name: Azure ML Deploy Model description: A Kubeflow Pipeline Component to deploy registered model to Azure Machine Learning. inputs: - {name: deployment_name, type: String} - {name: model_name, type: String} - {name: inference_config, type: String, default: 'src/inferenceconfig.json', optional: true} - {name: deployment_config, type: String, default: 'src/deploymentconfig.json', optional: true} - {name: tenant_id, type: String} - {name: service_principal_id, type: String} - {name: service_principal_password, type: String} - {name: subscription_id, type: String} - {name: resource_group, type: String} - {name: workspace, type: String} outputs: - {name: output_config, type: String, description: 'Description of the deployed web-service.'} - {name: score_uri, type: String, description: 'The endpoint for deployed model.'} implementation: container: image: '' command: [ "sh", "/src/deploy.sh", '-n', {inputValue: deployment_name}, '-m', {inputValue: model_name}, '-i', {inputValue: inference_config}, '-d', {inputValue: deployment_config}, '-s', {inputValue: service_principal_id}, '-p', {inputValue: service_principal_password}, '-u', {inputValue: subscription_id}, '-r', {inputValue: resource_group}, '-w', {inputValue: workspace}, '-t', {inputValue: tenant_id}, '-o', {outputPath: output_config}, '-e', {outputPath: score_uri} ]