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Abstract

This paper introduces a methodology to generate well-defined executable bench-

marks in the C programming language. The generation process is fully auto-

matic: C files are extracted from open-source repositories, and split into compi-

lation units. A type reconstructor infers all the types and declarations required

to ensure that functions compile. The generation of inputs is guided by con-

straints specified via a domain-specific language. This DSL refines the types

of functions, for instance, creating relations between integer arguments and the

length of buffers. Off-the-shelf tools such as AddressSanitizer and Kcc filter

out programs with undefined behavior. To demonstrate applicability, this paper

analyzes the dynamic behavior of different collections of benchmarks, some with

up to 30 thousand samples, to support several observations: (i) the speedup of

optimizations does not follow a normal distribution—a property assumed by

statistical tests such as the T-test and the Z-test; (ii) there is strong correla-

tion between number of instructions fetched and running time in x86 and in

ARM processors; hence, the former—a non-varying quantity—can be used as
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a proxy for the latter—a varying quantity—in the autotuning of compilation

tasks. The apparatus to generate benchmarks is publicly available. A collection

of 18 thousand programs thus produced is also available as a CompilerGym’s

dataset.

1. Introduction

Predictive compilation is a family of techniques whose goal is to let optimiz-

ing compilers treat programs differently. The predictive compiler is trained onto

a large corpus of programs, determining, for each one of them, the sequence of

analyses and optimizations that suits that code better. Once given an unknown

program, the compiler uses the knowledge acquired during training to determine

the best way to treat this new code. Predictive compilation methodologies have

been known for many years [1, 2, 3, 4]. Nevertheless, the growing popularity

of machine learning techniques have attracted new attention to this field, and

much progress in the design and implementation of predictive compilers has been

attained in the last five years [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

The Need for Benchmarks.. Training a predictive compiler requires benchmarks,

as emphasized in Wang and O’Boyle’s [19] survey. Thus, there has been much

recent research effort along the automatic synthesis of large collections of bench-

marks. In 2016, Mou et al. [12] released Poj: 104 classes of programming prob-

lems, each with 500 solutions. Later, in 2017, Cummins et al. [20] produced

ClGen, a tool that synthesizes OpenCL benchmarks. In 2021, Faustino et

al. [10] released AnghaBench, a suite with more than one million compilable

programs. A few months later, Puri et al. [21] released CodeNet. Like Poj,

the CodeNet suite consists of solutions to programming problems; however,

this collection is two orders of magnitude larger. More recently, Grossman et

al. [22] released a dataset with 182 Billion tokens extracted from programs in

the LLVM intermediate representation. To this day, Grossman’s ComPile is

the largest public repository of compilable programs.
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The Challenge: Sound Executable Code. Most of the research to create bench-

marks orbit around C, or around similar languages, such as OpenCL. Programs

written in these languages might present undefined behaviors: the execution of

actions not defined by the standard semantics of the language [23]. Conse-

quently, large collections of benchmarks [10, 12, 22] reconstructed from open-

source repositories are formed by programs that compile but do not run. To give

the reader some perspective on the problem, notice that CompilerGym [9], a

framework for the autotuning of compilation tasks, provided 1,177,462 bench-

marks spread across 12 datasets in October 2023. However, before Jotai pro-

grams were incorporated to it, very few programs would yield executable bina-

ries with ready-to-use inputs: 23 programs from CBench [24] and 40 programs

from MiBench [25].

Benchmarks generated to emulate human-made code have been released re-

cently [26, 20, 27, 15, 16, 28]. Two of these collections contained C code [28, 26],

but only Berezov’s ColaGen [26] could be executed automatically. These are

simple kernels — nests of loops that process arrays. Although simple, every

program that we tried to run showed some form of undefined behavior, once

compiled with Kcc [23]1. We also compiled Armengol’s ExeBench [28] with

Kcc. In this case, compilation is not automatic: in our setting (Ubuntu 22.10

with clang 15.0) we had to manually fill up missing libraries. In spite of that, all

the programs that we run contained undefined behavior. During our experience

with these benchmark generators, we also had to deal with another limitation:

they do not provide a way to steer the generation of program inputs. Inputs are

hard-coded in the synthesizer: essentially, they consist of large buffers filled with

random values. It is not possible, for instance, to establish relations between

function arguments.

The Contributions of this Work. The goal of this paper is to propose a method-

ology to generate executable C benchmarks. This methodology exists around

1These issues were reported to Berezov et al. on August 11th, 2022.
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JotaiLang, a domain-specific language that we have designed to generate in-

puts for programs. The process to generate benchmarks relies on a number of

techniques and tools:

Techniques: JotaiLang lets developers impose constraints on the inputs that

are randomly tried on each benchmark. Constraints are derived from the

signature of the target function. This combination of types and constraints

prunes the space of possible inputs; hence, focusing input generation on

values that are more likely to result into well-defined executions.

Tools: (i) a web crawler that retrieves C functions from GitHub; (ii) an off-

the-shelf type inference engine for C that ensures that those functions

compile [29, 30] (iii) a code generator that produces drivers to run each

benchmark; (iv) a Valgrind plugin [31] that measures coverage of these

inputs; and (v) Kcc [23] plus Asan [32] to detect undefined behaviors.

Throughout the process of generating benchmarks and interacting with peo-

ple who use them, we have compiled a list of requirements that these programs

must meet:

Compile-and-run: each benchmark comes in a separate file as an independent

compilation unit, with all the drivers necessary to run it.

Sound: each benchmark abides by the semantics that Hathhorn et al. [23] have

defined for the C programming language.

Deterministic: the library that generates inputs is hardcoded in each bench-

mark, and uses a deterministic number generator.

Profilable: benchmarks can contain multiple input sets. Some can be used for

training and others for testing.

Visible: Jotai benchmarks do not invoke library functions. Hence, every in-

struction is visible [33]. Thus, a sanitizer like Kcc can observe the execu-

tion of every instruction when looking for undefined behavior.
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Observable: every function that makes up Jotai returns a value. This output

can be used as a way to find bugs in compilers and interpreters.

Clean: Every memory allocated by that function’s driver is deallocated before

termination.

Summary of Results. We have made a collection of 36,223 executable programs

mined from GPL repositories publicly available. Since October 2022, 18,761

of these functions are available as a CompilerGym dataset [9]. Neverthe-

less, Jotai benchmarks are extracted from open-source repositories, and there

is no limit for how many programs can be created via the methodology that

Section 3 introduces. Section 4 describes some uses of the Jotai collection.

Section 4.1 shows that it is fair to expect the construction of a valid benchmark

(no undefined behavior dynamically detected by Kcc) for each 34-35 functions

that we find in C files from open-source repositories. Section 4.2 analyses the

speedup of optimizations on different subsets of the Jotai collection and on

Spec Cpu2017. Such speedups do not follow a normal distribution, which is

assumed in several statistical tests. Section 4.3 observes a strong correlation

between the running time of programs and the number of instructions fetched

on Intel i7 and on ARM A15 processors. Correlation holds when programs are

compiled with different optimization levels. Finally, Section 4.4 discusses struc-

tural properties of the programs. On average, functions tend to comprise four

to six basic blocks, and about half the functions have their control-flow graphs

fully covered by inputs that we generate.

2. The Anatomy of a Benchmark

Jotai benchmarks are produced out of programs mined from open-source

repositories. The generation of benchmarks works by: (i) extracting C files via

a web crawler; (ii) splitting functions in each C file into single files; (iii) infer-

ring types for each benchmark file; (iv) generating a driver for each compilable

benchmark file; (v) filtering out inputs that lead to undefined behavior. Fig-
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ure 1 shows these different steps, and Example 1 illustrates the first steps of

this process.

Repeat to add a new input set into the benchmark

github Extract 
C files C file Split C file

Candidate 
compilation 
unit (CCU)

Infer types

Candidate 
execution 
unit (CXU)

Generate 
constraints

CXU
+ 

constraints

Synthesize 
driver

Check for 
undefined 
behavior

Benchmark

Crawler
[Faustino’21]

PsycheC
[Melo’20]JotaiLang

kcc [Hathhorn’15] CFGGrind [Rimsa’20]

Gather 
execution 
statistics

Commented 
benchmark

Driver

Analyze 
function 

signature

Type 
descriptors

Figure 1: The benchmark generation process. This process is entirely automatic, and requires
starting one single script.

Example 1. Figure 2 shows a function from status.c, a file taken from the

sqlite repository. There are eight functions with a body within status.c.

Jotai tries to produce a benchmark out of each one of them. The process starts

with code extraction: function countLookasideSlots is placed into a separate

C file: the candidate compilation unit (CCU). Types and missing declarations

are then inferred for this CCU via a tool called PsycheC [29, 30]. Figure 2

(b) shows the types inferred for function countLookasideSlots. If PsycheC

terminates successfully, then the reconstructed program is guaranteed to compile.

However, PsycheC might fail. In this case, the candidate compilation unit is

discarded.

Visible Instructions. Example 1 illustrates one of the principles of Jotai:

benchmarks yield only visible instructions. Following Alvares et al’s [33] termi-

nology, given a program P with source code S, and a compiler C, the visible
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… 
static u32 countLookasideSlots
                             (LookasideSlot *p) {
  u32 cnt = 0;
  while( p ){
    p = p->pNext;
    cnt++;
  }
  return cnt;
}
… 

175
176

177
178
179
180
181
182
183
184

/* Forward declarations */
typedef struct TYPE_3__  TYPE_1__;

/* Type definitions */
typedef  long u32 ;
struct TYPE_3__ {
  struct TYPE_3__* pNext;
};
typedef  TYPE_1__ LookasideSlot;

(b)(a)

Figure 2: (a) Code snippet taken from file status.c from the sqlite repository. (b) Types
that PsycheC infers to ensure compilation of function countLookasideSlots.

instructions of P are the instructions that C produces for statements that ap-

pear in S. Every other instruction required for the execution of P is an invisible

instruction. Invisible instructions come from dynamically linked libraries and

routines added by the compiler, such as initialization (pre-main code) and final-

ization (post-main code). To meet this visibility requirement, Jotai benchmarks

are not allowed to invoke functions without bodies. This restriction serves two

purposes. First, it eases the task of discovering undefined behavior during the

execution of the program, as tools like Kcc or FramaC only have access to

the visible part of a program. Second, it prevents the benchmark from invoking

malicious code.

Drivers. A candidate compilation unit that compiles becomes a candidate ex-

ecutable unit (CXU). If Jotai succeeds in producing an input for a CXU that

does not incur in undefined behavior, then this program becomes what we call

a 1-input driver. These benchmarks can be augmented gradually. If Jotai

succeeds in generating a new input for an n-input driver, then this program

becomes an (n + 1)-input driver. Input generation is steered by constraints,

which, in turn, Jotai derives from the type signature of the target function.

Constraint generation is the subject of Sections 3.1 and 3.2. For now, it suf-

fices to know that each set of constraints that yields a well-defined execution

contributes one input to the driver. Example 2 clarifies this terminology.

Example 2. Figure 3 shows a 2-input driver produced to run the function in
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Example 1. This driver contains a switch with two cases: each case feeds the

function countLookaside Slots with different inputs. Everything in Figure 3

is synthesized automatically from the constraints in Section 3.2.1.

…
int main(int argc, char *argv[]) {
  if (argc != 2) {
    usage();
    return 1;
  }
  int opt = atoi(argv[1]);
  switch(opt) {
    case 0: { // int-bounds
      struct TYPE_3__ * aux_p[1];
      struct TYPE_3__ * p = _allocate_p(1, aux_p);
      long benchRet = countLookasideSlots(p);
      printf("%ld\n", benchRet);
      _delete_p(aux_p, 1);
      break;
    }
    case 1: { // linked
      struct TYPE_3__ * aux_p[10000];
      struct TYPE_3__ * p = _allocate_p(10000, aux_p);
      long benchRet = countLookasideSlots(p);
      printf("%ld\n", benchRet);
      _delete_p(aux_p, 10000);
      break;
    }
    default:
      usage();
      return 2;
  }
  return 0;
}
… 

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Generate inputs

Execute
Observe
Clean up

Generate 
inputs
Execute
Observe
Clean up

Figure 3: The driver produced by Jotai to run function countLookasideSlots, seen in Fig-
ure 2.

Compile-and-Run. Example 2 illustrates some principles enumerated in Sec-

tion 1. First, concerning compilation, assuming that this two-input driver is in

a file called driver.c, we can compile it with simply “clang/gcc driver-c”.

Concerning execution, we can run the executable file with either the command

“./a.out 0”, or the command “./a.out 1”. If invoked without arguments,

then the driver outputs a usage guide with a brief explanation about each input

set.

Profile. The driver seen in Example 2 features two sets of inputs. Often,
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Jotai benchmarks provide more than that. Multiple inputs let developers use

the Jotai benchmarks in a profile-guided setting, where some inputs are used

as training, and the others as testing.

Observe. The driver is also observable, meaning that it prints the result of

the function. In this simple example, the output of interest is a simple scalar

value; however, Jotai benchmarks can print the contents of aggregate types,

such as instances of struct or union types. Notice that inspection is shallow:

recursive types like linked lists or trees are not traversed. Jotai can also be

configured to add timing routines to print the execution time of the target

function; however, this code is not portable across operating systems; hence, it

is disabled by default.

Clean up. Every case of a driver ends with calls to a routine that frees

allocated memory. This clean up is only necessary when benchmarking func-

tions whose signature contains arguments of pointer type. Notice that Jotai

is able to generate recursive data structures, as in the second input set of Fig-

ure 3. Cleaning code will free every node that constitutes a recursive data

structure. As a consequence, every Jotai benchmark runs until normal termi-

nation (exit code 0) when compiled with an address sanitization; for instance,

via gcc -fsanitize=address.

Deterministic behavior. Jotai benchmarks are deterministic, meaning that

the execution of an n-driver with a certain argument i, 1 ≤ i ≤ n, will always

lead to the execution of the same sequence of instructions. To ensure deter-

minism, benchmarks are sequential programs: no multi-threading is allowed.

Furthermore, the routines that generate inputs for the benchmark are hard-

coded into the driver. These routines include code to produce scalars of every

primitive type in the ANSI C language specification, and code to generate re-

cursive data structures like lists and trees. Function countLookasideSlots in

Example 1 contains one argument of a recursive type, as seen in Figure 2 (b).

The second case in Figure 3 will generate a linked list with 10,000 nodes with

this structure.
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3. A Methodology to Generate Code

Figure 1 shows the steps to generate benchmarks. Part of this methodology

(outside the gray box), has been already used in previous work [10], and we

omit it from this presentation. The rest of it is the subject of this section.

3.1. Extraction of Type Descriptors

The constraints that Jotai produces to guide the generation of inputs—to

be explained in Section 3.2—relies on type descriptors. Type descriptors model

the structure of the types of the arguments of the CCU function. Descriptors

are specified by the grammar in Figure 4. Following C’s static semantic, type

descriptors determine a nominal type system, e.g., two types are the same if

they share the same names.

typeDesc

typeStruct

typeFun

typeBindings

typeName

typeScalar

( typeStruct | typeFun )*

struct <name> typeBindings

function <name> typeName typeBindings

<name> typeName typeBindings | ε

(unsigned)? typeScalar | * typeName
| struct <name>

char | int | short | long | float | double 

::=

::=

::=

::=

::=

::=

Figure 4: The grammar to specify type descriptors.

Example 3. Figure 5 (a) shows the type descriptors that Jotai extracts for the

function sum, in Figure 5 (b). The descriptors expose the structure of aggregate

type struct S, and list the types used in the signature of function sum.

Type descriptors are extracted from candidate compilation units via a clang

plug-in implemented with the “RecursiveASTVisitor”. This clang class is used

to traverse and extract information from the Abstract Syntax Tree of C pro-

grams. Once type descriptors are extracted, the process of generation of inputs

no longer uses the target function. In other words, this function is analyzed

only during the extraction of type descriptors. After this point, the function is

treated as a black box.
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struct S {
  int data;
  char flag;
};
typedef struct S MyStruct;
void sum(MyStruct s, int* p, int n) {
  int sum = 0;
  if (s.flag == ’s’) {
    for (int i = 0; i < n; i++) {
      sum += p[i];
    }
  }
  s.data = sum;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14

struct S
  | data int
  | flag char

function sum void
  | s struct S
  | p int*
  | n int

(b)(a)

Figure 5: Given the function sum in part (a), Jotai extracts the type descriptors in part (b)
of the figure.

3.2. The Constraint Generation Language

Type descriptors are used as inputs in the process of generating constraints

for a program. Constraints can be thought as refined types [34]. In other words,

instead of saying that the type of a variable is an integer, we say that this type

is an integer larger than zero, for instance. Figure 6 shows the grammar of the

constraint generation language. Constraints define essentially two properties

over variables: value and length. The former applies to any variable; the

latter only to variables of pointer types. The constraint language also defines a

few “algorithmic skeletons”, which we shall explain in Section 3.2.2. Example 4

provides examples of constraint-based refinements.

constraint

comp

arith

skeleton

element

variable
__

const

comp ( ',' comp )*

arith (== | != | > | < | >= | <=) arith
skeleton

element (* | + | / | - | %) element
element

linked (<name> ',' <integer>)
dLinked (<name> ',' <integer>)
binTree (<name> ',' <integer> ',' <integer>)

const | (value | length) '(' variable ')'

<name> ( '[' ( <integer> | <name> | '_' ) ']' )*
<name > ( '.' <name> )*

<integer> | <floating-point> | <char> | <string>

::=

::=
|

::=
|

::=
|
|

::=

::=
|

::=

Figure 6: Examples of type descriptors that Jotai extracts for struct S and function sum.
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Example 4. Consider n and p in the type descriptors of Figure 5 (b). The type

of n is an integer, and p has a pointer type. Constraints let us:

• Relate n’s value with a constant, e.g., value(n) > 0.

• Relate the length of the memory region referenced by p with a constant,

e.g., length(p) > 10.

• Relate the two variables, e.g., length(p) > value(n).

• Constrain values within buffers, e.g., length(p) == value(n)+1, value(p[n]) ==′

\0′

3.2.1. Generating Constraints

Users do not write constraints for each benchmark. This process is imple-

mented in Python, as an extension of Jotai’s constraint generation module.

The constraint generation module lets users specify existentials (e.g., “exists”)

or quantifiers (e.g., “for all”) ranging over type descriptors. Thus, the space of

constraints is searched by code that Jotai’s users write in Python, and the con-

straints themselves are generated in textual format, and then passed to Jotai’s

input generator. Example 5 shows examples of three different constraint gener-

ators.

Example 5. Figure 7 shows four different constraint generation methods. These

methods are implemented in Python. They receive a list of constraints, which

must be augmented, plus a type descriptor. The type descriptor contains a list

of variables that are scalars, pointers or aggregates. The terminals in Figure 6

are represented as Python classes, which can be combined in various ways to

build complex constraints.

3.2.2. Algorithmic Skeletons

It is possible to use length and value constraints to define recursive data

structures such as linked lists and trees. However, we found it easier to define a

small library of algorithmic skeletons to specify data structures. Currently, we
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def intBounds(ctrs, type_desc):
  for name in type_desc.scalars:
    ctrs += Value(name, 100)

def bigArr(ctrs, type_desc):
  for name in type_desc.scalars:
    ctrs += Value(name, 255)
  for name in type_desc.pointers:
    ctrs += Length(name, 65025)

def eqValLen(ctrs, type_desc):
  for n in type_desc.scalars:
    for p in type_desc.pointers:
      ctrs += Length(p, Value(n))
      remove(type_desc, p)def zeroEnd(ctrs, type_desc):

  for n in type_desc.scalars:
    for p in type_desc.pointers:
      c0 = Value(n, Plus(n, 1))
      c1 = Length(p, Value(n))
      c2 = Value(Arr(p, Value(n)), '\0')
      ctrs += [c0, c1, c2]
      remove(type_desc, p)

Figure 7: Examples of four constraint generation methods.

define three skeletons, which Figure 6 shows: linked, for linked lists; dLinked

for doubly linked lists; and binTree for binary trees. These skeletons are cho-

sen according to the type descriptor. If the descriptor contains one recursive

reference, Jotai tries to use linked to generate linked lists. If the descriptor

contains two recursive references, then Jotai can use either dLinked or binTree

to generate data structures.

3.3. Filtering Out Undefined Behavior

There exist ANSI C programs that can be compiled by any compiler that

conforms to the different C Standards, but whose runtime behavior is undefined.

Quoting Hathhorn et al. [23]: “The C11 standard mentions situations that lead

to undefined behavior in 203 articles”. Among such situations, 77 involve as-

pects of the C language itself; i.e., are produced by the use of grammatical

constructions of the language. Another 24 undefined behaviors are caused by

omissions by the parser or the preprocessor. And there are 101 undefined behav-

iors caused by misuse of functions and variables from the language’s standard

library [35] (Appendix J).

The benchmarks that we produce are reconstructed from programs avail-

able in open-source repositories. Thus, undefined behaviors present in these

programs are likely to persist in their benchmark versions. Additionally, our

type reconstructor might introduce undefined behavior into programs that were

originally correct, as Example 6 shows.
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Example 6. Figure 8 shows a program whose types were reconstructed by PsycheC.

PsycheC reconstructs u64 and s64 as “int”. However, the former was orig-

inally declared as “unsigned long”, and the latter as “long”. In this case,

the left shift in Line 04 in Figure 8 yields undefined behavior, because the shift

count exceeds the width of the type that PsycheC has inferred. The program

in Figure 8, when compiled with gcc -O0, gcc -O1 and clang -O0 outputs the

same value. However, if compiled with clang -O1 then it produces a different

value when running on OSX 11.2.

static int foo(s64 nblocks) {
  s64 sz, m;
  int l2sz;
  m = ((u64) 1 << (64 - 1));
  for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
    if (m & nblocks) {
      break;
    }
  }
  sz = (s64) 1 << l2sz;
  if (sz < nblocks) {
    l2sz += 1;
  }
  return (l2sz - L2MAXAG);
}

int main(int argc, char *argv[]) {
  int benchRet = foo(255);
  printf("%d\n", benchRet);
  return 0;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

int L2MAXAG = 0;

typedef int s64;
typedef int u64;

Types inferred 
by Psyche-C:

int L2MAXAG = 32;

typedef long s64;
typedef unsigned long u64;

Original types:

Figure 8: The left shift in Line 04 causes undefined behavior in this program.

3.3.1. AddressSanitizer and KCC

Detecting undefined behavior is not easy. Indeed, with the current technol-

ogy presently available, it might be impossible. As pointed out by Memarian

et al. [36]: “The divergence among the de facto and ISO standards, the prose

form, ambiguities, and complexities of the latter, and the lack of an integrated

treatment of concurrency, all mean that the ISO standard is not at present pro-

viding a satisfactory definition of C as it is or should be.” Thus, to filter out

undefined behavior, we adopt a best-effort approach, based on a combination of

two tools: AddressSanitizer [32] and Kcc [23].
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We compile every candidate execution unit with clang and gcc, using, in

both cases, the following flags: “-fsanitize = address, undefined, signed

-integer-overflow -fno -sanitize-recover=all”. These flags invoke dif-

ferent extensions from AddressSanitizer [32]. However, even the programs

that run until normal termination (exit code zero), and that output the same re-

sults with either clang or gcc can still exhibit undefined behavior, as Example 7

illustrates.

Example 7. Consider the following program:

int main() {int i = 3; i = i++; return i;}

This program runs until normal termination when it is compiled with the

AddressSanitizer plugins. However, once compiled with Kcc, it stops with

the error code UB-EIO8, i.e.: “Unsequenced side effect on scalar object with side

effect of same object” (see C11’s Section 6.5:2).

Thus, to further remove malformed benchmarks, the programs that pass

through the AddressSanitizer sieve are then compiled with Hathhorn et

al.’s [23] Kcc. These programs execute with a timeout. Using a timeout is

paramount with Kcc, for it slows down the target programs by a substan-

tial margin. Our experience with Kcc has presented us with situations where

programs that do not seem to sport any undefined behavior would loop forever.

Nevertheless, Kcc detects more occurrences of undefined behaviors than ASan.

3.3.2. Freeing Memory

The length constraint, described in Section 3.2, allocates memory for point-

ers. The -fsanitize =address flag mentioned in Section 3.3.1 will stop pro-

grams that leak memory. Thus, allocated memory must be freed before the

benchmark terminates. To ensure deallocation, Jotai’s input generator uses a

table of memory blocks to store every block of memory that the input generator

creates. Before the benchmark terminates, the table is traversed, and blocks

stored there are freed. This approach ensures deallocation of memory used in

recursive data structures, like the ones created by algorithmic skeletons.
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4. Evaluation

This section analyzes four research questions related to the benchmarks pro-

duced via the Jotai methodology.

4.1. The Benchmark Generation Rate

Jotai benchmarks are produced out of programs publicly available in open-

source repositories. Thus, the number of possible “seeds” for benchmarks is

virtually unbounded. However, most of the functions in these repositories will

not yield valid benchmarks. This section analyzes the rate in which benchmarks

can be produced, in order to answer Question 1.

Question 1 (RQ1). What is the ratio of candidate functions to viable pro-

grams generated by the methodology in Fig. 1?

Benchmarks: To answer Question 1, we apply the methodology from Figure 1

onto the GPL 3.0 benchmarks publicly available in the AnghaBench repository

on August 7th, 2022 (http://cuda.dcc.ufmg.br/angha/home). At that time,

the repository had 1,041,333 compilable C functions taken from 148 GitHub

repositories, sorted by the number of stargazers. Out of this lot, 70,309 functions

are leaf routines; that is, functions that do not invoke other functions. We only

apply the Jotai methodology to the leaf routines, to ensure the absence of

invisible instructions in the benchmarks.

Hardware: Intel i7-6700T with 7.6GB of RAM.

Software: Benchmarks are compiled with clang 15.0 plus AddressSanitizer

and with Kcc 3.4.

Methodology: We apply six constraints on each leaf routine. Three constraints

are the built-in skeletons linked (lk), dLinked (dl) and binTree (bt). The

former is applied onto functions containing an argument whose type has a re-

cursive reference; dl and bt are applied onto types that contain two recursive

references. The last three constraints are:

int-bounds (ib): for every scalar n: value(n) = 100.
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big-arr-10x (bx): for every scalar n: value(n) = 10; and for every pointer p:

length(v) = 100.

big-arr (ba): for every scalar n: value(n) = 255; and for every pointer p:

length(v) = 65, 025.

Discussion: Figure 9 shows the number of valid compilation units produced

with AddressSanitizer and with Kcc. Out of 1,041,333 functions in Angha

Bench, 70,309 were candidate compilation units, leading, in the end, to 31,328

benchmarks that could be successfully compiled and executed with Asan and

Kcc. The success rate of Kcc depends on a timeout. If we compile the first

1,000 compilation units produced via int-bounds with Kcc, using a timeout

of one second, then we obtain 937 valid programs. Increasing this timeout to

10 seconds adds one more program to this collection. Kcc failed to compile 17

programs; 46 other programs stopped with clear error messages referring to the

C11 Standard.

40,062

ib bx lk

ASAN

KCC

ba dl bt #f

39,448 39,884 192 69 97 41,995

14,468 28,800 29,238 172 70 98 31,328

Figure 9: Number of valid execution units produced with the Asan and the Kcc sieves.
Results are cumulative: a program that passes the Kcc sieve has also passed the Asan sieve.
#f is the total number of benchmark files produced. Each file contains at least one and at
most six different inputs.

4.2. Normality

The goal of this section is to demonstrate how Jotai can be used as a

means to analyze and understand the dynamic behavior of programs. Several

statistical tests (e.g.: the T-test, the Z-test, Pearson’s Correlation, etc) assume

that data comes from a normal distribution. The normal distribution typically

emerges from the accumulation of effects produced by independent events [37].

Given that the different optimization levels of a compiler are formed by the

combination of different optimizations, one could be tempted to believe that
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optimization speedups obey a normal distribution. This section evaluates this

hypothesis.

Question 2 (RQ2). Does the speedup observed after the application of com-

piler optimizations follow a normal distribution?

Benchmarks: We evaluate Question 2 onto three different collections of pro-

grams:

SameRes: The 19,211 execution units produced via the big-arr constraint

that return a primitive value (int, (uint, float, etc).

DynGr: The 856 execution units produced with big-arr whose number of in-

structions executed is larger than the number of different instructions

fetched. These are programs containing loops that run at least twice.

Spec: The 43 programs from SPEC CPU2017 [38]. We use Spec to give the

reader some perspective on how Jotai programs compare with this well-

established benchmark suite.

Hardware: Intel i7-6700T with 7.6GB of RAM.

Software: Benchmarks are compiled with clang 15.0. We count instructions

using Valgrind [39]’s CfgGrind [31].

Methodology: We define speedup as the rate of instructions executed by

the benchmark once compiled with clang -O0 and clang -OX, where X ∈

{1, 2, 3, s, z}2. We measure speedup using the number of instructions counted

by CfgGrind, instead of using running time, because this metric is stable—

running time is subject to much variation. Section 4.3 provides evidence that

this methodology is sound.

Discussion: Figures 10, 11 and 12 summarize the results observed in this

experiment3. Each figure shows a density (left) and a quantile-quantile (right)

2To keep the presentation short, we plot speedups relative to clang -O2; however, we could
observe very similar results for the other levels.

3To ease visualization, we crop the speedup at 8.0x in every density plot.
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plot. The former highlights means and variances in the measured speedups. The

latter compares the observed distribution with a normal distribution with similar

parameters. The gray area in the QQ-plot delimits the area where normal data

would be expected to exist. In all three cases, including Spec CPU2017, the

Shapiro-Wilk Normality Test returns a p-value lower than 0.0001, indicating

that the observed speedups are very unlikely to come from a normal distribution.
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Figure 10: Density plot and QQ-plot for the 19,163 programs in the SameRes suite of
benchmarks. The density plot is cropped at 8.0 to improve visualization. Mean = 1.54x,
Median = 1.45x, Outliers (speedup greater than 8.0) = 130.

Optimizations bear stronger effects in programs containing loops, as the

90/10 Rule of Code Optimization implies [40, Ch.3]. Thus, speedups are higher

on DynGr (Median = 2.57x) and Spec (Median = 2.72x) than on SameRes

(Median = 1.45x). Nevertheless, even SameRes contains samples whose speedup

would be impossible under a normal distribution. For instance, clang -O2 pro-

vokes a speedup higher than 500x in two programs of SameRes. The proba-

bility of observing this speedup under the assumption of a normal distribution

is zero for all practical purposes. Indeed, it is easy to write programs where the

speedup obtained after standard optimizations can be as large as one wants. As

an example, both clang and gcc are able to replace loops that sum arithmetic
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Figure 11: Density plot and QQ-plot for the 856 programs in DynGr. Mean = 2.91x, Median
= 2.57x, Outliers = 48.

progressions with O(1) formulae.

4.3. Running Time vs Instructions Fetched

Programs produced via the Jotai methodology tend to run for a very short

time—they are code snippets. Fast execution complicates using these programs

to tune compilers, because measurements become imprecise. Imprecisions man-

ifest in terms of high coefficients of variations (the ratio between standard devia-

tion and mean). As a consequence, differences in the running times of variations

of the same benchmark cannot be distinguished via statistical tests, e.g, if the

p-value is used as the statistic to perform a significance test, then the result will

be inconclusive. Example 8 illustrates this issue.

Example 8. Figure 13 shows the coefficient of variation for the 46 programs

from the Jotai collection that run the largest number of instructions when com-

piled with clang -O2. The mean running time of these programs (arithmetic

averages of 10 samples) varies from 1.25 microseconds to 17 milliseconds. The

coefficient of variation of the 5 fastest programs is always above 0.3 (i.e., 30%)

and always below 0.03 (i.e., 3%) for the 5 slowest programs.

20



0.0

0.1

0.2

2 4 6 -2 0 1 2

D
en

si
ty

4

8

0

C
om

pa
ris

on
 w

ith
 n

or
m

al
 d

is
tri

bu
tio

n
Speedup (O0/O2) Normal theoretical quantiles

-1

Figure 12: Density plot and QQ-plot for the 43 programs from SPEC17. Mean = 3.70x,
Median = 2.72x, Outliers = 1.

Although the running time of Jotai benchmarks can vary, the number of

instructions that they execute is fixed: the programs are deterministic and only

contain visible instructions. This observation motivates the research question

that this section explores:

Question 3 (RQ3). How strong is the correlation between the number of in-

structions executed by a Jotai benchmark and its running time?

Benchmarks: The 46 programs seen in Example 84.

Hardware: We measure correlations in two processors:

x86: i7-6700T, at 2.80GHz, with 7.6GB of RAM

arm: Odroid XU4 A15, at 2.00GHz, with 2GB of RAM

Both processors contain eight cores; however, programs run sequentially, at

maximum frequency.

4Initially, we tried to use 50 programs; however, 4 of them could not be used with Valgrind
in the Odroid board, due to excessive memory consumption. Without Valgrind they work
correctly.
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Figure 13: Coefficient of variation for the 50 programs that run more instructions when
compiled with clang -O0 in the Jotai collection.

Methodology: We average the time of 10 executions of each benchmark, com-

piled with clang -O0 or clang -O2. We count the number of instructions

fetched per benchmark using CfgGrind. Running time and instructions refer

to the function that constitutes the benchmark—the rest of the driver is not

analyzed.

Discussion: Figure 14 plots the running time of programs versus the number

of instructions they fetch. In contrast to running time, the number of instruc-

tions executed is fixed per benchmark. Figure 14 uses log scale in both axes;

hence, it gives the false impression that programs compiled at -O0 fetch as many

instructions as programs compiled with clang -O2. However, as already seen

in Section 4.2, this difference is large. To emphasize this distance, Figure 15

summarizes all the populations displayed in Figure 14.

Figure 16 shows the Spearman and the Kendall Rank Correlation Coeffi-

cients between the running time and the number of instructions executed per

benchmark. Both ranks are non-parametric; hence, recommended in the analy-

sis of data that comes from non-normal distributions. In both cases, correlation

is very high, tending to 1.0. We have omitted Pearson’s Coefficient, which is not
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Figure 14: The correlation between the running time and the number of instructions executed
per benchmark in two different architectures: (a) ARM and (b) x86, considering programs
compiled at two different optimization levels.

robust in face of outliers. Nevertheless, Pearson’s Coefficient is also greater than

0.9 in all four cases. Notice that although absolute times tend to be very differ-

ent in the two boards, speedup ratios of clang -O2 over clang -O0, considering

averages, sums, maximums and minimums tend to be very similar.
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Figure 15: Summary of data used to produce Figure 14.
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Figure 16: Non-parametric correlation ranks between running time and number of instructions
executed for the benchmarks in Figure 14.

4.4. Coverage

Most of the programs that Jotai produces are very simple: their execution

amounts to a linear path of basic blocks. Nevertheless, some large programs

can be found in this collection. This section provides the reader with some idea

about structural properties of these programs, namely, the average number of

basic blocks visited and the proportion of branches traversed during execution

of benchmarks.

Question 4 (RQ4). What is the expected size of Jotai benchmarks, and what

is the portion of this size that can be covered by simple constraints?

Benchmarks: The 856 programs in the DynGr collection described in Sec-

tion 4.2.
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Hardware: Intel i7-6700T, at 2.80GHz, with 7.6GB of RAM

Software: Same apparatus seen in Section 4.2.

Methodology: We use CfgGrind to count the number of basic blocks visited

during the execution of each benchmark. CfgGrind reconstructs the dynamic

slice of the program. In other words, it builds the control-flow graph formed by

the instructions fetched during the execution of the program. Such a dynamic

slice is formed by basic blocks, i.e., maximal sequences of instructions that can

execute in sequence, and phantom blocks, i.e., targets of branches that have not

been visited. If a dynamic slice does not contain phantom blocks, then it has

been completely visited during the execution of the program.

Discussion: Figure 17 shows the number of basic blocks visited and the number

of phantom blocks observed during the execution of the 856 benchmarks in

DynGr using the big-arr constraints. We show data for benchmarks compiled

with different optimization levels of clang. On average, benchmarks have four

to six basic blocks, with median five. The median value of phantom blocks is

zero for most optimization levels. The number of benchmarks that are fully

covered (i.e., that do not contain phantom blocks) varies per optimization level,

peaking at 564 with clang -Oz.

Figure 18 summarizes the data presented in Figure 17. The row sum is the

total of basic blocks visited during the execution of the benchmarks at different

optimization levels or the total of different phantom blocks encountered during

execution. Optimizations tend to reduce the number of basic blocks; however,

this behavior is not always true: clang -O3 increases the number of basic blocks,

due to control-flow replication. Code vectorization, for instance, might replicate

the body of loops. Nevertheless, although the static size of the program grows,

its dynamic size—the number of instructions fetched—tends to decrease, as seen

in Section 4.2.

4.5. Case Study: Predicting the Speedup of Compiler Optimizations

Modern compilers, such as clang, provide different levels of optimization

aimed at increasing the efficiency of executing code. The application of these op-
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Figure 17: Number of basic blocks and phantom blocks found during the execution of the
programs in DynGr.

timizations can lead to a significant performance increase, commonly referred to

as “speedup”. However, the degree of this improvement can vary widely among

different programs. In this section, we analyze the relative accuracy of three

very simple models to predict the speedup of standard compiler optimizations.

This kind of prediction requires a large number of executable programs—the

goal of a collection such as Jotai.

Question 5 (RQ5). Can the analysis of source code attributes represented as

histograms of opcodes lead to accurate predictions of the speedup from compiler

optimizations?

Benchmarks: The collection of 31,328 programs produced with different con-

straints, as seen in Figure 9.

Hardware: Intel i7-6700T, at 2.80GHz, with 7.6GB of RAM

Software: We measure the performance of programs as the number of in-

structions that these programs execute. As seen in Section 4.3, the number

of instructions fetched is a good surrogate for running time—with the added

benefit of being invariant across multiple executions of the same program. In-
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Figure 18: Summary of the data used to produce Figure 17 (The 856 programs in the DynGr
dataset introduced in Section 4.2). Full is the number of programs that did not contain
phantom nodes, i.e., fetched branches with untaken paths.

structions are counted using CfgGrind [31], a Valgrind [39] plugin, again,

following the methodology discussed in Section 4.3. The predictive models use

the implementation of linear regression provided by Python’s Keras.

Methodology: This section evaluates three simple prediction models. We shall

use the following methodology: given the universe of 31,328 available programs,

75% of them are separated as a Training Set. The rest is used as a Test Set.

The model predicts speedups of optimizations by analyzing the training set,

and applies these predictions on the programs in the test set. The “speedup”

is defined as the ratio between the number of instructions executed by a pro-

gram when compiled with clang -O0 and when compiled with clang -O1. The

predictive models analyzed are described below:

Geo-Mean: the geometric mean of all the speedups observed in the training

set are used as the prediction of speedups in the test set.

Model O0: the histogram of source-code features is used as the input for linear

regression. These histograms are extracted from the LLVM intermediate

representation of programs compiled with clang -O0.
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Model O0 O1: two histograms of source-code features are used as the input

for linear regression. These histograms are extracted from the LLVM

intermediate representation of programs compiled with clang -O0 and

with clang -O1. Thus, these histograms have twice the length of those

used in Model O0.

The histograms used in Model O0 contain 69 entries: 64 entries to represent

the different LLVM opcodes, four entries to represent loop depths (number of

loops with depth one, depth two, depth three and depth four or more) and

number of basic blocks. The histograms used in Model O0 O1 contain the same

entries, although each appears twice: once as produced via clang -O0, and once

as produced via clang -O1. To assess the relative performance of the predictive

models, the geometric mean of the speedups obtained from the dataset served

as a baseline for comparison. The models were evaluated using Mean Squared

Error (MSE) and Mean Absolute Error (MAE). These metrics quantify the

discrepancy between predicted and actual values, with lower values indicating

superior precision.

Discussion: Figure 19 summarizes the results observed in this experiment.

The findings indicate that linear regression built on histograms of opcodes are

more precise to predict speedup of compiler optimizations than the geometric

mean of these optimizations observed on a training set. The histogram-based

models outperform the geometric model in terms of both error metrics, irre-

spective of the dataset used for training. Furthermore, the comparison between

Model O0 O1 and Model O0 suggests that including histograms of programs com-

piled with with clang -O1 improves the model’s prediction capacity. In other

words, the accuracy of a predictor that does linear regression on histograms of

opcodes is more than twice higher than the accuracy of a predictor that uses a

simple constant: the geometric mean of speedups observed on a training set.

These results suggest that histograms derived from opcode identifiers, loop

depths, and the number of basic blocks in the source code can be used to predict

the speedup resulting from the application of standard compiler optimizations.
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Figure 19: Precision of different models used to predict the speedup of programs compiled
with clang -O1 over the same programs compiled with clang -O0.

Histograms are simple data structures: they can be extracted from programs

via a linear pass over the program’s code. Notice that the observation that

histograms of opcodes bring useful information to predict the behavior of pro-

grams is not new. Recently, Damásio et al. [41] and Gorchakov et al. [42] how

shown that histograms can be effectively used to determine the algorithm that

a program implements, given a number of candidates.

5. Related Work

The development of compilers requires benchmarks. Thus, some of the most

celebrated papers in programming languages describe benchmark suites, such as

Spec CPU2006 [43], MiBench [25], Rodinia [44], etc. These benchmarks are

manually curated, and typically comprise a small number of programs. Recently,

Cummins et al. [20] have demonstrated that this reduced size fails to cover the

space of program features that a compiler is likely to explore during its lifetime.

Thus, researchers and enthusiasts have been working to generate a large number

of diverse and expressive benchmarks. This section covers some of these efforts.

Random Synthesis. The generation of benchmarks for tuning predictive com-

pilers has been an active field of research in the last ten years. Initial efforts

directed to the development of predictive optimizers would use synthetic bench-

marks conceived to find bugs in compilers. Examples of such synthesizers include

CSmith [45], LDRGen [46] and Orange3 [47, 48]. Although conceived as test-

case generators, these tools have also been used to improve the quality of the op-

timized code emitted by mainstream C compilers [49, 50]. Even CompilerGym
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provides randomly-produced CSmith programs. However, more recent devel-

opments indicate that synthetic codes tend to reflect poorly the behavior of

human-written programs; hence, yielding deficient training sets [10, 51].

Guided Synthesis. Several research groups have used guided approaches to syn-

thesize benchmarks [20, 26, 52, 53]. These techniques might rely on a template

of acceptable codes, like Deniz et al. [53] do, or might use a machine-learning

model to steer the generation of programs, like Cummins et al. [20] or Bere-

zov et al. [26] do. Synthesis is restricted to a particular domain, like OpenCl

kernels [20, 53]; or regular loops [26]. The approach described in this paper is

different in the sense that the programs in Jotai are not synthesized; rather,

they are mined from open-source repositories.

Code Mining. This paper produces benchmarks out of code from open-source

repositories. We follow the methodology introduced by Faustino et al. [10] to ex-

tract and reconstruct programs, as Figure 1 illustrates. There exists a large body

of literature about scraping programs from repositories. Some of these works

aim at generating benchmarks to feed machine-learning models [54, 55, 56];

however, to the best of our knowledge, only Faustino et al. [10] and Armengol

et al. [28] mine compilable programs to autotune compilers. In contrast, bench-

marks used to train large-language models for code generation are formed by

program snippets that are meant to be parsable, but not necessarily compil-

able [57, 56]. Notice that open-source repositories are not the only source of

benchmarks to populate such models. For instance, Richards et al. have pro-

duced realistic JavaScript benchmarks, out of monitored browser sections [58].

A shortcoming of Richards’s [58] approach is scalability: a human being still

needs to create a browsing section that will give origin to one benchmark.

Generation of Executable Benchmarks.. Many artificial benchmarks execute [28,

26, 20, 15, 16]. However, except for Berezov et al. [26]—which generates specific-

domain loops— these collections follow CLDrive’s [20] approach to filter out

incorrect kernels. In the words of Tsimpourlas et al. [15]: “[CLDrive] rejects
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kernels that (i) produce runtime errors [observable crashes]; (ii) do not modify

any of the inputs (no output) or (iii) modify them differently for each run (not

deterministic)”. Notice that this approach still leaves room for undefined be-

havior. Indeed, all our attempts to run benchmarks produced by Berezov [26]

and Armengol [28] stumbled on undefined behaviors, which were reported (and

confirmed) by these researchers. These previous generators also do not pro-

vide users with a way to explore the space of valid inputs, like the DSL that

we introduce in Section 3.2—rather, the input generator is hardcoded into the

synthesizer. As an example, Cummins et al.’s [20] CLDrive uses only one ap-

proach to produce inputs, which is similar to the big-arr constraint described

in Section 4.2.

6. Conclusion

This paper has introduced Jotai: a set of principles, techniques and tools

to generate executable C benchmarks that run without undefined behavior.

Benchmarks consist of compilable C files containing, each, an executable func-

tion mined from an open-source repository. Compilation is achieved via type

reconstruction. Sound execution is achieved via constraints defined in a domain-

specific language to refine the type signature of functions.

Programs in Jotai can be used in a variety of ways: from stress testing

processors and compilers to autotuning compilation tasks, as seen in Section 4.5.

Currently, Jotai programs are distributed as part of a standalone repository5,

or as a CompilerGym dataset. Our research group has been using Jotai

in various ways. For instance, Jotai provided the benchmarks to evaluate

Merlin, a tool that infers the asymptotic complexity of programs [59], and

to evaluate Nisse, an instrumentation-based profiler [60]. We are also aware

of user stories outside our group. For instance, Krister Walfridsson has used

Jotai programs to test PySmtGcc, a translation-validator for Gcc6. In his

5Jotai programs are available at https://github.com/lac-dcc/jotai-benchmarks
6For a brief description of PySmtGcc, visit https://kristerw.github.io/2022/09/13/

translation-validation/
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words, “Jotai detected cases that were missing in PySmtGcc [61].”
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