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Density Estimation and 
Clustering
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Unsupervised learning: describing data

Developing new data 
representations

1

Dimensionality 
Reduction

Quantifying data 
distributions

2

Density 
Estimation

Grouping similar data

3

Clustering

Identifying anomalies 
in data

4

Anomaly 
detection

• Feature subset 
Selection

• Feature projections
• Supervised 

approaches

• Histograms
• Nonparametric 

density estimation
• Parametric models

• Hierarchical
• Centroid-based
• Distribution-based
• Density-based

• Probabilistic  
approaches

• Cluster-based
• Supervised 

approaches
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Density Estimation
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Properties of probability distributions
• Always greater than zero
• Integrates to 1

Common approaches to density estimation
• Parametric density estimation (distribution fitting)
• Histograms
• Kernel density estimation
• Gaussian mixture models
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Parametric Density Estimation

Image from: https://stackoverflow.com/questions/20011122/fitting-a-normal-distribution-to-1d-data
𝑥

𝑝̂ 𝑥

If we have knowledge of a 
possible parametric form, we 
can estimate the parameters of 
the model
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Histogram Density Estimation
Histogram

𝑝 𝑥 =
𝑛!
𝑁Δ!

𝑝
𝑥

𝑛! = # observations of 𝑥 falling in bin 𝑖
𝑁 = total # observations
Δ! = width of bin  𝑖

𝑥

Bishop, Pattern Recognition and Machine Learning, 2006

Highly dependent on the choice of bin width, Δ!

Has discontinuities at the bin edges

Local neighborhoods do appear to be helpful

True distribution
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Kernel 
Functions 
(window 
kernels)

194 6. Kernel Smoothing Methods
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

• This leaves a more general problem to deal with: observation weights
wi. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to

∑
wi). In the event of overflow (the last observation

needed in a neighborhood has a weight wj which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

• Boundary issues arise. The metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

• The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =

{
(1− |t|3)3 if |t| ≤ 1;
0 otherwise

(6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density func-
tion D(t) = φ(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3 (left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,

Hastie, Tibshirani, and Friedman, The Elements of Statistical learning, 2001

𝑘 𝑢 =
3
4
1 − 𝑢)

𝑢

𝑘
𝑢

𝑢 ≤ 1

𝑘 𝑢 =
70
81

1 − 𝑢* *

𝑢 ≤ 1

𝑘 𝑢 =
1
2𝜋

𝑒+
,
)-

!

−∞ < 𝑢 < ∞

Epanechnikov Tri-cube GaussianSatisfy two properties:

𝑘 𝑢 ≥ 0

8𝑘 𝑢 𝑑𝑢 = 1
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208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

Kernel Density Estimation

Hastie, Tibshirani, and Friedman, The Elements of Statistical learning, 2001

𝑝
𝑥

𝑥

Observations (x-values)

Kernel functions
(Gaussian kernel shown)

Density estimate

Center a kernel 
function at each 
observation
(x-value)

Estimate 𝑝 𝑥 by 
averaging across 
all the kernels at 𝑥

1

2

a. k. a. Parzen Window Density Estimation
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Kernel Density Estimation
Center the kernel function at each 
x-value in the dataset:

𝑘 𝑥 − 𝑥. 𝑛 = 1,2, … ,𝑁

Average over all of the kernel 
functions to get the density estimate:

𝑝 𝑥 =
1
𝑁
<
./,

0

𝑘 𝑥 − 𝑥.

Note: we can scale the width of the 
kernel function with a scale factor, ℎ:

𝑘
𝑥 − 𝑥.
ℎ

194 6. Kernel Smoothing Methods
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

• This leaves a more general problem to deal with: observation weights
wi. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to

∑
wi). In the event of overflow (the last observation

needed in a neighborhood has a weight wj which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

• Boundary issues arise. The metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

• The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =

{
(1− |t|3)3 if |t| ≤ 1;
0 otherwise

(6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density func-
tion D(t) = φ(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3 (left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,

𝑢

𝑘
𝑢

For kernel functions with finite domains, this 
means that each observation, x, will only 
affect the density estimate in a neighborhood
close to the center of the kernel
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Kernel Density Estimation
Histogram Kernel Density Estimation

Bishop, Pattern Recognition and Machine Learning, 2006

𝑝 𝑥 =
𝑛!
𝑁Δ!

𝑝
𝑥

𝑛! = # observations of 𝑥 falling in bin 𝑖
𝑁 = total # observations
Δ! = width of bin  𝑖

𝑥𝑥
𝑝 𝑥 =

1
𝑁ℎ

<
./,

0

𝑘
𝑥 − 𝑥.
ℎ

𝑥" = The nth observation of 𝑥
𝑘 = kernel function
ℎ = width of the kernel

Requires tuning ℎ, the 
kernel width parameter

Computational cost of 
evaluating this density 
grows linearly with the 
size of the data
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Density estimation uses

Describing the distribution of data and its characteristics

Can be used for anomaly/outlier detection

If a new sample has a low “probability” given the distribution of the data, 
then it may be anomalous
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Clustering
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K-Means
+

Gaussian 
Mixture 
Models 
(GMMS)
Clustering and Density 
Estimation (GMMS)
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Clustering

feature 1

fe
at

ur
e 

2



Kyle Bradbury 15Clustering I Lecture 18

Clustering

feature 1

fe
at

ur
e 

2

Looks like 2 clusters…
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Clustering

feature 1

fe
at

ur
e 

2

… or maybe 3?
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Clustering

feature 1

fe
at

ur
e 

2

How do we define “similarity”?
How do we choose the number of clusters?
How do we know when we’re doing well?
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Applications

Differentiating tissue types in PET scans

Customer segmentation for market research

Social network analysis and identifying communities

Crime tracking to identify hot spots for certain types of crimes
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Types of clustering algorithms

Centroid-based clustering (e.g. K-Means)
Distribution-based clustering (e.g. Gaussian mixture model)
Density-based clustering (e.g. DBSCAN)
Hierarchical clustering (e.g. agglomerative clustering)

a.k.a. connectivity-based clustering

Hard clustering
Soft clustering (a.k.a. fuzzy clustering) 

Methods

Cluster assignment
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K-means clustering

feature 1

fe
at

ur
e 

2
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

B

C

A
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

B

C

2 Assign observations to 
the nearest mean

A



Kyle Bradbury 23Clustering I Lecture 18

K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

B

C

2 Assign observations to 
the nearest mean

A

3 Update the mean to be 
the centroid of the 
labeled data

A

B

C
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

A

4 Repeat steps 2 and 3 
until convergence

B

C
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initial k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

A

4 Repeat steps 2 and 3 
until convergence

B …Iteration 2
C
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

A

4 Repeat steps 2 and 3 
until convergence

C

B …Iteration 2

A

B
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

4 Repeat steps 2 and 3 
until convergence

C

…Iteration 3

A

B
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

4 Repeat steps 2 and 3 
until convergence

C

…Iteration 3

A

BB

C
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K-means clustering

feature 1

fe
at

ur
e 

2
1 Select k and randomly 

initialize k mean values

2 Assign observations to 
the nearest mean

3 Update the mean to be 
the centroid of the 
labeled data

4 Repeat steps 2 and 3 
until convergence

…converged

A

B

C
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K-means partitions the space into Voronoi cells

feature 1

fe
at

ur
e 

2

A

B

C
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Under the hood, we minimize a cost function

Objective: For our N samples, identify K means, 𝝁3, such that the set of 
closest points in feature space are the minimum distance away.

𝑟!3 = @1 if 𝒙! is closest to the kth mean 𝝁#
0 else

𝐶 𝒙!, 𝝁,, 𝝁), … , 𝝁7 =<
!/,

0

<
3/,

7

𝑟!3 𝒙! − 𝝁3 )
)

1. E-step 2. M-step

𝝁3 =
∑! 𝑟!3 𝒙!
∑! 𝑟!3

Re-evaluate 𝑟!"

𝑟!3 = @1 if 𝒙! is closest to the kth mean 𝝁!
0 else

Minimize 𝐶 wrt 𝝁!

Assign new “expected” cluster assignments
Update the cluster means to maximize the 
likelihood

L2 normresponsibility
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Convergence

Bishop, Pattern Recognition, 2006

𝐶

Iteration
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How to choose k: 
Elbow method

Image by Robert Gove: https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Run k-means for various k

Choose the value of k at the 
“elbow” of the curve

Increasing k will improve the fit, 
but at the cost of potentially 
overfitting the data

Other approaches: silhouette (graphical approach 
to evaluating cluster fit), supervised techniques

Cluster evaluation considerations:
• Within-cluster cohesion (compactness)
• Between-cluster separation (isolation)
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Relationship to Gaussian distributions

feature 1

fe
at

ur
e 

2

A

B

C

Assumes the clusters 
are Gaussians
centered at the mean, 
each with identical
covariance matrices, 
where all the features 
are independent:
𝚺8 = 𝜎)𝑰 = 𝜎) 0

0 𝜎)
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Examples:
K-Means

Struggles in situations 
with variation in cluster 
variance and correlation 
between features

Struggles when there are 
nonlinear boundaries 
between clusters

Excels with clusters of 
equal variance

Will divide into k clusters 
even when there are not k

Converges very quickly

Sensitive to initialization 
of means
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K-Means
+

Gaussian 
Mixture 
Models 
(GMMS)
Clustering and Density 
Estimation (GMMS)
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Relaxing our assumptions on covariance…

feature 1

fe
at

ur
e 

2

A

B

C

What if we don’t 
assume the Gaussian 
clusters have 
identical, diagonal
covariance matrices?
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Gaussian Mixture Models
For clustering and density estimation
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Mixture model

Image from Shaun Dowling

𝑥

𝑃(𝑥)

Data:

We can estimate the distribution 
density of our data…
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Mixture model

Image from Shaun Dowling

𝑥

𝑃(𝑥)

Data:

We can estimate the distribution 
density of our data…

…using  a mixture of distributions
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Mixture model

𝑥

𝑃(𝑥)

𝑃 𝑥 =
1
3
𝑓, 𝑥 +

1
3
𝑓)(𝑥) +

1
3
𝑓*(𝑥)

1
3
𝑓$(𝑥) Image from Shaun Dowling

A weighted average of 
density functions

1
3
𝑓%(𝑥)

1
3
𝑓&(𝑥)

Fit the model to the data

Use the model to assign 
clusters

1

2

Cluster 1

Cluster 2

Cluster 3

Data:
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Gaussian mixture model

𝑥

𝑃(𝑥)
𝑃 𝑥 = <

3/,

7

𝑃(𝑧3 = 1)𝑃(𝑥|𝑧3 = 1)

Image from Shaun Dowling

𝜇%𝜇$ 𝜇& <
3/,

7

𝜋3 = 1

A mixture model is represented as:

If we assume this is Gaussian, 
it becomes a Gaussian mixture 
model (GMM)

The mixing coefficients 
𝜋3 = 𝑃 𝑧3 = 1 need to sum to 1 for a 
valid distribution

𝑧# = binary variable that represents cluster membership

𝜋$𝑃(𝑥|𝑧$ = 1) 𝜋%𝑃(𝑥|𝑧% = 1) 𝜋&𝑃(𝑥|𝑧& = 1)

Data:
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Gaussian mixture model

𝑥

𝑃(𝑥)
𝑃 𝑥 = <

3/,

7

𝑃(𝑧3 = 1)𝑃(𝑥|𝑧3 = 1)

Image from Shaun Dowling

Here we assume 𝑧 is a latent
(hidden / unobservable) variable

𝑧

𝑥

Hidden

Observable

This variable controls which of the 𝑘
mixture components a sample is drawn 
from. We don’t DIRECTLY see this.

Given 𝑧, we assume a sample is drawn 
from 𝑃(𝑥|𝑧# = 1)

Note: We can use these terms to compute the posterior probability 𝑃(𝑧!|𝑥)

Data:

𝜇%𝜇$ 𝜇&
𝜋$𝑃(𝑥|𝑧$ = 1) 𝜋%𝑃(𝑥|𝑧% = 1) 𝜋&𝑃(𝑥|𝑧& = 1)



Kyle Bradbury 44Clustering I Lecture 18

Gaussian Mixture Model Latent Variables

Feature 1

Fe
at

ur
e 

2

Complete data with latent 
variable “labels” 𝑧

Incomplete data without latent 
variable labels

Posterior probabilities, 
a.k.a. responsibilities

Image from Bishop, Pattern Recognition, 2006
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Gaussian mixture model

𝑥

𝑃(𝑥)

𝑃 𝑥 = <
3/,

7

𝜋3𝑁(𝑥|𝜇3, 𝜎3))

𝜋$𝑁(𝑥|𝜇$, 𝜎$%) 𝜋%𝑁(𝑥|𝜇%, 𝜎%%) 𝜋&𝑁(𝑥|𝜇&, 𝜎&%)

Image from Shaun Dowling

𝜇%𝜇$ 𝜇&

<
3/,

7

𝜋3 = 1

The Gaussian mixture model is 
represented as:

where
Data:
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Gaussian mixture model

𝑥

𝑃(𝑥)

𝑃(𝑥|𝑧$ = 1)

𝜇%𝜇$ 𝜇&

𝑃(𝑥|𝑧% = 1) 𝑃(𝑥|𝑧& = 1)

For clustering:
1. Pick a number of clusters, K
2. Fit a GMM to the data

(estimate 𝜋% , 𝜇% , 𝜎%& for 𝑘 = 1,… , 𝐾
to maximize the likelihood of the 
data given the model)

3. Pick the cluster, 𝑧%, that each data 
point was most likely to come from

Image from Shaun Dowling

Data:
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Density estimation for a single mixture component

𝑥

𝑃(𝑥)

𝑥! (sample)

𝑃 𝑥! 𝜇, 𝜎) = 𝑁 𝑥! 𝜇, 𝜎)

Assuming independent samples, the 
likelihood of the data given the model is:

Likelihood of one sample given the model

𝑃 𝒙|𝜇, 𝜎)

=O
!/,

0

𝑃 𝑥! 𝜇, 𝜎)

=O
!/,

0
1
2𝜋𝜎)

𝑒+
E(+F !

)G!

a.k.a. model fitting

=
1
2𝜋𝜎)

𝑒+
E(+F !

)G!



Kyle Bradbury 48Clustering I Lecture 18

Density estimation for a single mixture component

𝑥

𝑃(𝑥)

𝑥! (sample)

We follow our familiar pattern: maximize 
the likelihood of the data by choosing our 
model parameters: 𝜇, 𝜎)

𝑃 𝒙|𝜇, 𝜎) =O
!/,

0
1
2𝜋𝜎)

𝑒+
E(+F !

)G!

Calculate the log likelihood:

ln 𝑃 𝒙|𝜇, 𝜎) = −
𝑁
2
ln 2𝜋𝜎) −

1
2𝜎)

<
!/,

0

𝑥! − 𝜇 )

1

2

3 Take the derivative of the log likelihood w.r.t. each parameter (𝜇, 𝜎!), set equal to zero, 
solve for 𝜇, 𝜎!

𝜇̂ =
1
𝑁<
!/,

0

𝑥! R𝜎) =
1
𝑁<
!/,

0

𝑥! − 𝜇̂ )

a.k.a. model fitting
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From a univariate to a multivariate Gaussian

𝑁 𝑥 𝜇, 𝜎) =
1
2𝜋𝜎)

exp −
𝑥! − 𝜇 )

2𝜎)

𝑁 𝒙 𝝁, 𝚺 =
1

2𝜋 Σ
exp −

1
2
𝒙 − 𝝁 H𝚺+, 𝒙 − 𝝁

Univariate Normal density

Multivariate Normal density

feature𝜇

feature 1

fe
at

ur
e 

2

𝝁
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From a univariate to a multivariate Gaussian

Univariate Normal MLE parameter estimates:

Multivariate Normal MLE parameter estimates:

-𝜇 =
1
𝑁
/
'()

*

𝑥' -𝜎& =
1
𝑁
/
'()

*

𝑥' − -𝜇 &

1𝝁 =
1
𝑁
/
'()

*

𝒙' 4𝚺 =
1
𝑁
/
'()

*

𝒙' − 1𝝁 𝒙' − 1𝝁 +
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Moving from a single Gaussian to a 
mixture of Gaussians
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Density estimation for a Gaussian mixture model
We define the likelihood of one observation given our model with 
parameters 𝝅", 𝝁", 𝚺" for 𝑘 = 1,… , 𝐾

Calculate the log likelihood:

ln 𝑃 𝑿|𝝅, 𝝁, 𝚺 =<
!/,

0

ln <
3/,

7

𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

0

2

3 Take the derivative of the log likelihood w.r.t. each parameter (𝝅" , 𝝁" , 𝚺" for 𝑘 = 1,… , 𝐾), 
set equal to zero, solve for the parameters

𝑃 𝒙!|𝝅, 𝝁, 𝚺 = <
3/,

7

𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

𝑃 𝑿|𝝅, 𝝁, 𝚺 =O
!/,

0

<
3/,

7

𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

We assume the observations are independent and calculate the likelihood for all our data1
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Density estimation for a Gaussian mixture model

ln 𝑃 𝑿|𝝅, 𝝁, 𝚺 =<
!/,

0

ln <
3/,

7

𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

There is no closed-form solution that 
maximizes this.

Log likelihood of the data given the model parameters

We could use gradient descent BUT 
this approach can suffer from severe 
overfitting

ln 𝑃 𝑿|𝝅, 𝝁, 𝚺 =

<
!/,

0

ln 𝜋,𝑁 𝒙! 𝝁,, 𝚺, + 𝜋)𝑁(𝒙!|𝝁), 𝚺)) 𝜇, 𝜇)
Image from Bishop, Pattern Recognition, 2006

Example: 𝑘 = 2 mixture components
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How do we assign a cluster?

𝑥

𝑃(𝑥)

𝜋$𝑃(𝑥|𝑧$ = 1)

𝜇%𝜇$ 𝜇&

𝜋%𝑃(𝑥|𝑧% = 1) 𝜋&𝑃(𝑥|𝑧& = 1)

The probability of 𝑥! is “explained” 
most by cluster 1, a little by cluster 2, 
and very little by cluster 3

Cluster 1

Cluster 2

Cluster 3

We assign the cluster, 𝑧3 so that  
𝑃(𝑧3 = 1|𝑥) is the largest for all the 𝑘’s 

We need an expression for: 𝑃 𝑧3 = 1 𝑥𝑥'

Data:
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How do we assign a cluster?

𝑥

𝑃(𝑥)

𝜋#𝑃(𝑥!|𝑧# = 1)

𝜋$𝑃(𝑥!|𝑧$ = 1)
𝜋%𝑃(𝑥!|𝑧% = 1)

𝑥'

Consider observation 𝑥!
Cluster 1

Cluster 2

Cluster 3

𝑃 𝑧3 = 1 𝑥! =
𝑃(𝑥!|𝑧3 = 1)𝑃(𝑧3 = 1)

𝑃(𝑥!)by Bayes’ Rule

normal distribution 
for the kth cluster 𝜋!

𝑃 𝑥! = 𝜋#𝑃 𝑥! 𝑧# = 1 + 𝜋$𝑃 𝑥! 𝑧$ = 1 + 𝜋%𝑃(𝑥!|𝑧% = 1)
normalizes the probability, 𝑃 𝑧! = 1 𝑥" , to add to one when summed over 𝑘
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Posterior probabilities / “responsibilities”

Another interpretation of this quantity is 
what “fraction” of an observation is 
assigned to this cluster 
(“fuzzy” or ”soft” clustering)

𝑟(𝑧!") ≜ 𝑃 𝑧" = 1|𝑥! =
𝑃(𝑥!|𝑧" = 1)𝑃(𝑧" = 1)

∑"#$% 𝑃(𝑥!|𝑧" = 1)𝑃(𝑧" = 1)

!

"(!)

%&"(!'|)& = 1)

%,"(!'|), = 1)
%-"(!'|)- = 1)

!'

Cluster 1

Cluster 2

Cluster 3

=
𝜋"𝑁(𝒙!|𝝁" , 𝚺")

∑"#$% 𝜋"𝑁(𝒙!|𝝁" , 𝚺")

𝑁(𝒙!|𝝁", 𝚺") 𝜋"

𝑁3 =<
!/,

0

𝑟 𝑧!3Define

Expected number of samples per cluster 
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Expectation Maximization for a GMM

ln 𝑃 𝑿|𝝅, 𝝁, 𝚺 =N
!'$

(

ln N
#'$

)

𝜋#𝑁(𝒙!|𝝁# , 𝚺#)

Goal: maximize the log likelihood of the data given the model parameters:

1. Expectation-step

2. Maximization-step

Calculate the “responsibilities” based on the 
model parameters 

𝑟(𝑧!3) ≜ 𝑃 𝑧3 = 1|𝑥!

=
𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

∑3/,7 𝜋3𝑁(𝒙!|𝝁3, 𝚺3)

Use the “responsibilities” to update the model 
parameters to maximize the log likelihood

𝝁3.OP =
1
𝑁3

<
!/,

0

𝑟 𝑧!3 𝒙!

𝚺3.OP =
1
𝑁3

<
!/,

0

𝑟 𝑧!3 𝒙! − 𝝁3.OP 𝒙! − 𝝁3.OP H

𝜋3.OP =
𝑁3
𝑁

𝑁3 =<
!/,

0

𝑟 𝑧!3Where

0. Initialization
Initialize all the parameters
(often K-means is used for this purpose)

Note: EM is a general 
technique for finding 
maximum likelihood 
solutions for models with 
latent variables
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Expectation 
Maximization 
for GMM 
Example

𝐿 = number of 
EM cycles Image from Bishop, Pattern Recognition, 2006
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Examples:
GMM

Excels in situations with 
variation in cluster 
variance and correlation 
between features

Struggles when the 
clusters are not 
approximately Gaussian

Excels with clusters of 
equal variance

Will divide into k clusters 
even when there are not k

Can produce soft 
clustering

Estimates the density / 
distribution of the data
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Gaussian Mixture Models

Generative models: model 𝑃(𝑿|𝜽), where 𝜽 are the model parameters

Very useful for density estimation

Produce hard or soft (fuzzy) clustering

When you restrict the covariance matrix to be diagonal and equal for all clusters, 
the GMM and K-means algorithm become the same
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Types of clustering algorithms

Centroid-based clustering (e.g. K-Means)
Distribution-based clustering (e.g. Gaussian mixture model)
Density-based clustering (e.g. DBSCAN)
Hierarchical clustering (e.g. agglomerative clustering)
Graph-based clustering (e.g. spectral clustering)

Hard clustering
Soft clustering (a.k.a. fuzzy clustering) 

Methods

Cluster assignment


