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Unsupervised learning: describing data

Dimensionality Density Clustering Anomaly
Reduction Estimation detection
Developing new data Quantifying data Grouping similar data Identify_ing anomalies
representations distributions In data
» Feature subset « Histograms  Hierarchical * Probabilistic
Selection approaches

Centroid-based

Distribution-based

. « Parametric models Density-based .

* Nonparametric

« Feature projections density estimation  Cluster-based
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Density Estimation
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Properties of probability distributions

* Always greater than zero
* Integrates to 1

Common approaches to density estimation

« Parametric density estimation (distribution fitting)
» Histograms

» Kernel density estimation

» Gaussian mixture models
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Parametric Density Estimation

A Fit results: mu = 9.98, std = 2.33
p(x) o020 : : : : :

If we have knowledge of a 0.15}
possible parametric form, we

can estimate the parameters of
the model 0.10}

0.05+

0.00
2 4 6 8 10 12 14 16 18

X

Image from: https://stackoverflow.com/questions/20011122/fitting-a-normal-distribution-to-1d-data
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Histogram Density Estimation

Histogram
>[TA =004 True distribution
\
05 03 | Highly dependent on the choice of bin width, A;
2 °[TA = 0.08 |
= Has discontinuities at the bin edges
OO 0.5 1
*MA—025 | \ Local neighborhoods do appear to be helpful
0
0 0.5 1
n; x
-
p(x) =+ A

n; = # observations of x falling in bin i
N = total # observations

A; = width of bin i | N . .
Bishop, Pattern Recognition and Machine Learning, 2006
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(window _
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-3 -2 -1 0 1 2 3
. . u
Satisfy two properties:  gnanechnikov Tri-cube Gaussian
3 70 1 1 -
k > O = — — 1?2 = — — 313 = —— _Eu
(w) k(u) 4(1 u®)  k(u) 81(1 lu’])® k(u) N
jk(u)du=1 lul <1 lul <1 —co < U < 0

Hastie, Tibshirani, and Friedman, The Elements of Statistical learning, 2001
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Center a kernel
function at each

Kernel Density Estimation

a. k. a. Parzen Window Density Estimation

observation

o (x-value)

S -

o

o e Estimate p(x) by

8 - averaging across
= all the kernels at x
— S
QL O

o “ Density estimate

L0

o

g 7 <1 Kernel functions

(Gaussian kernel shown)
o
= S S TR TR T T T T T T L |11 I I« Observations (x-values)
100 120 140 160 180 200 220
X

Hastie, Tibshirani, and Friedman, The Elements of Statistical learning, 2001
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Kernel Density Estimation

Center the kernel function at each
x-value in the dataset:

k(x —xy,) n=12,..,N

Average over all of the kernel

functions to get the density estimate:

N
1
p() =1 ) k(x = 1)
n=1

Note: we can scale the width of the

3
—
~

kernel function with a scale factor, h:

X — Xpn
(—)
h
Kyle Bradbury Clustering |

0.8

0.4

0.0

———  Epanechnikov
—— Tri-cube
— (Gaussian

-3 -2 -1 0 1 2 3
u
For kernel functions with finite domains, this
means that each observation, x, will only
affect the density estimate in a neighborhood
close to the center of the kernel
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Kernel Density Estimation

Histogram Kernel Density Estimation
5 . ’
A =0.04 h = 0.005 . .
ﬁ' \ Requires tuning h, the
0 | kernel width parameter
0 0.5 10 0.5 |
5 . .
= A =0.08 h = 0.07 ,

S M Computational cost of
0 w evaluating this density
0 0.5 10 0.5 | i v with th
N - p—— - g.rows inearly wi e

P size of the data
0 l—— ~
0 0.5 10 05 |
X X
n; X — Xp
x — —
p(x) = NA p(x) = N z k )
n; = # observations of x fallinginbini  x,, = The nth observatlon of x
N = total # observations k = kernel function
A; = width of bin i h = width of the kernel

Bishop, Pattern Recognition and Machine Learning, 2006
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Density estimation uses

Describing the distribution of data and its characteristics

Can be used for anomaly/outlier detection

It a new sample has a low “probability” given the distribution of the data,
then it may be anomalous
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Clustering

Kyle Bradbury Clustering |
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K-Means
+
Gaussian
Mixture
Models
(GMMS)

Clustering and Density
Estimation (GMMS)

Kyle Bradbury

Original Data

K-Means Gaussian Mixture

Clustering |
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13



Clustering

A

[

feature 2
O
O

»
»

feature 1
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CIUStering L ooks like 2 clusters...

A

[

feature 2
O
O

»
»

feature 1
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Clustering .. or maybe 37

A

[

feature 2
O
O

»
»

feature 1
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: How do we define “similarity™?

CI u Sterl N g How do we choose the number of clusters?
N How do we know when we're doing well?
: o * .

O
o © ¢
O
O ® ®
.
»
O

feature 1
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Applications

Differentiating tissue types in PET scans
Customer segmentation for market research
Social network analysis and identifying communities

Crime tracking to identify hot spots for certain types of crimes
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Types of clustering algorithms

Methods

Centroid-based clustering (e.g. K-Means)

Distribution-based clustering (e.g. Gaussian mixture model)

Density-based clustering (e.g. DBSCAN)

Hierarchical clustering (e.g. agglomerative clustering)
a.k.a. connectivity-based clustering

Cluster assignment

Hard clustering
Soft clustering (a.k.a. fuzzy clustering)
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K-means clustering

C\| A
)]
=
8 Q
P O
O
O
o ©
O
O O
O
O
O
feature 1
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K-means clustering

c;)lk
-
g O ®
P O
O
® O
o ©
O
e e ®
O
@ B
O
feature 1

Select k and randomly
initialize k mean values
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K-means clustering

CGL\;A
)
E O ®
P O
O
O O
o ©
O
e o ¢
»
O B
O
feature 1

Select k and randomly
initialize k mean values

Assign observations to
the nearest mean

22



0 Select k and randomly
initialize k mean values

K-means clustering

e Assign observations to
N the nearest mean

Q\
) A
D)
§ O b\ Update the mean to be
= P O the centroid of the
O labeled data
o o

feature 1
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K-means clustering

NA
o
=
o O

® O

o ©

O
O O
O
O

0 Select k and randomly
initialize k mean values

e Assign observations to
the nearest mean

Update the mean to be
O the centroid of the
labeled data

Repeat steps 2 and 3
until convergence

»

Kyle Bradbury Clustering |

»

feature 1
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K-means clustering

feature 2

0 Select k and randomly
initial kK mean values

e Assign observations to
the nearest mean

O Update the mean to be
o O the centroid of the
labeled data
O ® ® Repeat steps 2 and 3
. until convergence
C
® ® B ..Iteration 2
O o
O
|
feature 1
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K-means clustering

NA
o
=
o O

® O

o ©

O
O O
O
O

Kyle Bradbury Clustering |

0 Select k and randomly
initialize k mean values

e Assign observations to
the nearest mean

Update the mean to be

E\‘ O the centroid of the

labeled data
® ® Repeat steps 2 and 3

until convergence

B ...Iteration 2

4
O
feature 1
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K-means clustering

0 Select k and randomly
initialize k mean values

e Assign observations to
the nearest mean

C\| A
O
5
§ O O Update the mean to be
= ® O the centroid of the
O labeled data
O O ® ® Repeat steps 2 and 3
. until convergence
C
' ‘ ...Iteration 3
O O B
O
O
O
feature 1



K-means clustering

feature 2

Kyle Bradbury Clustering |

O Update the mean to be
O the centroid of the
labeled data
® ® Repeat steps 2 and 3
until convergence
...Iteration 3
O
« | B
B ®
feature 1
Lecture 18 28
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initialize k mean values

e Assign observations to
the nearest mean



K-means clustering

feature 2

Kyle Bradbury Clustering |

0 Select k and randomly
initialize k mean values

e Assign observations to
the nearest mean

O Update the mean to be

O the centroid of the

labeled data
® ® Repeat steps 2 and 3
until convergence
...converged
O
B ®
feature 1

Lecture 18 29



K-means partitions the space into Voronoi cells

feature 2

feature 1
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Under the hood, we minimize a cost function

Objective: For our N samples, identity K means, uy, such that the set of
closest points in feature space are the minimum distance away.

{1 if x; is closest to the kth mean u,

Tk = 0 else L
responsibility > NOIrMm
N K l
— 2
C(xi; Hi, U, ... ;HK) — z 2 rikllxi _ ”k”Z
i=1 k=1
1. E-step 2. M-step
Re-evaluate ry Minimize C wrt y;
1if x; is closest to the kth mean u; _ 2. Tik Xi
Tik = Hi = YT
0 else i Tik
Update the cluster means to maximize the

Assign new “expected” cluster assignments likelihood
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Cconvergence

1000 |
C
500 |
O 1 1 1 1
1 p) 3 4
lteration

Bishop, Pattern Recognition, 2006
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How to choose k:
Elbow method

Run k-means for various k

Choose the value of k at the
“elbow” of the curve

Increasing k will improve the fit,
but at the cost of potentially
overfitting the data

Other approaches: silhouette (graphical approach
to evaluating cluster fit), supervised techniques

Cluster evaluation considerations:
« Within-cluster cohesion (compactness)
» Between-cluster separation (isolation)

Kyle Bradbury Clustering |

Dataset A
, om: (10 " @ |
0.00 0.50 1.00

Sum of squared errors

1 2 3 4 5 6 7 8 9 10
Number of clusters (k)

Image by Robert Gove: https://bl.ocks.org/rpgove/0060ff3b656618e9136b
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Relationship to Gaussian distributions

»
»

feature 2

Assumes the clusters
are Gaussians
centered at the mean
each with identical
covariance matrices
where all the features
are independent:

2
) =021=[“ 0]
K 0 o?

Kyle Bradbury

Clustering |

feature 1
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Examples:
K-Means

Converges very quickly

Sensitive to initialization
of means

Kyle Bradbury

Original Data

K-Means

Clustering |

Struggles when there are
nonlinear boundaries
between clusters

Struggles in situations
with variation in cluster
variance and correlation
between features

Excels with clusters of
equal variance

Wil divide Iinto k clusters
even when there are not k

Lecture 18
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K-Means
_|_
Gaussian
Mixture
Models
(GMMS)

Clustering and Density
Estimation (GMMS)

Kyle Bradbury

Original Data

K-Means

Gaussian Mixture

tdls

Clustering |

Lecture 18
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Relaxing our assumptions on covariance...

What if we don't
assume the Gaussian
clusters have
Identical, diagonal
covariance matrices”

feature 2

feature 1
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Gaussian Mixture Models

For clustering and density estimation

Kyle Bradbury Clustering | Lecture 18
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Mixture model

P(x), We can estimate the distribution
density of our data...

Data: @ wees oo 00BN X

Image from Shaun Dowling
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Mixture model

P(x), We can estimate the distribution
density of our data...

...using a mixture of distributions

Data: @ wees oo 00BN X

Image from Shaun Dowling
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Mixture model

A weighted average of
P(x) 4 Cluster 1 Cluster 3 density functions

Cluster 2 l

1 1 1
P(x) = §f1(x) + §fz(x) + §f3(x)

0 Fit the model to the data

9 Use the model to assign
clusters

Data: @ weoeos o 00O

]

1 1 1
§ fl (X) § fz (.X') § f3 (x) Image from Shaun Dowling
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Gaussian mixture model

A mixture model is represented as:
P(x) 4

K
P(x) = 2 P(z, = 1)P(x|z; = 1)
k=1 !

If we assume this is Gaussian,
it becomes a Gaussian mixture
model (GMM)

The mixing coefficients
m, = P(z; = 1) needtosumto 1 for a

s G CCRIGO® 6 G006 SNt o valid distribution

K
X
H1 K2 M3 Ty = 1
7T1P(x|Z1 == 1) 7T2P(.X|ZZ = 1) 7T3P(.X|Z3 == 1) k:].

z,, = binary variable that represents cluster membership
Image from Shaun Dowling
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Gaussian mixture model

P(x) a

Data: @ weoeos o 00O X

M1 H2 M3
7T1P(x|Z1 == 1) 7T2P(.X|ZZ = 1) 7T3P(.X|Z3 == 1)

Note: We can use these terms to compute the posterior probability P(z;|x)

Kyle Bradbury Clustering |

K
P(x) = 2 P(z, = 1)P(x|z; = 1)
k=1

Here we assume z is a latent
(hidden / unobservable) variable

Hidden

This variable controls which of the k
mixture components a sample is drawn
from. We don’'t DIRECTLY see this.

Observable
Given z, we assume a sample is drawn
from P(x|z, = 1)

Image from Shaun Dowling
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Gaussian Mixture Model Latent Variables

Complete data with latent Incomplete data without latent Posterior probabilities,
variable “labels” z variable labels a.k.a. responsibilities
D
=1
©
D
LL
0.5
O X
0 0.5 1 0 0.5 1 0 0.5 1
Feature 1

Image from Bishop, Pattern Recognition, 2006
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Gaussian mixture model

P(x) 4 The Gaussian mixture model is

represented as:
K

P(x) = z N (x| g, 0F)

k=1

K
where z T =1
k=1

Data: @ weoeos o 00O

251 Uz Us
1Ty N (x| 4, 012) T, N (x|, 022) 3N (x|us, 032)

X

Image from Shaun Dowling
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Gaussian mixture model

P(x) a

Data: @ weoeos o 00O

H1 H2 H3

P(x|zy=1) P(x|z,=1) P(x|zz=1)

Kyle Bradbury Clustering |

1.
2.

For clustering:
Pick a number of clusters, K
Fit a GMM to the data

(estimate my,, g, of fork =1,..,K

to maximize the likel
data given the mode

3. Pick the cluster, z;, t

nood of the

)

nat each data

point was most likely to come from

X

Lecture 18

Image from Shaun Dowling
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Density estimation for a single mixture component
a.k.a. model fitting o |
Likelihood of one sample given the model

1 A2Y) — N 2
P(x) P(xilp, 0°) = N(x;lp, 0%)
1 _(x—p)*
= e 202
V2mo?

Assuming independent samples, the
likelihood of the data given the model is:

oo P(x|u,c?)
T N
Xi (sample) — 1_[ P(xilu, 0-2)
iil
1 _(xl_li)z
— 1_[ e 207
L1 V21mo?
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Density estimation for a single mixture component
a.k.a. model fitting

We follow our familiar pattern: maximize
P(x)

the likelihood of the data by choosing our
model parameters: u, o2

N

P(x|u,0%) L
x|\u,o°) = e 20
2
l.:l\/27w

I 00 > e Calculate the log likelihood:
N

2 N 2 ! 2
InP(x|u,o°) = —Eln 20 _2722("1' — U)

i=1
Take the derivative of the log likelihood w.r.t. each parameter (u, o), set equal to zero,

solve for u, 2 . N , N
=2y x 62 == ) (xi = )?
i=1 =1

Kyle Bradbury Clustering | Lecture 18 48
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From a univariate to a multivariate Gaussian

Univariate Normal density /\
1

(X B ‘Ll)z ;Il feature
Nl 0?) = mexp{— l
o

202

feature 2

Multivariate Normal density

feature 1

1 1
Vel ) = —exp =5 e = 0727 (x = )

Kyle Bradbury Clustering |
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From a univariate to a multivariate Gaussian

Univariate Normal MLE parameter estimates:

1 & 1 &
A=y ). 52 = ) G = D)}
=1 =1

Multivariate Normal MLE parameter estimates:
N N
p=xy £ == (i~ W x — A
ﬂ_N'—1xi _N'—1xi i x; —H

Kyle Bradbury Clustering | Lecture 18
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Moving from a single Gaussian to a
mixture of Gaussians

Kyle Bradbury Clustering | Lecture 18
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Density estimation for a Gaussian mixture model

We define the likelihood of one observation given our model with

parameters my, ui, L, fork =1, ..., K
K

POl i) = ) meN il i)
k=1
0 We assume the observatlons are independent and calculate the likelihood for all our data

P(X|m, 1, X) = 1_[ 2 T N (X; |y, Xie)

=1 k=
9 Calculate the log likelihood:

N K
InP(X|m,u,X) = 2 In [z T N (x; | i, Zk)]
i=1 Lk=1

Take the derivative of the log likelihood w.r.t. each parameter (my, uy, i for k =1, ..., K),
set equal to zero, solve for the parameters
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Density estimation for a Gaussian mixture model

Log likelihood of the data given the model parameters

N K
InP(X|m,u,X) = z In [z T N (x; | i, zk)]
i=1 L=

There iIs no closed-form solution that t M
maximizes this. p(x)

We could use gradient descent BUT
this approach can suffer from severe
overfitting

Example: k = 2 mixture components

InP(X|m,pu,X) =
N

@ @
In[ry N (x;|p1, 21) + TN (x| p2, 23) ] U1 w, 7

=1
Image from Bishop, Pattern Recognition, 2006
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How do we assign a cluster?

P(x)a  Cluster 1 Cluster 3
l The probability of x; is “explained”

Cluster 2 most by cluster 1, a little by cluster 2,
and very little by cluster 3

We assign the cluster, z; so that
P(z;, = 1|x) is the largest for all the k's

Data: Qe o 0B

X
u H H |
by, 2 3 We need an expression for: P(z;, = 1|x)

7T1P(x|Z1 == 1) 7'[2P(x|zz = 1) 7T3P(.X|Z3 == 1)
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How do we assign a cluster?

Cluster 3
P(x)a  Cluster 1 l
J Cluster 2 Consider observation x;
normal distribution
for the kth cluster Ty
P(xi|zi = 1)P(z = 1)
P = 1|x;) =
1 P(x;|z; = 1) G x) P(x;)

by Bayes’ Rule

myP(xi|lz; = 1)
m3P(xi|z3 = 1) @

P(x;) = myP(xilzy = 1) + mP(x|z; = 1) + m3P(xi|z3 = 1)

normalizes the probability, P(z, = 1|x;), to add to one when summed over k
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Posterior probabilities / “responsibilities”

P(x) 4 Cluster 1 CIuTerS
\ Cluster 2
Another interpretation of this quantity is
what “fraction” of an observation is
7y P(xi|z1 = 1) assigned to this cluster
T / (“fuzzy” or "soft” clustering)
mP(ilzz=1) @ X N(x; |, Zx) Tk
. s Py = 1lx) = P(xi|z = 1)P (2, = 1)
r(zix) £ P(z, = 1|x;) = K p — 1P —
. Zk=1 (xi Zk = ) (Zk — )
Define N = zT(Zik) - T[kN(x' Hy, zk)
Expected numﬁ)er of samples per cluster k 1 T[kN(xl |I’lk' Zk)

Kyle Bradbury Clustering | Lecture 18 56



Expectation Maximization for a GMM

Goal: maximize the log likelihood of the data given the model parameters:

N

InP(X|m,u, X) = 7 In

Note: EM is a general
technique for finding
maximum likelihood
solutions for models with
latent variables

K

y T N (x; | iy, Zg)

i=1

0. Initialization

Initialize all the parameters
(often K-means is used for this purpose)

1. Expectation-step

Calculate the “responsibilities” based on the
model parameters

r(zi) = P(zx = 1|x;)

N (X |y, 2i)

K1 TN (x| e, )

Kyle Bradbury Clustering |

k=1
2. Maximization-step

Use the “responsibilities” to update the model
parameters to maximize the log likelihood

N
1
peY = =) Pz,
k 4
=1
1 N
ZROW = =) () (X — HEEY) (g — 1)
k=1
N N
M = Wk Where Ny = z r(Zix)
i=1
Lecture 18 57



Expectation  2j
Maximization
for GMM
Example 0f
=2t
-2 0 (a) 2 -2 0 (b) 2 -2 0 (c) 2
2t 2t 2t .
L 3
Of Ot 0 .o .:3. =34
o;.& o ® ©
.;-"
21 =2t -2 ‘o‘.
L = number of 5 0 5 ) 0 > 2 0 )
EM cycles @ © 0

Image from Bishop, Pattern Recognition, 2006
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Original Data K-Means Gaussian Mixture

Examples:
GMM

Struggles when the
clusters are not
approximately Gaussian

Excels in situations with
variation in cluster
variance and correlation
between features

Can produce soft
clustering

Estimates the density /

distribution of the data EXcels wilh clusters ol

equal variance

Will divide into k clusters
even when there are not k

1s
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Gaussian Mixture Models

Generative models: model P(X|0), where @ are the model parameters

Very useful for density estimation
Produce hard or soft (fuzzy) clustering

When you restrict the covariance matrix to be diagonal and equal for all clusters,
the GMM and K-means algorithm become the same

Kyle Bradbury Clustering | Lecture 18
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Types of clustering algorithms

Methods

Centroid-based clustering (e.g. K-Means)

Distribution-based clustering (e.g. Gaussian mixture model)
Density-based clustering (e.g. DBSCAN)

Hierarchical clustering (e.g. agglomerative clustering)
Graph-based clustering (e.g. spectral clustering)

Cluster assignment

Hard clustering
Soft clustering (a.k.a. fuzzy clustering)

Kyle Bradbury Clustering | Lecture 18
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