An Efficient Mutual Information Based

Feature Selection Method

Lari Lampén

Abstract

This paper investigates the application of the mutual information
(MI) metric into feature subset selection in classification problems.
MI has some significant advantages such as invariance under any in-
jective transformation of variables. Several MI based feature selection
schemes have been suggested in the literature, but they suffer either
from an inability to account for complex feature interaction or from
computational intractability in some conditions.

A new method is defined whereby computation of MI values for
groups of features can be significantly speeded up by manipulating
composite feature values, making it possible to compute groupwise MI
values of sizes that were intractable with earlier methods. The new
method is compared to previously published models and applied to a

number of classification problems to illustrate its performance.

Keywords: Feature selection, feature ranking, mutual information.

1 Introduction

Feature selection is an important technique in many classification tasks' in
pattern recognition. In feature selection, a subset of all available features
is chosen so that the number of features left is as small as possible without
degrading classification performance.

There are many reasons for wanting to do this: obviously, fewer features
imply less need for storage space, faster processing and learning of data,
and potentially the use of simpler classifier models. Some features may be
tainted with noise to such an extent that they are actually detrimental to
classification, and thus removal of such features increases accuracy.

The general problem of minimising the size of the data is called dimen-
sitonality reduction. Besides feature selection, the other main class of di-
mensionality reduction methods is feature transformation, also called feature
extraction. As the name implies, such methods map the set of initial features
into a space of lower dimension.

Feature transformation methods include singular value decomposition
and principal component analysis [1], in which the data are assumed to lie on
a nearly flat manifold; locally linear embedding [2|, which considers curved

manifolds locally flat around each data point; spectral domain methods such

1Feature selection is also useful for regression tasks, but they are beyond the scope of
this paper.

as wavelet transforms and spectral decomposition [3]; and genetic algorithms
[4]. They are most useful when it is known that the data points actually lie
on a lower-dimensional manifold in the feature space, since the coordinates of
the data points on the manifold can be computed and used as a new, smaller
set of features, both to reduce storage space and in the hope that the shape
of the manifold will offer some insight into the nature of the problem.
However, feature selectors have certain advantages over the more intricate
feature transformation methods: the addition of new data points does not
require reprocessing of all data, and if an initial set of data points is used to
assess the usefulness of features before the whole data set is collected, one can
decide to record only the features that are actually required for classification,
saving time and effort that would otherwise have been used collecting useless
measurements. For example in the field of medical diagnosis, collecting the
data by making the necessary measurements and observations may be costly
or risky and cause the patient discomfort; thereby, not collecting unnecessary
features translates directly to cost efficiency and positive user experience.
In principle, feature selection and discretisation of continuous variables
can be viewed as dimensionality reduction methods operating in orthogonal

dimensions [5].

1.1 Feature Selection Methods

Feature selection is a complex endeavour due to interactions between fea-
tures, which make it difficult to find a maximally useful subset of features
(assuming that, as in most realistic problems, an exhaustive evaluation of
all combinations is impractical). Feature ranking—the ordering of features
by their salience (importance to classification)—is an even more complicated
problem because of the non-monotonicity of the ranking: generally the order-
ing is not unique, and the best subset of n variables does not always contain
the best subset of m variables, where m < n.

Suppose, for example, that one wishes to construct a system to predict
the movements of the foreign exchange market based on historical currency
rate data, and the three currency exchange rates GBP/EUR, USD/EUR, and
GBP/USD occur as features in the data. It is clear that out of the three rates,
one is redundant since it can be inferred from the others (assuming the data
are noiseless). The choice of which one to discard is arbitrary, resulting in
three possible equally valid solutions to the feature selection problem.

In more realistic cases, the relationship between features may be un-
known. Continuing the previous example, consider the movements of the
South Korean won (KRW) and the Japanese yen (JPY) against the US dol-

lar. If the yen, say, suddenly falls by a significant amount, the won is likely

to eventually follow it, since the export industries of the two countries are
direct competitors and a currency depreciation in one country will give its
export industry an unsustainable edge in international trade. Thus there
is a degree of interdependency in the rates of the two currencies, but it is
highly nonlinear, unpredictable and noisy due to the extreme complexity of
the generating process. Determining the salience of the USD/JPY rate for

predicting the price of the won is therefore a highly nontrivial task.

The feature selection process has three components: a feature evaluation cri-
terion for assessing the importance of feature subsets, a search algorithm for
exploring the space of possible feature combinations, and a stopping crite-
rion. Numerous search algorithms have been proposed in the literature for
feature selection and ranking. FEzhaustive methods are impossible to realise
for problems of realistic size. Heuristic search algorithms can be divided into
two main groups: randomised algorithms incorporating a nondeterministic
element, for example genetic algorithms; and sequential algorithms.

A brief historical review of the development of feature selection methods is
contained in [6]. Kudo and Sklansky [7] provide an experimental comparison
of a variety of feature selection techniques.

Since a feature space of k features contains 2¥ — 1 non-empty subsets,

exhaustive search of the feature space becomes intractable very quickly. The

branch and bound (B&B) method 8] reduces the search for monotonic fea-
ture evaluation criteria, but the monotonicity assumption is not satisfied in
many practical scenarios. Genetic algorithms (GA) have been applied to the
problem and found to reach semi-optimal performance in many cases with-
out making assumptions of monotonicity [9]. However, Ferri et al. [10] note a
number of problems in some current GA feature selection models, such as the
introduction of extra parameters which have to be tuned to each problem,
and the difficulty of determining a convergence criterion.

Sequential selection algorithms consider one feature at a time (or, in the
case of extended methods, n features at a time). Forward sequential selection
(FSS) starts with an empty set and adds features one by one, choosing the one
that, together with the others already chosen, results in the best classification
performance. Backward sequential selection (BSS) starts with the full set of
features and eliminates features one at a time. A generalisation of forward
and backward methods is the “plus [— take away r” method, which alternates [
forward selections with r backward deletions. Sequential methods are greedy
algorithms that can fail to find the optimal solution because of the non-
monotonicity of the ranking of features [11].

Floating search [12] adds to sequential search the flexibility of reconsid-
ering already selected or deleted features. It is similar to the “plus [— take
away r” method, except that instead of having the fixed parameters [and

6

r, the sequence of selections and deletions is adaptive. Sequential floating
forward selection (SFFS) and sequential floating backward selection (SFBS)
are natural extensions of the basic sequential methods. In an experimental
comparison, Kudo and Sklansky [7] found that floating search represents a
dramatic improvement over simple sequential selection: its accuracy on par
with methods based on genetic algorithms, and its complexity is still on a

manageable level.

In terms of feature evaluation criteria, a natural starting point is of course
classification accuracy (or, more accurately, probability of correct classifica-
tion), which is what should be maximised in the end anyway. This can be
done either by actually evaluating the classifier output with each feature set
or by deriving simpler methods that are essentially dependent on the classi-
fier model used. Methods that use the actual classifier to evaluate subsets
are called wrapper methods, while algorithms that are classifier-independent
are called filter methods [6].

A typical wrapper technique is clamping [13|, where the idea is that a
single feature can be “clamped” by resetting feature values to their mean,
and then the modified data can be used to train and test the classifier sys-
tem. Since the value of the clamped feature is equal for all data points, it

has no discriminatory power and will have no effect on classification, and

thus its salience can be determined by the resultant decrease in classification
accuracy.

In the form it was originally suggested in, clamping was only applied
in connection with a sequential search using multilayer perceptron (MLP)
classifiers. The ranking it produces was found to be largely independent of
the parameters of the MLP. Thus a simple sub-optimal MLP can be used to
rank the features before applying the “main” classifier. Extension to other
search algorithms and classifier types is problematic for reasons of complexity,
in particular when the classifier is computationally intensive (for example, a

multiple classifier system).

1.2 Pairwise Mutual Information Methods

Filter methods have the advantage of generality, and often also speed, while
still generally achieving good results. Methods based on mutual information
are particularly interesting. See section 2.1 for a mathematical definition
of mutual information. Intuitively, mutual information is a measure simi-
lar to correlation but extended to nonlinear cases. The mutual information
of random variables U and V' can be interpreted as a measure of the de-
crease in uncertainty about V once U is known. A key advantage of mutual

information is its invariance under a variety of variable transformations.

Battiti [14] developed MIFS, a feature selection algorithm that uses mu-
tual information as the feature evaluation criterion based on the intuitive
idea that features that exhibit a high degree of mutual information con-
tain redundancy. MIFS uses a greedy pairwise evaluation of features, which
unfortunately severely limits its usefulness in cases with complex feature in-
teraction.

MIFS uses the mutual information between a feature and a vector of
correct class labels to evaluate salience of individual features, and the mu-
tual information between two features to assess the amount of redundancy
they contain. However, the limits of such pairwise computation soon be-
come apparent. For example, in the case mentioned earlier where the three
currency rates GBP/EUR, USD/EUR, and GBP/USD occur as features, a pair-
wise evaluation of redundancy, no matter how intricate, will fail to detect
the complete redundancy of one feature, since no pair of these contains a
significant amount of redundancy.

Battiti attempted to compensate for this deficiency by the inclusion of
a correcting term in the equation: in MIFS, the sum of all pairwise feature
redundancies multiplied by the parameter 3 is subtracted from the class-
feature mutual information to obtain a heuristic approximation of usefulness.
However, this approach is too simple for most classification problems, and
since Battiti provided no systematic procedure for choosing 3, the parameter

9

may need to be tweaked for each problem, complicating the feature selection
process.

MIFS-U [15] is an improved version of MIFS that works well when infor-
mation is evenly distributed across the features, but being based on pairwise
feature evaluation, the algorithm suffers from the same basic limitations as
the original MIFS.

MIEF [16] is a more intricate extension of MIFS that makes use of mu-
tual information between a set of two features and the classification vector—
essentially computing mutual information in triplets. This alleviates the
problem of handling complex feature interactions but does not solve it. More-
over, MIEF exacerbates MIFS’s problem of the § parameter by including a
total of three free parameters with no systematic procedure to determine
their values (although the authors suggest values that are “appropriate for
many classification tasks”).

To account for complex feature redundancies, an algorithm must be able
to consider interaction between groups of features, but such schemes have
received little attention because they have been seen as impractical. For
example, Kwak and Choi [15] outline such a method in passing, only to

brush it away as impossible to realise in practice.

10

1.3 MIFSFS and MIBSFS

Partridge and Cang [17] introduced greedy search methods (called MIFSFS
and MIBSFS for forward and backward search, respectively) that extend
Battiti’s technique with full-blown mutual information computation between
sets of features. They found that their extension greatly improved on Battiti’s
technique, producing semi-optimal results in most cases.

The MIFSFS algorithm is presented below. It operates with two sets: the
features are moved one by one from the initial set F' to the set of selected
features S. The ascending order of transfer to set .S produces a ranking of the
features. Selection of the optimal feature space is then easy by choosing the
top-ranked subset F''™ that maximises I(C; F™), the mutual information
with the class vector. A subset of specific size can also be chosen if required

(for example due to storage space considerations).

1. F «+ initial set of features

S0
2. For each f € F, compute I(C; f)

3. Choose the f the maximises I(C; f)

S—f

11

4. Repeat until F' = ()
- For each f € F, compute I(C;SU f)
- Choose the f the maximises I(C;S U f)

S Suf

Applying both the forward and the backward search variants of the algo-
rithm to a data set is suggested as a good way to detect feature interactions,
which are evinced by a difference in ranking or subset selection between the
two search types, which can then be used as a basis for further analysis of
such interactions.

If the contribution of a single feature to the group-class mutual informa-
tion is very small (i.e. I(C;S) =~ I(C;S U f)), the feature can be considered
to be signalled as irrelevant or fully redundant by the feature selector.

Note that the algorithm makes use of 1(C; S U f), a mutual information
value between the class vector and a set of features. While some authors (such
as Al-Ani et al. [16]) define mutual information directly for more than two
variables, Partridge and Cang instead compute it using a process called fea-
ture composition, a method of combining several features into one, whereby
groupwise mutual information calculation can be reduced to the two-variable

case. The two methods are equivalent in terms of complexity. Feature com-

12

position is further discussed in section 2.2.

The main shortcoming of MIFSF'S is its limited scalability to problems
with feature spaces of nontrivial size: the feature composition method used
is susceptible to an exponential explosion of complexity, since the number of
possible combinations grows exponentially as the number of features being
considered increases. While Partridge and Cang note that combinations that
do not actually occur in the data can obviously be omitted, the way they
perform the omission still leaves the algorithm impractical for large feature
spaces.

The difficulty arises in computing the mutual information of large groups

of features, a problem that is discussed in detail in the next section.

13

2 Mathematical Preliminaries

This section defines some key concepts mathematically.

A classification task can be seen as a search for a mapping from data to
a set of class labels. For a problem with n data points and k features, the
set of all feature values can be written as a matrix M of size n x k, where
the value v;; measures the jth feature for the ith data point. A classification

then takes the form of a mapping from M to a vector of class labels:

V11 V12 ... Uik C1
Vo1 V22 ... Uy (&)
H
Unt Un2 ... Unpk Cp
In matrix M, the ith row vector d; = (v;1,v;2, ..., v;x) contains all mea-

surements related to the ¢th data point. Similarly, the jth column vector

fi = (v1j,v95,...,v,;)" corresponds to the jth feature.

2.1 Mutual Information

All mutual information based feature selection schemes call for the computa-
tion of mutual information values using probability density functions, which
in real-world problems have to be derived from data. Since approximation
of these density functions using continuous functions is nontrivial (involv-

ing an integral which cannot be solved explicitly), the chosen approach is to

14

first discretise the feature values using any of a variety of existing discretisa-
tion techniques for conversion of continuous feature values. In the following,
discussion is therefore confined in the domain of discrete random variables.?

The mutual information (U, V') between two discrete random variables

U and V is defined as

u,v)= ZZp(u,v) logM

el p(u)p(v)’

where p(u), p(v) are density functions and p(u,v) is a joint density function.
As mentioned above, a key advantage of mutual information is its in-
variance under many transformations. The following theorem states this

property in more exact terms:

Theorem. Assume that g is an injective® function. Then for any

random variables U and V/, it holds that I(g(U),V) = I(U, V).

To outline a proof, note that the mutual information value is affected
only by the frequency of occurrence of each value in U and not by the values

themselves. Since ¢ is an injection, it cannot change these occurrence counts.

2These methods can also be applied to nominal-valued features, which can be encoded
numerically.

3An injective function, also called one-to-one function, maps different values in the
domain to different values in the range, i.e. the function ¢ is an injection if and only if
Va,b: (g(a) = g(b) = a =1).

15

2.2 Feature Composition

The above definition only covers mutual information between two random
variables. The mutual information between two groups of features can be
computed by creating a composite feature for each group, reducing the prob-
lem to that of two features. The central problem is then one of efficiently
constructing a composite feature from a subset of the original feature set.
A composite feature basically consists of combinations of values of the
simple features in it. The following matrix shows features f; and f; on the
left side and their composite feature, which shall be denoted F'(f1, f2), on

the right:

V11 V12 (Ullu U12)

V21 U22 (1121, 1)22)

Un1 Un2 (%1,%2)

Thus a composite feature made up of k simple features consists of k-
tuples of values corresponding to those of the component features; in the
above case, k = 2 and the composite values are ordered pairs. For the
purposes of composition, nested pairings can be considered equivalent to the
corresponding “unrolled” list, i.e. ((a,b),¢) = (a,(b,c)) = (a,b,c). It can
easily be seen that with these definitions, the composition operation F' is

associative; that is, the composition of three features a,b,c can be done in

16

any order since F'(F(a,b),c) = F(a, F(b,c)).

2.3 Complexity of the Feature Composition Process

Note that in the feature composition procedure outlined above, if f; has b,
possible different values (“bins”) and f, has by, then in principle there are
by - by possible values of F(fi, f2). In general, for a composite feature made

up of z features by, by, ..., b,, the number of possible values is

Bc = H bia
i=1

and this number grows extremely fast (if the number of bins is the same for
all features, B, is an exponential function of n).

This very large number of possible values is the source of the intractability
of MIFSFS and MIBSFES in large feature spaces. To compute the mutual
information I(U, V'), the term p(u,v) is estimated from the number of times
each value occurs, and an obvious way to do this is by constructing an array
where each element, corresponding to a possible value, counts the number of
times it occurs. In the case when one of the features is a composite feature,
the size of this array will be proportional to B., implying that storing the
array or looping through it is impossible except in impractically small feature

spaces.

17

Nevertheless, the composite feature of any number of features is still
essentially a list of length n, as discussed above, and therefore it can contain
at most n unique values. This indicates that as the number of simple features
contained within a composite feature grows, the number of possible values
and the size of the histogram array grow very fast, while the number of feature
combinations that actually occur never exceeds a fixed ceiling. In short, the
more features one combines, the sparser and more wasteful of memory the

histogram array becomes.

18

3 The Proposed Method

The computation of mutual information of composite features can be greatly
simplified by manipulating the value sets. The procedure is conceptually
simple: a series of injective functions will be applied to the composite fea-
ture before constructing a histogram for computation of mutual information.
Since mutual information is invariant under injections, the result values can
be used to compute the mutual information of the original composite fea-
ture. The injections used are chosen specifically to ease the computational
complexity and are defined as follows:

Assume that U is a composite feature made up of r simple features
fi, f2,..., fr, and f; has B; bins. Define the function b : R — I as a num-
bering of bins; that is, b(x) = 0 if and only if z is equal to the lowest value
among the bins (for the feature in question), b(y) = 1 if y is equal to the
second lowest, etc. Note that multiple occurrences of the same value map to
the same number.

The composite feature U is a list of ordered r-tuplets, for which it is
defined that b(U) = b(F(f1, fa,..., [r) = F(b(f1),b(f2),...,0(f)), i.e. ap-
plying the function b to U means simply applying it to each of the simple
features in it.

To illustrate this with an example, consider the following small example

19

matrix, which shows two features, their composite feature, and a composite

of their labels according to the above-defined function b:

fv fo | F(f1, f2) | 0(F(fi, f2))
3.0 6.0](3.0,60)| (3,2
1.0 1.0](1.0,1.0)| (1,1)
25 6.5 (2565 | (2,3)
1.0 1.0](1.0,1.0)| (1,1)
0.5 0.5 (0.5,0.5)| (0,0)
3.0 9.0](3.0,90)| (3,4)

The features in the example contain multiple occurrences of values to em-
phasise the fact that these are discrete features with a limited number of
possible values, or bins.

Define B(fi, fo,..., fr) = maxj<;<, B;, i.e. the function B picks the
largest number of bins from the given set of features. Moreover, define the

function c

c: R — N:c(vi,va,...,0,) = > b(v;) - B(vi,v2,...,0,)".

This function ¢ is an injective mapping that associates a unique natural
number with each possible value combination. In practice the resulting values
are very sparse.

The function b is used again on the result of the previous stage, so that

the resulting vector contains only nonnegative integers without any gaps.

20

Continuing the earlier example, the following matrix completes the tran-

sition from individual features to the simplified composite feature step by

step:
v fa | F(b(f1),b(f2)) c(b(f1),b(f2)) b(c(b(f1),b(f2)))
3.0 6.0 (3,2) 3:50+2.51=13 3
1.0 1.0 (1,1) 1-5°+1-5'=6 2
2.5 6.5 (2,3) 2:-50+3-5 =17 4
1.0 1.0 (1,1) 1-5°+1-5'=6 2
05 0.5 (0,0) 0-5°+0-5'=0 1
3.0 9.0 (3,4) 3-50+4.5'=23 5

The advantage of the method can be seen from the above example: while in
theory there are By - By = 4-5 = 20 possible values for the composite feature,
there are actually only five unique values, and a histogram for the simplified
composite feature will only need to contain five elements. The difference
quickly becomes much larger as the number of features composed increases.

Fig. 1 shows another example, illustrating the transformation one step at
a time.

Using the functions defined above, let U" = d(c(U)); thus, each value
combination in U is mapped to a single natural number in U’, as illustrated
by the matrix above. The mutual information values will remain unchanged,
ie. I(U',V) = I(U,V) by the Theorem in section 2.1, but building a his-
togram of the values in U’ is fairly trivial, since the values are numbered

using consecutive integers, and the largest value is equal to the number of

21

AN EXAMPLE

(0.5,1.1) 0, 1)
(2.7, 3.5) > (, 3)
(0.5, 2.4) 1. Label features individually (0, 2)
(4.1,0.2) (2,0)
2. Find maximum
number of bins B
1 0+1*4 = 4
3 < 1+3"4 =13
2 4. Re-label 0+2*4 =8 3. Encode composite
0 2+0*4 =2 values

Figure 1: A step-by-step example of the method.

22

unique value combinations that actually occur in the training data. An up-
per limit for this is the number of data points n, which, especially in large
feature spaces, is only a tiny fraction of the B, combinations required by the

naive histogram approach.

3.1 Complexity of the Proposed Method

The key question here is of course how the complexity of the method de-
scribed above compares with that of the basic feature composition process
when faced with the practical task of computing mutual information values
for groups of features.

Assume that one wishes to compute the mutual information between a
total of r features (since mutual information is a symmetric measure, the
specific way in which the features are grouped does not affect the result) in
a problem with n data points. To simplify the problem somewhat, assume
that all features are binned with ¢ bins; in other words, ¢ is the number of
unique values occurring in each feature.

The complexity of the basic composition process was discussed above in
section 2.3. The total cost of computing the mutual information using it
is O(n + ¢"), where, as r grows, n quickly becomes insignificant and the

complexity function becomes exponential.

23

As for the new method, the bin labelling function b is computed separately
for each of the r features and involves a sorting operation which can be im-
plemented in O(nlogn) time, resulting in a total complexity of O(r-nlogn).
Finding the maximum number of bins B and the encoding function ¢ both
require time proportional to O(rn), and finally, actually computing the mu-
tual information requires a pass through the histogram, which has size not
exceeding n, implying a complexity of O(n).

Thus, the total complexity of the operation of computing the mutual
information is of the order O(r - nlogn), which is sub-quadratic in terms
of the number of data points, but more significantly, is linear in relation
to the number of features being considered. Thus, this procedure is not a
mere speed-up of existing methods; it makes it possible to apply the mutual
information metric on a group evaluation basis to any feature space of realistic
size, whereas earlier, feature spaces of any but impractically small size were

intractable with such methods.*

“For example, the largest example Partridge and Cang [17] discuss involves just six
features.

24

4 Results

This section presents various experimental results grouped by data set. These
classification problems have been widely discussed in the literature. All of
these data sets are available from the UC Irvine machine learning data repos-

itory.

4.1 The Monk3 Data Set

Since the algorithm described above is a new way to implement MIFSFS, not
a heuristic approximation of it, it should produce the same results as MIFSFS
implemented using the straightforward histogram method. Indeed, to verify
that this is the case, an implementation of the proposed algorithm was ap-
plied to rank features in the Monk3 data set from the UCI data repository,
since this data set was used as an example by Partridge & Cang [17].

The Monk3 data represent a binary classification task with six discrete-
valued features (denoted I, F,..., Fg), where the class label determines
whether the logical expression (F5 =3 A Fy = 1)V (F5 # 4 A Fy # 3) holds.
Note that features Fi, F3 and Fg do not appear in the expression and are thus
completely irrelevant to the classification task. There are 122 data points in
the set.

To summarise the results, the algorithm picks F; followed by Fj and then

25

F, as the most salient features, as could be expected. After them, it picks
features Fy, F3 and Fg, all flagged as irrelevant or redundant. (In comparison,
MIF'S incorrectly chooses F3 as the third most salient feature, whereas MIFS-
U chooses the same ordering as MIFSFS.)

The results, including exact mutual information values, were identical
to those reported by Partridge & Cang [17] for their implementation of
MIFSFS. This serves as empirical confirmation of the correctness of the pro-

posed method.

4.2 Tonosphere Data

The most interesting problems are those with a large feature space, since
MIFSFS could not be applied to them before the present method. Any
feature count in the double digits is already large in this sense.

In this experiment, MIFSFS was applied to the Johns Hopkins Univer-
sity’s ionosphere data set from the UCI data repository. The data set contains
radar measurements of free electrons in the ionosphere. There are 34 con-
tinuous features to be classified between two classes, and the total number
of instances is 351. This data set is used because it has a feature space of
suitable size and a “canonical” partitioning of data into training and testing

sets. The latter is useful for reproducibility of results, as different partitions

26

tend to produce different feature rankings.

The methodology is as follows: the features were first ranked using MIFSF'S,
and then a single multilayer perceptron (MLP) classifier was trained and
tested with each top subset, i.e. first with no features (resulting in chance
level performance), then with the most salient feature, then with the two
most salient features, etc. The MLP was trained and tested a total of ten
times for each feature subspace, and the average classification accuracy with
each subset was recorded.

The MLP had 50 hidden nodes, was trained for 50 cycles, and had learning
rate and momentum both set to 0.0005. The features are already normalised
in the original data set to have values in the range [—1,1]; they were dis-
cretised using ten bins of equal width. The first 200 instances were used for
training, the rest for testing. The results are shown in fig. 2. For comparison
with pairwise methods, the result of MIFS (with 5 = 1.0) for the same data
with the same parameters is also shown.

This type of plot should usually show a monotonic increase in accuracy,
as features are added in, possibly followed by some decline, if some of the
features are so noisy they degrade classification performance. The absence
of a noticeable decline in this graph indicates that no features are so noisy
that they would significantly confuse the MLP. On the other hand, a large
number of features are redundant, since the accuracy 94.2% + 2.5 reached

27

UCI lonosphere data

100
o5 T = = o] y g -
s et
Y L.
a0 1 .
- E j
i > & 8
80
%A%
75 I i 5
70
685
%
60
55
a0 -7 ———
01 2 3 4 5 6 7 8 9 1011121314 15 16 17 18 13 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Figure 2: Results for the UCI ionosphere data set.

Features

Ranking | 1. | 2. | 3. |4. |5 |6. |T.
MIFSFS | F5 | Fo | Fs | Fo | Foo | Frg | Foy
MIFS | F5 | Fy | Fy | Fio | F5 | Fs | For

Table 1: The highest-ranking features in the ionosphere data as chosen by

MIFSFS and MIFS.

with 13 features with MIFSFS is practically identical with the 94.4% + 4.1

with the full data set, suggesting that nearly two thirds of the features can

be discarded without loss of accuracy.

Table 1 shows the features that are ranked the most salient by the two
algorithms. While the algorithms agree that Fj is the most salient feature

(the algorithms always pick the same feature first, since in that case, the

28

—t—lIF5FS
—&—MIFS

setwise mutual information reduces to the pairwise case), not much agree-
ment can be seen otherwise. This indicates that there is interaction in the
data that is not picked up by pairwise evaluation. MIFSFS indicates just five
features as a sufficient subset, tagging the rest as redundant, but clearly the
MLP classifier benefits from the inclusion of some more features. Ruiz et al.
[18] tested feature selection algorithms based on projection and correlation
on this data set, and in their results, the number of features selected varied
between 12-32, showing how comparatively aggressive MIFSFE'S is in marking
features as irrelevant.

The classification accuracy using subsets chosen by MIFSFS essentially
overlaps that of MIFS throughout, except for the smallest feature subsets.
The choice of subset of size 2 is particularly surprising, as it shows an unusual
dip that breaks the normal pattern of monotonic increase. On the other hand,
there is a similar dip in the performance of MIFSFS at the subset of size 4.
However, as table 1 shows, these dips do not correspond to the same feature.
The cause of this phenomenon is unclear.

In the literature, Cantti-Paz [19] has used a genetic algorithm to select
features in this data set. His algorithm chose 11.5+2.95 features, for which a
Naive Bayes classifier reached an accuracy of 91.50% 4-0.79 in five-fold cross-
validation. Yang and Honavar [9] used another genetic algorithm for feature
selection and an artificial neural network based on a constructive learning

29

algorithm for classification. Their algorithm was able to choose a subset of
17.34+3.5 features on which the classifier achieved an accuracy of 98.6% +2.4
in 10-fold cross-validation. Actual feature rankings were not reported. These
results are not directly comparable due to differences in data partitioning and

classifier systems, but serve to give an idea of what has been achieved.

4.3 Wisconsin Diagnostic Breast Cancer Data

The Wisconsin Diagnostic Breast Cancer (WDBC) data set contains features
computed from a digitised image of a fine needle aspirate (FNA) of a breast
mass. They describe characteristics of the cell nuclei present in the image.
There are 30 continuous features and two classes corresponding to diagnosis
of the tumour as either benign or malignant. The number of instances is 569.
The data were normalised for the experiment so that © = 0.0 and o = 1.0
for each feature.

The basic set-up of the experiment is similar to the one with the iono-
sphere data: features were ranked with MIFSFS (and MIFS with 5 = 1.0,
for comparison) and then a single MLP classifier was trained and tested with
each feature subspace. The MLP parameters were the same as in the pre-
vious section. The features were discretised using ten bins of equal width.

Partitioning was done using 10-fold cross-validation so that for each parti-

30

Wisconsin Diagnostic Breast Cancer

100 S ; T + >
. o R NE mHﬁrf*.'-_-i'T-"""“'—“‘ﬂl-_;ﬂV‘”"F’"

= '."I_,, B P S T
20 {“"'-J: El A
o5 L

80 /
—a— MIFSFS
79

/ --® - MIFS
70 J
65

&0

j5iv]

50

o1 2 3 4 & 6 7 8 9 1011 1213 14 18 16 17 18 13 20 21 22 23 24 25 26 27 28 29 30
Features

Figure 3: Results for the breast cancer diagnosis data set.

tion, only the training set was used to rank features. The results are shown
in fig. 3.

Again, the difference between MIFSFS and MIF'S is rather small. This
data set contains a remarkable amount of redundancy: for example, MIFSF'S
reaches a classification accuracy of 95.6% 4 4.2 with just three features, com-
pared to an accuracy of 97.0% =4 4.1 with the full data set. In other words,
just one tenth of the original set of features produces results that are nearly
on par with those with the full feature space. The redundancy is well doc-

umented: for example, Street, Wolberg and Mangasarian [20], using feature

31

transformation methods, found that a set of three features gave the best
results.

Scherf and Brauer [21] developed a filter-type feature selection method
that performs feature weighting based on Euclidean distances between in-
stances and applied it to this problem. Even for the most aggressive pa-
rameter setting, their algorithm selected a subset of 20 features, on which
an adaptive radial basis function network classifier achieved the same 98%
accuracy as with the entire data set; no standard deviations were reported.
Considering the amount of redundancy apparent in the data, their feature

selector appears rather lax about accepting features as relevant.

4.4 Sonar Target Data

The sonar target classification data set contains measurements related to
radar signals bounced off objects at various angles and under various con-
ditions. It is a binary classification task: the object in question must be
identified as either a rock or a metal cylinder (intended to simulate a mine).
There are 111 “mine” patterns and 97 “rock” patterns. The number of fea-
tures is 60. An even division into training and testing material is provided.
The data is normalised in the range [0.0, 1.0].

Kwak and Choi [15] report a comparison of feature selection methods

32

for this data set. Unfortunately, analysis of their results shows that their
experiment has used the full data set for feature selection before partitioning
the data. Since the test set has been available in the feature selection phase,
the independence of the test set is compromised and the reliability of results
is called into question.

Even accounting for this problem, their results were initially impossible
to reproduce. However, in a later paper [22], the same authors report results
that are identical for the relevant part, but a key parameter is reported
differently (in [15], the learning rate of the classifier is stated to be 2.0, while
in [22] it is reported as 0.2), while all other parameters are unchanged. It
was therefore assumed that a there has been a typing mistake or other error,
and that the latter value is correct. Of course, the reason of the discrepancy
could be something else.

With these caveats in mind, the experiment was nevertheless modelled
after that of Kwak and Choi to achieve comparability of results. The features
were ranked using the entire data set. Optimal subsets of certain sizes were
picked from this ranking, and an MLP classifier was trained and tested ten
times for that feature subspace, with average performance recorded. The
MLP had three hidden nodes and a learning rate of 0.2 with no momentum.
It was trained for a maximum of 300 iterations.

Table 2 shows a comparison of the results and those reported by Kwak

33

Features MIFSES MIFS MIFS-U
3 76.35 (14.95) 51.71 (2.1) 65.23 (1.6)
6 78.27 (6.32) 74.81 (1.4) 77.03 (0.4)
9 74.04 (8.21) 76.45 (2.4) 178.98 (0.7)
12 76.44 (8.70) 78.12 (1.8) 81.51 (0.4)
AlL 60 87.92 (0.2)

Table 2: Performance of MLP classifier on selected subsets on the Sonar data.

Standard deviations given in parentheses. The highest accuracy on each row
is highlighted. Figures for MIFS, MIFS-U and whole set extracted from [22].

Ranking | MIFSFS MIFS (3 = 0.0) MIFS (3 = 1.0) MIFS-U (5 = 1.0)
1. Fiy Fiy Fiy Fiy
2. Fig Fiy Fs5, Fiy
3. Fyg Fig Fy Fyg
4. Fy Fi3 Fyo Fg
9. Fog Fiyo Feo Fs1

Table 3: Five top-ranked features as selected by different feature selection
methods for the sonar target data set.

and Choi. MIFSFS is strong when very few features are selected, but its
performance seems to peak early on. MIFS performs particularly poorly
with small feature subspaces. The standard deviation values reported by
Kwak and Choi seem suspiciously low.

Table 3 tabulates the highest-ranking features. These are interesting in
the context of fig. 4, which is a mutual information diagram for the data set,
i.e. it shows the mutual information of each feature with the class vector.
Since all of these feature selection algorithms are mutual information based

forward selectors, it is natural that they all choose Fi, as the most salient

34

Feature—class mutual information

Mutual information plot for sonar data

0.25 T

0.2

0.1}

0.051

Figure 4: Mutual information diagram for the

30
Feature number

35

40 50

sonar target data set.

60

feature since it has maximal mutual information with the class. It is instruc-
tive to look at the rankings of MIFS with 5 = 0.0, which completely ignores
feature redundancy: the four top-ranked features represent adjacent values
near the peak in the graph. Since they correspond to a very short interval
of time, any property of the target manifested in a different portion of the
sonar signal is practically impossible to pick up based on these features.

In contrast, the other algorithms account for redundancy and pick values
from a wider distribution in the interval. MIF'S with 5 = 1.0 seems to overdo
this at the expense of salience for classification, while MIFSFS and MIFS-U
seek more realistic compromises between redundancy and salience.

These results suggest that MIFSFS can outperform its rivals for small
feature subspaces, but as the feature subspace grows, differences in accuracy

between different mutual information feature selectors become slim.

36

5 Discussion

This chapter notes problems with the current method and proposes a possible

solution.

5.1 Limitations

Perhaps the most significant limitation of the MIFSFS feature selection
method is its dependence on binning. Since the method is based on frequency
counts of occurrences, it will not work well with features where values rarely
occur repeatedly—typically when the number of possible values is large in
comparison to the actual number of values (e.g. if it happens that the data
consist of a thousand integers in the range 1...10,000 and all of them are
different, all frequency counts will be either 0 or 1, producing poor results).
Thus, it is not sufficient that the input data are discrete; they must in fact
be binned using an appropriate number of bins.

Partridge & Cang [17] point out that increasing the number of bins used
for discretising a single feature in relation to other features introduces a bias
towards that feature. The cause of this phenomenon is easy to see in the
context of the method proposed here: mutual information between groups of
features is fundamentally a measure of their ability to discriminate between

data points. The process of progressively including more and more features

37

in a set to discriminate between more data points is analogous to refining a
set of decimal numbers with more and more significant digits to be able to
tell apart the numbers: to discriminate two numbers that are equal up to
the ¢th position, ¢ significant digits must be used. If the number of possible
values for the ith digit (or feature) is larger than for the others, there will be
a natural bias towards it in the selection process as it is likely to have more
discriminatory power.

It is natural that features are chosen that can be used to tell data points
apart, but the bias is still an artefact of the discretisation process rather
than a genuine property of the data. Probably the best simple approach is
to use the same number of bins for all features, but this aspect of feature
discretisation needs further research.

An additional problem with histogram-based estimation of probability
densities is its susceptibility to the curse of dimensionality in large feature
spaces. In high dimensions, binning is inaccurate [23]. However, the proposed
method is not directly compatible with other probability density estimation

methods, such as kernel density estimators.

38

5.2 Future Research

Choosing an appropriate number of bins is not all there is to discretisation.
Numerous discretisation methods exist, including the standard equi-width
histogram (where the bins correspond to intervals of equal size), equal fre-
quency binning (where the bins have an equal number of data points), the
MaxDiff method (which seeks to place bin boundaries in spots where there
is a large difference between successive data points), and various fuzzy and
iterative methods [24]. Which one produces the best classification results
often depends both on the data and the classifier used.

There is initial evidence to suggest that mutual information could be used
to assess discretisation methods. Consider fig. 5 and compare it with fig. 2
back on page 28. It plots the group mutual information with the class vector
I(C,S) as a function of the size of S for the ionosphere data set. A graph of
this kind first displays a quick rising trend, as the most important features are
added in, and then reaches a plateau, as subsequent features contain less and
less additional information about the classification. Due to the monotonicity
of mutual information, no decreases are possible in such graphs.

Preliminary results suggest that when the rate of increase of information
contained in the subset is quick, i.e. the graph plateaus early on, information

about the class is well “condensed” in the most important features, which

39

Feature subset M| with class, ion. data

e T

T L

T

T T

R T

T

03

12 3 4 5 6 7 8 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Features

Figure 5: Subset information content plot for UCI Ionosphere data.

leads to good results in feature selection and classification.

These results, if confirmed by additional experiments, could lead to an
algorithm that autonomically chooses an appropriate binning strategy and
binning parameters. This would largely eliminate the main shortcoming of

the method, its dependence on correct choice of binning.

40

6 Conclusions

This paper has introduced a new method for quickly calculating exact mu-
tual information values for large groups of features and used it to improve the
MIFSF'S feature selection algorithm. The results show an improvement over
methods based on pairwise mutual information evaluation in some cases and
no improvement in others. It seems that real-world problems seldom con-
tain complex group redundancies to such an extent that considering them is
crucial to successful feature selection.

Nevertheless, MIFSFS has certain advantages over most pairwise meth-
ods, having no parameters that need problem-specific tuning, and being
able to identify irrelevant or redundant features. The new method brings
MIFSFS’s computational complexity near to that of pairwise methods like
MIFS-U, making it a good choice not only in cases where complex feature

interaction is suspected, but in all feature selection tasks.

41

References

[1]

2]

131

4]

15]

[6]

M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular value decompo-
sition and principal component analysis. In D. P. Berrar, W. Dubitzky,
and M. Granzow, editors, A Practical Approach to Microarray Data

Analysis, pages 91-109. Kluwer, Norwell, MA, 2003.

M. Polito and P. Perona. Grouping and dimensionality reduction by
locally linear embedding. In T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems 14,

pages 1255-1262, Cambridge, MA, 2002. MIT Press.

E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Di-
mensionality reduction for fast similarity search in large time series

databases. Knowledge and Information Systems, 3(3):263-286, 2001.

M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K.
Jain. Dimensionality reduction using genetic algorithms. IEEE Trans-

actions on Evolutionary Computation, 4, 2000.

H. Liu and R. Setiono. Dimensionality reduction via discretization.

Knowledge-Based Systems, 9:67-72, 1996.

G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the
subset selection problem. In International Conference on Machine

42

[7]

18]

19]

[10]

[11]

[12]

Learning, pages 121-129, 1994. Journal version in AlJ, available at

http://citeseer.nj.nec.com/13663.html.

M. Kudo and J. Sklansky. Comparison of algorithms that select features

for pattern classifiers. Pattern Recognition, 33(1):25-41, 2000.

M. Vlach. Branch and bound method for the three-index assignment

problem. Ekonomicko-Matematicky Obzor, 12:181-191, 1967.

J. Yang and V. Honavar. Feature subset selection using a genetic algo-

rithm. IEEFE Intelligent Systems, 13:44-49, 1998.

F. J. Ferri, V. Kadirkamanathan, and J. Kittler. Feature subset search
using genetic algorithms. In Proceedings of the IEE/IEEE Workshop on

Natural Algorithms in Signal Processing, 1993.

D. W. Aha and R. L. Bankert. A comparative evaluation of sequen-
tial feature selection algorithms. In D. Fisher and H.-J. Lenz, editors,
Learning from Data: AI and Statistics, pages 199-206. Springer-Verlag,

1996.

P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler. Floating search
methods for feature selection with nonmonotonic criterion functions. In
12th International Conference on Pattern Recognition, pages 279-283,
1994.

43

[13]

[14]

[15]

[16]

[17]

[18]

W. Wang, P. Jones, and D. Partridge. Assessing the impact of input
features in a feedforward network. Neural Computing and Applications,

19:101-112, 2000.

R. Battiti. Using mutual information for selecting features in supervised
neural net learning. IEEE Transactions on Neural Networks, 5(4):537—

950, 1994.

N. Kwak and C.-H. Choi. Input feature selection for classification prob-

lems. IEEE Transactions on Neural Networks, 5:143-159, 2002.

A. Al-Ani, M. Deriche, and J. Chebil. A new mutual information based
measure for feature selection. Intelligent Data Analysis, 7(1):43-57,

2003.

D. Partridge and S. Cang. Revealing feature interactions in classification
tasks. In A. Abraham, J. Ruiz-del-Solar, and M. K&ppen, editors, Soft
Computing Systems: Design, Management and Applications, Frontiers
in Artificial Intelligence and Applications Vol. 87, pages 394-403. I0OS

Press, 2002.

R. Ruiz, J. S. Aguilar-Ruiz, and J. C. Riquelme. SOAP: Efficient feature

selection of numeric attributes. In Proceedings of the 8th Ibero-American

44

[19]

[20]

[21]

[22]

23]

Conference on Al: Advances in Artificial Intelligence, pages 233-242.

Springer-Verlag, 2002.

E. Cantu-Paz. Feature subset selection by estimation of distribution
algorithms. In W. B. Langdon et al., editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 303

310, New York, 9-13 July 2002. Morgan Kaufmann Publishers.

W. Street, W. Wolberg, and O. Mangasarian. Nuclear feature extraction
for breast tumor diagnosis. In IS&T/SPIE 1993 International Sym-
posium on FElectronic Imaging: Science and Technology, volume 1905,

pages 861-870, 1993.

M. Scherf and W. Brauer. Feature selection by means of a feature weight-
ing approach. Technical Report No. FKI-221-97. Institut fiir Informatik,

Technische Universitdt Miinchen, Munich, 1997.

N. Kwak and C.-H. Choi. Input feature selection by mutual information
based on Parzen window. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24:1667-1671, 2002.

Y.-I. Moon, B. Rajagobalan, and U. Lall. Estimation of mutual infor-
mation using kernel density estimators. Physical Review E, 52(3):2318-

2321, 1995.

45

[24] Ying Yang and Geoffrey I. Webb. A comparative study of discretization
methods for Naive-Bayes classifiers. In Proceedings of the Pacific Rim

Knowledge Acquisition Workshop, 2002.

46

