
Making Symbolic Execution Promising by Learning Aggressive
State-Pruning Strategy

Sooyoung Cha
Korea University
Republic of Korea

sooyoungcha@korea.ac.kr

Hakjoo Oh∗

Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT

We present Homi, a new technique to enhance symbolic execution

by maintaining only a small number of promising states. In practice,

symbolic execution typically maintains as many states as possible

in a fear of losing important states. In this paper, however, we

show that only a tiny subset of the states plays a significant role

in increasing code coverage or reaching bug points. Based on this

observation,Homi aims tominimize the total number of states while

keeping promising states during symbolic execution. We identify

promising states by a learning algorithm that continuously updates

the probabilistic pruning strategy based on data accumulated during

the testing process. Experimental results show that Homi greatly

increases code coverage and the ability to find bugs of KLEE on

open-source C programs.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Dynamic Symbolic Execution, Online Learning

ACM Reference Format:

Sooyoung Cha and Hakjoo Oh. 2020. Making Symbolic Execution Promising

by Learning Aggressive State-Pruning Strategy. In Proceedings of the 28th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8ś13, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3368089.3409755

1 INTRODUCTION

Symbolic execution [6, 7, 14, 23] is an effective software testing

method to increase code coverage and find subtle bugs. The key

idea of this method is to systematically explore program’s diverse

paths by substituting program inputs with symbolic ones to execute

the program symbolically. At a high-level, symbolic execution itera-

tively selects, executes, and forks a state while maintaining a set of

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409755

states during its testing process. In particular, it forks the state into

one or two separate states according to the feasibility of branch

conditions encountered during the symbolic execution. Thanks to

the systematic process, symbolic execution has been actively used

in a variety of applications: operation systems [17], smartphone

apps [1], neural networks [26], and smart contracts [20, 22].

However, performing symbolic execution on real-world pro-

grams inevitably faces the infamous state-explosion problem that

exponentially increases the number of states to be maintained, lead-

ing to significant increases of memory usage. Hence, in practice,

symbolic executor (e.g., KLEE [5]) takes as input thememory budget

to prevent unexpected memory usage, and maintains as many states

as possible within the memory budget to reduce the risk of losing

important states during testing. This reasonable behavior causes

the symbolic executor to suffer from two practical problems. First,

preserving as many states as possible increases the total number

of candidate states, which makes it difficult for symbolic executor

to decide proper states in a sense of increasing code coverage or

finding bugs. Second, since the accumulated states easily exceed

a given memory budget, numerous states are randomly pruned to

reduce the memory usage. As we demonstrate in Section 2, when

performing KLEE [5] with the default memory budget (2GB) on C

open-source programs, the number of states to maintain is tens of

thousands, and the number of blindly pruned states ranges from

tens of thousands to hundreds of thousands on average.

To resolve this state-explosion problem, we aim to minimize the

total number of states but to keep promising states during symbolic

execution. Of the preserved states, we observed that there exist a

very few promising states to effectively increase the code coverage

or to reach the bug points; thus, symbolic execution becomes more

effective and efficient if we only maintain those small number of

promising states in a sense of resolving the state-explosion problem.

To achieve our goal, the technical challenges we need to address are

(1) to estimate how promising each state is and (2) to determine how

many states we need to prune. Although diverse approaches exist

with the goal of reducing the search space of symbolic execution [2,

3, 15, 27, 30, 31], their goals are not to maintain a small number of

promising states; the existing approaches aim to identify and prune

only the redundant states that meet the predefined criteria from the

total ones. For instance, post-conditioned symbolic execution [30,

31] is to prune only the states having the same path suffixes as

previously explored states, and Jaffar et al. [15] discard program

paths guaranteed to be unreachable to bug points.

We present a new technique to adaptively maintain only a small

number of promising states during symbolic execution via on-

line learning. To achieve our goal, we introduce two key ideas:

a probabilistic pruning strategy and a learning algorithm. First, we

147

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409755
https://doi.org/10.1145/3368089.3409755
https://doi.org/10.1145/3368089.3409755

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

define the probabilistic pruning strategy that contains both con-

tinuous and discrete probability distributions. We use the former

distribution to score how promising each state is, and the latter

one to decide how many states are pruned. That is, we reduce the

problem of solving the two technical challenges into the problem

of learning both probabilistic distributions. Second, we present a

learning algorithm that continuously updates the two probabilistic

distributions online based on data accumulated during symbolic

execution.

Experimental results show that symbolic execution with our

technique significantly improves branch coverage while maintain-

ing a relatively small number of states compared to the general

symbolic execution on open-source C programs. We implemented

our technique in a tool, Homi, on top of KLEE [5] and evaluated it

on 9 C programs (10-61KLoC). Symbolic execution with Homi suc-

ceeds in covering more branches and finding more real bugs than

conventional symbolic execution on 9 benchmarks. For instance,

our technique is able to generate the bug-triggering inputs that

cause abnormal termination and segmentation fault in grep-2.6

and combine-0.4.0, respectively, while conventional symbolic ex-

ecution failed to do so.

Contributions. Our contributions are as follows:

• We present a new technique to maintain only promising

states by continuously learning the probabilistic pruning

strategy online during symbolic execution.

• We demonstrate the effectiveness of Homi on 9 open-source

C programs by comparing symbolic execution with vs. with-

out Homi.

• We make our tool, Homi, and data publicly available.1

2 PRELIMINARIES

In this section, we describe a general algorithm and limitation of

symbolic execution, and explain our observation to present the goal

of this paper.

Symbolic Execution. The main idea of symbolic execution [5, 7, 8]

is to systematically explore program’s diverse paths by replacing

program inputs with symbolic ones to execute a program sym-

bolically. Algorithm 1 presents a generic algorithm for symbolic

execution, except for a few change, line 6, that stems from our

main approach. Generally, symbolic execution maintains a set S

of program states until the time budget expires, where a single

state consists of a tuple (instr, store,Φ). Each element of a tuple

respectively denotes the next instruction to be executed (instr), a

symbolic store (store) which maps the program variables into sym-

bolic values, and a path-condition (Φ) which is a conjunction of

branch conditions evaluated symbolically in the state. The symbolic

execution generates test-cases by iteratively selecting, executing

and updating the states in S during its testing process.

The Run procedure in Algorithm 1 takes a program P under test

and the time budget (N) as input, and returns a set T of test-cases

generated within the time budget. At line 2, the algorithm initializes

a set S as an initial state (instr0, store0, true), where instr0 is the

very first instruction executed in the program P , store0 is the initial

1
Homi: https://github.com/kupl/HOMI_public

Algorithm 1 Symbolic Execution

Input: Program (P), time budget (N), and the probabilistic data (P).

Output: A set of test cases (T)

1: procedure Run(P , N , P)

2: S ← {(instr0, store0, true)} ▷ initial states

3: T ← ∅ ▷ initial test cases

4: repeat

5: SP ← PruneM(S ,M, r) ▷ M is memory and r is ratio.

6: SP ← SP ∪ Prune(S , P, ηt) ▷ prune states

7: S ← S \ SP
8: for each (_, _, Φ) ∈ SP do ▷ generate test cases

9: T ← T ∪ {(Φ,Model(Φ))}

10: (instr, store, Φ) ← Select(S) ▷ choose a state

11: S ← S \ {(instr, store, Φ)}

12: (instr′, store′, Φ) ← Execute(instr, store, Φ)

13: if instr′ = (if (ϕ) then instr1 else instr2) then

14: if SAT(Φ ∧ ϕ) then S ← S ∪ {(instr1, store
′
, Φ ∧ ϕ)}

15: if SAT(Φ ∧ ¬ϕ) then S ← S ∪ {(instr2, store
′
, Φ ∧ ¬ϕ)}

16: else if instr′ = halt then

17: T ← T ∪ {(Φ,Model(Φ)} ▷ generate test cases

18: until budget N expires (or S = ∅)

19:

20: for each (_, _, Φ) ∈ S do ▷ generate test cases

21: T ← T ∪ {(Φ,Model(Φ))}

22: return T

mapping information, and Φ is set to true. For instance, suppose

that there exists a small program P under test as follows:

vo id main (i n t x , i n t y) {

i f (x >89) p r i n t f (" good ") ;

i f (x==2 && y >25) a s s e r t (" bad ") ; }

With this program as an input, instr0 is set to the first instruction of

the program, if(x>89), store0 is [x 7→ α , y 7→ β], and Φ is true . At

line 3, the algorithm initializes a set T of test-cases to an empty set.

At line 5, the PruneM function decides a set of states to be pruned;

that is, it randomly selects a subset SP of S with the size of |S |∗r (e.g.,

r=0.1) when |S |, the size of S , exceeds the given memory capacity

M . Otherwise, it returns an empty set (i.e., SP = ∅). At line 7, the

algorithm updates the set S with the difference set between S and

SP. For every state in the pruning set SP, the algorithm generates

a test-case t which is a model of the path-condition Φ in the state

(instr, store,Φ) at line 8-9.

After the test-case generation, the Select function, namely a

search heuristic [9, 19, 24, 28], chooses a single state (instr, store,Φ)

from the set S based on its own selection criteria (line 10). With

the selected state, the Execute function executes the instruction

instr , and returns the updated state (instr ′, store′,Φ). At line 13,

if the instruction instr ′ is an if/else statement, Algorithm 1 first

checks the feasibility of the path-conditions corresponding to both

two branches. If the path-condition of the if statement, (Φ ∧ ϕ), is

satisfiable, the algorithm adds the new state (instr1, store
′
,Φ ∧ ϕ)

into the set S (line 14). Likewise, the algorithm adds the new state

into the set S if the path-condition of the else statement is satisfiable

(line 15). When both sides of the branch are feasible, the algorithm

forks the single state into two states, where this forking process

causes the state-explosion problem in symbolic execution. On the

other hand, if instr ′ is the halt statement, the algorithm generates

148

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 1: The number of states and pruned states on C open-

source programs (time budget:5h, memory budget:2GB)

gawk grep vdir ginstall trueprint

#states (|S |) 37K 41K 43K 60K 49K

#pruned states 34K 112K 115K 587K 155K

a test-case t and adds a pair of path-condition and a test-case, (Φ,

t), to the set T of test-cases. For simplicity, we have omitted the

cases when instr ′ is the other instructions such as load, store, and

call instructions. Algorithm 1 repeats this process until the time

budget N expires or the set S becomes an empty set. When the

loop ends, at line 20-21, the algorithm generates test-cases using

the path-conditions of all remaining states in the set S , which have

not yet reached the halt statement. Lastly, the algorithm returns

the generated test-cases T as an output.

Limitation. The general symbolic execution attempts to main-

tain as many states as possible within the memory budget to reduce

the loss of critical states during testing. This behavior, however,

significantly degrades the performance of symbolic execution ap-

plied to real-world programs as the number of states in both S and

SP grows. The greater the number of states in the set S , the harder

it is for the Select function to choose meaningful states which are

likely to increase the code coverage or to reach the buggy locations.

Furthermore, the increases in the size of the set of pruned states, SP,

may lead to the loss of promising states as they are forcibly pruned

from the set S of candidate states.

Table 1 shows the average number of candidate states (S) and

pruned total states when performing KLEE [5], a popular symbolic

execution tool, on open-source C programs for 5 hours with the

default memory capacity, 2GB. Overall, the size of the candidate set

is tens of thousands, and the number of pruned states ranges from

tens of thousands to hundreds of thousands. For instance, when

performing KLEE on grep, the Select function should choose a state

from about 41,000 candidate states on average for each iteration at

line 4-18; the PruneM function blindly prunes about 112,000 states

due to exceeding the memory budget even though the promising

states may exist among the pruned ones.

Goal. The goal of this paper is to maintain only promising states

via aggressive state-pruning during symbolic execution. In our

work, we define the promising states as having the potential to ef-

fectively increase branch coverage when they are further explored,

and observe that there are a very few promising states among the

total candidate states. Hence, if we succeed in performing sym-

bolic execution while keeping them only, we are able to maximize

code coverage and to find many bugs. That is, the Prune function

in Algorithm 1 enables the symbolic execution to maintain the

minimized set S of candidate states while preserving the promis-

ing states, and prevents situations where the candidate states are

blindly pruned due to memory overrun. To achieve this goal, the

technical challenges we must address are as follows:

(1) How promising each state is?

(2) How many states do we need to prune?

In this paper, we address the challenges via the probabilistic pruning

strategy learned online during symbolic execution.

3 OUR TECHNIQUE

In this section, we describe our technique, Homi, in detail. Sec-

tion 3.1 defines the probabilistic pruning strategy (Prune) used

in Algorithm 1. Section 3.2 describes our symbolic execution al-

gorithm (Algorithm 2) with the online learning technique for the

probabilistic pruning strategy.

3.1 Probabilistic Pruning Strategy

The pruning function (Prune) in Algorithm 1 decides the set SP
of pruned states based on the probabilistic data P. This function

takes as input the set S of all states, the probabilistic data P, and the

time cycle ηt . For every ηt seconds, the pruning strategy selects the

set SP of łunpromisingž states in two steps: sampling and pruning.

In the experiments, we set the hyper-parameter ηt to 30 seconds

based on our observation that the short pruning cycle (e.g., 30) is

generally more effective than the large one (e.g., 300) when testing

real-world benchmarks.

Sampling. The first step, sampling, is to obtain the two impor-

tant values from the probabilistic data P, where P consists of a

tuple (F , Pstgy , Pratio). F denotes a set of n features to represent

each state in the set S as an n-dimensional boolean vector. Pstgy
is the distribution of an n-dimensional vector θ to calculate how

promising each state is, and Pratio is the distribution of the ratio r

to decide the number of states to be pruned. For simplicity, we as-

sume that the parameter vector θ and ratio r are given by sampling

step from the learned distribution Pstgy and Pratio , respectively. We

explain how we obtain these two values in Section 3.2.3 and 3.2.4.

Pruning. The second step is to select the states to be pruned

by using the two sampled values, θ and r , and the set F of features

in P. We define the probabilistic pruning strategy as the following

Prune function:

Prune(S,P,ηt) =




argmin
SP⊆S∧|SP |= |S |∗r

∑

s∈SP

score(s, θ) if (F , ∅)

∅ otherwise

where the function returns an empty set when the set F is empty.

If not, the function scores each state in the set S , and returns the

set SP of the k states with the lowest scores in S (e.g., k = |S | ∗ r).

To estimate how promising a state is, we first transform each

state into a feature vector. Each feature denotes a boolean predicate

that checks whether the path-condition Φ of the state s contains

a specific branch condition ϕ. For instance, a feature describes

whether the path-condition Φ of the state s involves (α>10), the

branch condition. If true, the feature, feat(s), is 1; otherwise, it is 0.

Formally, the i-th feature is defined as:

feati (s) =

{
1 if (ϕi ∈ Φ) ∧ ((_, _,Φ) ∈ s)

0 otherwise

where it takes a single state s as input and returns 1 or 0. Using the

set F of n features in the given probabilistic data P, we can convert

a state into an n-dimensional boolean vector as follows:

feat(s) = ⟨feat1(s), feat2(s), . . . , featn(s)⟩.

149

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

Algorithm 2 Our Approach

Input: A program (P), time budget (N)

Output: The set of test-cases (T)

1: procedure Homi(P , N)

2: ⟨T , D⟩ ← ⟨∅, ∅⟩

3: initialize two sample spaces (Stime and Sratio)

4: N ′ ←sample from U(Stime)

5: P ← (∅, U([−1, 1]n), U(Sratio))

6: repeat

7: T ′ ← Run(P , N ′, P)

8: for each (Φ, t) ∈ T ′ do

9: D← D ∪ {(Φ, t, B)} ▷ B = Branches(t)

10: GoodD← Extract(D)

11: NewF ← FGenenator(GoodD)

12: Pstgy , Pratio, N
′ ← PGenerator(GoodD, NewF)

13: P ← (NewF , Pstgy , Pratio)

14: T ← T ∪ T ′

15: until budget N expires

16: return T

The features are automatically generated online by the data accu-

mulated during symbolic execution. We explain how these features

are obtained in Section 3.2.2.

After transforming each state in the set S into a feature vector,

we calculate the score of each state s using the inner product of the

feature vector feat(s) and the sampled n-dimensional vector θ as:

score(s, θ) = feat(s) · θ .

For example, when n is 3, θ and feat(s) can be ⟨0.4,−0.82,−0.3⟩

and ⟨1, 0, 0⟩, respectively, where the output of score(s, θ) is 0.4. The

feature vector, ⟨1, 0, 0⟩, denotes that the path-condition of the state s

only contains the branch condition corresponding to 1st feature.

In the vector θ , ⟨0.4,−0.82,−0.3⟩, the i-th value represents the

importance of the i-th feature.

Finally, the Prune function returns the set SP of the |S | ∗ r states

with the lowest scores in the set S as output, where the pruning

ratio r is obtained from the learned distribution Pratio . We remark

that the selection for the set SP can be done efficiently; after calcu-

lating the score of each state in the total set S , it ranks the states

according to their scores, and then picks the bottom-k states, where

k is |S | ∗ r .

Note that we reduce the problem of solving the two technical

problems discussed in Section 2 into the problem of learning prob-

abilistic distributions, Pstgy and Pratio .

3.2 Homi

The key point of our approach, Algorithm 2, is to continuously up-

date the features and the two probabilistic distributions, Pstgy and

Pratio , via online learning during symbolic execution. Except for

the probabilistic data (P), the input and output of our algorithm are

the same as the ones of Algorithm 1. Unlike the Algorithm 1 which

performs the Run procedure only once within the time budget N ,

our algorithm performs the Run procedure n times by dividing N

into n smaller budgets N ′. This is because our algorithm terminates

numerous states early through the probabilistic pruning strategy

in the Run procedure; thereby, our algorithm performs the Run

procedure multiple times with the updated data P to recover the

terminated promising states. Note that we can also perform Al-

gorithm 1 in the same way. However, without our state-pruning

strategy, we experimentally observed that it usually performs better

to run Algorithm 1 once for a long time period than to do multiple

times for a short time period (Section 4.4).

We explain the workflow of how Algorithm 2 works in detail. At

line 2, Algorithm 2 initializes the setT of test-cases and accumulated

data D to an empty set, respectively. At line 3, the algorithm initial-

izes two sample spaces, Stime and Sratio; the former Stime denotes

the sample space for the time budget N ′ to run the Run procedure

at line 7, and the latter, Sratio , represents the sample space for the

pruning ratio used in the probabilistic pruning strategy Prune.

Stime and Sratio are defined as:

Stime = [τmax, τitv], Sratio = [ηmax,ηitv]

where the two hyperparameters, τmax and τitv , are to define the

discrete space of τitv equal intervals with τmax as the maximum

time budget. Likewise, the discrete space Sratio is defined equally by

the two hyperparameters, ηmax and ηitv . For instance, if Stime and

Sratio are [600, 6] and [0.8, 4], their discrete spaces are as follows:

Stime = [100, 200, 300, 400, 500, 600], Sratio = [0.2, 0.4, 0.6, 0.8]

In the experiments, for the space Stime , we set τmax and τitv to 800

seconds and 4. We respectively set ηmax and ηitv to 0.6 and 3 for

the space Sratio; that is, our strategy prunes 20% or 40% or 60% of

total states for aggressive state-pruning.

At line 4, the algorithm samples the initial time budget N ′ from

the uniform distribution U(Stime). It initializes the probabilistic

data P consisting of a triplet (F , Pstgy , Pratio) at line 5; initially,

the set F of features is an empty set and each of two probabilistic

distributions, Pstgy and Pratio , is a uniform distribution. As the

set F in P is set to an empty set, the algorithm performs the Run

procedure without any state-pruning on the first iteration of the

loop at lines 6-15. Our algorithm repeats the following two main

processes until the time budget N expires: 1) performing symbolic

execution with the probabilistic pruning strategy based on the data

P (line 7) and 2) updating the data P (line 13). On the first iteration

of the loop, Homi performs the Run procedure (Algorithm 1) with

the time budget N ′ and initial probabilistic data P, and returns

the set T ′ of generated test-cases at line 7. After the algorithm

calculates the set B of branches covered by each test-case t in the

set T ′, we accumulate the tuple (Φ, t, B) in the set D (line 8-9).

3.2.1 Collecting Promising Data. At line 10, we run the Extract

function to extract the most łpromisingž but minimal set of data,

GoodD, from the set D of accumulated data. Conceptually, the set

GoodD is the smallest subset of D where the unions of B in GoodD

is the same with the set of branches covered by all the test-cases in

D. To formally define the set GoodD, we first calculate D∗ as:

D∗ = argmax
D′⊆D

|
⋃

(_,_,B)∈D′

B|.

where the notation ‘argmax’ returns the set D∗ of all arguments

that maximize the objective. The set D∗ is the set of all subsets of

D which collectively maximize the set of covered branches. Then,

the set GoodD is defined as:

GoodD = argmin
D′∈D∗

|D′ |

150

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

where the notation ‘argmin’ returns one of the arguments that

minimize the objective. In practice, calculating the set GoodD cor-

responds to solving the set cover problem [16], the well-known

np-complete problem. In this paper, we obtain the minimal set

GoodD by applying the greedy algorithm which iteratively selects

the element having the largest number of uncovered branches at

each stage.

3.2.2 Generating Features. At line 11, Homi generates n features

to transform each state into a feature vector in the probabilistic

pruning function, Prune. Intuitively, a feature is a core branch

condition that contributes to determining the value of a test case

that effectively increases branch coverage. To generate the features,

we use the core branch conditions in the path-condition Φ corre-

sponding to each promising test-case in the set GoodD. We define

a core branch condition ϕ as a condition that can be expressed in

the predefined language L as follows:

ϕ ::= cond | cond ∧ cond | cond ∨ cond

cond ::= lv = n

lv ::= α | α[i]

where the language is small yet sufficient to represent the minimum

branch conditions that are necessary to directly determine the value

of each test-case. An l-value (lv) denotes a symbolic value (α) or

the value of i-th index of an array α (α[i]). A condition (cond)

consists of a boolean condition to express that the l-value equals to

a constant value n. A core branch condition (ϕ) is a single cond or

a conjunction (disjunction) of cond. To generate a set of features

from the promising data GoodD, we first collect the set PC of all

path-conditions from GoodD as follows:

PC = {Φ | (Φ, _, _) ∈ GoodD}

Second, we collect the set NewF of new features by extracting core

branch conditions in the set PC as:

NewF = {ϕ ∈ L | ϕ ∈ Φ,Φ ∈ PC}

That is, we extract only the conditions that can be expressed in

the language L among the branch conditions of each Φ in the set

PC. For instance, suppose that the set PC contains two sets of path-

conditions as follows:

PC = {{(α == 3), (α > 1)}, {(α[2] , 3), (α[2] == 8)}}.

where the two branch conditions, (α == 3) and (α[2] == 8), in PC

can be expressed in the language L (e.g., lv = n) while the remaining

conditions, (α > 1) and (α[2] , 3), cannot be. Hence, we can define

the set NewF of features from PC as follows:

NewF = {(α == 3), (α[2] == 8)}

where the two features in the set NewF are the minimal conditions

to determine amodel of each path-condition; for instance, themodel

of the first path-condition, (α == 3) ∧ (α > 1), in PC is equals to

the one of the minimal condition (α == 3). In short, the set NewF

of generated features at line 11 represents the key evidences of the

minimal test-cases that contribute to maximizing branch coverage

until the current state.

3.2.3 Learning Distribution. At line 12, the function PGenerator

learns the probabilities of two values, n-dimensional weight vector

θ and the pruning ratio r , and returns a tuple (Pstgy , Pratio ,N
′). The

first element Pstgy denotes the probability for the weight vector θ

that scores how promising each state is, and the second, Pratio , is

the probability for the pruning ratio r that determines the number

of states to be pruned. The time budget N ′ is the newly allocated

time budget for the Run procedure on the next iteration of the loop.

The probability Pstgy consists of n distributions as:

Pstgy = P1 × P2 × · · · × Pn.

where Pi denotes the probability of the weight value θ
i correspond-

ing to the i-th feature in the set NewF . To define the i-th distribu-

tion Pi , we first collect the set of promising test-cases GoodT from

GoodD as follows:

GoodT = {t | (_, t, _) ∈ GoodD}.

Whenever each test-case t is generated during symbolic execution,

our algorithm additionally maintains a quadruple of information

used to generate each test-case t as follows:

t = (F, θ , r,N ′)

where F is the set of features, θ is the weight vector, r is the pruning

ratio, and N ′ is the time budget. Using this additional information,

we collect the set GoodF of the features which are used at least

once when generating the promising test-case in the set GoodT as

follows:

GoodF =
⋃

(F ,_,_,_)∈GoodT

F .

That is, the set GoodF contains the features that contribute to gen-

erating effective test-cases in terms of code coverage. Finally, we

can define the i-th distribution Pi as:

Pi =

{
N(µ(Wi),σ (Wi),−1, 1) if (ϕnewi ∈ GoodF)

U([−1, 1]) otherwise
(1)

where ϕnewi denotes the i-th feature in the set NewF that has been

generated at line 11 in Algorithm 2.

If the i-th new feature (ϕnewi) belongs to the set GoodF of promis-

ing features, we learn the probability Pi which is the truncated

normal distribution with median µ(Wi), standard deviation σ (Wi),

minimum value (-1), and maximum value (1). We define the set Wi

as:

Wi = {θ
k | (ϕnewi = ϕk) ∧ ({ϕ1, · · · ,ϕn}, θ , _, _) ∈ GoodT }.

Intuitively,Wi denotes the set of weight values corresponding to

the i-th new feature ϕnewi that has already been used for each test-

case in GoodT . Given the set W , the median µ(Wi) and standard

deviation σ (Wi) are calculated as:

µ(W) =
∑

w ∈W

w

|W |
, σ (W) =

√√√ ∑

w ∈W
(w − µ(W))2

|W |
.

On the other hand, if the i-th new feature (ϕnewi) does not belong to

GoodF , we fix the probability Pi to a uniform distribution between

-1 and 1 since there is no accumulated data corresponding to the

i-th new feature for learning. In this way, we learn the probability

Pstgy that consists of the n distributions from P1 to Pn based on

the most promising data GoodD.

151

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

After the learning process of the probability Pstgy , we calculate

the probability Pratio of the given pruning ratio r ′ which is one of

the values in the predefined discrete space Sratio as follows:

Pratio(X = r ′) =
|{(_, _, r, _) ∈ GoodT | r ′ = r}|

|GoodT |
(2)

The intuition is that the more the pruning ratio r is used to generate

promising test-cases GoodT , the higher the probability of the ratio.

Lastly, we sample the new budget N ′ based on the following

probability Ptime :

Ptime(X = N ′) =
|{(_, _, _,N) ∈ GoodT | N ′ = N }|

|GoodT |
(3)

The intuition is the same as the probability Pratio above.

3.2.4 Sampling Values. We describe how to sample the weight

vector (θ) and ratio (r) from the two learned distributions, Pstgy
and Pratio , in the first ‘sampling’ step of the probabilistic pruning

strategy. First, we sample the weight vector θ by using one of the

three sampling methods: exploitation, reverse exploitation, and

exploration. The first two methods are to exploit the learned dis-

tribution Pstgy as it is or reversely. The last method is to explore

purely random weight vector.

Exploitation. We sample the new weight vector θ from the

learned distribution Pstgy itself as:

Sampleexploit(P1 × P2 × · · · × Pn) = ⟨θ
1
, θ2, · · · , θn⟩

where the i-th weight value θ i is sampled from the i-th probability

Pi in (1). Our expectation is that the new weight vector θ statisti-

cally similar to the promising weight vectors in the set GoodD will

likely increase the code coverage on the next iteration of the loop.

Reverse Exploitation. We sample the new weight vector θr by

exploiting the learned distribution Pstgy reversely. We first generate

the set of 100 real-numbers,U , by sampling the uniform distribution

between -1 and 1 as:

U = {r1, r2, . . . , r100 | ri ∼ U(−1, 1)}.

The sampling method takes the probability Pstgy and the set U as

input and returns the new weight vector θr as:

Samplereverse(P1 × P2 × · · · × Pn,U) = ⟨θ
1
r , θ

2
r , · · · , θ

n
r ⟩

We assume that the i-th weight value θ i is sampled from the prob-

ability Pi defined in (1). Then the i-th reverse weight value θ ir is

calculated as follows:

θ ir = argmax
u ∈U

|u − θ i |

where the reverse value θ ir in U is the farthest one from the value

θ i sampled from the distribution Pi . Hence, θ
i
r represents the value

that is the most unlikely to be sampled in the learned distribution

Pstgy . We expect that this weight vector would lead the symbolic

execution to explore the branches uncovered in previous iterations.

Table 2: 9 benchmark programs

Programs LOC # of Branches

gawk-3.1.4 60,904 11,934

grep-2.6 56,931 7,021

combine-0.4.0 35,756 2,359

trueprint-5.4 12,229 2,518

ginstall (8.31) 22,290 3,652

ptx (8.31) 22,148 5,262

vdir (8.31) 19,378 3,830

pr (8.31) 12,156 1,991

dd (8.31) 10,531 1,547

Exploration. For the last method, we generate a weight vector

θ by sampling from the uniform distribution U([−1, 1]n), where

the i-th value θ i is a random real-number between -1 and 1. In the

experiments, to accumulate enough data D for learning the distribu-

tion Pstgy , Algorithm 2 repeats the loop, using only the exploration

methodm times (e.g.,m=10). After enough data is collected, we set

the same probabilities for the three sampling methods.

Finally, we sample the pruning ratio r based on the probability

in (2) when sampling the weight vector θ by exploitation or reverse

exploitation. Otherwise, when sampling the weight vector θ by

exploration, the pruning ratio is randomly sampled in the uniform

distributionU(Sratio). Likewise, we obtain the next testing budget

N ′ on the same basis as sampling the pruning ratio; that is, we

sample the budget from the uniform distributionU(Stime) for the

exploration case only. If not, we sample the one in (3).

As the loop at lines 6-15 in Algorithm 2 iterates, our technique,

Homi, is able to make smarter decisions on how to represent each

state (F), how promising each state is (Pstgy), and how many states

are pruned (Pratio).

4 EXPERIMENTS

In this section, we experimentally evaluate our approach, Homi, to

answer the following research questions:

• Effectiveness: How effectively does Homi improve branch

coverage? How many branches and bugs are reachable by

Homi only? (Section 4.2)

• The number of states: How many states does Homi main-

tain during testing compared to general symbolic execution?

(Section 4.3)

• Comparison with naive approach: How well does Homi

(Algorithm 2) perform compared to symbolic execution with

random state-pruning? (Section 4.4)

We implemented our approach in a tool, Homi, on top of KLEE [5],

a publicly available symbolic execution tool for testing C programs.

We conducted all experiments on a Linux machine equipped with

two Intel Xeon Processors E5-2630 and 192GB RAM, where it has a

total of 16 cores and 32 threads.

4.1 Settings

Benchmarks. We used 9 GNU open-source C programs for

evaluation. Table 2 shows the total number of lines and branches for

each benchmark, where the largest benchmark, gawk, has about 12K

152

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

branches. The last five benchmarks in Table 2 are among the larger

programs in GNU Coreutils-8.31. To construct our benchmark suite,

we used two criteria: 1) the benchmarks have been widely used in

prior work on dynamic symbolic execution [4, 5, 9ś11, 21, 24, 29],

and 2) they are relatively larger and more challenging than those

often used in existing work on KLEE.

Baselines. We compared our approach with the general sym-

bolic execution (Algorithm 1) without state-pruning but with 9

different search heuristics. Specifically, we used the following 9

search heuristics: CPICount (CallPath Instruction Count), CovNew,

MinDistance (Minimal Distance to Uncovered), InstrCount (In-

struction Count), QueryCost, RandomPath, Depth, RandomState,

and RoundRobin; the last heuristic is the default heuristic of KLEE

that uses CovNew and RandomPath in a round robin fashion. All

these heuristics are implemented in KLEE [5]. Note that we delib-

erately used 9 search heuristics instead of using only the default

heuristic. This is because, as demonstrated in Section 4.2, the perfor-

mance of the general symbolic execution varies greatly depending

on both the subject program and search heuristic.

We appliedHomi on top of the best search heuristic that achieves

the highest branch coverage for each program. For instance, we

applied Homi on top of theMinDistance heuristic for gawk while

applyingHomi on top of theCPICount heuristic for grep. Note that

Homi and search heuristics are orthogonal, and they are naturally

combined since Homi works regardless of search heuristics; in a

generic symbolic execution algorithm (Algorithm 1), Homi decides

which states to prune at line 6 while search heuristics determine

which states to explore further at line 10.

Other Settings. For all evaluations, we maintained the same

experimental environments: symbolic arguments, time budget, and

memory capacity. First, we used the symbolic arguments used in [5]

(e.g., "--sym-args 0 1 10 --sym-args 0 2 2 --sym-files 1 8 --sym-stdin

8 --sym-stdout"). Second, we used the same memory capacity, 2GB,

where it is the default setting of KLEE. Lastly, we allocated 5 hours

to both the baselines (Algorithm 1) and our technique (Algorithm 2)

for all benchmarks as time budget. We repeated all experiments

five times and reported the average results.

4.2 Effectiveness

We evaluate the effectiveness of our approach, Homi, from two

perspectives: branch coverage and bug-finding capability. In sum-

mary, Homi is able to significantly increase branch coverage and

exclusively find bug-triggering inputs, compared to the general

symbolic execution.

4.2.1 Branch Coverage. For each benchmark in Table 2, we report

the average number of total covered branches (Figure 1) and ex-

clusively covered branches (Table 3), by Homi and top-5 search

heuristics, respectively. As both the general symbolic execution

(Algorithm 1) and Homi (Algorithm 2) return as output the set

of test-cases, we plotted the number of branches covered by all

preceding test-cases to depict the coverage graph in Figure 1. In

particular, when the time budget (5h) expired, we re-executed the

binary of the program with each test-case in the set T sequentially,

where the ‘sequence’ denotes the time each test-case was created.

We calculated the cumulative number of covered branches corre-

sponding to the creation time of the test-case; we used gcov, one

of the most popular tools for measuring code coverage. As we men-

tioned in Section 3.2,Homi performs the general symbolic execution

without state-pruning on the first iteration of the loop. Hence, to

demonstrate the benefits of state-pruning only, we have plotted

the accumulated number of covered branches after the time for the

first iteration of Algorithm 2 elapsed. In our experiments, we first

perform the general symbolic execution for 800 seconds, record the

calculated number of covered branches on the graph, and then run

Algorithm 1 for the remaining time period (e.g., 5h - 800 seconds).

In other words, the graphs in the Figure 1 can clearly demonstrate

the comparison of the performance of symbolic execution with and

without state-pruning technique.

Figure 1 demonstrates the average number of branches covered

by the search heuristics over time in 9 benchmarks. We used a total

of 6 heuristics for each benchmark, consisting of the top five of the

nine original search heuristics and our technique applied to the best

one among the five. The experimental results show that the search

heuristic withHomi succeeds in achieving the highest branch cover-

age for all benchmarks. In particular, for the two largest programs,

gawk and grep, Homi notably increases the number of covered

branches compared to the best heuristic without it. For instance, in

gawk, the search heuristic withHomi,MinDistance+Homi, covered

about 2,884 branches whileMinDistance heuristic itself managed

to cover about 2,447 branches only. Likewise, in grep, when the

time budget (5h) expired, the best heuristic (CPICount) with and

without Homi covered about 2,851 and 2,505 branches, respectively.

Moreover, as shown in a benchmark trueprint, the rate for the

coverage increase over time of the heuristic equipped with Homi

was noticeably higher than the ones of other five search heuristics.

In the two benchmarks, combine and vdir, applying Homi to the

best heuristic has successfully covered about 100 more branches.

Figure 1 shows that in most programs, the number of branches

covered by each top-5 search heuristics rises sharply at the end of

the time budget; this interesting fact is observed because we have

reported the branch coverage covered over time. This phenomenon

occurs since the algorithm (Algorithm 1) generates the test-cases,

at lines 20-21, for each state that has not yet reached the halt state-

ment after the time budget expires, and the generated test-cases

contribute to increasing the total number of branch coverage a lot.

This implicitly shows that the general symbolic execution fails to

preferentially explore such promising states more.

Note that we applied Homi with the best search heuristic just

because it is more challenging to improve the performance of the

heuristic that has already achieved high code coverage. In fact,

Homi performs well regardless of the search heuristic. For instance,

applying Homi even with the 6th search heuristic (CPICount) on

gawk in Figure 1 can cover more branches than applying CPICount

withoutHomi;CPICount+Homi covered 2,356 branches on average

while CPICount covered 2,093 only.

4.2.2 Exclusively Covered Branches. Table 3 shows the number

of exclusively covered branches achieved by each technique. In

Table 3, the i-th best heuristic on each benchmark corresponds

to the one in Figure 1; for instance, the best (BestH) and second

best heuristic (2ndH) on combine are RandomPath and CPICount,

153

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

0 2500 5000 7500 10000 12500 15000 17500

1200

1400

1600

1800

2000

2200

2400

2600

2800

#
of

C
ov
er
ed

B
ra
n
ch
es

gawk

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
MinDistance+Homi

MinDistance

QueryCost

InstrCount

CovNew

CPICount

0 2500 5000 7500 10000 12500 15000 17500

1800

2000

2200

2400

2600

2800

#
of

C
ov
er
ed

B
ra
n
ch
es

grep

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CPICount+Homi

CPICount

QueryCost

CovNew

InstrCount

RandomState

0 2500 5000 7500 10000 12500 15000 17500

300

400

500

600

700

800

900

#
of

C
ov
er
ed

B
ra
n
ch
es

combine

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
RandomPath+Homi

RandomPath

CPICount

CovNew

QueryCost

RoundRobin

0 2500 5000 7500 10000 12500 15000 17500

700

800

900

1000

1100

1200

1300

1400

1500

1600

#
of

C
ov
er
ed

B
ra
n
ch
es

vdir

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CovNew+Homi

CovNew

RoundRobin

QueryCost

MinDistance

RandomState

0 2500 5000 7500 10000 12500 15000 17500

1100

1200

1300

1400

1500

1600

1700

1800
#

of
C
ov
er
ed

B
ra
n
ch
es

ptx

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CovNew+Homi

CovNew

CPICount

QueryCost

RandomState

RoundRobin

0 2500 5000 7500 10000 12500 15000 17500

400

500

600

700

800

900

#
of

C
ov
er
ed

B
ra
n
ch
es

trueprint

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
MinDistance+Homi

MinDistance

RandomPath

RoundRobin

QueryCost

CovNew

0 2500 5000 7500 10000 12500 15000 17500

600

700

800

900

1000

1100

1200

#
of

C
ov
er
ed

B
ra
n
ch
es

ginstall

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

CovNew

0 2500 5000 7500 10000 12500 15000 17500

600

700

800

900

1000

1100

1200

#
of

C
ov
er
ed

B
ra
n
ch
es

pr

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CovNew+Homi

CovNew

QueryCost

RoundRobin

RandomState

CPICount

0 2500 5000 7500 10000 12500 15000 17500

350

375

400

425

450

475

500

525

550

#
of

C
ov
er
ed

B
ra
n
ch
es

dd

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

100
CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

RandomState

Figure 1: The average branch coverage achieved by top-5 heuristics and Homi on 9 benchmarks

Table 3: The average number of branches exclusively cov-

ered by top-5 heuristics and Homi on 9 benchmarks

BestH+Homi BestH 2ndH 3rdH 4thH 5thH

gawk 139 10 26 37 42 26

grep 208 53 22 116 14 1

combine 62 0 15 15 1 6

vdir 118 44 19 14 1 2

ptx 39 4 35 2 0 4

trueprint 147 17 0 0 3 52

ginstall 16 3 1 6 0 0

pr 61 3 1 2 0 3

dd 23 17 2 0 0 0

Total 813 151 121 192 61 94

respectively. The number achieved by our technique (BestH+Homi)

denotes the number of branches that our technique covers but all

the remaining top-5 heuristics fail to cover. The results show that

our technique (BestH+Homi) is highly effective in increasing the

number of exclusively covered branches. In total, the best heuristic

with Homi was able to cover 813 branches while the best heuristic

without Homi covered only 151 branches; in summary, the former

exclusively covered 5.4 times more branches than the latter. For

instance, in the largest program gawk, Homi significantly enhanced

the performance of the best heuristic (MinDistance) by about 13.9

times. Likewise, our technique (CPICount+Homi) on grep exclu-

sively covered 208 branches, but the best heuristic alone managed

to exclusively cover 53 branches.

In addition, the number of exclusive branches covered by our

technique (BestH+Homi) is even greater than the sum of the num-

bers of branches exclusively covered by each of top-5 heuristics,

where the former is 813 and the latter is 619, i.e., 151+121+192+61+94.

The number of branches that one of the top-5 heuristics can cover

but our technique (BestH+Homi) fails is 816. In other words, the

branch coverage achieved by applying Homi to the best-heuristic

only for 5 hours is almost the same as the one achieved by applying

154

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 4: Comparison of bug-finding ability of top-2 heuristics with vs. without Homi.

Benchmarks Crash-Types Bug-Triggering Inputs Error Locations BestH+Homi BestH 2ndH+Homi 2ndH

gawk-3.14
Abnormal-termination "--nostalgi" "-" ‘Line: 1044 in main.c’ ✔ ✔ ✔ ✔

Abnormal-termination "--compat" "-m" "r " ‘Line: 526 in /libc/stdlib/stdlib.c’ ✔ ✘ ✔ ✘

grep-2.6 Abnormal-termination "\n\w*\'*\n" "-" ‘Line: 1432 in /src/dfa.c’ ✘ ✘ ✔ ✘

combine-0.4.0
Segmentation fault "--field=, ," ‘Line: 385 in /src/field.c’ ✔ ✔ ✔ ✔

Segmentation fault "--fi=r.o1’" "-r" "" ‘Line: 633 in /src/df_options.c’ ✔ ✘ ✘ ✘

each of top-5 heuristics for 5 hours (25 hours in total). Despite the

obvious advantages ofHomi, it is still not optimal since it also failed

to cover 816 branches achieved by top-5 search heuristics. From

this observation, selective decision on applying Homi would be an

interesting future work.

4.2.3 Bug-Finding Capability. In Table 4, we compared the bug-

finding capability of two best heuristics both with and without

Homi, respectively, for the three largest benchmarks: gawk, grep,

and combine. In summary, Homi found a total of five reproducible

bugs on the three benchmarks. In particular, the three bugs were

only detectable by Homi while the general symbolic execution

failed to find these bugs.

Table 4 shows the benchmark, the crash-type, the bug-triggering

input generated by Homi, the error-location, and success or failure

of bug-finding for each technique in order. In particular, we marked

each technique as ‘success’ (✔) when the technique succeeded in

finding the bug at least once during five iterations of the time budget

(5h). On the contrary, when each technique totally failed to find the

bug during the time period (5h ∗ 5times), we marked it as ‘failure’

(✘). The results show that our technique was able to generate a total

of four distinct bug-triggering inputs in gawk and combine, but the

best heuristic without Homi only generated the two inputs. We

confirmed that the first bug-triggering input ("--nostalgi" "-") found

in gawk is reproducible in the latest version (gawk-5.0.1). One inter-

esting point is that the discovered bugs are different when applying

Homi to the best and the second best heuristics; the best heuristic

withHomi caused a crash, abnormal-termination, on combinewhile

the second best one caused a segmentation fault on grep. That is,

we expect that applying Homi to diverse (new) search heuristics

will allow more bug-detection.

4.3 The Number of Candidate States

For each benchmark in Table 2, we compare the number of states

that our technique and the general symbolic execution maintain

during the testing period. Figure 2 shows the average number of

states that can be selected by each technique for every second;

more precisely, the average number denotes the set size of states,

|S |, at line 10 in Algorithm 1. The results show that our technique

(BestH+Homi) maintains a relatively small number of states for

most of the time period on all benchmarks compared to the gen-

eral symbolic execution. When performing the general symbolic

execution without the state-pruning at first, which is the first it-

eration of the loop in Algorithm 2, our technique also faced the

state-explosion problem. After the first iteration, however, ours has

successfully maintained a small number of states. For instance, in

gawk, our technique (MinDistance+Homi) kept about 1,897 states

per second on average while theMinDistance heuristic maintained

about 37,315 states. In other words, our technique succeeded in

achieving the highest branch coverage in Figure 1 while maintain-

ing 19.7 times fewer states than the general symbolic execution.

In grep, CPICount+Homi and CPICount retained 2,030 and 41,210

states on average, respectively. In vdir, even after the first itera-

tion of the loop in Algorithm 2, our technique sometimes faced the

state-explosion problem. We confirmed that this problem occurs

because the number of states grows exponentially faster than the

number pruned by our state-pruning strategy.

For the general symbolic execution without our technique, we

observed that keeping the fewer number of states is not directly

related to improving the branch coverage. For instance, in ptx,

RoundRobin heuristic maintains about 4,660 states during the sym-

bolic execution, which is almost the same number of states main-

tained by our technique (CovNew+Homi). However, Figure 1 shows

that RoundRobin covered about 300 fewer branches on average

than CovNew of which the number of states is about 60,053 during

symbolic execution. In another benchmark, gawk, the numbers of

candidate states maintained by CPICount and MinDistance are al-

most the same, where the former is 36,299 and the latter is 37,315.

However, the difference in the number of covered branches by the

two techniques is approximately about 350 branches. That is, the

key answer for increasing code coverage is not to blindly main-

tain the number of states, but to smartly keep only the łpromisingž

states.

Although Homi successfully maintains such promising states on

our benchmark suite, wewere not able to provide high-level insights

into why those states are promising. In our approach, we determine

how promising a state is based on its corresponding feature vector

and weight vector. However, as our learning algorithm represents

each state as low-level features that check whether it contains core

branch conditions, it was difficult to decode the learning outcomes

and describe the intuition behind promising states.

4.4 Comparison with Naive Approaches

We evaluate the efficacy of Homi (Algorithm 2) by comparing it

with two naive methods. The first naive method is to replace the

probabilistic pruning strategy (Prune) in Algorithm 1 with the

random pruning strategy (RandomPrune), and then to perform

155

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

#
of

S
ta
te
s

gawk

MinDistance+Homi

MinDistance

QueryCost

InstrCount

CovNew

CPICount

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

#
of

S
ta
te
s

grep

CPICount+Homi

CPICount

QueryCost

CovNew

InstrCount

RandomState

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

500

1000

1500

2000

2500

3000

#
of

S
ta
te
s

combine

RandomPath+Homi

RandomPath

CPICount

CovNew

QueryCost

RoundRobin

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

#
of

S
ta
te
s

vdir

CovNew+Homi

CovNew

RoundRobin

QueryCost

MinDistance

RandomState

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

70000
#

of
S
ta
te
s

ptx

CovNew+Homi

CovNew

CPICount

QueryCost

RandomState

RoundRobin

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

#
of

S
ta
te
s

trueprint

MinDistance+Homi

MinDistance

RandomPath

RoundRobin

QueryCost

CovNew

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

100000

#
of

S
ta
te
s

ginstall

CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

CovNew

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

10000

20000

30000

40000

50000

60000

70000

#
of

S
ta
te
s

pr

CovNew+Homi

CovNew

QueryCost

RoundRobin

RandomState

CPICount

0 2000 4000 6000 8000 10000 12000 14000 16000

time(s)

0

20000

40000

60000

80000

100000

#
of

S
ta
te
s

dd

CPICount+Homi

CPICount

RoundRobin

RandomPath

Depth

RandomState

Figure 2: The average number of states for each technique to select on 9 benchmarks

Algorithm 2 without online learning (line 10-13) as:

RandomPrune(S, r) = {s ∈ SP | SP ⊆ S ∧ |SP | = |S | ∗ r}

where r is sampled from the uniform distributionU(Sratio) defined

in Section 3.2. The second naive method is to perform the general

symbolic execution (Algorithm 1) multiple times by dividing the

total budget (5h) into smaller budgets N ′, where N ′ is sampled

fromU(Stime) defined in Section 3.2. In grep, we compared branch

coverage achieved by ours (CPICount+Homi), the best heuristic

(CPICount), the first naive approach (CPICount+RandomPrune),

and the second one (CPICount[Divide]), respectively.

Figure 3 shows that Homi (Algorithm 2) is essential to effec-

tively improve branch coverage. For example, ours covered at

least 300 more branches than the second best method (CPICount+

RandomPrune). The second and the third best methods (CPICount

+RandomPrune and CPICount) achieved nearly identical branch

coverage when time budget expired. For the general symbolic ex-

ecution (Algorithm 1) without state-pruning, it is much better to

0 2500 5000 7500 10000 12500 15000 17500

1800

2000

2200

2400

2600

2800

#
of

C
ov
er
ed

B
ra
n
ch
es

grep

0 2500 5000 7500 10000 12500 15000 17500

time(s)

0

200
CPICount+Homi

CPICount+RandomPrune

CPICount

CPICount[Divide]

Figure 3: Comparison with two naive approaches on grep

perform symbolic execution for a long time than to perform sym-

bolic execution several times with small budget; the former and the

latter was able to cover 2,505 and 2,406 branches, respectively.

156

Making Symbolic Execution Promising by Learning Aggressive State-Pruning Strategy ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

4.5 Threats to Validity

(1) We manually tuned the several hyper-parameters: ηt , ηmax , and

ηitv . To determine each value, we ran Homi with a few different

values (e.g., 30, 300) on three benchmarks, and chose an appropriate

one achieving the highest coverage during the experiments. Then,

we applied the same value for the remaining six benchmarks. How-

ever, the tuned values may not be suitable for larger open-source C

programs (e.g., LOC > 100K). (2) In evaluation, we used both the de-

fault SMT solver of KLEE (STP [13]) and the default memory budget

(2GB). However, the performance of Homi may vary for different

SMT solvers and memory budgets. (3) We used 9 C open-source

programs extensively used in previous works [4, 5, 9ś11, 21, 24, 29].

But these may not be representative.

5 RELATED WORK

In this section, we discuss existing works that are closely related to

our goal and approach, respectively. At a high level, our goal is to

prune the search space of symbolic execution [2, 3, 15, 27, 30, 31],

and our approach belongs to the techniques that combine symbolic

execution with machine learning [9ś12, 18, 25].

Reducing Search Space of Symbolic Execution. Homi is dif-

ferent from and orthogonal to the existing techniques [2, 3, 15,

27, 30, 31]. These techniques aim to conservatively prune redun-

dant states based on some predefined criteria. On the other hand,

Homi aims to aggressively prune the states based on adaptive crite-

ria learned online during symbolic execution. The read-write set

(RWset) analysis [2] aims to prune program paths that will execute

the same basic blocks as previously explored paths. Likewise, the

goal of post-conditioned symbolic execution [30, 31] is to discard

the states having the same path suffixes as previously explored

states during testing. Jaffar et al. [15] aims to subsume the paths

guaranteed to be unreachable to the annotated assertions in the

program. Chopper [27] presents a novel technique to perform sym-

bolic execution while safely excluding the irrelevant functions in

the program which are not the targets of users to test. Note that our

tool, Homi, can further enhance symbolic execution by combining

these techniques that safely prune redundant paths.

Combining Symbolic Execution with Learning. Our work

aligns with this line of research that employs machine learning to

boost symbolic execution [9ś12, 18, 25]. ParadySE [9] presents a

new approach to automatically generate search heuristics of sym-

bolic execution via offline learning. Chameleon [11] is a novel

symbolic execution that adaptively switches search heuristics for

better performance via online learning. MLB [18] uses machine

learning to effectively handle the complex path-conditions that

involve external function calls or floating point arithmetic in sym-

bolic execution. LEO [12] is a machine-learning based approach to

boost symbolic execution by transforming the program under test

into an easy-to-analyze program while preserving its semantics.

ConTest [10] aims to learn useful templates that reduce the input

space of the program under test by selectively generating symbolic

variables during testing. On the other hand, we use a learning al-

gorithm to aggressively prune unpromising states online during

symbolic execution.

6 CONCLUSION

We present a new approach, Homi with the goal of maintaining

promising states only via aggressive state-pruning. The key idea

is to continuously learn the probabilistic pruning strategy based

on the cumulative data during the testing period. Experimental

results on 9 open-source C projects show that symbolic execution

with Homi is able to notably increase branch coverage and find real

bugs while keeping a relatively small set of states. We believe that

minimizing candidate states in symbolic execution will emerge as

a new solution against the state-explosion problem.

ACKNOWLEDGMENTS

This work was supported by Samsung Research Funding & Incuba-

tion Center of Samsung Electronics under Project Number SRFC-

IT1701-51. This work was partly supported by Institute of Informa-

tion & communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government(MSIT) (No.2020-0-01337,

(SW STAR LAB) Research on Highly-Practical Automated Software

Repair) and Next-Generation Information Computing Development

Program through the National Research Foundation of Korea(NRF)

funded by the Ministry of Science, ICT (2017M3C4A7068175).

REFERENCES
[1] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-

mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). 1ś11.

[2] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
path explosion in constraint-based test generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08).
351ś366.

[3] Suhabe Bugrara and Dawson Engler. 2013. Redundant State Detection for Dy-
namic Symbolic Execution. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference (USENIX ATC’13). 199ś212.

[4] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In Proceedings of 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’08). 443ś446.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). 209ś224.

[6] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In Proceedings of the 12th International
Conference on Model Checking Software (SPIN’05). 2ś23.

[7] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 12, 2 (2008), 10:1ś10:38.

[8] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82ś90.

[9] Sooyoung Cha, SeongjoonHong, Junhee Lee, and Hakjoo Oh. 2018. Automatically
Generating Search Heuristics for Concolic Testing. In Proceedings of the 40th
International Conference on Software Engineering (ICSE ’18). 1244ś1254.

[10] Sooyoung Cha, Seonho Lee, and Hakjoo Oh. 2018. Template-guided Concolic
Testing via Online Learning. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18). 408ś418.

[11] Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively Changing
Search Heuristics. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19). 235ś245.

[12] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu
Zhang. 2018. Learning to accelerate symbolic execution via code transformation.
In 32nd European Conference on Object-Oriented Programming (ECOOP ’18).

[13] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and
Arrays. In Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07). 519ś531.

[14] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). 213ś223.

157

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Sooyoung Cha and Hakjoo Oh

[15] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Concolic
Testing via Interpolation. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE ’13). 48ś58.

[16] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. 85ś103.

[17] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,
and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for
COTS Operating Systems. In 2017 USENIX Annual Technical Conference (USENIX
ATC ’17). 689ś701.

[18] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. 2016. Symbolic Execution of Complex Program Driven by Ma-
chine Learning Based Constraint Solving. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). 554ś559.

[19] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic
Execution to Less Traveled Paths. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages, and
Applications (OOPSLA ’13). 19ś32.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). 254ś269.

[21] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoud-
hury. 2018. Symbolic Execution with Existential Second-Order Constraints. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18). 389ś399.

[22] Ivica Nikoliundefined, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In
Proceedings of the 34th Annual Computer Security Applications Conference (ACSAC
’18). 653ś663.

[23] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference

Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE ’05). 263ś272.

[24] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-guided
Search Strategy in Concolic Testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’14). 413ś
424.

[25] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and Pra-
teek Saxena. 2019. Neuro-Symbolic Execution: Augmenting Symbolic Execution
with Neural Constraints.. In Proceedings of the Symposium on Network and Dis-
tributed System Security (NDSS ’19).

[26] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18). 109ś119.

[27] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.
Chopped Symbolic Execution. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). 350ś360.

[28] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.
2018. Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). 291ś302.

[29] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. 2015. DASE: Document-
Assisted Symbolic Execution for Improving Automated Software Testing. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE
’15). 620ś631.

[30] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
2015. Postconditioned Symbolic Execution. In 2015 IEEE 8th International Confer-
ence on Software Testing, Verification and Validation (ICST ’15). 1ś10.

[31] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao.
2018. Eliminating Path Redundancy via Postconditioned Symbolic Execution.
IEEE Transactions on Software Engineering (2018), 25ś43.

158

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Technique
	3.1 Probabilistic Pruning Strategy
	3.2 Homi

	4 Experiments
	4.1 Settings
	4.2 Effectiveness
	4.3 The Number of Candidate States
	4.4 Comparison with Naive Approaches
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

