

The Pacific Northwest in the winter is a gray and dreary place. For this project, I am building

An app that

will let users find out if there will be any sun nearby in the future--and if so, when!

What are the User Stories?

The user stories of the SunSpotter app are:

As a user, I want to...

- → See if and when there will be any sun in the near future.
- \rightarrow See a future weather forecast so I can plan to find the sun.
- Specify my location so I can see if there will be sunshine near me.

Layout & Appearance

- → Top: A User Input and a Search button
- → Middle: A display that shows an image of whether there will be any sun in the near future
 - Shows a sun if there will be a sun
 - Shows a cloud otherwise
- → Bottom: A scrollable list of tri-hourly forecast in the next few days

Q City	/		Find Sun!
>			vill be sur
	No Sur	n (Fri 12:0	opm) - 39°
	No Su	n (Fri 3:0	opm) - 40°
	SUN!	(Sun 3:00	opm) - 42°
	No Sur	1 (Sun 6:0	opm) - 36°

Public API

→ The app uses OpenWeatherMap API for retrieving data

Here's how it works:

- 1. User enters ZIP code
- 2. SunSpotter sends an API call (by ZIP code) to OpenWeatherMap
- 3. OpenWeatherMap returns the forecast data in JSON format
- 4. SunSpotter accesses and parses the data

OpenWeatherMap

Default View

- → A simple input/text field for entering the ZIP code and a "Find Sun" button.
- → The app also works with city name, though using ZIP code makes the API call more accurate (due to duplicity in city names).

ি The Ultimate Sun Spotte	`.ııl 84%
Enter the zip code	FIND SUN!

Displayed Result

→ The app accesses the data and finds the nearest sunny time, followed by a parsed scrollable list of tri-hourly weather forecast.

JT	I ne t
ஜியி 84% 📧 10:32 The Ultimate Sun Spotter	Seatt
98105 FIND SUN!	
There will be Sun! It will be sunny on Fri Jul 07 11:00:00 PDT 2017	SUN
SUN! (Fri 11:00AM) - 21°	SUN
SUN! (Fri 2:00PM) - 23° SUN! (Fri 5:00PM) - 24°	SUN
SUN! (Fri 8:00PM) - 22°	SUN
SUN! (Fri 11:00PM) - 16°	No s
No sun (Sat 2:00AM) - 14°	No s
No sun (Sat 5:00AM) - 13°	No s
No sun (Sat 8:00AM) - 15°	NI
5 6 7	

84% 🖅 10:36 The Ultimate Sun Spotter tle **FIND SUN!** There will be Sun! It will be sunny on Fri Jul 07 11:00:00 PDT 2017 !! (Fri 11:00AM) - 21° !! (Fri 2:00PM) - 23° l! (Fri 5:00PM) - 24° !! (Fri 8:00PM) - 22° !! (Fri 11:00PM) - 16° sun... (Sat 2:00AM) - 14° sun... (Sat 5:00AM) - 13° sun... (Sat 8:00AM) - 15° (0-1 11.00 A MA) 100

 \triangle

What Skills have I demonstrated?

Through completing this project, I've demonstrated the following skills:

- → Creating new Android activities
- → Defining complex layout using **XML resources**
- → Using Android View elements, including composites
- → Downloading data from the Internet
- → Accessing and parsing data from **public APIs** using Java

How might the app move forward in the future?

Next-step features to improve usability for the SunSpotter may include:

- → Allowing the users to select forecast data from various sources (implementing with different public APIs)
- Providing recommendations of items/outfit of the day based on returned data
- → Giving out daily notification on nearest sun found

CIORCUD

