name: Xgboost train regression and calculate metrics on csv inputs: - {name: training_data, type: CSV} - {name: testing_data, type: CSV} - {name: label_column, type: Integer, default: '0', optional: true} - {name: objective, type: String, default: 'reg:squarederror', optional: true} - {name: num_iterations, type: Integer, default: '200', optional: true} outputs: - {name: model, type: XGBoostModel} - {name: mean_absolute_error, type: Float} - {name: mean_squared_error, type: Float} - {name: root_mean_squared_error, type: Float} - {name: metrics, type: JsonObject} implementation: graph: tasks: Xgboost train: componentRef: {digest: 09b80053da29f8f51575b42e5d2e8ad4b7bdcc92a02c3744e189b1f597006b38, url: 'https://raw.githubusercontent.com/kubeflow/pipelines/567c04c51ff00a1ee525b3458425b17adbe3df61/components/XGBoost/Train/component.yaml'} arguments: training_data: graphInput: {inputName: training_data} label_column: graphInput: {inputName: label_column} num_iterations: graphInput: {inputName: num_iterations} objective: graphInput: {inputName: objective} Xgboost predict: componentRef: {digest: ecdfaf32cff15b6abc3d0dd80365ce00577f1a19a058fbe201f515431cea1357, url: 'https://raw.githubusercontent.com/kubeflow/pipelines/567c04c51ff00a1ee525b3458425b17adbe3df61/components/XGBoost/Predict/component.yaml'} arguments: data: graphInput: {inputName: testing_data} model: taskOutput: {outputName: model, taskId: Xgboost train, type: XGBoostModel} label_column: graphInput: {inputName: label_column} Pandas Transform DataFrame in CSV format: componentRef: {digest: 58dc88349157bf128021708c316ce4eb60bc1de0a5a7dd3af45fabac3276d510, url: 'https://raw.githubusercontent.com/kubeflow/pipelines/6162d55998b176b50267d351241100bb0ee715bc/components/pandas/Transform_DataFrame/in_CSV_format/component.yaml'} arguments: table: graphInput: {inputName: testing_data} transform_code: df = df[["tips"]] Remove header: componentRef: {digest: ba35ffea863855b956c3c50aefa0420ba3823949a6c059e6e3971cde960dc5a3, url: 'https://raw.githubusercontent.com/kubeflow/pipelines/02c9638287468c849632cf9f7885b51de4c66f86/components/tables/Remove_header/component.yaml'} arguments: table: taskOutput: {outputName: transformed_table, taskId: Pandas Transform DataFrame in CSV format, type: CSV} Calculate regression metrics from csv: componentRef: {digest: e3ecbfeb18032820edfee4255e2fb6d15d15ed224e166519d5e528e12053a995, url: 'https://raw.githubusercontent.com/kubeflow/pipelines/7da1ac9464b4b3e7d95919faa2f1107a9635b7e4/components/ml_metrics/Calculate_regression_metrics/from_CSV/component.yaml'} arguments: true_values: taskOutput: {outputName: table, taskId: Remove header} predicted_values: taskOutput: {outputName: predictions, taskId: Xgboost predict, type: Text} outputValues: model: taskOutput: {outputName: model, taskId: Xgboost train, type: XGBoostModel} mean_absolute_error: taskOutput: {outputName: mean_absolute_error, taskId: Calculate regression metrics from csv, type: Float} mean_squared_error: taskOutput: {outputName: mean_squared_error, taskId: Calculate regression metrics from csv, type: Float} root_mean_squared_error: taskOutput: {outputName: root_mean_squared_error, taskId: Calculate regression metrics from csv, type: Float} metrics: taskOutput: {outputName: metrics, taskId: Calculate regression metrics from csv, type: JsonObject}