json import argparse _parser = argparse.ArgumentParser(prog='Automl create model for tables', description='') _parser.add_argument("--gcp-project-id", dest="gcp_project_id", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--gcp-region", dest="gcp_region", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--display-name", dest="display_name", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--dataset-id", dest="dataset_id", type=str, required=True, default=argparse.SUPPRESS) _parser.add_argument("--target-column-path", dest="target_column_path", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--input-feature-column-paths", dest="input_feature_column_paths", type=json.loads, required=False, default=argparse.SUPPRESS) _parser.add_argument("--optimization-objective", dest="optimization_objective", type=str, required=False, default=argparse.SUPPRESS) _parser.add_argument("--train-budget-milli-node-hours", dest="train_budget_milli_node_hours", type=int, required=False, default=argparse.SUPPRESS) _parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=3) _parsed_args = vars(_parser.parse_args()) _output_files = _parsed_args.pop("_output_paths", []) _outputs = automl_create_model_for_tables(**_parsed_args) _output_serializers = [ _serialize_str, _serialize_str, str, ] import os for idx, output_file in enumerate(_output_files): try: os.makedirs(os.path.dirname(output_file)) except OSError: pass with open(output_file, 'w') as f: f.write(_output_serializers[idx](_outputs[idx])) args: - --gcp-project-id - {inputValue: gcp_project_id} - --gcp-region - {inputValue: gcp_region} - --display-name - {inputValue: display_name} - --dataset-id - {inputValue: dataset_id} - if: cond: {isPresent: target_column_path} then: - --target-column-path - {inputValue: target_column_path} - if: cond: {isPresent: input_feature_column_paths} then: - --input-feature-column-paths - {inputValue: input_feature_column_paths} - if: cond: {isPresent: optimization_objective} then: - --optimization-objective - {inputValue: optimization_objective} - if: cond: {isPresent: train_budget_milli_node_hours} then: - --train-budget-milli-node-hours - {inputValue: train_budget_milli_node_hours} - '----output-paths' - {outputPath: model_path} - {outputPath: model_id} - {outputPath: model_page_url}