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Abstract
Weestablish a general framework using a diffusion approximation to simulate forward-
in-time state counts or frequencies for cladogenetic state-dependent speciation-
extinction (ClaSSE) models.We apply the framework to various two- and three-region
geographic-state speciation-extinction (GeoSSE) models. We show that the species
range state dynamics simulated under tree-based and diffusion-based processes are
comparable. We derive a method to infer rate parameters that are compatible with
given observed stationary state frequencies and obtain an analytical result to compute
stationary state frequencies for a given set of rate parameters. We also describe a pro-
cedure to find the time to reach the stationary frequencies of a ClaSSE model using
our diffusion-based approach, which we demonstrate using a worked example for a
two-region GeoSSE model. Finally, we discuss how the diffusion framework can be
applied to formalize relationships between evolutionary patterns and processes under
state-dependent diversification scenarios.

Keywords Evolution · Speciation · Extinction · Diffusion processes · Branching
processes · Stationary frequencies

1 Introduction

The branching events of a phylogenetic tree exhibit a pattern that stores information
about the underlying speciation and extinction processes (Nee et al. 1994). In Nee
et al. (1994), they first considered a model where both speciation and extinction are
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treated as a constant-rate birth-death process by which lineages give birth to new
lineages (speciation) at a rate λ and lineages die (extinction) at a rateμ. Speciation and
extinction rates, however, are expected to vary idiosyncratically among phylogenetic
lineages and over geological timescales. For example,Nee et al. (1994) also considered
another model in which speciation and extinction rates vary over time. Workers have
designed birth-death models to study a variety of intrinsic and extrinsic factors that
might shape diversification rates. Species age (Hagen et al. 2015; Alexander et al.
2016; Soewongsono et al. 2022) and inherited traits (Kontoleon 2006; Maddison et al.
2007; FitzJohn 2010, 2012; Soewongsono et al. 2023) are two types of intrinsic factors
thought to drive diversification rates, whereas environment (Condamine et al. 2013;
Quintero et al. 2023) and geography (Goldberg et al. 2011; Landis et al. 2022; Swiston
and Landis 2023) are common extrinsic factors of interest. In the end, a common goal
of these models is to infer the underlying event rates given an observed phylogenetic
pattern either through likelihood-based (Morlon et al. 2010; Stadler 2013; Louca and
Pennell 2020b) or likelihood-free approaches (Nee et al. 1994; Voznica et al. 2022;
He et al. 2023; Lambert et al. 2023; Thompson et al. 2023).

Fundamentally, birth-death processes model the random arrival times of discrete
events that generate or “build” a phylogenetic tree over time (Nee et al. 1994;
Maddison et al. 2007). As an alternative to this tree-based representation of the
process, recent work (Chevin 2016) introduced an equivalent diffusion-based rep-
resentation for a class of birth-death models with state-dependent rates, known as
state-dependent speciation-extinction (SSE) models (Maddison et al. 2007). As noted
byChevin (2016), population genetics theory has benefited immensely from diffusion-
based approximations to population-based models of allele frequency change, yet
diffusion-based approximations of birth-death models remain underexplored in the
phylogenetics literature. Despite the widespread popularity of birth-death models
among evolutionary biologists, these models recently entered a phase of intense but
overdue scrutiny to better understandwhat themodels can and cannot estimate reliably
when fitted to real biological datasets (Louca and Pennell 2020a; Morlon et al. 2022;
Vasconcelos et al. 2022; Dragomir et al. 2023; Kopperud et al. 2023; Legried and Ter-
horst 2023; Truman et al. 2024; Celentano et al. 2024; Tarasov and Uyeda 2024). This
has created demand for new frameworks to understand the mathematical properties of
these complex stochastic processes to guide biological research programs.

As mentioned above, applying diffusion processes in the macroevolutionary con-
text is not new, and was recently applied by Chevin (2016) to study the properties of
the BiSSE (Maddison et al. 2007) and QuaSSE (FitzJohn 2010) models. Our work
begins by extending the diffusion-based BiSSE representation of Chevin (2016) to a
general multi-state SSE model that allows for both cladogenetic and anagenetic state
changes, known as the ClaSSE model (Goldberg and Igić 2012). We then show how
our formulation may be used to determine the relationship between a set of SSE rates
and their implied stationary state frequencies. Inverting this perspective, we show
that our framework correctly delimits classes of SSE rate values that yield a given
set of stationary frequencies. This establishes a many-to-one mapping of SSE rates
on to stationary frequencies. After introducing our general framework for ClaSSE
models, we apply it to a special geographical case of the ClaSSE model, known as
the GeoSSE model (Goldberg et al. 2011). We choose the GeoSSE model because
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it possesses a complex but structured relationship among its parameters and its con-
stituent events—i.e. dispersal, within-region speciation, between-region speciation,
and local extinction—that impact lineages over evolutionary time. We then validate
our theoretical results by simulating state frequency trajectories using both tree-based
and diffusion-based simulators.

The rest of the paper is organized as follows. Firstly, in Sect. 2.1, we give a brief
overview of SSE models in general. In Sect. 2.2 we visit relevant results in the the-
ory of stochastic process, then in Sect. 2.3 we apply our framework to analyze the
ClaSSE model, and later for the GeoSSE model with arbitrary number of regions in
Sect. 2.4. Following these, in Sects. 2.5 and 2.6 we present a method for simulating
state dynamics under our framework and deriving rate parameters given stationary
state frequencies. In Sect. 2.7, we derive a result to compute theoretical stationary
state frequencies given rate parameters. Moreover, in Sect. 2.8, we describe a proce-
dure to compute time to reach stationary frequencies in a 2-region GeoSSE system
using results derived in Sect. 2.7. Furthermore, in Sect. 3.1, we show, through simu-
lation examples, that our diffusion-based framework offers a good approximation for
simulating range state dynamics when comparing to tree-based approach. In Sect. 3.2,
using an example, we show the existence of alternative rate scenarios that lead to the
same stationary state frequencies. Additionally, we apply results derived in Sect. 2.7
and Sect. 2.8 to that example in Sect. 3.2. Lastly, in Sect. 4, we summarize our results
and discuss promising ways to study pattern-process relationships for data generated
by SSE models, and ideas for future work using our framework.

2 Methods

This section describes the framework for how construct our diffusion approxima-
tion for a ClaSSE model to analyze the dynamics of states through time. Key results
include derivations of the transition probabilities and the infinitesimal mean and vari-
ance parameters of the diffusion equation. We describe and implement the methods
for simulating the evolution of state frequencies, and derive relevant results for the
stationary conditions, focusing on two- and three-region GeoSSE models, which are
special cases of the ClaSSE model.

2.1 Overview of State-Dependent Speciation and ExtinctionModels

In this section, we give a brief overview of SSE models by highlighting the key
assumptions and different events occurring along lineages. Then, we briefly re-visit
a particular SSE model type, the GeoSSE model (Goldberg et al. 2011). Then, we
guide towards how to shift from tree-based perspective to non-tree-based perspective
to derive our object of interest.

In general, SSE models are stochastic branching processes with state-dependent
birth (speciation) and death (extinction) rates. The states can either be discrete or
continuous (Maddison et al. 2007; FitzJohn 2010, 2012) and can represent various
things, ranging from phenotypic traits to geographical ranges (Goldberg et al. 2011).
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Fig. 1 From left to right: a speciation event without cladogenetic state changes, a speciation event with
cladogenetic state changes, an anagenetic state change

SomeSSEmodels have processes that are only defined by anagenetic process and state-
dependent diversification process (Maddison et al. 2007), while others have processes
that are defined by both anagenetic and cladogenetic processes (Goldberg et al. 2011;
Goldberg and Igić 2012) shown in Fig. 1. An anagenetic process is defined as a
process of trait evolution within lineages, between branching events. In the BiSSE
model (Maddison et al. 2007), this corresponds to trait transition events of going
from a discrete trait A to another discrete trait B or vice versa. These trait-dependent
transition rates are encoded in the infinitesimal rate matrix Q, for which the off-
diagonal entry qi j defines the rate of transitioning from state i to j . A cladogenetic
process is defined as a process in which state transition occurs in conjunction with
a branching event (with speciation) of a lineage. SSE models with anagenetic and
cladogenetic events are referred to as ClaSSE models.

Part of this paper will consider a special case of the ClaSSE model, the GeoSSE
model (Goldberg et al. 2011). A GeoSSE model describes how species move and
evolve among a sets of discrete geographical regions, called species ranges. Species
that occur in just one region are said to be endemic to that region. Species occurring
in two or more regions are said to be widespread.

GeoSSE events can be classified as anagenetic or cladogenetic events. Anagenetic
events in GeoSSE include dispersal events and local extinction (sometimes called
extirpation) events. Dispersal events add one region to a species range. Local extinction
remove one region from a species range. A species experiences complete extinction
(i.e. it is removed from the species pool) when it goes locally extinct in the last region in
its range. Note that widespread species cannot experience complete extinction through
a single event under a GeoSSE model; their widespread ranges must first be reduced
to a single region before complete extinction is a possibility.

Cladogenetic events under GeoSSE include within-region speciation and between-
region speciation events. Each within-region speciation event creates a new species
within any single region of the parental species range. Each between-region speciation
event causes a widespread parental species and its range to split, such that all regions
in the parental range are distributed among the two new daughter lineages. Section2.4
defines how GeoSSE assigns rates to different events.

Given a phylogeny with range state information as seen in Fig. 2, one can observe
the dynamics of range states accumulated by species though time. In Sect. 2.2, we
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Fig. 2 An illustration of
GeoSSE events on a phylogeny
with range state information

present the necessary theory that will later be used to allow us transitioning from a
tree-based process to an alternative, diffusion-based process to simulate the dynamics.

2.2 Transforming a Stochastic Process

In this section, we briefly describe the relevant results in the theory of stochastic
processes that enable us to transform one stochastic process into another stochastic
process. In the context of the ClaSSE model described in Sect. 2.1, we want to define
a process that simulates the (discrete) count of species with state i through time. This
process can then be used to define a second process that simulates the (continuous)
frequency of species with state i over time.

Theorem 1 Itô’s transformation formula Consider a stochastic process {Z(t)} with
infinitesimal parameters μ(z) and σ 2(z). Define a new stochastic process {Y (t)} with
Y (t) = g(Z(t)) where g is a strictly monotone continuous and twice-differentiable
function. Then, the new process {Y (t)} has infinitesimal parameters given by,

• μY (y) = μ(z)g′(z) + 1
2σ

2(z)g′′(z),
• σ 2

Y (y) = σ 2(z)
[
g′(z)

]2
.

Proof This theorem is also known as Itô’s formula or Itô’s lemma. The proof is given
in Ito (1951), Karlin and Taylor (1981). ��

Lemma 1 Given a stochastic process {Ni (t) := ni (t)} with infinitesimal mean and
variance parameters μi = E(dni/dt) and σ 2

i = var(dni/dt), respectively. Define a
stochastic process {X(t)} derived using the following transformation.

X(t) = g(N ) = g

(
∑

i

ni

)

=
∑

i

h(ni ), (1)
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where {N (t) := ∑
i ni (t)} is a stochastic process with infinitesimal parameters defined

as follows,

μ(N ) = μ

(
∑

i

ni (t)

)

=
∑

i

μ (ni (t))

=
∑

i

μi .

σ 2(N ) = σ 2

(
∑

i

ni (t)

)

=
∑

i

σ 2(ni (t)) +
∑

i, j
i �= j

σi j

=
∑

i

σ 2(ni (t))

=
∑

i

σ 2
i .

Note here we have used the fact that σi j = 0 for i �= j to account for independent
birth-death processes. The infinitesimal mean and variance parameters for {X(t)} are
given by,

μX =
∑

i

∂ X

∂ni
μi + 1

2

∑

i

∂2X

∂n2
i

σ 2
i (2)

σ 2
X =

∑

i

(
∂ X

∂ni

)2

σ 2
i . (3)

Proof Proof of Lemma 1 is given in “Appendix 5.1”. ��

2.3 Diffusion-Based Framework for State-Dependent DiversificationModel

In this section, we establish the framework for simulating state dynamics for state-
dependent speciation and extinction models using diffusion processes. We show how
to implement the framework in the ClaSSE model introduced in Goldberg and Igić
(2012). Then, we relate our framework to earlier research (Chevin 2016) using a
diffusion process for the BiSSE model (Maddison et al. 2007) and, later on, for the
GeoSSE model (Goldberg et al. 2011).

Our first goal is to define the stochastic process {Ni (t)}, which describes the number
of species with state i ∈ S at time t , where S is the state space of themodel. Then, using
the method presented in Sect. 2.2, we can obtain the stochastic process {�i (t)}, which
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describes the frequency of species with state i at time t . Using these two processes, we
then derive results that directly link model parameters with stationary state frequency
patterns that the model generates.

To proceed, we define the following probabilities:

Prob({Ni → Ni + 1 in �t}) = Prob(Ni (t + �t) = ni + 1 | Ni (t) = ni )

:= P
+
i �t,

Prob({Ni → Ni − 1 in �t}) := P
−
i �t,

Prob({Ni → Ni in �t}) := Pi�t . (4)

These probabilities correspond to gaining a new species in state i
(
P

+
i

)
, losing a species

in state i
(
P

−
i

)
, and neither losing nor gaining a new species in state i (Pi ) within an

infinitesimal time step �t .
For the ClaSSE model, we can write those probabilities as follows,

P
+
i �t = S+

i + E+
i + Q+

i ,

P
−
i �t = S−

i + E−
i + Q−

i ,

Pi�t = 1 − (
P

+
i + P

−
i

)
�t, (5)

where

S+
i = Probability of events that lead to an increase in the number of species in state i through

state-dependent speciation and speciation in conjunction with cladogenetic state change.

E+
i = Probability of events that lead to an increase in the number of species in state i through

extinction.

Q+
i = Probability of events that lead to an increase in the number of species in state i through

anageneticstatechange.

S−
i = Probability of events that lead to a decrease in the number of species in state i through

state-dependent speciation and speciation in conjunction with cladogenetic state change.

E−
i = Probability of events that lead to a decrease in the number of species in state i through

extinction.

Q−
i = Probability of events that lead to a decrease in the number of species in state i through

anagenetic state change. (6)

Next, we define the infinitesimal mean μi = E (d Ni/dt) and variance σ 2
i =

var (d Ni/dt) for the stochastic process {Ni (t) : t > 0}.
Lemma 2 The infinitesimal mean μi and variance σ 2

i for the stochastic process
{Ni (t) : t > 0} is given by

μi = P
+
i − P

−
i , (7)

σ 2
i = P

+
i + P

−
i . (8)
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Proof Proof of Lemma is given in “Appendix 5.2”. ��
Next, we define a stochastic process {�i (t) : t > 0} where

�i = Ni∑
j∈S N j

= Ni

N
.

�i (t) denotes the frequency of species being in state i at time t . We define the
infinitesimal mean and variance for the process in Lemma 3.

Lemma 3 The infinitesimal mean μ�i and variance σ 2
�i

for the stochastic process
{�i (t) : t > 0} is given by

μ�i = 1

N

(

μi − σ 2
i

N

)

+ �i

N

∑

j∈S

(

−μ j + σ 2
j

N

)

, (9)

σ 2
�i

=
(σi

N

)2
(1 − 2�i ) +

(
�i

N

)2∑

j∈S

σ 2
j . (10)

Proof Proof of Lemma 3 is given in “Appendix 5.3”. ��

From Eqs. (9)–(10), it is clear that the diffusion parameters
(
i.e. μ�i , σ

2
�i

)
are

undefined under a total extinction scenario of a tree (i.e. where N = 0 appears in
multiple denominators).

To demonstrate the generality of the framework, we show the BiSSE model (Mad-
dison et al. 2007) (and similarly for the MuSSE model (FitzJohn 2012)) can be
represented as a diffusion process as follows. Under the BiSSEmodel, species possess
binary traits with values in the state space S = {1, 2}. BiSSE is a special case of the
ClaSSEmodel that, while it allows anagenetic trait transition and extinction events, its
speciation events do not cause cladogenetic trait changes. That is, daughter lineages
identically inherit the parent lineage state following speciation. Readers can refer to
the supplementary material from Goldberg and Igić (2012) for its derivation. For the
BiSSE model, we have

S+
1 = λ1N1�t, E+

1 = 0, Q+
1 = q21N2�t,

S−
1 = 0, E−

1 = μ1N1�t, Q−
1 = q12N1�t,

where λ1 and μ1 (b1 and d1 in Chevin (2016)) are speciation and extinction rates for
trait 1, respectively. q12 and q21 (τ12 and τ21 in Chevin (2016)) are anagenetic trait
transition from 1 to 2 and from 2 to 1, respectively. Similarly, following the definitions
in Eq. (6), we also have

S+
2 = λ2N2�t, E+

2 = 0, Q+
2 = q12N1�t,

S−
2 = 0, E−

2 = μ2N2�t, Q−
2 = q21N2�t,
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Using Eq. (7) and Eq. (8) we have the infinitesimal mean and variance of N1,

μ1 = (λ1 − μ1 − q12) N1 + q21N2, (11)

σ 2
1 = (λ1 + μ1 + q12) N1 + q21N2, (12)

and similarly for N2 with indices changed accordingly. These are the same μ1 and σ 2
1

as described in Eq. (2) in Chevin (2016). ��

2.4 Diffusion-Based Framework for the GeoSSEModel

In this section, we use the framework established in Sect. 2.3 for general ClaSSE
models to the GeoSSE model. The procedure we apply here is also compatible with
any model from the ClaSSE family. For the GeoSSE model, unlike the BiSSE model
described in Sect. 2.3, some speciation events also cause cladogenetic state changes.
Thus, following the notation used in the previous section we have,

S+
i = W +

i + B+
i

E+
i = E+

i

Q+
i = D+

i + E+
i

S−
i = W −

i + B−
i

E−
i = E−

i

Q−
i = D−

i + E−
i ,

where

W+
i = Probability of events that lead to an increase in the number of species in range state i

through within-region speciation for either widespread or endemic species.

B+
i = Probability of events that lead to an increase in the number of species in range state i

through between-region speciation for widespread species.

E+
i = Probability of events that lead to an increase in the number of species in range state i

through extinction for either widespread species (local extinction) or endemic species

(species extinction).

D+
i = Probability of events that lead to an increase in the number of species in range state i

through range dispersal event for endemic species.

W−
i = Probability of events that lead to a decrease in the number of species in range state i

through within-region speciation for either widespread or endemic species.

B−
i = Probability of events that lead to a decrease in the number of pecies in range state i

through between-region speciation for widespread species.

E−
i = Probability of events that lead to a decrease in the number of species in range state i

through extinction for either widespread species (local extinction) or endemic species

(species extinction).
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D−
i = Probability of events that lead to a decrease in the number of species in range state i

through range dispersal event for endemic species.

Next, consider an n-region GeoSSE model where n ∈ Z
+, we define the following

state space and variable,

R = state space for regions e.g., R = {A, B}.
S = state space for species ranges e.g., S = {{A}, {B}, {A, B}}

Ni = number of species with range stateiwherei ∈ S.

Then, we define the following rate parameters,

dk� = per lineage dispersal rate of any species in regionkto colonize region�.

w� = per lineage within-region speciation rate of any species in region �.

bi
j = per lineage between-region speciation rate of a widespread species into.

two daughter species with rangesiand j, respectively. Note that bi
j ≡ b j

i .

e� = local extinction rate of any species in region �.

Thus, both w� and bi
j determine state-dependent speciation rate, e� determines state-

dependent extinction rate, and dk� and (among widespread species) e� determine the
anagenetic state transition rate.

We define a stochastic process {Ni (t)} with infinitesimal mean μi = E(d Ni/dt)
and variance σ 2

i = var(d Ni/dt). Here, Ni (t) represents the number of species with
range state i at time t . The infinitesimal mean μi and variance σ 2

i follow directly from
Lemma 2. We derive the transition probabilities described in Eq. (4) in the context of
the GeoSSE model, as shown in Eqs. (13)–(15).

Each of these probabilities describe possible events in a GeoSSE model occurring
within an infinitesimal time step that result in gaining a new species with range state i
(P+

i ), losing a species with range state i (P−
i ), and neither losing nor gaining a species

with range state i (Pi ).

P
+
i �t = W+

i + D+
i + B+

i + E+
i

=
∑

j∈S

∑

�∈ j
{�}=i

N j w��t

︸ ︷︷ ︸
W+

i

+
∑

k∈i

∑

�∈i
� �=k

Ni\{�}dk��t

︸ ︷︷ ︸
D+

i

+
∑

j∈S
i⊂ j

N j bi
j\i �t

︸ ︷︷ ︸
B+

i

+
∑

j∈S
| j\i |=1

∑

�∈ j\i

N j e��t

︸ ︷︷ ︸
E+

i

(13)

P
−
i �t = W−

i + D−
i + B−

i + E−
i

= 0︸︷︷︸
W−

i

+
∑

k∈i|i |<R

∑

�∈R\{k}
Ni dk��t

︸ ︷︷ ︸
D−

i

+
∑

j∈S
j⊂i

1

2
Ni b j

i\ j �t

︸ ︷︷ ︸
B−

i

+
∑

�∈R
�∈i

Ni e��t

︸ ︷︷ ︸
E−

i

(14)
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Fig. 3 Graphical illustrations of probabilities of events following Eq. (13) shown in (a), and Eq. (14) shown
in (b) for a 2-region GeoSSE system with state space S = {{A}, {B}, {A, B}}. Ni represents the number
of species with range state i ∈ S. An incoming arrow into Ni compartment means there is an increase in
species count with range state i and an outgoing arrow from Ni means there is a decrease in species count
with range state i . All the events and arrows are color-coded accordingly (Color figure online)

Pi �t = 1 −
(
P

+
i + P

−
i

)
�t . (15)

For clarity, we provide the biogeographic interpretation on how each term in
Eqs. 13–15 is derived and a graphical illustration of the events in Fig. 3.

1. W+
i . To gain a new species with range state i through a within-region speciation

event, the new species range i must contain only region � (� ∈ i and |i | = 1).
This endemic species can undergo a speciation event with probability w�Ni . Any
species with range state j that also occupies region � can undergo a within-region
speciation event with probability w�

∑
j∈S 1i⊆ j N j . The total probability of this

event occurring within �t is,

∑

j∈S

∑

�∈ j
{�}=i

N jw��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

W +
{A} = (

N{A,B} + N{A}
)
wA�t

W +
{B} = (

N{A,B} + N{B}
)
wB�t

W +
{A,B} = 0.

2. D+
i . To gain a new species with range state i through a dispersal event, the species

adds the new region � to its ancestral range. Species are always widespread imme-
diately following dispersal. The total probability of this event occurring within�t
is,
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∑

k∈i

∑

�∈i
� �=k

Ni\{�}dk��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

D+
{A} = 0

D+
{B} = 0

D+
{A,B} = N{B}dB A�t + N{A}dAB�t .

3. B+
i . To gain a new species with range state i through a between-region speciation

event, the new species can be either endemic or widespread |i | > 0 that originated
from a widespread ancestral species with larger range state j (i ⊂ j). In general,
we have no information of whether the new species occurs in left or right lineage
following a speciation event, so we do not consider the orientation. The total
probability of this event occurring within �t is,

∑

j∈S
i⊂ j

N j b
i
j\i�t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

B+
{A} = N{A,B}bA

B�t

B+
{B} = N{A,B}bB

A�t

B+
{A,B} = 0.

4. E+
i . To gain a new species with range state i through a local extinction event, the

ancestral species must have a larger range state j with size that differs by 1 from
the new species’ range state i such that | j\i | = 1. The total probability of this
event occurring within �t is,

∑

j∈S
| j\i |=1

∑

�∈ j\i

N j e��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

E+
{A} = N{A,B}eB�t

E+
{B} = N{A,B}eA�t

E+
{A,B} = 0.

123



A Diffusion-Based Approach for Simulating… Page 13 of 46   101 

5. W−
i . The probability of losing a either endemic or widespread species with range

state i through a within-region speciation event is 0. This is because the event will
only increase the local abundance in a region and causes thewidespread abundance
to remain unchanged.

6. D−
i . To lose a species with range state i through a dispersal event, the species

must disperse to a new region. The species count remains unchanged if the
species already occupies all regions (|i | = |R|). The total probability of this event
occurring within �t is,

∑

k∈i|i |<R

∑

�∈R\{k}
Ni dk��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

D−
{A} = N{A}dAB�t

D−
{B} = N{B}dB A�t

D−
{A,B} = 0.

7. B−
i . To lose a species with range state i through a between-region speciation event,

the species must be widespread and undergo a speciation event that gives rise to
a new species in state j with smaller range state size (| j | < |i |). The factor of
1/2 corrects for double-counting the new species with range j being either the left
daughter or right daughter lineage. The total probability of this event occurring
within �t is,

∑

j∈S
| j |<|i |

1

2
Ni b

j
i\ j�t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

B−
{A} = 0

B−
{B} = 0

B−
{A,B} = 1

2
N{A,B}

(
bA

B + bB
A

)
�t .

8. E−
i . To lose a species with range state i through a local extinction event, a species

must undergo an extinction event in one of its regions. If the species is endemic,
this event leads to total extinction of the species. The total probability of this event
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occurring within �t is,

∑

�∈R
�∈i

Ni e��t .

As an example, in a 2-region GeoSSE system with state space S =
{{A}, {B}, {A, B}} we have,

E−
{A} = N{A}eA�t

E−
{B} = N{B}eB�t

E−
{A,B} = N{A,B} (eA + eB)�t .

The next section uses Eqs. 13–15 to define the stochastic process {�i (t) : t > 0}
that models the frequency of species in range state i at time t. The infinitesimal mean
μ�i and variance σ 2

�i
follow directly from Lemma 3.

2.5 Comparison on Diffusion-Based and Tree-BasedModels Using Simulation

In this section we show that our diffusion-based approach correctly models the tempo-
ral behaviour of range state frequencies in a GeoSSE model. To validate, we compare
our results with a tree-based approach that explicitly simulates phylogenetic trees
under the same GeoSSE parameter values using the MASTER package (Vaughan and
Drummond 2013) implemented in BEAST2 (Bouckaert et al. 2014). When simulat-
ing given a large number of species initially, N (0) >> 0, both diffusion-based and
MASTER-based simulations are conditioned only for the process to run until a specific
elapsed time T . Later in “Appendix 5.6”, when we simulate using both approaches
starting with a single species in random state, N (0) = 1, we condition the process
under both elapsed time and survival until the present. Details for setting up reaction
equations for the MASTER simulation can be found in “Appendix 5.5”.

For simulations under a diffusion, we generate sample paths on [0, T ], where T is
the simulation running time. Each simulation yields a time-series of state frequencies
for the provided SSE rate values. Simulations were generated as follows:

1. Given the following Itô stochastic differential equation (SDE) and the initial
number of species in each range state, Ni (0),∀i ∈ S,

d Ni = μi (t)dt + σi (t)dWt , (16)

where dWt is a Wiener process, we draw a sample path by using the following
approximation,

Ni (t + �t) = Ni (t) + μi (t)�t + σi (t)
√

�tUt , (17)
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where
√

�tUt ∼ √
�t N (0, 1) is a (discretized) standard Wiener process, and

μi (t) and σi (t) are computed using Eqs (7)–(8), respectively.

2. Given Ni (t + �t) for each i ∈ S from step 1, we compute the total number of
species at t + �t ∈ [0, T ]

N (t + �t) =
∑

i∈S

Ni (t + �t).

3. Next, using Ni (t) and N (t) from steps 1-2, we compute the infinitesimal mean,
μ�i (t), and infinitesimal variance, σ�i (t) using Eqs. (9)–(10), respectively. Given
μ�i (t), σ�i (t), and the following Itô SDE with the initial frequency of species of
range state i , �i (0) = Ni (0)

N (0) ,

d�i = μ�i (t)dt + σ�i (t)dWt , (18)

where dWt is a Wiener process, we draw a sample path by using the following
approximation,

�i (t + �t) = �i (t) + μ�i (t)�t + σ�i (t)
√

�tUt , (19)

where
√

�tUt ∼ √
�t N (0, 1) is a (discretized) standard Wiener process.

In Sect. 3.1, we show that the dynamic of the range state frequencies can be well-
approximated using the diffusion-based framework. We provide different examples
through numerical simulations under a variety of GeoSSE scenarios to visualize this
result. Specifically, we apply the following procedure,

1. We consider a 3-region GeoSSE model, then we simulate range state dynam-
ics using tree-based approach (via the MASTER package in BEAST2) and the
diffusion-based approach over 1000 replicates on [0, 10] time interval with 1000
time steps. Note that if one simulates over a longer time interval, then one needs to
choose larger time steps to reduce the chance that multiple events occur within �t
for the diffusion-based approach. For diffusion-based approach, at each time step,
we assign a zero value to any state with a count less than zero since the number
of species in any range states cannot be negative. This is reasonable because if
Ni (t) = 0, then some events are not permitted such as a local extinction. Note that
although some Ni ’s might be equal to 0, it is very unlikely for the whole clade to
become extinct, i.e., N (t) = 0, given a relatively large clade size at the beginning
of each process (Fig. 4) and value of each parameter we pick for the simulations
(Figs. 5, 6, 7, 8). We consider the following scenarios for the GeoSSE model,

Example 1 GeoSSE model with only within-region speciation and between-region
speciation events (Fig. 5).

Example 2 GeoSSE model with only within-region speciation and range dispersal
events (Fig. 6).
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Fig. 4 For each diffusion-based and MASTER-based simulation, we assume that we start each Ni (t)
simulation, given a relatively large clade size at the beginning, N (0) >> 0

Example 3 GeoSSE model with only within-region speciation and local extinction
events (Fig. 7).

Example 4 GeoSSE model with all the events included (Fig. 8).

2. We visualize the trajectory of mean state counts for each range state from both
diffusion and tree-based approaches. For each simulation, we start the forward-
in-time simulation given relatively large clade size for diffusion-based approach
to accurately predict the dynamics given by tree-based approach from MASTER
simulations. We also visualize stacked bar charts of expected state frequencies for
both approaches. To compute the state frequencies under the tree-based approach
across replicates, we use the following analytical formula

�i (t) = Ni (t)∑
i∈S Ni (t)

.

We simulate frequency trajectories under the diffusion-based approach using
Eq. (19). Also for diffusion-based approach, we normalize �i (t) at each time step
for each i ∈ S. Thus, keeping �i (t) ≤ 1 at any time.
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Fig. 5 Top & middle panels: the trajectories of average count of range states for endemic species (b–c)
and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-
region GeoSSE model as described in Example 1 each simulated under both diffusion-based process (red
line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates
simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies
over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the
process with N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) = �{C}(0) =
�{A,B}(0) = �{A,C}(0) = �{B,C}(0) = �{A,B,C}(0) = 1

7 . At t = 10, the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄di f f usion
{A} = 0.29,

�̄tree{A} = 0.29; �̄
di f f usion
{B} = 0.29, �̄tree{B} = 0.29; �̄

di f f usion
{C} = 0.29, �̄tree{C} = 0.28; �̄

di f f usion
{A,B} =

0.04, �̄tree{A,B} = 0.04; �̄
di f f usion
{A,C} = 0.04, �̄tree{A,C} = 0.04; �̄

di f f usion
{B,C} = 0.04, �̄tree{B,C} = 0.05;

�̄
di f f usion
{A,B,C} = 0.01, �̄tree{A,B,C} = 0.01. Simulations are conducted using the following parameter values:

wA = wB = wC = 0.03, bA
B = 0.08, bA

C = 0.10, bB
C = 0.06, bA

BC = 0.04, bB
AC = 0.12, bC

AB =
0.06, eA = eB = eC = 0, dAB = dB A = dAC = dC A = dBC = dC B = 0 (Color figure online)
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Fig. 6 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)
and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-region
GeoSSE model as described in Example 2 simulated under both diffusion-based process (red line) and tree-
based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated under
diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time using
diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process with
N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) = �{C}(0) = �{A,B}(0) =
�{A,C}(0) = �{B,C}(0) = 1

6 , �{A,B,C}(0) = 0. At t = 10, the mean frequencies for each range state

from both diffusion-based and tree-based simulations are as follows: �̄
di f f usion
{A} = 0.14, �̄tree{A} = 0.15;

�̄
di f f usion
{B} = 0.14, �̄tree{B} = 0.14; �̄

di f f usion
{C} = 0.13, �̄tree{C} = 0.13; �̄

di f f usion
{A,B} = 0.08, �̄tree{A,B} =

0.09; �̄
di f f usion
{A,C} = 0.11, �̄tree{A,C} = 0.11; �̄

di f f usion
{B,C} = 0.13, �̄tree{B,C} = 0.13; �̄

di f f usion
{A,B,C} = 0.27,

�̄tree{A,B,C} = 0.25. Simulations are conducted using the following parameter values: wA = wB = wC =
0.03, bA

B = bA
C = bB

C = bA
BC = bB

AC = bC
AB = 0, eA = eB = eC = 0, dAB = dB A = 0.03, dAC =

dC A = 0.04, dBC = dC B = 0.05 (Color figure online)
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Fig. 7 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)
and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-
region GeoSSE model as described in Example 3 simulated under both diffusion-based process (red
line) and tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates
simulated under diffusion-based process. Bottom panel: stacked bar chart showing the state frequen-
cies over time using diffusion-based approach (h) and tree-based approach (i). In both approaches, we
start the process with N (0) = 40 and the following initial state frequencies: �{A}(0) = �{B}(0) =
�{C}(0) = �{A,B}(0) = �{A,C}(0) = �{B,C}(0) = �{A,B,C}(0) = 1

7 , the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄di f f usion
{A} = 0.26,

�̄tree{A} = 0.26; �̄
di f f usion
{B} = 0.23, �̄tree{B} = 0.23; �̄

di f f usion
{C} = 0.21, �̄tree{C} = 0.21; �̄

di f f usion
{A,B} =

0.09, �̄tree{A,B} = 0.09; �̄
di f f usion
{A,C} = 0.08, �̄tree{A,C} = 0.08; �̄

di f f usion
{B,C} = 0.07, �̄tree{B,C} = 0.07;

�̄
di f f usion
{A,B,C} = 0.06, �̄tree{A,B,C} = 0.06. Simulations are conducted using the following parameter values:

wA = wB = wC = 0.03, bA
B = bA

C = bB
C = bA

BC = bB
AC = bC

AB = 0, eA = 0.01, eB = 0.02, eC =
0.025, dAB = dB A = dAC = dC A = dBC = dC B = 0 (Color figure online)
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Fig. 8 Top & middle panels: the trajectories of average count of range states for endemic species (a–c)
and widespread species (d–g) over [0, 10] time interval and over 1000 simulations runs for the three-region
GeoSSE model as described in Example 4 simulated under the diffusion-based process (red line) and
tree-based process (black line). The gray trajectories show the dynamics across 1000 replicates simulated
under diffusion-based process. Bottom panel: stacked bar chart showing the state frequencies over time
using diffusion-based approach (h) and tree-based approach (i). In both approaches, we start the process
with N (0) = 40 and the following initial state frequencies: �{A,B}(0) = �{A,C}(0) = �{B,C}(0) =
�{A,B,C}(0) = 1

4 and �{A}(0) = �{B}(0) = �{C}(0) = 0. At t = 10, the mean frequencies for

each range state from both diffusion-based and tree-based simulations are as follows: �̄di f f usion
{A} = 0.33,

�̄tree{A} = 0.33; �̄
di f f usion
{B} = 0.21, �̄tree{B} = 0.21; �̄

di f f usion
{C} = 0.25, �̄tree{C} = 0.25; �̄

di f f usion
{A,B} =

0.06, �̄tree{A,B} = 0.06; �̄
di f f usion
{A,C} = 0.06, �̄tree{A,C} = 0.06; �̄

di f f usion
{B,C} = 0.05, �̄tree{B,C} = 0.05;

�̄
di f f usion
{A,B,C} = 0.03, �̄tree{A,B,C} = 0.03. Simulations are conducted using the following parameter values:

wA = 0.09, wB = 0.06, wC = 0.07, bA
B = bA

C = bB
C = bA

BC = bB
AC = bC

AB = 0.04, eA = 0.002, eB =
0.003, eC = 0.001, dAB = dB A = 0.006, dAC = dC A = 0.003, dBC = dC B = 0.001 (Color figure
online)
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3. We find the 95% confidence intervals of expected state counts at the end time
for both diffusion and tree-based simulations for each GeoSSE scenario described
above. Then, we apply the Welch’s unequal variances t-test (Welch 1947) for
testing the following hypothesis

H0 : μ̄Ni ,tree = μ̄Ni ,diffusion

H1 : μ̄Ni ,tree �= μ̄Ni ,diffusion,

where μ̄Ni ,tree and μ̄Ni ,diffusion are population means of state counts for range i at
the end time from tree and diffusion-based approaches, respectively.

2. We also conduct the F test for testing the following hypothesis

H0 : σ̄ 2
Ni ,tree = σ̄ 2

Ni ,diffusion

H1 : σ̄ 2
Ni ,tree �= σ̄ 2

Ni ,diffusion,

where σ̄ 2
Ni ,tree

and σ̄ 2
Ni ,diffusion

are population variances of state counts for range i
at the end time from tree and diffusion-based approaches, respectively.

5. We compute ratio of two sample variances for range state i as

ri,var = s2i,diffusion
s2i,tree

,

where s2i,diffusion and s2i,tree are sample variances from diffusion- and tree-based
simulations for range state i , respectively. Then, we construct the 95% confidence
interval for ri,var.
If the diffusion-based and tree-based simulation methods are statistically indis-
tinguishable, we should fail to reject all null hypotheses and that the confidence
intervals of the ratios of variances include the value 1 at the appropriate signifi-
cance levels.
While all the diffusion-based simulations presented in themain text assume that we
always start with a relatively large clade size, this is not how phylogenetic trees are
normally simulated. Instead, most simulations generate the entire clade, beginning
with one stem or two sister lineages to represent the origin of the process. However,
the diffusion approximation assumes the number of species is large. Therefore, to
adapt our diffusion-based model for clade-generation scenarios where the initial
number of species is small, we adapted our diffusion-based simulation method
to start the process with a single species in a random state (see “Appendix 5.6”).
We show that the difference between diffusion-based and tree-based simulations
is reduced after applying the correction.
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2.6 Deriving Rate Parameters that Lead to Stationary State FrequenciesWhen N is
Large

In this section, we derive conditions for the rate parameters such that there is no change
in state frequency, �i , over time for a given a range state i ∈ S, assuming large N .
That is, we derive the conditions when d�i

dt = 0,∀i ∈ S.

Knowing that �i = Ni
N , we re-write Eqs. (13)–(14) as follows,

P
+
i = N

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∑

j∈S

∑

�∈ j
{�}=i

� jw�

︸ ︷︷ ︸
Ŵ+

i

+
∑

k∈i

∑

�∈i
� �=k

�i\{�}dk�

︸ ︷︷ ︸
D̂+

i

+
∑

j∈S
i⊂ j

� j b
i
j\i

︸ ︷︷ ︸
B̂+

i

+
∑

j∈S
| j\i |=1

∑

�∈ j\i

� j e�

︸ ︷︷ ︸
Ê+

i

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

= N P̂
+
i (20)

P
−
i = N

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0︸︷︷︸
Ŵ−

i

+
∑

k∈i|i |<R

∑

�∈R\{k}
�i dk�

︸ ︷︷ ︸
D̂−

i

+
∑

j∈S
j⊂i

1

2
�i b

j
i\ j

︸ ︷︷ ︸
B̂−

i

+
∑

�∈R
�∈i

�i e�

︸ ︷︷ ︸
Ê−

i

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= N P̂
−
i (21)

Then, Eqs. (7)–(8) can be re-written as follows

μi = N
(
P̂

+
i − P̂

−
i

)
, (22)

σ 2
i = N

(
P̂

+
i + P̂

−
i

)
. (23)

Given Eqs. (22)–(23), as N → ∞, Eqs. (9)–(10) become

μ̂�i = lim
N→∞ μ�i

= P̂
+
i − P̂

−
i , (24)

σ̂ 2
�i

= lim
N→∞ σ 2

�i

= 0. (25)

Moreover, we no longer have the stochastic component from the SDEgiven in Eq. (18).
Instead, we solve the following ordinary differential equation

d�i = μ̂�i dt
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d�i

dt
= μ̂�i . (26)

Given stationary frequency of each range state, �̂i , where
∑

i �̂i = 1, the rate
parameters must satisfy

μ̂�i = 0 ⇐⇒ P̂
+
i = P̂

−
i .

Furthermore, we assume all rate parameters must be positive, as all modeled events
have some non-zero probability of occurring. That is,

wi > 0, ei > 0, di j > 0,∀i, j ∈ R. and bs
t > 0,∀s, t ∈ S

Next, we define total rates of all events occurring in each range state i , 	total,i , as
follows

	total,i =
(

rW+
i

+ rD+
i

+ rB+
i

+ rE+
i

)
−
(

rD−
i

+ rB−
i

+ rE−
i

)
,

where rW+
i

, rD+
i
, rB+

i
, rE+

i
, rD−

i
, rB−

i
, rE−

i
consist of sums of rates across all adjacent

states that correspond to the events W +
i , D+

i , B+
i , E+

i , D−
i , B−

i , E−
i , respectively.

	total,i can also be thought as a flux for range state i . That is, it is a difference between
total incoming rates and outgoing rates. For example, in a two-region GeoSSE model,
we can define 	total,{A} as follows,

	total,{A} =
(
2wA + 0 + bA

B + eB

)
− (dAB + 0 + eA),

where we have rW+
{A}

= 2wA because within-region speciation rate wA is acting on

both endemic species with state {A} and widespread species with state {A, B}.
Lemma 4 Given a GeoSSE with state space S, set of stationary frequencies, {�̂i ,∀i ∈
S}, and initial state frequencies �i (0), the rate parameters satisfy the following system
of equations

P̂
+
i = P̂

−
i

	total,i

⎧
⎪⎨

⎪⎩

= 	total, j , if �̂i = �̂ j

> 	total, j , if �̂i > �̂ j

< 	total, j , if �̂i < �̂ j
∑

i∈S

�i (0) = 1

wi > 0, ei > 0, di j > 0, bs
t > 0,�i (0) ≥ 0, ∀i, j ∈ R and ∀s, t ∈ S. (27)

In Sect. 3.2, we demonstrate the application of Lemma 4 for a 2-region GeoSSE
model.
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2.7 Deriving Stationary State Frequencies Given Rate Parameters in a GeoSSE
Model

In this section, we use our framework to find the stationary state frequencies that
result from a given set of rate parameters. This result links the configuration of a data-
generating process to its expected pattern, which complements results from Sect. 2.6
that link expected patterns to data-generating processes. We present the result in
Lemma 5 for the case of a 2-region GeoSSE model for simplicity.

Lemma 5 Consider a 2-region GeoSSE model with state space S =
{{A}, {B}, {A, B}}. Given the rate parameters from the model and initial state fre-
quencies, �{A}(0) = �0

A, �{B}(0) = �0
B, �{A,B}(0) = �0

AB, the general solution to
Eq. (26) is given by,

� =
[
�{A}(t)
�{B}(t)

]

= C1ν1eλ1t + C2ν2eλ2t + K , (28)

and �{A,B}(t) = 1 − �{A}(t) − �{B}(t), provided that �{A}(t) + �{B}(t) ≤ 1.
Furthermore, the stationary frequencies are given by

�̂{A} = num A

denom A
, (29)

�̂{B} = 1 −
(

eA + dAB + bA
B + eB

wA + bA
B + eB

)(
num A

denom A

)
, (30)

�̂{A,B} = 1 − �̂{A} − �̂{B}, (31)

where

num A =
(
wA + bA

B + eB

)
(eB + dB A − wB) ,

denom A =
(

eA + dAB + bA
B + eB

) (
eB + dB A + bA

B + eA

)

−
(
wB + bA

B + eA

) (
wA + bA

B + eB

)
,

R = √
R1 + R2,

R1 = 4
(

bA
B

)2 + 4
(

bA
BeA + bA

BeB + bA
BwA + bA

BwB

)

+4 (eAeB + eAwA + eBwB + wAwB) ,

R2 = −2dABdB A +
(

d2
AB + d2

B A

)
,

λ1 = 1

2

(
−2bA

B − dAB − dB A − 2eA − 2eB − R
)

,

λ2 = 1

2

(
−2bA

B − dAB − dB A − 2eA − 2eB + R
)

,
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ν1 =
[− 1

2
(
bA

B+eA+wB
) (−dAB + dB A − R)

1

]

,

ν2 =
[− 1

2
(
bA

B+eA+wB
) (−dAB + dB A + R)

1

]

,

K =
[
�̂{A}
�̂{B}

]
,

C1 =
(
�0

A − K1
) (

bA
B + eA + wB

)

R
−
(
�0

B − K2
)
(dAB − dB A − R)

2R
,

C2 =
(
K1 − �0

A

) (
bA

B + eA + wB
)

R
+
(
�0

B − K2

)(
1 + dAB − dB A − R

2R

)
.

Proof Proof of Lemma 5 is given in “Appendix 5.4”. ��
We note that this strategy can be generalized to accommodate arbitrary mod-

els within the ClaSSE family. Specifically, as seen in the proof of Lemma 5 in
“Appendix 5.4”, for a ClaSSE model with |S| states, one only needs to find eigen-
values (either numerically or analytically) and eigenvectors that correspond to a
(|S| − 1) × (|S| − 1) matrix to obtain a general solution. The resulting solution
for the stationary frequencies would then reflect the parameterization of the particular
ClaSSE model variant being studied. Note that this approach of solving a matrix with
one dimension lower than the state space only holds providing that the sum of the
remaining frequencies is less than or equal to 1. This assumption, however, can be
ignored if one is to solve the full system by finding eigenvalues and eigenvectors that
correspond to a |S| × |S| matrix, and normalize the resulting stationary frequencies.

In Sect. 3.2, we use Lemma 5 using rates obtained from Lemma 4 to verify that the
system, indeed, converges to the true stationary frequencies that we observe through
simulations.

2.8 Deriving Time to Reach Stationary State Frequencies in a GeoSSEModel

In this section, we describe a method for deriving time to reach stationary state fre-
quencies in a 2-region GeoSSE model. Note that we have assumed a relatively large
clade size at the start of the process for simulating �i (t). Thus, the following is time
to stationary frequencies since some relatively large clade size (Fig. 4).

From Lemma 5 in Sect. 2.7, we have derived an analytical expression to compute
state frequencies over time, given large N . In order to find the time to stationarity for
each range state, we define the following procedure, as follows

1. Given the initial state frequencies, �0
A,�0

B,�0
AB , and that the system runs from

[0, T ], we find the mixing time t∗i for all i ∈ S such that,

∣∣�i
(
t∗i
)− �i

(
t∗i − �t

)∣∣ < ε, (32)
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for some �t > 0 and ε > 0. t∗i is the stationary time for the range state i , given
the ε value.

2. We visually check that t∗i derived from the theory reconciles with what we observe
from simulations.

We apply this procedure to an example in Sect. 3.2.

3 Results

3.1 Diffusion-Based Approach is a Good Approximation to Tree-Based Approach
for Describing State Dynamics

In this section, we visualize the range state dynamics using tree-based and diffusion-
based approaches under several GeoSSE scenarios described in Sect. 2.5 (Figs. 5, 6,
7, 8). In all these scenarios, we show that the null hypothesis that the average counts
of the ranges states at the end of the simulation time between these approaches are
equal cannot be rejected (Table 1). This shows that the diffusion-based approach is a
good approximation for means to the tree-based approach.

In most cases, we observe that data (state counts and frequencies) simulated under
diffusion-based approach relatively have higher variances compared to data simulated
under tree-based approach (Table 1). The 95% confidence interval for the ratio of two
variances, shown in Table 1, gives an interval estimate on how much variation one
would expect to get for generating state patterns under the diffusion process.Moreover,
assuming that data simulated using the MASTER package (Vaughan and Drummond
2013) represent the true distribution of range state counts, this observation implies that
diffusion process is not a good approximation for the second moment of the sampled
state state frequencies. While this is not ideal, this is to be expected since diffusion
is an approximation method to a generative model. Therefore, we should not expect
state counts from both approaches to be drawn from the same distribution.

3.2 Multiple Rate Scenarios Lead to the Same Stationary State Frequencies

We apply the theoretical results from Sects. 2.6–2.8 for a 2-region GeoSSE model.
The different sets of relationships between rate parameters given stationary frequen-
cies in Example 5 are derived using Mathematica (Wolfram Research Inc 2023). In
this example, we show that there exist alternative rate scenarios leading to the same
stationary frequencies. Furthermore, using Lemma 5, we confirm that the stationary
frequencies observed from simulations converge to the theoretical frequencies given
the rate parameters, which are derived using Lemma 4. Using the procedure described
in Sect. 2.8, we compute time to stationary frequencies in Example 5 for each rate
scenario and different sets of initial frequencies.

Example 5 We consider a 2-region GeoSSE model with range state space S =
{{A}, {B}, {A, B}}. We find a set of rate parameters and initial state frequencies that
give the following stationary range state frequencies,
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�̂{A} = 1

3
, �̂{B} = 1

3
, �̂{A,B} = 1

3
.

That is, by Eq. (27), we have,

2

3
wA + 1

3
bA

B + 1

3
eB = 1

3
(dAB + eA)

2

3
wB + 1

3
bA

B + 1

3
eA = 1

3
(dB A + eB)

1

3
(dAB + dB A) = 1

3
(bA

B + eA + eB)

2wA + bA
B + eB − eA − dAB = 2wB + bA

B + eA − eB − dB A

2wB + bA
B + eA − eB − dB A = dAB + dB A − bA

B − (eA + eB)
∑

i∈S

�i (0) = 1, �{A}(0),�{B}(0),�{A,B}(0) ≥ 0

wA, wB, eA, eB , dAB , dB A, bA
B > 0. (33)

We found a set of solutions to Eq. (33). That is,

wA = 1

2

(
−2bA

B + 2dAB + dB A − 2eB

)

wB = 1

2
(−dAB + 2eB)

eA = −bA
B + dAB + dB A − eB

0 < bA
B ≤ dAB − eB, eB < dAB < 2eB

dB A > 0, eB > 0. (34)

Another set of solutions is given by,

wA = 1

2

(
−2bA

B + 2dAB + dB A − 2eB

)

wB = 1

2
(−dAB + 2eB)

eA = −bA
B + dAB + dB A − eB

bA
B > 0, 0 < dAB ≤ eB

dB A > 2
(

bA
B − dAB + eB

)
, eB > 0. (35)

Next, we simulate the range state dynamics, shown in Fig. 9, using the method
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Fig. 9 The expected range state dynamics over [0, 250] time interval and over 100 trajectories for
the two-region GeoSSE model as described in Example. 5. Each process is simulated under the fol-
lowing initial state frequencies and rate parameters according to Eq. (34): (Left panel) �{A}(0) =
�{B}(0) = 0.45,�{A,B}(0) = 0.1, wA = 0.090, eA = 0.176, wB ≈ 0, eB = 0.008, dAB =
0.015, dB A = 0.173, bA

B = 0.004; (Right panel) �{A}(0) = 0.1,�{B}(0) = �{A,B}(0) = 0.45, wA =
0.160, eA = 0.315, wB = 0.002, eB = 0.009, dAB = 0.014, dB A = 0.310, bA

B = 0.001. In both pan-

els, E(�̂{A}) → 1
3 ,E(�̂{B}) → 1

3 ,E(�̂{A,B}) → 1
3 . Using Lemma 5, we confirm that these expected

stationary frequencies from simulations converge to the theoretical, and true stationary frequencies given
these sets of rates. Furthermore, using the procedure described in Sect. 2.8 with ε = 10−9, we found that
the stationary frequencies are reached at: t∗A = 114.114, t∗B = 111.862, t∗AB = 102.603 (Left panel);
t∗A = 76.827, t∗B = 75.576, t∗AB = 70.320 (Right panel) (Color figure online)

described in Sect. 2.5 and rate parameters chosen according to Eq. (34).
To show that there are multiple rate scenarios that lead to the same stationary distri-

bution, we simulate the range state dynamics, shown in Fig. 10, using rate parameters
that satisfy the alternative set of solutions described in Eq. (35), but do not satisfy
Eq. (34).

3.3 Comparing Our Method of Computing Stationary State Frequencies with
Existing Literature

In this section,we compare ourmethod for computing stationary state frequencies from
rate parameters introduced in Sect. 2.7 with another method used in diversitree pack-
age (FitzJohn 2012) for the ClaSSE (Goldberg and Igić 2012) and GeoSSE (Goldberg
et al. 2011) models. Although the technique used in diversitree has not been dis-
cussed in any SSE papers, such as the papers introducing the MuSSE (FitzJohn 2012),
ClaSSE (Goldberg and Igić 2012), and GeoSSE (Goldberg et al. 2011) models, the
technique applies projection matrix models that are widely used in the context of pop-
ulation biology to obtain ClaSSE and GeoSSE stationary frequencies (pers. comm. E.
E. Goldberg and R. FitzJohn). Originally developed for applications in discrete-time
models with either size-structured or age-structured population (Van Groenendael
et al. 1988), this approach has also been adapted for continuous-time models with

123



A Diffusion-Based Approach for Simulating… Page 31 of 46   101 

Fig. 10 The expected range state dynamics over [0, 60] time interval and over 100 trajectories for the
two-region GeoSSE model as described in Example. 5. Each process is simulated under the following
initial state frequencies and rate parameters according to Eq. (35): (Left panel) �{A}(0) = �{B}(0) =
0.45,�{A,B}(0) = 0.1, wA = 0.107, eA = 0.309, wB = 0.008, eB = 0.008, dAB = 0.001, dB A =
0.405, bA

B = 0.089; (Right panel) �{A}(0) = 0.1,�{B}(0) = �{A,B}(0) = 0.45, wA = 0.049, eA =
0.470, wB = 0.005, eB = 0.008, dAB = 0.006, dB A = 0.843, bA

B = 0.371. In both panels, E(�̂{A}) →
1
3 ,E(�̂{B}) → 1

3 ,E(�̂{A,B}) → 1
3 .UsingLemma5,we confirm that these expected stationary frequencies

from simulations converge to the theoretical, and true stationary frequencies given these sets of rates.
Furthermore, using the procedure described in Sect. 2.8 with ε = 10−9, we found that the stationary
frequencies are reached at: t∗A = 53.153, t∗B = 51.952, t∗AB = 48.048 (Left panel); t∗A = 30.781, t∗B =
30.330, t∗AB = 28.378 (Right panel) (Color figure online)

the latter structured population (Kapur 1979). Under this approach, one would cre-
ate a square matrix with entries that map the state of a structured population from
one time to the next. Then, the dominant eigenvalue of such matrix represents
the overall population growth rate with its eigenvector represents the stable stage
distribution (Van Groenendael et al. 1988).

Through examples below we find that our method returns similar state frequencies
to those computed under the projection matrix model in diversitree package (FitzJohn
2012). For example, under the following rate parameters in a two-region GeoSSE
model,

wA = 0.01, wB = 0.02, bA
B = 0.003, eA = 0.169, eB = 0.008,

dAB = 0.002, dB A = 0.178,

our method gives �̂{A} ≈ 0.057, �̂{B} ≈ 0.506, �̂{A,B} ≈ 0.437 while the pro-
jection matrix approach implemented in diversitree returns �̂{A} ≈ 0.055, �̂{B} ≈
0.490, �̂{A,B} ≈ 0.455. Another example using the following rate parameters,

wA ≈ 0.0006, wB ≈ 0.0003, bA
B ≈ 0, eA ≈ 0.0048,

eB ≈ 0.0045, dAB ≈ 0.0370, dB A ≈ 0.03703,
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Fig. 11 The trajectories ofmean counts of range states for endemic species (a–c) andwidespread species (d–
g) over the [0, 10] time interval. Trajectories were simulated under the diffusion-based process (red line) and
tree-based process (black line), starting with 1 species in a random state. For each starting state, we simulate
150 trajectories (1050 trajectories in total) for each approach. The gray trajectories show the dynamics across
1050 replicates simulated under diffusion-based process. Simulations are conducted using the following
parameter values: wA = 0.36, wB = 0.24, wC = 0.28, bA

B = bA
C = bB

C = bA
BC = bB

AC = bC
AB =

0.16, eA = 0.02, eB = 0.03, eC = 0.01, dAB = dB A = 0.12, dAC = dC A = 0.06, dBC = dC B = 0.02
(Color figure online)

we have �̂{A} ≈ 0.0996, �̂{B} ≈ 0.0996, �̂{A,B} ≈ 0.8008 while the other method
produces �̂{A} ≈ 0.0997, �̂{B} ≈ 0.0997, �̂{A,B} ≈ 0.8006.

4 Discussion and Conclusion

In our paper, we have constructed a general framework using diffusion processes
to study state dynamics over time from a general state-dependent speciation and
extinction model with both anagenetic and cladogenetic state transitions, making it
suitable for studying members of the ClaSSE model family (Goldberg and Igić 2012;
Magnuson-Ford and Otto 2012; Goldberg et al. 2011; Freyman and Höhna 2018). We
have applied this framework under various diversification scenarios for the GeoSSE
model (Goldberg et al. 2011), a special case of the ClaSSE model, as described in
Sects. 2.4–2.5. Our framework can easily be applied to other discrete state-dependent
diversification models, such as simpler BiSSE and MuSSE models (Maddison et al.
2007; FitzJohn 2012) and Markovian Binary Tree (MBT) models (Kontoleon 2006;
Hautphenne et al. 2009; Soewongsono et al. 2023). Through simulations and statis-
tical analyses, we have shown that state dynamics simulated under diffusion-based
approach and tree-based approach are comparable, given that we start the simula-
tions with relative large clade size (Figs. 5, 6, 7, 8, Table 1). We also obtain good
agreement between diffusion-based and tree-based simulations when beginning the
process with a single species in random state, after applying a model-based correc-
tion procedure (“Appendix 5.6”, Fig. 12). We also show, using a statistical test, that
our diffusion framework offers a good approximation for the mean of state counts.
This result allows one to understand how data generating process i.e. rate parameters
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from a diversification model can explain observed state patterns without using phy-
logenetic information. For inferring rates using empirical state data at present, this
diffusion-based approach to simulate state dynamics could be treated as a way to vali-
date whether rates estimated from biological datasets using phylogenetic methods are
sensible.

Moreover, in Sects. 2.6–2.7, we have derived theoretical results to deduce the
expected state frequencies generated by a set of rates, and what possible rates will
generate a given set of expected state frequencies. These results are generalizable to
accommodate a system having more states, and provide an alternative way to validate
the correctness of SSE simulation and inferencemethods. Additionally, in Sect. 2.8, we
described a procedure to compute the minimum time for an SSE process to reach sta-
tionarity in its state frequencies. We have applied these results for a 2-region GeoSSE
model. As seen in Figs. 9 and 10, we showed that there exist multiple different rate sce-
narios that can lead to the same stationary behaviour of state pattern. Our framework
also creates an alternative mathematical approach to tree-based models that could help
establish conditions for which SSE model parameters are and are not identifiable.

We next plan to study the time for perturbed SSE models to reach stationarity.
This would help biologists understand how evolutionary systems re-equilibrate and
how long that re-equilibration takes following perturbation. In particular, we plan to
apply this framework to study scenarios where SSE rates shift across time (Condamine
et al. 2013; Quintero et al. 2023). Scenarios with time-heterogeneous rates are par-
ticularly interesting for GeoSSE model variants, mainly because regions experience
changes in their features (e.g., region size, distance with nearby regions, separation
types) over time. As studied in Landis et al. (2022) and Swiston and Landis (2023),
paleogeographically-changing regional features should influence rates of speciation,
extinction, and dispersal over time. Mathematical knowledge of expected state (range)
frequencies for arbitrary biogeographical systems could help biodiversity researchers
assess whether certain clades of regions are within or between states of equilibrium.

5 Appendix

5.1 Proof of Lemma 1

From Eq. (1), we compute g′(N ) and g′′(N ),

g′(N ) = ∂g

∂ N
= ∂

(∑
i h(ni )

)

∂ N

= ∂
(∑

i h(ni )
)

∂ni
(For each i, the other partial derivatives w.r.t j �= iequals 0)

= ∂g

∂ni

= ∂ X

∂ni
. (36)
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Similarly, we have,

g′′(N ) = ∂2X

∂n2
i

. (37)

Now applying Theorem (1) to Eq. (1), we have,

μX =
∑

i

∂ X

∂ni
μi + 1

2

∑

i

∂2X

∂n2
i

σ 2
i , (38)

σ 2
X =

∑

i

(
∂ X

∂ni

)2

σ 2
i . (39)

��

5.2 Proof of Lemma 2

By definition, following Eqs. 1.2–1.3 of Chapter 5 in Karlin and Taylor (1981), we
define the infinitesimal meanμi and infinitesimal variance σ 2

i of the stochastic process
{Ni (t) : t > 0} as follows,

μi = lim
�t→0

1

�t
E (Ni (t + �t) − Ni (t)|Ni (t) = Ni )

= lim
�t→0

1

�t
{E(Ni (t + �t)) − E(Ni (t)|Ni (t) = Ni )}

= lim
�t→0

1

�t
{E(Ni (t + �t)) − Ni },

σ 2
i = lim

�t→0

1

�t
E

(
(Ni (t + �t) − Ni (t))

2|Ni (t) = Ni

)

= lim
�t→0

1

�t
E

(
N 2

i (t + �t) − 2Ni (t)Ni (t + �t) + N 2
i (t)|Ni (t)

)

= lim
�t→0

1

�t
{E
(

N 2
i (t + �t)

)
− 2NiE (Ni (t + �t)) + N 2

i }.

By definition of the first-order and second-order moments we have,

E(Ni (t + �t)) = (Ni + 1)P+
i �t + (Ni − 1)P−

i �t + (Ni )Pi�t

= Ni
(
P

+
i + P

−
i + Pi

)
�t + (

P
+
i − P

−
i

)
�t

= Ni + (
P

+
i − P

−
i

)
�t,

E(N 2
i (t + �t) = (Ni + 1)2P+

i �t + (Ni − 1)2P−
i �t + (Ni )

2
Pi�t .
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Thus,

μi = P
+
i − P

−
i , (40)

σ 2
i = P

+
i + P

−
i . (41)

��

5.3 Proof of Lemma 3

We compute the following and substitute to Eqs. (2)–(3).

∂�i

∂ Ni
= ∂

∂ Ni

⎛

⎝ Ni∑
k∈s
k �=i

Nk + Ni

⎞

⎠

=
∑

k∈S
k �=i

Nk

(∑
k∈S Nk

)2

= 1 − �i

N
,

∂�i

∂ N j
= ∂

∂ N j

⎛

⎝ Ni∑
k∈s
k �=i

Nk + Ni

⎞

⎠ , j �= i

= − Ni

N 2

= −�i

N
,

∂2�i

∂ N 2
i

= ∂

∂ Ni

(
1 − �i

N

)

= − ∂�i
∂ Ni

N − (1 − �i )
∂ N
∂ Ni

)

N 2

= −(1 − �i ) − (1 − �i )

N 2

= −2(1 − �i )

N 2 ,

∂2�i

∂ N 2
j

= ∂

∂ N j

(
− Ni

N 2

)
, j �= i

= Ni (2N )

N 4

= 2�i N

N 3

= 2�i

N 2 .
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Thus,

μ�i =
∑

j∈S

∂�i

∂ N j
μ j + 1

2

∑

j∈S

∂2�i

∂ N 2
j

σ 2
j

= ∂�i

∂ Ni
μi +

∑

j∈S
j �=i

∂�i

∂ N j
μ j + 1

2

∂2�i

∂ N 2
i

σ 2
i + 1

2

∑

j∈S
j �=i

∂2�i

∂ N 2
j

σ 2
j

= 1 − �i

N
μi +

∑

j∈S
j �=i

−�i

N
μ j − 1 − �i

N 2 σ 2
i +

∑

j∈S
j �=i

�i

N 2 σ 2
j

=
(
1 − �i

N

)(

μi − σ 2
i

N

)

+
∑

j∈S
j �=i

�i

N

(

−μ j + σ 2
j

N

)

= 1

N

(

μi − σ 2
i

N

)

+ �i

N

∑

j∈S

(

−μ j + σ 2
j

N

)

, (42)

σ 2
�i

=
∑

j∈S

(
∂�i

∂ N j

)2

σ 2
j

=
(

∂�i

∂ Ni

)2

σ 2
i +

∑

j∈S
j �=i

(
∂�i

∂ N j

)2

σ 2
j

=
(
1 − �i

N

)2

σ 2
i +

∑

j∈S
j �=i

(
�i

N

)2

σ 2
j

=
(σi

N

)2
(1 − 2�i ) +

(
�i

N

)2∑

j∈S

σ 2
j , (43)

where μi and σ 2
i follow Eqs. (7)–(8), respectively. ��

5.4 Proof of Lemma 5

We find �̂i such that limt→∞ �i (t) = �̂i for all i ∈ S, S = {{A}, {B}, {A, B}}.
For i = {A} we have,

μ̂�A = P̂
+
A − P̂

−
A

=
[
wA

(
�{A} + �{A,B}

)+ �{A,B}bA
B + eB�{A,B}

]
− [

dAB�{A} + eA�{A}
]

= �{A} (wA − eA − dAB) + �{A,B}
(
wA + bA

B + eB

)
. (44)
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For i = {B} we have,

μ̂�B = P̂
+
B − P̂

−
B

=
[
wB

(
�{B} + �{A,B}

)+ �{A,B}bA
B + eA�{A,B}

]
− [

dB A�{B} + eB�{B}
]

= �{B} (wB − eB − dB A) + �{A,B}
(
wB + bA

B + eA

)
. (45)

For i = {A, B} we have,

μ̂�AB = P̂
+
AB − P̂

−
AB

= [
dAB�{A} + dB A�{B}

]−
[
bA

B�{A,B} + (eA + eB)�{A,B}
]

= (
dAB�{A} + dB A�{B}

)− �{A,B}
(

bA
B + eA + eB

)
. (46)

Thus, we want to find the general solution for the following system of differential
equations

d�{A}
dt

= �{A} (wA − eA − dAB) + �{A,B}
(
wA + bA

B + eB

)
, (47)

d�{B}
dt

= �{B} (wB − eB − dB A) + �{A,B}
(
wB + bA

B + eA

)
, (48)

d�{A,B}
dt

= (
dAB�{A} + dB A�{B}

)− �{A,B}
(

bA
B + eA + eB

)
. (49)

given initial state frequencies �{A}(0) = �0
A,�{B}(0) = �0

B,�{A,B}(0) = �0
AB .

However, since �̂{A} + �̂{B} + �̂{A,B} = 1, we can always derive �̂{A,B} using
�̂{A} and �̂{B}. Therefore, we want to solve the following system instead.

d�{A}
dt

= �{A} (wA − eA − dAB) + �{A,B}
(
wA + bA

B + eB

)
, (50)

d�{B}
dt

= �{B} (wB − eB − dB A) + �{A,B}
(
wB + bA

B + eA

)
. (51)

Since �{A}(t) + �{B}(t) + �{A,B}(t) = 1, we have,

d�{A}
dt

= �{A}
(
−eA − dAB − bA

B − eB

)
− �{B}

(
wA + bA

B + eB

)

+
(
wA + bA

B + eB

)
, (52)

d�{B}
dt

= �{B}
(
−eB − dB A − bA

B − eA

)
− �{A}

(
wB + bA

B + eA

)

+
(
wB + bA

B + eA

)
. (53)
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We write the above system in a matrix form as follows,

�
′ = M� + r, (54)

where

�
′ =

[
�

′
{A}

�
′
{B}

]

, � =
[
�{A}
�{B}

]
,

M =
⎡

⎣
−
(

eA + dAB + bA
B + eB

)
−
(
wA + bA

B + eB

)

−
(
wB + bA

B + eA

)
−
(

eB + dB A + bA
B + eA

)

⎤

⎦ ,

r =
[
wA + bA

B + eB
wB + bA

B + eA

]
. (55)

First, we find the complimentary solution to the following equation using eigenval-
ues and eigenvectors of matrix M ,

�
′ = M�. (56)

Using Mathematica, the eigenvalues (λ1, λ2) and eigenvectors (ν1, ν2) of M are given
by,

λ =
[
λ1
λ2

]
(57)

=
[ 1
2

(−2bA
B − dAB − dB A − 2eA − 2eB − R

)

1
2

(−2bA
B − dAB − dB A − 2eA − 2eB + R

)
]

, (58)

ν1 =
[− 1

2
(
bA

B+eA+wB
) (−dAB + dB A − R)

1

]

, (59)

ν2 =
[− 1

2
(
bA

B+eA+wB
) (−dAB + dB A + R)

1

]

, (60)

where

R = √
R1 + R2,

R1 = 4
(

bA
B

)2 + 4
(

bA
BeA + bA

BeB + bA
BwA + bA

BwB

)

+4 (eAeB + eAwA + eBwB + wAwB) ,

R2 = −2dABdB A +
(

d2
AB + d2

B A

)
.

The complimentary solution for Eq. (56) is given by,

�C = C1ν1eλ1t + C2ν2eλ2t , (61)
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where C1 and C2 are arbitrary constants.
Next, we find the particular solution �P for Eq. (54) using the method of

undetermined coefficients. Suppose the solution �P is of the form

�P =
[

K1
K2

]
, �

′
P =

[
0
0

]
. (62)

Substitute Eq. (62) to Eq. (54) we have,

�
′
P = M�P + r. (63)

That is, we want to solve the following system of linear equations,

(
eA + dAB + bA

B + eB

)
K1 +

(
wA + bA

B + eB

)
K2 = wA + bA

B + eB (64)
(
wB + bA

B + eA

)
K1 +

(
eB + dB A + bA

B + eA

)
K2 = wB + bA

B + eA. (65)

Thus,

K1 =
(
wA + bA

B + eB

)
(eB + dB A − wB)

(
eA + dAB + bA

B + eB

) (
eB + dB A + bA

B + eA

)
−
(
wB + bA

B + eA

) (
wA + bA

B + eB

)

= num A

denom A
. (66)

Substitute Eq. (66) to Eq. (64) to get,

K2 = 1 −
(

eA + dAB + bA
B + eB

wA + bA
B + eB

)(
num A

denom A

)
. (67)

Therefore, the general solution is given by,

� = �C + �P

= C1ν1eλ1t + C2ν2eλ2t + K , (68)

where

K =
[

K1
K2

]
. (69)

By taking a limit of Eq. (68) as t → ∞, the exponential terms in Eq. (68) will approach
0. Therefore, we have,

�̂ = lim
t→∞ �
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[
�̂{A}
�̂{B}

]
=
[

K1
K2

]
. (70)

�̂{A} and �̂{B} from Eq. (70) are the stationary frequencies for state {A} and {B},
respectively, as shown in Lemma 5.

Next, to get the general solution to the system in Eq. (54), we find the constants,
C1 and C2 by substituting the initial value condition to Eq. (68) for t = 0. We have,

C1

[− 1
2
(
bA

B+eA+wB
) (−dAB + dB A − R)

1

]

+

C2

[− 1
2
(
bA

B+eA+wB
) (−dAB + dB A + R)

1

]

+
[

K1
K2

]
=
[
�0

A
�0

B

]
. (71)

That is, we solve the following system of linear equations,

C1

(
R + dAB − dB A

2
(
bA

B + eA + wB
)

)

+ C2

(
dAB − dB A − R

2
(
bA

B + eA + wB
)

)

= �0
A − K1, (72)

C1 + C2 = �0
B − K2. (73)

Thus,

C1 =
(
�0

A − K1
) (

bA
B + eA + wB

)

R
−
(
�0

B − K2
)
(dAB − dB A − R)

2R
. (74)

Then, substitute Eq. (74) to Eq. (73) we get,

C2 =
(
K1 − �0

A

) (
bA

B + eA + wB
)

R
+
(
�0

B − K2

)(
1 + dAB − dB A − R

2R

)
.(75)

��

5.5 Simulating Range State Dynamics UsingMASTER

Wecan express events inMASTERforGeoSSEusing the following reaction equations.

Ŝ[{i}] ei−→ R̂[i] + L[i], (extinction of endemic species in region i)

Ŝ[{i}] di j−−→ Ŝ[{i} ∪ { j}] + G[ j], (dispersal from region i to region j)

Ŝ

⎡

⎣
⋃

i∈R

{i}
⎤

⎦
e j−→ Ŝ

⎡

⎣
⋃

i∈R;i �= j

{i}
⎤

⎦+ L[ j], (local extinction in region j)

Ŝ

⎡

⎣
⋃

i∈R

{i}
⎤

⎦
bi

j−→ Ŝ

⎡

⎣
⋃

i∈R;i �= j

{i}
⎤

⎦+ Ŝ[{ j}], (between-region speciation into ranges{i}and{ j})
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Ŝ

⎡

⎣
⋃

i∈R

{i}
⎤

⎦
w j−−→ Ŝ

⎡

⎣
⋃

i∈R

{i}
⎤

⎦+ S[ j] + G[ j], (within region speciation in region j for a widespread species)

Ŝ[{i}] wi−→ Ŝ[{i}] + Ŝ[{i}] + G[i], (within region speciation in regioni for an endemic species),

where Ŝ[{i}] indicates the number of endemic species with range {i}, Ŝ
[⋃

i∈R{i}]
indicates the number of widespread species with range

⋃
i∈R{i}, R̂[i] indicates the

number of species in region i , L[i] indicates a species lost in region i , and G[i]
indicates a species gain in region i .

5.6 Simulation Under the DiffusionModel Starting with a Single Species

We propose a procedure to correct the diffusion-based simulation for state dynamics
when starting with a single species in random states under an SSE model, as demon-
strated for a GeoSSE model. Note that without this correction procedure, the bias
between the tree-based and diffusion-based approaches is apparent as described in
Example 6.

Example 6 Consider a 3-region GeoSSE system with state space S =
{{A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}. Suppose we start with a single
species in state {A, B}.
That is, at t = 0 we have

N{A} = 0, N{B} = 0, N{C} = 0, N{A,B} = 1, N{A,C} = 0, N{B,C} = 0, N{A,B,C} = 0.

It is very likely, given a small total species number, for diffusion-based simulation
to give a pattern at the next time step such as the one below,

N{A} = 0, N{B} = 0, N{C} = 1, N{A,B} = 1, N{A,C} = 0, N{B,C} = 0, N{A,B,C} = 0.(76)

The transition described in Eq. (76) cannot be explained using just one GeoSSE
event. Furthermore, since the diffusion parameters for simulating species count across
states, described in Eqs. (7)–(8), dynamically depend on the number of species in each
state, the differencebetweendiffusion-based and tree-based simulations becomesmore
apparent over time (Fig. 11).

In general, the correction procedure works by preventing a diffusion-based path to
enter a disallowed regime when there are few species (Table 2). This procedure only
applies for simulating state counts. However, we can get the state frequencies from
species counts in each state using the following formula,

�i (t) = Ni (t)∑
i∈S Ni (t)

.

1. For each simulated trajectory for state counts under the diffusion-based approach
where we start with a single species in a random state, we simulate the next path
according to the procedure described in Sect. 2.5.
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Fig. 12 The trajectories of average count of range states for endemic species (a–c) and widespread species
(d–g) over the [0, 10] time interval simulated under the diffusion-based process (red line) after applying
the correction procedure and tree-based process (black line), starting with 1 species in a random state.
For each starting state, we simulate 150 trajectories (1050 trajectories in total) for each approach. The gray
trajectories show the dynamics across 1050 replicates simulated under diffusion-based process. Simulations
are conducted using the following parameter values: wA = 0.36, wB = 0.24, wC = 0.28, bA

B = bA
C =

bB
C = bA

BC = bB
AC = bC

AB = 0.16, eA = 0.02, eB = 0.03, eC = 0.01, dAB = dB A = 0.12, dAC =
dC A = 0.06, dBC = dC B = 0.02 (Color figure online)

2. Next, we compute the difference in paths at t and t + �t . That is, we find

N(t + �t) − N(t) = {Ni (t + �t) − Ni (t)}∀i∈S, (77)

where S is the range state space of the GeoSSE model. Then, round each element
of the vector in Eq. (77) to the nearest integer value.

3. We check whether this difference in paths is in the list described in Table 2. If
it is not in the list, we reject this future path and re-sample until it satisfies the
table. In effect, this correction approximates model-based conditional sampling
for diffusion-based paths.

4. Repeat steps 1–2 until we reach a pathwhere every state has at least 1 representative
species, ∀i : Ni (t) > 0. Then, we generate the future paths as usual, according to
the procedure described in Sect. 2.5.

As seen in Fig. 12, the difference between diffusion-based and tree-based simulation
is reduced after applying the correction procedure. Note that it is possible to apply this
correction procedure to any discrete-state SSEmodels bymodifying the table (Table 2)
according to events described by the model. Also, this procedure only minimizes the
difference between diffusion-based and tree-based trajectories as it is still possible for
a diffusion-based simulation to construct disallowed paths at a later time, despite the
starting condition. However, these differences become negligible for as N (t) >> 0
for our example.
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