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Abstract

We establish a general framework using a diffusion approximation to simulate forward-in-
time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE)
models. We apply the framework to various two- and three-region geographic-state speciation-
extinction (GeoSSE) models. We show that the species range state dynamics simulated under
tree-based and diffusion-based processes are comparable. We derive a method to infer rate
parameters that are compatible with given observed stationary state frequencies and obtain
an analytical result to compute stationary state frequencies for a given set of rate parameters.
We also describe a procedure to find the time to reach the stationary frequencies of a ClaSSE
model using our diffusion-based approach, which we demonstrate using a worked example for
a two-region GeoSSE model. Finally, we discuss how the diffusion framework can be applied
to formalize relationships between evolutionary patterns and processes under state-dependent
diversification scenarios.

Keywords: evolution, speciation, extinction, diffusion processes, branching processes, sta-
tionary frequencies.

1 Introduction

The branching events of a phylogenetic tree exhibit a pattern that stores information about the
underlying speciation and extinction processes [29]. Nee et al. [29] treated both speciation and ex-
tinction as a constant-rate birth-death process by which lineages give birth to new lineages (specia-
tion) at a rate λ and lineages die (extinction) at a rate µ. Speciation and extinction rates, however,
are expected to vary idiosyncratically among phylogenetic lineages and over geological timescales.
Workers have designed birth-death models to study a variety of intrinsic and extrinsic factors that
might shape diversification rates. Species age [1, 11, 32] and inherited traits [6, 7, 18, 25, 31] are
two types of intrinsic factors thought to drive diversification rates, whereas environment [4, 30]
and geography [10, 21, 34] are common extrinsic factors of interest. In the end, a common goal of
these models is to infer the underlying event rates given an observed phylogenetic pattern either
through likelihood-based [27, 33, 24] or likelihood-free approaches [13, 20, 29, 35, 39].

Fundamentally, birth-death processes model the random arrival times of discrete events that
generate or “build” a phylogenetic tree over time [29, 25]. As an alternative to this tree-based
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representation of the process, recent work [3] introduced an equivalent diffusion-based represen-
tation for a class of birth-death models with state-dependent rates, known as state-dependent
speciation-extinction (SSE) models [25]. As noted by [3], population genetics theory has ben-
efited immensely from diffusion-based approximations to population-based models of allele fre-
quency change, diffusion-based approximations of birth-death models remain underexplored in the
phylogenetics literature. Despite the widespread popularity of birth-death models among evolu-
tionary biologists, these models recently entered a phase of intense but overdue scrutiny to bet-
ter understand what the models can and cannot estimate reliably when fitted to real biological
datasets [5, 37, 23, 19, 22, 28]. This has created demand for new frameworks to understand the
mathematical properties of these complex stochastic processes to guide biological research programs.

As mentioned above, applying diffusion processes in the macroevolutionary context is not new,
and was recently applied by [3] to study the properties of the BiSSE [25] and QuaSSE [6] mod-
els. Our work begins by extending the diffusion-based BiSSE representation of [3] to a general
multi-state SSE model that allows for both cladogenetic and anagenetic state changes, known as
the ClaSSE model [9]. We then show how our formulation may be used to determine the rela-
tionship between a set of SSE rates and their implied stationary state frequencies. Inverting this
perspective, we show that our framework correctly delimits classes of SSE rate values that yield
a given set of stationary frequencies. This establishes a many-to-one mapping of SSE rates on to
stationary frequencies. After introducing our general framework for ClaSSE models, we apply it to
a special geographical case of the ClaSSE model, known as the GeoSSE model [10]. We choose the
GeoSSE model because it possesses a complex but structured relationship among its parameters
and its constituent events – i.e. dispersal, within-region speciation, between-region speciation, and
local extinction – that impact lineages over evolutionary time. We then validate our theoretical re-
sults by simulating state frequency trajectories using both tree-based and diffusion-based simulators.

The rest of the paper is organized as follows. Firstly, in Section 2.1, we give a brief overview
of SSE models in general. In Section 2.2 we visit relevant results in the theory of stochastic
process, then in Section 2.3 we apply our framework to analyze the ClaSSE model, and later for
the GeoSSE model with arbitrary number of regions in Section 2.4. Following these, in Sections 2.5
and 2.6 we present a method for simulating state dynamics under our framework and deriving
rate parameters given stationary state frequencies. In Section 2.7, we derive a result to compute
theoretical stationary state frequencies given rate parameters. Moreover, in Section 2.8, we describe
a procedure to compute time to reach stationary frequencies in a 2-region GeoSSE system using
results derived in Section 2.7. Furthermore, in Section 3.1, we show, through simulation examples,
that our diffusion-based framework offers a good approximation for simulating range state dynamics
when comparing to tree-based approach. In Section 3.2, using an example, we show the existence of
alternative rate scenarios that lead to the same stationary state frequencies. Additionally, we apply
results derived in Section 2.7 and Section 2.8 to that example in Section 3.2. Lastly, in Section 4,
we summarize our results and discuss promising ways to study pattern-process relationships for
data generated by SSE models, and ideas for future work using our framework.

2 Methods

This section describes the framework for how construct our diffusion approximation for a ClaSSE
model to analyze the dynamics of states through time. Key results include derivations of the
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transition probabilities and the infinitesimal mean and variance parameters of the diffusion equation.
We describe and implement the methods for simulating the evolution of state frequencies, and derive
relevant results for the stationary conditions, focusing on two- and three-region GeoSSE models,
which are special cases of the ClaSSE model.

2.1 Overview of state-dependent speciation and extinction models

In this section, we give a brief overview of SSE models by highlighting the key assumptions and
different events occurring along lineages. Then, we briefly re-visit a particular SSE model type, the
GeoSSE model [10]. Then, we guide towards how to shift from tree-based perspective to non-tree-
based perspective to derive our object of interest.

In general, SSE models are stochastic branching processes with state-dependent birth (specia-
tion) and death (extinction) rates. The states can either be discrete or continuous [25, 6, 7] and
can represent various things, ranging from phenotypic traits to geographical ranges [10]. Some SSE
models have processes that are only defined by anagenetic process and state-dependent diversifica-
tion process [25], while others have processes that are defined by both anagenetic and cladogenetic
processes [10, 9] shown in Fig. 1. An anagenetic process is defined as a process of trait evolu-
tion within lineages, between branching events. In the BiSSE model [25], this corresponds to trait
transition events of going from a discrete trait A to another discrete trait B or vice versa. These
trait-dependent transition rates are encoded in the infinitesimal rate matrix Q, for which the off-
diagonal entry qij defines the rate of transitioning from state i to j. A cladogenetic process is
defined as a process in which state transition occurs in conjunction with a branching event (with
speciation) of a lineage. SSE models with anagenetic and cladogenetic events are referred to as
ClaSSE models.

Figure 1: From left to right: a speciation event without cladogenetic state changes, a speciation
event with cladogenetic state changes, an anagenetic state change.

Part of this paper will consider a special case of the ClaSSE model, the GeoSSE model [10]. A
GeoSSE model describes how species move and evolve among a sets of discrete geographical regions,
called species ranges. Species that occur in just one region are said to be endemic to that region.
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Species occurring in two or more regions are said to be widespread.

GeoSSE events can be classified as anagenetic or cladogenetic events. Anagenetic events in
GeoSSE include dispersal events and local extinction (sometimes called extirpation) events. Dis-
persal events add one region to a species range. Local extinction remove one region from a species
range. A species experiences complete extinction (i.e. it is removed from the species pool) when it
goes locally extinct in the last region in its range. Note that widespread species cannot experience
complete extinction through a single event under a GeoSSE model; their widespread ranges must
first be reduced to a single region before complete extinction is a possibility.

Cladogenetic events under GeoSSE include within-region speciation and between-region speci-
ation events. Each within-region speciation event creates a new species within any single region
of the parental species range. Each between-region speciation event causes a widespread parental
species and its range to split, such that all regions in the parental range are distributed among the
two new daughter lineages. Section 2.4 defines how GeoSSE assigns rates to different events.

Given a phylogeny with range state information as seen in Fig. 2, one can observe the dynamics
of range states accumulated by species though time. In Section 2.2, we present the necessary
theory that will later be used to allow us transitioning from a tree-based process to an alternative,
diffusion-based process to simulate the dynamics.

Figure 2: An illustration of GeoSSE events on a phylogeny with range state information.

2.2 Transforming a stochastic process

In this section, we briefly describe the relevant results in the theory of stochastic processes that
enable us to transform one stochastic process into another stochastic process. In the context of the
ClaSSE model described in Section 2.1, we want to define a process that simulates the (discrete)
count of species with state i through time. This process can then be used to define a second process
that simulates the (continuous) frequency of species with state i over time.

Theorem 1. Itô’s transformation formula
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Consider a stochastic process {Z(t)} with infinitesimal parameters µ(z) and σ2(z). Define a
new stochastic process {Y (t)} with Y (t) = g(Z(t)) where g is a strictly monotone continuous and
twice-differentiable function. Then, the new process {Y (t)} has infinitesimal parameters given by,

• µY (y) = µ(z)g′(z) + 1
2σ

2(z)g′′(z),

• σ2
Y (y) = σ2(z) [g′(z)]

2
.

Proof: This theorem is also known as Itô’s formula or Itô’s lemma. The proof is given in [15, 17]
.

Lemma 1.
Given a stochastic process {Ni(t) := ni(t)} with infinitesimal mean and variance parameters

µi = E(dni/dt) and σ2
i = var(dni/dt), respectively. Define a stochastic process {X(t)} derived

using the following transformation.

X(t) = g(N)

= g

(∑
i

ni

)
=

∑
i

h(ni), (1)

where {N(t) :=
∑

i ni(t)} is a stochastic process with infinitesimal parameters defined as follows,

µ(N) = µ

(∑
i

ni(t)

)
=

∑
i

µ (ni(t))

=
∑
i

µi.

σ2(N) = σ2

(∑
i

ni(t)

)
=

∑
i

σ2(ni(t)) +
∑
i,j
i ̸=j

σij

=
∑
i

σ2(ni(t))

=
∑
i

σ2
i .

The infinitesimal mean and variance parameters for {X(t)} are given by,

µX =
∑
i

∂X

∂ni
µi +

1

2

∑
i

∂2X

∂n2
i

σ2
i (2)

σ2
X =

∑
i

(
∂X

∂ni

)2

σ2
i . (3)
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Proof: Proof of Lemma 1 is given in Appendix 8.1.

2.3 Diffusion-based framework for state-dependent diversification model

In this section, we establish the framework for simulating state dynamics for state-dependent spe-
ciation and extinction models using diffusion processes. We show how to implement the framework
in the ClaSSE model introduced in [9]. Then, we relate our framework to earlier research [3] using
a diffusion process for the BiSSE model [25]. Furthermore, in Section 2.4, we apply our framework
to the GeoSSE model [10] and derive results in the later sections.

Our first goal is to define the stochastic process {Ni(t)}, which describes the number of species
with state i ∈ S at time t, where S is the state space of the model. Then, using the method pre-
sented in Section 2.2, we can obtain the stochastic process {Πi(t)}, which describes the frequency
of species with state i at time t. Using these two processes, we then derive results that directly link
model parameters with stationary state frequency patterns that the model generates.

To proceed, we define the following probabilities:

Prob({Ni → Ni + 1 in ∆t}) = Prob(Ni(t+∆t) = ni + 1 | Ni(t) = ni) := P+
i ∆t,

Prob({Ni → Ni − 1 in ∆t}) := P−
i ∆t,

Prob({Ni → Ni in ∆t}) := Pi∆t.

(4)

These probabilities correspond to gaining a new species in state i
(
P+
i

)
, losing a species in state

i
(
P−
i

)
, and neither losing nor gaining a new species in state i (Pi) within an infinitesimal time step

∆t.

For the ClaSSE model, we can write those probabilities as follows,

P+
i = S+

i + E+
i +Q+

i ,

P−
i = S−

i + E−
i +Q−

i ,

Pi = 1−
[
P+
i + P−

i

]
,

(5)
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where

S+
i = Probability of events that lead to an increase in the number of species in state i through state-dependent

speciation and speciation in conjunction with cladogenetic state change.

E+
i = Probability of events that lead to an increase in the number of species in state i through extinction.

Q+
i = Probability of events that lead to an increase in the number of species in state i through anagenetic

state change.

S−
i = Probability of events that lead to a decrease in the number of species in state i through state-dependent

speciation and speciation in conjunction with cladogenetic state change.

E−
i = Probability of events that lead to a decrease in the number of species in state i through extinction.

Q−
i = Probability of events that lead to a decrease in the number of species in state i through anagenetic

state change.

(6)

Next, we define the infinitesimal mean µi = E (dNi/dt) and variance σ2
i = var (dNi/dt) for the

stochastic process {Ni(t) : t > 0}.

Lemma 2.
The infinitesimal mean µi and variance σ2

i for the stochastic process {Ni(t) : t > 0} is given by

µi = P+
i − P−

i , (7)

σ2
i = P+

i + P−
i . (8)

Proof: Proof of Lemma is given in Appendix 8.2.

Next, we define a stochastic process {Πi(t) : t > 0} where

Πi =
Ni∑
j∈S Nj

=
Ni

N
.

Πi(t) denotes the frequency of species being in state i at time t. We define the infinitesimal mean
and variance for the process in Lemma 3.

Lemma 3.
The infinitesimal mean µΠi and variance σ2

Πi
for the stochastic process {Πi(t) : t > 0} is given

by

µΠi =
1

N

(
µi −

σ2
i

N

)
+

Πi

N

∑
j∈S

(
−µj +

σ2
j

N

)
, (9)

σ2
Πi

=
(σi

N

)2
(1− 2Πi) +

(
Πi

N

)2∑
j∈S

σ2
j . (10)

Proof: Proof of Lemma 3 is given in Appendix 8.3.
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From Eqs. (9)-(10), it is clear that the diffusion parameters
(
i.e. µΠi , σ

2
Πi

)
are undefined under

a total extinction scenario of a tree (i.e. where N = 0 appears in multiple denominators).

To demonstrate the generality of the framework, we show the BiSSE model [25] (and similarly for
the MuSSE model [7]) can be represented as a diffusion process as follows. Under the BiSSE model,
species possess binary traits with values in the state space S ∈ {1, 2}. BiSSE is a special case of the
ClaSSE model that, while it allows anagenetic trait transition and extinction events, its speciation
events do not cause cladogenetic trait changes. That is, daughter lineages identically inherit the
parent lineage state following speciation. Readers can refer to the supplementary material from [9]
for its derivation. For the BiSSE model, we have

S+
1 = λ1N1, E

+
1 = 0, Q+

1 = q21N2,

S−
1 = 0, E−

1 = µ1N1, Q
−
1 = q12N1,

(11)

where λ1 and µ1 are speciation and extinction rates for trait 1, respectively. q12 and q21
are anagenetic trait transition from 1 to 2 and from 2 to 1, respectively.

Using Eq. (7) and Eq. (8) we have the infinitesimal mean and variance of N1,

µ1 = (λ1 − µ1 − q12)N1 + q21N2, (12)

σ2
1 = (λ1 + µ1 + q12)N1 + q21N2, (13)

and similarly for N2 with indices changed accordingly. These are the same µ1 and σ2
1 as described

in Eq. (2) in [3].

2.4 Diffusion-based framework for the GeoSSE model

In this section, we use the framework established in Section 2.3 to the GeoSSE model. We present
the method for simulating the state dynamics under the diffusion framework in Section 2.5, and
derive theoretical results regarding stationary distribution under our framework for the GeoSSE
model in Sections 2.6-2.8. The procedure we apply here is compatible with any model within the
ClaSSE family.

Consider an n-region GeoSSE model where n ∈ Z+, we define the following state space and
variable,

R = state space for regions e.g., R = {A,B}.
S = state space for species ranges e.g., S = {{A}, {B}, {A,B}}
Ni = number of species with range state i where i ∈ S.

Then, we define the following rate parameters,

dkℓ = per lineage dispersal rate of any species in region k to colonize region ℓ.

wℓ = per lineage within-region speciation rate of any species in region ℓ.

bij = per lineage between-region speciation rate of a widespread species into two daughter species.

with ranges i and j, respectively. Note that bij ≡ bji .

eℓ = local extinction rate of any species in region ℓ.
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We define a stochastic process {Ni(t)} with infinitesimal mean µi = E(dNi/dt) and variance
σ2
i = var(dNi/dt). Here, Ni(t) represents the number of species with range state i at time t. The

infinitesimal mean µi and variance σ2
i follow directly from Lemma 2. We derive the transition

probabilities described in Eq. 4 in the context of the GeoSSE model, as shown in Eqs. 14-16.

Each of these probabilities describe possible events in a GeoSSE model occurring within an
infinitesimal time step that result in gaining a new species with range state i (P+

i ), losing a species
with range state i (P−

i ), and neither losing nor gaining a species with range state i (Pi).

P+
i = W+

i +D+
i +B+

i + E+
i

=
∑
j∈S

∑
ℓ∈j

{ℓ}=i

Njwℓ

︸ ︷︷ ︸
W+

i

+
∑
k∈i

∑
ℓ∈i
ℓ ̸=k

Ni\{ℓ}dkℓ

︸ ︷︷ ︸
D+

i

+
∑
j∈S
i⊂j

Njb
i
j\i

︸ ︷︷ ︸
B+

i

+
∑
j∈S

|j\i|=1

∑
ℓ∈j\i

Njeℓ

︸ ︷︷ ︸
E+

i

(14)

P−
i = W−

i +D−
i +B−

i + E−
i

= 0

︸︷︷︸
W−

i

+
∑
k∈i

|i|<R

∑
ℓ∈R\{k}

Nidkℓ

︸ ︷︷ ︸
D−

i

+
∑
j∈S
j⊂i

1

2
Nib

j
i\j

︸ ︷︷ ︸
B−

i

+
∑
ℓ∈R
ℓ∈i

Nieℓ

︸ ︷︷ ︸
E−

i

(15)

Pi = 1−
[
P+
i + P−

i

]
. (16)

For clarity, we provide the biogeographic interpretation on how each term in Eqs. 14-16 is derived

1. W+
i . To gain a new species with range state i through a within-region speciation event,

the new species range i must contain only region ℓ (ℓ ∈ i and |i| = 1). This endemic
species can undergo a speciation event with probability wℓNi. Any species with range state
j that also occupies region ℓ can undergo a within-region speciation event with probability
wℓ

∑
j∈S 1i⊆jNj . The total sum of probabilities for W+

i is,∑
j∈S

∑
ℓ∈j

{ℓ}=i

Njwℓ.

2. D+
i . To gain a new species with range state i through a dispersal event, the species adds

the new region ℓ to its ancestral range. Species are always widespread immediately following
dispersal. The total probability of this event occurring is,∑

k∈i

∑
ℓ∈i
ℓ ̸=k

Ni\{ℓ}dkℓ.

3. B+
i . To gain a new species with range state i through a between-region speciation event, the

new species can be either endemic or widespread |i| > 0 that originated from a widespread
ancestral species with larger range state j (i ⊂ j). In general, we have no information of
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whether the new species occurs in left or right lineage following a speciation event, so we do
not consider the orientation. The total probability of this event occurring is,∑

j∈S
i⊂j

Njb
i
j\i.

4. E+
i . To gain a new species with range state i through a local extinction event, the ancestral

species must have a larger range state j with size that differs by 1 from the new species’ range
state i such that |j\i| = 1. The total probability of this occurring is,∑

j∈S
|j\i|=1

∑
ℓ∈j\i

Njeℓ.

5. W−
i . The probability of losing a either endemic or widespread species with range state i

through a within-region speciation event is 0. This is because the event will only increase the
local abundance in a region and causes the widespread abundance to remain unchanged.

6. D−
i . To lose a species with range state i through a dispersal event, the species must disperse

to a new region. The species count remains unchanged if the species already occupies all
regions (|i| = |R|). The probability of this event occurring is,∑

k∈i
|i|<R

∑
ℓ∈R\{k}

Nidkℓ.

7. B−
i . To lose a species with range state i through a between-region speciation event, the

species must be widespread and undergo a speciation event that gives rise to a new species in
state j with smaller range state size (|j| < |i|). The factor of 1/2 corrects for double-counting
the new species with range j being either the left daughter or right daughter lineage. The
probability of this event occurring is, ∑

j∈S
|j|<|i|

1

2
Nib

j
i\j .

8. E−
i . To lose a species with range state i through a local extinction event, a species must

undergo an extinction event in one of its regions. If the species is endemic, this event leads
to total extinction of the species. The probability of this event occurring is,∑

ℓ∈R
ℓ∈i

Nieℓ.

The next section uses Eqs. 14-16 to define the stochastic process {Πi(t) : t > 0} that models the
frequency of species in range state i at time t. The infinitesimal mean µΠi

and variance σ2
Πi

follow
directly from Lemma 3.

10



2.5 Comparison on diffusion-based and tree-based models using simula-
tion

In this section we show that our diffusion-based approach correctly models the temporal behaviour
of range state frequencies in a GeoSSE model. To validate, we compare our results with a tree-
based approach that explicitly simulates phylogenetic trees under the same GeoSSE parameter
values using the MASTER package [38] implemented in BEAST2 [2]. Details for setting up reac-
tion equations for the MASTER simulation can be found in Appendix 8.5.

For simulations under a diffusion, we generate sample paths on [0, T ], where T is the simulation
running time. Each simulation yields a time-series of state frequencies for the provided SSE rate
values. Simulations were generated as follows:

1. Given the following Itô stochastic differential equation (SDE) and the initial number of species
in each range state, Ni(0),∀i ∈ S,

dNi = µi(t)dt+ σi(t)dWt, (17)

where dWt is a Wiener process. We draw a sample path by using the following approximation,

Ni(t+∆t) = Ni(t) + µi(t)∆t+ σi(t)
√
∆tUt, (18)

where
√
∆tUt ∼

√
∆tN(0, 1) is a (discretized) standard Wiener process, and µi(t) and σi(t)

are computed using Eqs (7)-(8), respectively.

2. Compute the total number of species at t+∆t ∈ [0, T ]

N(t+∆t) =
∑
i∈S

Ni(t+∆t).

3. Given the output from the previous steps, and the following Itô SDE with the initial frequency

of species of range state i, Πi(0) =
Ni(0)
N(0) ,

dΠi = µΠi
(t)dt+ σΠi

(t)dWt, (19)

where dWt is a Wiener process. We draw a sample path by using the following approximation,

Πi(t+∆t) = Πi(t) + µΠi(t)∆t+ σΠi(t)
√
∆tUt, (20)

where
√
∆tUt ∼

√
∆tN(0, 1) is a (discretized) standard Wiener process; µΠi(t) and σΠi(t)

are computed using Eqs (9)-(10), respectively.

In Section 3.1, we show that the dynamic of the range state frequencies can be well-approximated
using the diffusion-based framework. We provide different examples through numerical simulations
under a variety of GeoSSE scenarios to visualize this result. Specifically, we apply the following
procedure,

1. We consider a 3-region GeoSSE model, then we simulate range state dynamics using tree-
based approach (via the MASTER package in BEAST2) and the diffusion-based approach
over 1000 replicates on [0, 10] time interval. For diffusion-based approach, at each time step,
we perform a rejection sampling for each range state if the count value for a state is less
than 0 since the number of species with any range state cannot be negative. We consider the
following scenarios for the GeoSSE model,
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Example 1. GeoSSE model with only within-region speciation and between-region speciation
events (Fig. 3).

Example 2. GeoSSE model with only within-region speciation and range dispersal events
(Fig. 4).

Example 3. GeoSSE model with only within-region speciation and local extinction events
(Fig. 5).

Example 4. GeoSSE model with all the events included (Fig. 6).

2. We visualize the trajectory of mean state counts for each range state from both diffusion
and tree-based approaches. We also visualize stacked bar charts of expected state frequencies
for both approaches. To compute the state frequencies under the tree-based approach across
replicates, we use the following analytical formula

Πi(t) =
Ni(t)∑
i∈S Ni(t)

.

We simulate frequency trajectories under the diffusion-based approach using Eq. (20).

3. We find the 95% confidence intervals of expected state counts at the end time for both diffusion
and tree-based simulations for each GeoSSE scenario described above. Then, we apply the
Welch’s unequal variances t-test [40] for testing the following hypothesis

H0 : µ̄Ni,tree = µ̄Ni,diffusion

H1 : µ̄Ni,tree ̸= µ̄Ni,diffusion,

where µ̄Ni,tree and µ̄Ni,diffusion are population means of state counts for range i at the end
time from tree and diffusion-based approaches, respectively.

4. We also conduct the F test for testing the following hypothesis

H0 : σ̄2
Ni,tree = σ̄2

Ni,diffusion

H1 : σ̄2
Ni,tree ̸= σ̄2

Ni,diffusion,

where σ̄2
Ni,tree

and σ̄2
Ni,diffusion

are population variances of state counts for range i at the end
time from tree and diffusion-based approaches, respectively.

5. We compute ratio of two sample variances for range state i as

ri,var =
s2i,diffusion
s2i,tree

,

where s2i,diffusion and s2i,tree are sample variances from diffusion- and tree-based simulations for
range state i, respectively. Then, we construct the 95% confidence interval for ri,var.

If the diffusion-based and tree-based simulation methods are statistically indistinguishable,
we should fail to reject all null hypotheses and that the confidence intervals of the ratios of
variances include the value 1 at the appropriate significance levels.
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2.6 Deriving rate parameters that lead to stationary state frequencies
when N is large

In this section, we derive conditions for the rate parameters such that there is no change in state
frequency, Πi, over time for a given a range state i ∈ S, assuming large N . That is, we derive the
conditions when dΠi

dt = 0,∀i ∈ S.

Knowing that Πi =
Ni

N , we re-write Eqs. (14)-(15) as follows,

P+
i = N


∑
j∈S

∑
ℓ∈j

{ℓ}=i

Πjwℓ

︸ ︷︷ ︸
Ŵ+

i

+
∑
k∈i

∑
ℓ∈i
ℓ̸=k

Πi\{ℓ}dkℓ

︸ ︷︷ ︸
D̂+

i

+
∑
j∈S
i⊂j

Πjb
i
j\i

︸ ︷︷ ︸
B̂+

i

+
∑
j∈S

|j\i|=1

∑
ℓ∈j\i

Πjeℓ

︸ ︷︷ ︸
Ê+

i


= N P̂+

i (21)

P−
i = N


0

︸︷︷︸
Ŵ−

i

+
∑
k∈i

|i|<R

∑
ℓ∈R\{k}

Πidkℓ

︸ ︷︷ ︸
D̂−

i

+
∑
j∈S
j⊂i

1

2
Πib

j
i\j

︸ ︷︷ ︸
B̂−

i

+
∑
ℓ∈R
ℓ∈i

Πieℓ

︸ ︷︷ ︸
Ê−

i


= N P̂−

i (22)

Then, Eqs. (7)-(8) can be re-written as follows

µi = N
(
P̂+
i − P̂−

i

)
, (23)

σ2
i = N

(
P̂+
i + P̂−

i

)
. (24)

Given Eqs. (23)-(24), as N → ∞, Eqs. (9)-(10) become

µ̂Πi
= lim

N→∞
µΠi

= P̂+
i − P̂−

i , (25)

σ̂2
Πi

= lim
N→∞

σ2
Πi

= 0. (26)

Moreover, we no longer have the stochastic component from the SDE given in Eq. (19). Instead,
we solve the following ordinary differential equation

dΠi = µ̂Πi
dt

dΠi

dt
= µ̂Πi

. (27)
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Given stationary frequency of each range state, Π̂i, where
∑

i Π̂i = 1, the rate parameters must
satisfy

µ̂Πi
= 0 ⇐⇒ P̂+

i = P̂−
i .

Furthermore, it is biologically reasonable that all rate parameters must be positive, as all modeled
events have some non-zero probability of occurring. That is,

wi > 0, ei > 0, dij > 0,∀i, j ∈ R. and bst > 0,∀s, t ∈ S

Next, we define total rates of all events occurring in each range state i, Φtotal,i, as follows

Φtotal,i =
(
rW+

i
+ rD+

i
+ rB+

i
+ rE+

i

)
−
(
rD−

i
+ rB−

i
+ rE−

i

)
,

where rW+
i
, rD+

i
, rB+

i
, rE+

i
, rD−

i
, rB−

i
, rE−

i
consist of sums of rates across all adjacent states that

correspond to the events W+
i , D+

i , B
+
i , E+

i , D−
i , B

−
i , E−

i , respectively.

Lemma 4.
Given a GeoSSE with state space S, set of stationary frequencies, {Π̂i,∀i ∈ S}, and initial state

frequencies Πi(0), the rate parameters satisfy the following system of equations

P̂+
i = P̂−

i

Φtotal,i


= Φtotal,j , if Π̂i = Π̂j

> Φtotal,j , if Π̂i > Π̂j

< Φtotal,j , if Π̂i < Π̂j∑
i∈S

Πi(0) = 1

wi > 0, ei > 0, dij > 0, bst > 0,Πi(0) ≥ 0, ∀i, j ∈ R and ∀s, t ∈ S. (28)

In Section 3.2, we demonstrate the application of Lemma 4 for a 2-region GeoSSE model.

2.7 Deriving stationary state frequencies given rate parameters in a
GeoSSE model

In this section, we use our framework to find the stationary state frequencies that result from a
given set of rate parameters. This result links the configuration of a data-generating process to
its expected pattern, which complements results from Section 2.6 that link expected patterns to
data-generating processes. We present the result in Lemma 5 for the case of a 2-region GeoSSE
model for simplicity.

Lemma 5.
Consider a 2-region GeoSSE model with state space S = {{A}, {B}, {A,B}}. Given the rate

parameters from the model and initial state frequencies, ΠA(0) = Π0
A, ΠB(0) = Π0

B, ΠAB(0) = Π0
AB,

the general solution to Eq. (27) is given by,

Π =

[
ΠA(t)
ΠB(t)

]
= C1ν1e

λ1t + C2ν2e
λ2t +K, (29)
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and ΠAB(t) = 1−ΠA(t)−ΠB(t), provided that ΠA(t) + ΠB(t) ≤ 1.

Furthermore, the stationary frequencies are given by

Π̂A =
numA

denomA
, (30)

Π̂B = 1−
(
eA + dAB + bAB + eB

wA + bAB + eB

)(
numA

denomA

)
, (31)

Π̂AB = 1− Π̂A − Π̂B , (32)

where

numA =
(
wA + bAB + eB

)
(eB + dBA − wB) ,

denomA =
(
eA + dAB + bAB + eB

) (
eB + dBA + bAB + eA

)
−
(
wB + bAB + eA

) (
wA + bAB + eB

)
,

R =
√
R1 +R2,

R1 = 4
(
bAB
)2

+ 4
(
bABeA + bABeB + bABwA + bABwB

)
+ 4 (eAeB + eAwA + eBwB + wAwB) ,

R2 = −2dABdBA +
(
d2AB + d2BA

)
,

λ1 =
1

2

(
−2bAB − dAB − dBA − 2eA − 2eB −R

)
,

λ2 =
1

2

(
−2bAB − dAB − dBA − 2eA − 2eB +R

)
,

ν1 =

− 1

2(bAB+eA+wB)
(−dAB + dBA −R)

1

 ,

ν2 =

− 1

2(bAB+eA+wB)
(−dAB + dBA +R)

1

 ,

K =

Π̂A

Π̂B

 ,
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C1 =

(
Π0

A −K1

) (
bAB + eA + wB

)
R

−
(
Π0

B −K2

)
(dAB − dBA −R)

2R
,

C2 =

(
K1 −Π0

A

) (
bAB + eA + wB

)
R

+
(
Π0

B −K2

)(
1 +

dAB − dBA −R

2R

)
.

Proof: Proof of Lemma 5 is given in Appendix 8.4.

We note that this strategy can be generalized to accommodate arbitrary models within the
ClaSSE family. Specifically, as seen in the proof of Lemma 5 in Appendix 8.4, for a ClaSSE
model with |S| states, one only needs to find eigenvalues (either numerically or analytically) and
eigenvectors that correspond to a (|S| − 1) × (|S| − 1) matrix to obtain a general solution. The
resulting solution for the stationary frequencies would then reflect the parameterization of the
particular ClaSSE model variant being studied. Note that this approach of solving a matrix with
one dimension lower than the state space only holds providing that the sum of the remaining
frequencies is less than or equal to 1. This assumption, however, can be ignored if one is to solve
the full system by finding eigenvalues and eigenvectors that correspond to a |S| × |S| matrix, and
normalize the resulting stationary frequencies.

In Section 3.2, we use Lemma 5 using rates obtained from Lemma 4 to verify that the system,
indeed, converges to the true stationary frequencies that we observe through simulations.

2.8 Deriving time to reach stationary state frequencies in a GeoSSE
model

In this section, we describe a method for deriving time to reach stationary state frequencies in a
2-region GeoSSE model.

From Lemma 5 in Section 2.7, we have derived an analytical expression to compute state fre-
quencies over time, given large N . In order to find the time to stationarity for each range state, we
define the following procedure, as follows

1. Given the initial state frequencies, Π0
A,Π

0
B ,Π

0
AB , and that the system runs from [0, T ], we

find the mixing time t∗i for all i ∈ S such that,

|Πi (t
∗
i )−Πi (t

∗
i −∆t)| < ϵ, (33)

for some ∆t > 0 and ϵ > 0. t∗i is the stationary time for the range state i, given the ϵ value.

2. We visually check that t∗i derived from the theory reconciles with what we observe from
simulations.

We apply this procedure to an example in Section 3.2.
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3 Results

3.1 Diffusion-based approach is a good approximation to tree-based ap-
proach for describing state dynamics

In this section, we visualize the range state dynamics using tree-based and diffusion-based ap-
proaches under several GeoSSE scenarios described in Section 2.5 (Figs. 3-6). In all these scenarios,
we show that the null hypothesis that the average counts of the ranges states at the end of the
simulation time between these approaches are equal cannot be rejected (Table 1). This shows that
the diffusion-based approach is a good approximation for means to the tree-based approach.

In most cases, we observe that data (state counts and frequencies) simulated under diffusion-
based approach relatively have higher variances compared to data simulated under tree-based ap-
proach (Table 1). The 95% confidence interval for the ratio of two variances, shown in Table 1, gives
an interval estimate on how much variation one would expect to get for generating state patterns
under the diffusion process. Moreover, assuming that data simulated using the MASTER pack-
age [38] represent the true distribution of range state counts, this observation implies that diffusion
process is not a good approximation for the second moment of the sampled state state frequencies.
While this is not ideal, this is to be expected since diffusion is an approximation method to a
generative model. Therefore, we should not expect state counts from both approaches to be drawn
from the same distribution.
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Figure 3: Top & middle panels: the trajectories of average count of range states for endemic
species (Figs. (a)-(c)) and widespread species (Figs. (d)-(g)) over [0, 10] time interval and over 1000
simulations runs for the three-region GeoSSE model as described in Example 1 each simulated under
both diffusion-based process (red line) and tree-based process (black line). The gray trajectories
show the dynamics across 1000 replicates simulated under diffusion-based process. Bottom panel:
stacked bar chart showing the state frequencies over time using diffusion-based approach (Fig. (g))
and tree-based approach (Fig. (h)). Simulations are conducted using the following parameter values:
wA = wB = wC = 0.03, bAB = 0.08, bAC = 0.10, bBC = 0.06, bABC = 0.04, bBAC = 0.12, bCAB = 0.06, eA =
eB = eC = 0, dAB = dBA = dAC = dCA = dBC = dCB = 0.
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Figure 4: Top & middle panels: the trajectories of average count of range states for endemic
species (Figs. (a)-(c)) and widespread species (Figs. (d)-(g)) over [0, 10] time interval and over 1000
simulations runs for the three-region GeoSSE model as described in Example 2 simulated under
both diffusion-based process (red line) and tree-based process (black line). The gray trajectories
show the dynamics across 1000 replicates simulated under diffusion-based process. Bottom panel:
stacked bar chart showing the state frequencies over time using diffusion-based approach (Fig. (g))
and tree-based approach (Fig. (h)). Simulations are conducted using the following parameter values:
wA = wB = wC = 0.03, bAB = bAC = bBC = bABC = bBAC = bCAB = 0, eA = eB = eC = 0, dAB = dBA =
0.03, dAC = dCA = 0.04, dBC = dCB = 0.05.
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Figure 5: Top & middle panels: the trajectories of average count of range states for endemic
species (Figs. (a)-(c)) and widespread species (Figs. (d)-(g)) over [0, 10] time interval and over 1000
simulations runs for the three-region GeoSSE model as described in Example 3 simulated under both
diffusion-based process (red line) and tree-based process (black line). The gray trajectories show the
dynamics across 1000 replicates simulated under diffusion-based process. Bottom panel: stacked
bar chart showing the state frequencies over time using diffusion-based approach (Fig. (g)) and
tree-based approach (Fig. (h)). Simulations are conducted using the following parameter values:
wA = wB = wC = 0.03, bAB = bAC = bBC = bABC = bBAC = bCAB = 0, eA = 0.01, eB = 0.02, eC =
0.025, dAB = dBA = dAC = dCA = dBC = dCB = 0.
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Figure 6: Top & middle panels: the trajectories of average count of range states for endemic
species (Figs. (a)-(c)) and widespread species (Figs. (d)-(g)) over [0, 10] time interval and over 1000
simulations runs for the three-region GeoSSE model as described in Example 4 simulated under the
diffusion-based process (red line) and tree-based process (black line). The gray trajectories show the
dynamics across 1000 replicates simulated under diffusion-based process. Bottom panel: stacked
bar chart showing the state frequencies over time using diffusion-based approach (Fig. (g)) and
tree-based approach (Fig. (h)). Simulations are conducted using the following parameter values:
wA = 0.09, wB = 0.06, wC = 0.07, bAB = bAC = bBC = bABC = bBAC = bCAB = 0.04, eA = 0.002, eB =
0.003, eC = 0.001, dAB = dBA = 0.006, dAC = dCA = 0.003, dBC = dCB = 0.001.
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Example 1: GeoSSE with within-region and between-region speciation events

Range state
N̄i,end Lower bound Upper bound

pmean pvar 95% CI ri,vartree diffusion tree diffusion tree diffusion
{A} 40.835 40.897 40.517 40.156 41.153 41.638 0.880 ≪ 0.001 [4.794, 6.144]
{B} 40.240 40.544 39.906 39.842 40.574 41.246 0.444 ≪ 0.001 [3.908, 5.008]
{C} 39.875 40.234 39.555 39.518 40.195 40.950 0.370 ≪ 0.001 [4.409, 5.651]
{A,B} 5.980 5.981 5.858 5.837 6.102 6.125 0.992 ≪ 0.001 [1.219, 1.562]
{A,C} 6.239 6.305 6.107 6.128 6.371 6.481 0.558 ≪ 0.001 [1.587, 2.033]
{B,C} 6.506 6.625 6.391 6.494 6.621 6.756 0.182 ≪ 0.001 [1.139, 1.459]
{A,B,C} 1.185 1.112 1.121 1.048 1.25 1.176 0.115 0.782 [0.899, 1.152]

Example 2: GeoSSE with within-region speciation and dispersal events

Range state
N̄i,end Lower bound Upper bound

pmean pvar 95% CI ri,vartree diffusion tree diffusion tree diffusion
{A} 14.689 14.642 14.450 14.282 14.928 15.002 0.831 ≪ 0.001 [2.002, 2.566]
{B} 13.960 13.993 13.728 13.637 14.192 14.349 0.879 ≪ 0.001 [2.076, 2.661]
{C} 13.339 13.387 13.109 13.035 13.568 13.739 0.823 ≪ 0.001 [2.082, 2.669]
{A,B} 8.870 8.740 8.707 8.512 9.033 8.968 0.363 ≪ 0.001 [1.732, 2.220]
{A,C} 11.107 10.870 10.930 10.596 11.284 11.144 0.155 ≪ 0.001 [2.113, 2.709]
{B,C} 13.175 13.172 12.985 12.853 13.365 13.491 0.987 ≪ 0.001 [2.482, 3.182]
{A,B,C} 24.427 24.790 24.189 24.172 24.665 25.408 0.283 ≪ 0.001 [5.968, 7.649]

Example 3: GeoSSE with within-region speciation and local extinction events

Range state
N̄i,end Lower bound Upper bound

pmean pvar 95% CI ri,vartree diffusion tree diffusion tree diffusion
{A} 25.672 25.950 25.385 25.550 25.959 26.350 0.269 ≪ 0.001 [1.714, 2.196]
{B} 22.540 22.630 22.266 22.262 22.814 22.998 0.701 ≪ 0.001 [1.592, 2.040]
{C} 20.804 21.179 20.536 20.825 21.072 21.533 0.098 ≪ 0.001 [1.547, 1.983]
{A,B} 8.960 9.105 8.843 8.973 9.077 9.237 0.108 < 0.001 [1.111, 1.425]
{A,C} 8.467 8.370 8.355 8.244 8.579 8.496 0.260 < 0.001 [1.109, 1.421]
{B,C} 7.007 7.024 6.902 6.911 7.112 7.137 0.829 0.027 [1.016, 1.302]
{A,B,C} 5.805 5.811 5.703 5.711 5.907 5.911 0.934 0.469 [0.844, 1.081]

Example 4: GeoSSE with full events

Range state
N̄i,end Lower bound Upper bound

pmean pvar 95% CI ri,vartree diffusion tree diffusion tree diffusion
{A} 53.067 53.494 52.420 52.235 53.714 54.753 0.555 ≪ 0.001 [3.347, 4.290]
{B} 33.919 34.425 33.472 33.575 34.366 35.275 0.302 ≪ 0.001 [3.193, 4.092]
{C} 39.981 41.044 39.476 40.060 40.486 42.028 0.060 ≪ 0.001 [3.353, 4.297]
{A,B} 10.096 10.193 9.942 9.968 10.250 10.418 0.486 ≪ 0.001 [1.880, 2.409]
{A,C} 9.229 9.224 9.091 9.028 9.367 9.420 0.967 ≪ 0.001 [1.772, 2.271]
{B,C} 8.309 8.138 8.181 7.969 8.437 8.307 0.115 ≪ 0.001 [1.526, 1.956]
{A,B,C} 3.897 3.890 3.789 3.767 4.005 4.013 0.933 ≪ 0.001 [1.149, 1.472]

Table 1: The sample mean count for each range state at the end of simulation time, N̄i,end, computed
under tree-based and diffusion-based simulations across different GeoSSE scenarios described in
Section 2.5. The “Lower bound” and “Upper bound” represent the 95% confidence interval of the
average count for each range state using diffusion and tree based approaches. The “95% CI ri,var”
correspond to the 95% confidence interval of the ratio of two sample variances from diffusion and
tree based approaches for range state i. pvar and pmean correspond to p value from the F test and
the Welch’s unequal variances t-test, respectively.
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3.2 Multiple rate scenarios lead to the same stationary state frequencies

We apply the theoretical results from Sections 2.6-2.8 for a 2-region GeoSSE model. The different
sets of relationships between rate parameters given stationary frequencies in Example 5 are de-
rived using Mathematica [14]. In this example, we show that there exist alternative rate scenarios
leading to the same stationary frequencies. Furthermore, using Lemma 5, we confirm that the
stationary frequencies observed from simulations converge to the theoretical frequencies given the
rate parameters, which are derived using Lemma 4. Using the procedure described in Section 2.8,
we compute time to stationary frequencies in Example 5 for each rate scenario and different sets of
initial frequencies.

Example 5. We consider a 2-region GeoSSE model with range state space S = {{A}, {B}, {A,B}}.
We find a set of rate parameters and initial state frequencies that give the following stationary range
state frequencies,

Π̂A =
1

3
, Π̂B =

1

3
, Π̂AB =

1

3
.

That is, by Eq. (28), we have,

2

3
wA +

1

3
bAB +

1

3
eB =

1

3
(dAB + eA)

2

3
wB +

1

3
bAB +

1

3
eA =

1

3
(dBA + eB)

1

3
(dAB + dBA) =

1

3
(bAB + eA + eB)

2wA + bAB + eB − eA − dAB = 2wB + bAB + eA − eB − dBA

2wB + bAB + eA − eB − dBA = dAB + dBA − bAB − (eA + eB)∑
i∈S

Πi(0) = 1, ΠA(0),ΠB(0),ΠAB(0) ≥ 0

wA, wB , eA, eB , dAB , dBA, b
A
B > 0. (34)

We found a set of solutions to Eq. (34). That is,

wA =
1

2

(
−2bAB + 2dAB + dBA − 2eB

)
wB =

1

2
(−dAB + 2eB)

eA = −bAB + dAB + dBA − eB

0 < bAB ≤ dAB − eB , eB < dAB < 2eB

dBA > 0, eB > 0. (35)

Another set of solutions is given by,

wA =
1

2

(
−2bAB + 2dAB + dBA − 2eB

)
wB =

1

2
(−dAB + 2eB)

eA = −bAB + dAB + dBA − eB
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bAB > 0, 0 < dAB ≤ eB

dBA > 2
(
bAB − dAB + eB

)
, eB > 0. (36)

Next, we simulate the range state dynamics, shown in Fig. 7, using the method described in
Section. 2.5 and rate parameters chosen according to Eq. (35).

Figure 7: The expected range state dynamics over [0,250] time interval and over 100 trajectories
for the two-region GeoSSE model as described in Example. 5. Each process is simulated under
the following initial state frequencies and rate parameters according to Eq. (35): (Left panel)
ΠA(0) = ΠB(0) = 0.45,ΠAB(0) = 0.1, wA = 0.090, eA = 0.176, wB ≈ 0, eB = 0.008, dAB =
0.015, dBA = 0.173, bAB = 0.004 ; (Right panel) ΠA(0) = 0.1,ΠB(0) = ΠAB(0) = 0.45, wA =
0.160, eA = 0.315, wB = 0.002, eB = 0.009, dAB = 0.014, dBA = 0.310, bAB = 0.001. In both panels,

E(Π̂A) → 1
3 ,E(Π̂B) → 1

3 ,E(Π̂AB) → 1
3 . Using Lemma 5, we confirm that these expected stationary

frequencies from simulations converge to the theoretical, and true stationary frequencies given these
sets of rates. Furthermore, using the procedure described in Section 2.8 with ϵ = 10−9, we found
that the stationary frequencies are reached at: t∗A = 114.114, t∗B = 111.862, t∗AB = 102.603 (Left
panel); t∗A = 76.827, t∗B = 75.576, t∗AB = 70.320 (Right panel).

To show that there are multiple rate scenarios that lead to the same stationary distribution, we
simulate the range state dynamics, shown in Fig. 8, using rate parameters that satisfy the alternative
set of solutions described in Eq. (36), but do not satisfy Eq. (35).
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Figure 8: The expected range state dynamics over [0,60] time interval and over 100 trajectories
for the two-region GeoSSE model as described in Example. 5. Each process is simulated under
the following initial state frequencies and rate parameters according to Eq. (36): (Left panel)
ΠA(0) = ΠB(0) = 0.45,ΠAB(0) = 0.1, wA = 0.107, eA = 0.309, wB = 0.008, eB = 0.008, dAB =
0.001, dBA = 0.405, bAB = 0.089 ; (Right panel) ΠA(0) = 0.1,ΠB(0) = ΠAB(0) = 0.45, wA =
0.049, eA = 0.470, wB = 0.005, eB = 0.008, dAB = 0.006, dBA = 0.843, bAB = 0.371. In both panels,

E(Π̂A) → 1
3 ,E(Π̂B) → 1

3 ,E(Π̂AB) → 1
3 . Using Lemma 5, we confirm that these expected stationary

frequencies from simulations converge to the theoretical, and true stationary frequencies given these
sets of rates. Furthermore, using the procedure described in Section 2.8 with ϵ = 10−9, we found
that the stationary frequencies are reached at: t∗A = 53.153, t∗B = 51.952, t∗AB = 48.048 (Left panel);
t∗A = 30.781, t∗B = 30.330, t∗AB = 28.378 (Right panel).

3.3 Comparing our method of computing stationary state frequencies
with existing literature

In this section, we compare our method for computing stationary state frequencies from rate param-
eters introduced in Section 2.7 with another method used in diversitree package [7] for the ClaSSE [9]
and GeoSSE [10] models. Although the technique used in diversitree has not been discussed in any
SSE papers, such as the papers introducing the MuSSE [7], ClaSSE [9], and GeoSSE [10] models,
the technique applies projection matrix models that are widely used in the context of population
biology to obtain ClaSSE and GeoSSE stationary frequencies (pers. comm. E. E. Goldberg and R.
FitzJohn). Originally developed for applications in discrete-time models with either size-structured
or age-structured population [36], this approach has also been adapted for continuous-time models
with the latter structured population [16]. Under this approach, one would create a square matrix
with entries that map the state of a structured population from one time to the next. Then, the
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dominant eigenvalue of such matrix represents the overall population growth rate with its eigen-
vector represents the stable stage distribution [36].

Through examples below we find that our method returns similar state frequencies to those
computed under the projection matrix model in diversitree package [7]. For example, under the
following rate parameters in a two-region GeoSSE model,

wA = 0.01, wB = 0.02, bAB = 0.003, eA = 0.169, eB = 0.008, dAB = 0.002, dBA = 0.178,

our method gives Π̂A ≈ 0.057, Π̂B ≈ 0.506, Π̂AB ≈ 0.437 while the projection matrix approach
implemented in diversitree returns Π̂A ≈ 0.055, Π̂B ≈ 0.490, Π̂AB ≈ 0.455. Another example using
the following rate parameters,

wA ≈ 0.0006, wB ≈ 0.0003, bAB ≈ 0, eA ≈ 0.0048, eB ≈ 0.0045, dAB ≈ 0.0370, dBA ≈ 0.03703,

we have Π̂A ≈ 0.0996, Π̂B ≈ 0.0996, Π̂AB ≈ 0.8008 while the other method produces Π̂A ≈
0.0997, Π̂B ≈ 0.0997, Π̂AB ≈ 0.8006.
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4 Discussion and Conclusion

In our paper, we have constructed a general framework using diffusion processes to study state
dynamics over time from a general state-dependent speciation and extinction model with both an-
agenetic and cladogenetic state transitions, making it suitable for studying members of the ClaSSE
model family [9, 26, 10, 8]. We have applied this framework under various diversification scenarios
for the GeoSSE model [10], a special case of the ClaSSE model, as described in Sections 2.4-2.5.
Our framework can easily be applied to other discrete state-dependent diversification models, such
as simpler BiSSE and MuSSE models [25, 7] and Markovian Binary Tree (MBT) models [18, 12, 31].
Through simulations and statistical analyses, we have shown that state dynamics simulated under
diffusion-based approach and tree-based approach are comparable (Figs. 3-6, Table 1). We also
show, using a statistical test, that our diffusion framework offers a good approximation for the
mean of state counts. This result allows one to understand how data generating process i.e. rate
parameters from a diversification model can explain observed state patterns without using phylo-
genetic information. For inferring rates using empirical state data at present, this diffusion-based
approach to simulate state dynamics could be treated as a way to validate whether rates estimated
from biological datasets using phylogenetic methods are sensible.

Moreover, in Sections 2.6-2.7, we have derived theoretical results to deduce the expected state
frequencies generated by a set of rates, and what possible rates will generate a given set of expected
state frequencies. These results are generalizable to accommodate a system having more states, and
provide an alternative way to validate the correctness of SSE simulation and inference methods.
Additionally, in Section 2.8, we described a procedure to compute the minimum time for an SSE
process to reach stationarity in its state frequencies. We have applied these results for a 2-region
GeoSSE model. As seen in Figs. 7-8, we showed that there exist multiple different rate scenarios
that can lead to the same stationary behaviour of state pattern. Our framework also creates an
alternative mathematical approach to tree-based models that could help establish conditions for
which SSE model parameters are and are not identifiable.

We next plan to study the time for perturbed SSE models to reach stationarity. This would help
biologists understand how evolutionary systems re-equilibrate and how long that re-equilibration
takes following perturbation. In particular, we plan to apply this framework to study scenarios
where SSE rates shift across time [30, 4]. Scenarios with time-heterogeneous rates are particularly
interesting for GeoSSE model variants, mainly because regions experience changes in their features
(e.g., region size, distance with nearby regions, separation types) over time. As studied in [21, 34],
paleogeographically-changing regional features should influence rates of speciation, extinction, and
dispersal over time. Mathematical knowledge of expected state (range) frequencies for arbitrary
biogeographical systems could help biodiversity researchers assess whether certain clades of regions
are within or between states of equilibrium.

5 Data Availability

The datasets and all the relevant code are publicly available on https://github.com/alberts2/

Diffusion_GeoSSE.git.
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8 Appendix

8.1 Proof of Lemma 1

From Eq. (1), we compute g′(N) and g”(N),

g′(N) =
∂g

∂N
=

∂ (
∑

i h(ni))

∂N

=
∂ (
∑

i h(ni))

∂ni
(For each i, the other partial derivatives w.r.t j ̸= i equals 0)

=
∂g

∂ni

=
∂X

∂ni
. (37)

Similarly, we have,

g′′(N) =
∂2X

∂n2
i

. (38)

Now applying Theorem (1) to Eq. (1), we have,

µX =
∑
i

∂X

∂ni
µi +

1

2

∑
i

∂2X

∂n2
i

σ2
i , (39)

σ2
X =

∑
i

(
∂X

∂ni

)2

σ2
i . (40)
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8.2 Proof of Lemma 2

By definition,

µi = lim
∆t→0

1

∆t
{E(Ni(t+∆t))−Ni∆t},

σ2
i = lim

∆t→0

1

∆t
{E
(
N2

i (t+∆t)
)
− 2NiE (Ni(t+∆t)) +N2

i ∆t}.

By definition of the first-order and second-order moments we have,

E(Ni(t+∆t)) = (Ni + 1)P+
i ∆t+ (Ni − 1)P−

i ∆t+ (Ni)Pi∆t

= Ni

(
P+
i + P−

i + Pi

)
∆t+

(
P+
i − P−

i

)
∆t

= Ni∆t+
(
P+
i − P−

i

)
∆t,

E(N2
i (t+∆t) = (Ni + 1)2P+

i ∆t+ (Ni − 1)2P−
i ∆t+ (Ni)

2Pi∆t.

Thus,

µi = P+
i − P−

i , (41)

σ2
i = P+

i + P−
i . (42)

8.3 Proof of Lemma 3

We compute the following and substitute to Eqs. (2)–(3).
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∂Πi

∂Ni
=

∂

∂Ni

 Ni∑
k∈s
k ̸=i

Nk +Ni


=

∑
k∈S
k ̸=i

Nk(∑
k∈S Nk

)2
=

1−Πi

N
,

∂Πi

∂Nj
=

∂

∂Nj

 Ni∑
k∈s
k ̸=i

Nk +Ni

 , j ̸= i

= −Ni

N2

= −Πi

N
,

∂2Πi

∂N2
i

=
∂

∂Ni

(
1−Πi

N

)
=

− ∂Πi

∂Ni
N − (1−Πi)

∂N
∂Ni

)

N2

=
−(1−Πi)− (1−Πi)

N2

= −2(1−Πi)

N2
,

∂2Πi

∂N2
j

=
∂

∂Nj

(
−Ni

N2

)
, j ̸= i

=
Ni(2N)

N4

=
2ΠiN

N3

=
2Πi

N2
.
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Thus,

µΠi
=

∑
j∈S

∂Πi

∂Nj
µj +

1

2

∑
j∈S

∂2Πi

∂N2
j

σ2
j

=
∂Πi

∂Ni
µi +

∑
j∈S
j ̸=i

∂Πi

∂Nj
µj +

1

2

∂2Πi

∂N2
i

σ2
i +

1

2

∑
j∈S
j ̸=i

∂2Πi

∂N2
j

σ2
j

=
1−Πi

N
µi +

∑
j∈S
j ̸=i

−Πi

N
µj −

1−Πi

N2
σ2
i +

∑
j∈S
j ̸=i

Πi

N2
σ2
j

=

(
1−Πi

N

)(
µi −

σ2
i

N

)
+
∑
j∈S
j ̸=i

Πi

N

(
−µj +

σ2
j

N

)

=
1

N

(
µi −

σ2
i

N

)
+

Πi

N

∑
j∈S

(
−µj +

σ2
j

N

)
, (43)

σ2
Πi

=
∑
j∈S

(
∂Πi

∂Nj

)2

σ2
j

=

(
∂Πi

∂Ni

)2

σ2
i +

∑
j∈S
j ̸=i

(
∂Πi

∂Nj

)2

σ2
j

=

(
1−Πi

N

)2

σ2
i +

∑
j∈S
j ̸=i

(
Πi

N

)2

σ2
j

=
(σi

N

)2
(1− 2Πi) +

(
Πi

N

)2∑
j∈S

σ2
j , (44)

where µi and σ2
i follow Eqs. (7)–(8), respectively.

8.4 Proof of Lemma 5

We find Π̂i such that limt→∞ Πi(t) = Π̂i for all i ∈ S, S = {{A}, {B}, {A,B}}.

For i = {A} we have,

µ̂ΠA
= P̂+

A − P̂−
A

=
[
wA (ΠA +ΠAB) + ΠABb

A
B + eBΠAB

]
− [dABΠA + eAΠA]

= ΠA (wA − eA − dAB) + ΠAB

(
wA + bAB + eB

)
. (45)
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For i = {B} we have,

µ̂ΠB
= P̂+

B − P̂−
B

=
[
wB (ΠB +ΠAB) + ΠABb

A
B + eAΠAB

]
− [dBAΠB + eBΠB ]

= ΠB (wB − eB − dBA) + ΠAB

(
wB + bAB + eA

)
. (46)

For i = {A,B} we have,

µ̂ΠAB
= P̂+

AB − P̂−
AB

= [dABΠA + dBAΠB ]−
[
bABΠAB + (eA + eB)ΠAB

]
= (dABΠA + dBAΠB)−ΠAB

(
bAB + eA + eB

)
. (47)

Thus, we want to find the general solution for the following system of differential equations

dΠA

dt
= ΠA (wA − eA − dAB) + ΠAB

(
wA + bAB + eB

)
, (48)

dΠB

dt
= ΠB (wB − eB − dBA) + ΠAB

(
wB + bAB + eA

)
, (49)

dΠAB

dt
= (dABΠA + dBAΠB)−ΠAB

(
bAB + eA + eB

)
. (50)

given initial state frequencies ΠA(0) = Π0
A,ΠB(0) = Π0

B ,ΠAB(0) = Π0
AB .

However, since Π̂A + Π̂B + Π̂AB = 1, we can always derive Π̂AB using Π̂A and Π̂B . Therefore,
we want to solve the following system instead.

dΠA

dt
= ΠA (wA − eA − dAB) + ΠAB

(
wA + bAB + eB

)
, (51)

dΠB

dt
= ΠB (wB − eB − dBA) + ΠAB

(
wB + bAB + eA

)
. (52)

Since ΠA(t) + ΠB(t) + ΠAB(t) = 1, we have,

dΠA

dt
= ΠA

(
−eA − dAB − bAB − eB

)
−ΠB

(
wA + bAB + eB

)
+
(
wA + bAB + eB

)
, (53)

dΠB

dt
= ΠB

(
−eB − dBA − bAB − eA

)
−ΠA

(
wB + bAB + eA

)
+
(
wB + bAB + eA

)
. (54)

We write the above system in a matrix form as follows,

Π
′

= MΠ+ r, (55)

where

Π
′
=

[
Π

′

A

Π
′

B

]
, Π =

[
ΠA

ΠB

]
, M =

[
−
(
eA + dAB + bAB + eB

)
−
(
wA + bAB + eB

)
−
(
wB + bAB + eA

)
−
(
eB + dBA + bAB + eA

)] , r =

[
wA + bAB + eB
wB + bAB + eA

]
. (56)

First, we find the complimentary solution to the following equation using eigenvalues and eigen-
vectors of matrix M ,

Π
′

= MΠ. (57)
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Using Mathematica, the eigenvalues (λ1, λ2) and eigenvectors (ν1,ν2) of M are given by,

λ =

[
λ1

λ2

]
(58)

=

 1
2

(
−2bAB − dAB − dBA − 2eA − 2eB −R

)
1
2

(
−2bAB − dAB − dBA − 2eA − 2eB +R

)
 , (59)

ν1 =

− 1

2(bAB+eA+wB)
(−dAB + dBA −R)

1

 , (60)

ν2 =

− 1

2(bAB+eA+wB)
(−dAB + dBA +R)

1

 , (61)

where

R =

√
4
(
bAB
)2

+ 4
(
bABeA + bABeB + bABwA + bABwB

)
+ 4 (eAeB + eAwA + eBwB + wAwB)− 2dABdBA + (d2AB + d2BA).

The complimentary solution for Eq. (57) is given by,

ΠC = C1ν1e
λ1t + C2ν2e

λ2t, (62)

where C1 and C2 are arbitrary constants.

Next, we find the particular solution ΠP for Eq. (55) using the method of undetermined coeffi-
cients. Suppose the solution ΠP is of the form

ΠP =

[
K1

K2

]
, Π

′

P =

[
0
0

]
. (63)

Substitute Eq. (63) to Eq. (55) we have,

Π
′

P = MΠP + r. (64)

That is, we want to solve the following system of linear equations,(
eA + dAB + bAB + eB

)
K1 +

(
wA + bAB + eB

)
K2 = wA + bAB + eB (65)(

wB + bAB + eA
)
K1 +

(
eB + dBA + bAB + eA

)
K2 = wB + bAB + eA. (66)

Thus,

K1 =

(
wA + bAB + eB

)
(eB + dBA − wB)(

eA + dAB + bAB + eB
) (

eB + dBA + bAB + eA
)
−
(
wB + bAB + eA

) (
wA + bAB + eB

)
=

numA

denomA
. (67)
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Substitute Eq. (67) to Eq. (65) to get,

K2 = 1−
(
eA + dAB + bAB + eB

wA + bAB + eB

)(
numA

denomA

)
. (68)

Therefore, the general solution is given by,

Π = ΠC +ΠP

= C1ν1e
λ1t + C2ν2e

λ2t +K, (69)

where

K =

[
K1

K2

]
. (70)

By taking a limit of Eq. (69) as t → ∞, the exponential terms in Eq. (69) will approach 0. Therefore,
we have,

Π̂ = lim
t→∞

Π[
Π̂A

Π̂B

]
=

[
K1

K2

]
. (71)

Π̂A and Π̂B from Eq. (71) are the stationary frequencies for state A and B, respectively, as shown
in Lemma 5.

Next, to get the general solution to the system in Eq. (55), we find the constants, C1 and C2 by
substituting the initial value condition to Eq. (69) for t = 0. We have,

C1

− 1

2(bAB+eA+wB)
(−dAB + dBA −R)

1

+ C2

− 1

2(bAB+eA+wB)
(−dAB + dBA +R)

1

+

K1

K2

 =

Π0
A

Π0
B

 . (72)

That is, we solve the following system of linear equations,

C1

(
R+ dAB − dBA

2
(
bAB + eA + wB

))+ C2

(
dAB − dBA −R

2
(
bAB + eA + wB

)) = Π0
A −K1, (73)

C1 + C2 = Π0
B −K2. (74)

Thus,

C1 =

(
Π0

A −K1

) (
bAB + eA + wB

)
R

−
(
Π0

B −K2

)
(dAB − dBA −R)

2R
. (75)

Then, substitute Eq. (75) to Eq. (74) we get,

C2 =

(
K1 −Π0

A

) (
bAB + eA + wB

)
R

+
(
Π0

B −K2

)(
1 +

dAB − dBA −R

2R

)
. (76)
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8.5 Simulating range state dynamics using MASTER

We can express events in MASTER for GeoSSE using the following reaction equations.

Ŝ[{i}] ei−→ R̂[i] + L[i], (extinction of endemic species in region i)

Ŝ[{i}] dij−−→ Ŝ[{i} ∪ {j}] +G[j], (dispersal from region i to region j)

Ŝ

[⋃
i∈R

{i}

]
ej−→ Ŝ

 ⋃
i∈R;i ̸=j

{i}

+ L[j], (local extinction in region j)

Ŝ

[⋃
i∈R

{i}

]
bij−→ Ŝ

 ⋃
i∈R;i ̸=j

{i}

+ Ŝ[{j}], (between-region speciation into ranges {i} and {j})

Ŝ

[⋃
i∈R

{i}

]
wj−−→ Ŝ

[⋃
i∈R

{i}

]
+ S[j] +G[j], (within region speciation in region j for a widespread species)

Ŝ[{i}] wi−→ Ŝ[{i}] + Ŝ[{i}] +G[i], (within region speciation in region i for an endemic species),

where Ŝ[{i}] indicates the number of endemic species with range {i}, Ŝ
[⋃

i∈R{i}
]
indicates the

number of widespread species with range
⋃

i∈R{i}, R̂[i] indicates the number of species in region i,
L[i] indicates a species lost in region i, and G[i] indicates a species gain in region i.
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