SOFTWARE—PRACTICE AND EXPERIENCE, VOL., 12, 1133-1145 (1982)

An Overview of the Yale Gem System

JOIN LEVINE

Department of Computer Science, Yale University, New Haven, Conn. 0652, U.S.A.*

SUMMARY

The Gem system is an experimental computing facility that provides low cost, high speed,
graphics-oriented computing to between ten and sixteen simultaneous users. It provides
many unusual facilities to its users and presents a user interface that is unique in its
convenience and flexibility. The motivation for the system, its design and user experience are
described. Possible future avenues of research are also outlined.

KEY WORDS Graphics Editors Time-sharing Interactive systems CRT Terminals

MOTIVATION

In 1972 the Yale Computer Science department undertook to build an inexpensive
computing system for student use. The goals were to provide interactive computing to
each user, and to allow the use of text and graphical output in any combination. Since
the system had to be inexpensive, substantial effort was made to build it out of
standard commercially available components whenever possible. Also, since the
project would evolve rapidly over the years, it was imperative to maintain the
maximum of fHexibility to allow for reconfiguring the system for unforeseen uses.

HARDWARE DESIGN

The Gem system hardware 1s pictured in Figure 1.

Display system

I'he heart of the system is the Gem memory, a bank of 256K 16-bit words of
semiconductor memory, which is of course called Gemory. Each screen is assigned a
16K (16 bits/word) section of Gemory. All the screens are refreshed simultaneously
from their respective Gemories 30 times per second.

The image on each screen is considered to be an array of bits 576 wide and 454 high.
T'hese numbers come quite naturally from the resolution of the standard television
monitors used and the size of the screen memory. The most common way we use the
screen is to treat it as lines of text. Each character is eight bits wide, since our
computers address 8-bit bytes, so the screen allows 72 characters across. 'The 16K
words of screen memory are just about filled up by 454 such scan lines, and the aspect
ratio is close to the natural 3/4 ratio of the screens.

0038-0644/82/121133-13801.30 Received 11 October 1979
© 1982 by John Wiley & Sons, Ltd. Revised 25 May 1980

* Present address: Interactive Systems (Califl), P.O. Box 349, Cambridge MA 02238, U.S.A.

1134 JOHN LEVINE

"o
YT
o

i

-

n
g
Lg
Ly

Gemnory

258K

pdp-11-45
S “paper

tape

“

134K

T
Disks

Tapes

Ling printer

Quality typeuriter

% s

rdp-11-85
Ty,

12K

Anal

subsy

oq
s

Joystick

Speaker

Electrostatic

Printer

Figure 1. Block diagram of the GEM system. There is a good deal of conventional computing equipment here
not referred to in the text. As was mentioned above, the program used to draw this was developed in less than an
hour

IFach 36 word section of memory corresponds to one scan line on the screen, with
the first 36 words corresponding to the top line on the screen. The low order bit of the
first word in a group is the leftmost dot on the line, the next bit in that word the next
dot to the right, and so on. A "1’ bit is a lit spot on the screen; a ‘0’ bit is dark spot.
Usually we draw white figures on a dark background because it looks better on the
screen, although the hardware has no natural preference either way. (‘The printer on
which the figures for this article were drawn prints black on white, the opposite of the
screen convention.)

Pictures are drawn on the screens by the simple act of writing bit patterns into
Gemory. Changing individual words or byvtes of memory changes individual sections
of the screen. Operations such as blanking out a selected section of the screen or
copying an image from one part of the screen to another part of the screen are easily
programmed.

I'wo computers access the Gemory. T'he ‘terminal’ computer, which is a Digital
PDP-11/05, has the primary job of simulating more or less conventional typewriter
terminals. T'he other one, a PDP-11/45, does general-purpose time-sharing. Each
computer has mapping hardware that allows it to access the Gemory for any terminal
as though the Gemory were part of the primary memory for the computer. It is quite
possible for both computers to access the same screen memory at the same time;
hardware resolves the contention. The primary connection between the two com-
puters (other than through the shared Gemory) is a simple bidirectional link that
appears to each machine to be a very fast paper tape reader and punch. T'he terminal
computer has been programmed to send the characters typed on the keyboards (except

(O8]
N

AN OVERVIEW OF THE YALE GEM SYSTEM 11

for locally handled functions) to the main computer, and the main computer sends
characters to be displayed to the terminal computer.

Other hardware

Several peripherals are attached to the two computers, a few of which bear further
discussion. A chronic problem facing CR'T oriented systems is the difficulty of
obtaining paper copies of the contents of the screen at reasonable cost, especially when
the screen can display pictures as well as text. The terminal computer has attached to
it a standard electrostatic matrix printer. Since the data in a screen memory is an array
of bits in the same format as is required by the matrix printer, copying the screen
memory directly to the printer produces a paper copy of the screen image. We have
programmed the terminal computer so that on each keyboard, there is a ‘Print’ button
that makes a copy of the screen, allowing users to obtain hard copy as often as needed.
A user program can also arrange to copy screen images to the printer by sending
control character sequences to the terminal, so that by repetitively drawing pictures
and printing them longer paper pictures can be drawn. All sixteen terminals share the
same printer, so that the cost per terminal of providing the printer is quite low. All of
the figures for this paper were printed on the matrix printer.

There 1s also an analogue 1/O subsystem, which is described later, attached to the
terminal computer.

SYSTEM SOFTWARE

After a good deal of investigation and experiment, we decided to adopt the well-
2 2
known Unix time sharing system.!?

Terminal computer

We have programmed the terminal computer to emulate an ASCII CR’I' terminal.
‘I'he emulation program is written in the same C language ™ as is the Unix system
itself and so the program has been easy to develop and modify.

Each Gem terminal can be used just like a typical typewriter terminal. Since the
behaviour of the terminal depends solely on the program in the terminal computer, we
have been able to develop a terminal with some very unusual characteristics. In fact,
changing terminal characteristics has been so easy that when we receive programs
written elsewhere that depend on the special features of a particular type of terminal, it
has often been easier to reprogram the terminal computer to emulate the desired kind
of terminal than to change the programs themselves.

We have the usual control functions implemented: cursor motion, cursor home,
cursor addressing, horizontal tabulate, ring the ‘bell’, carriage return, line feed
(possibly scrolling at the bottom of the screen,) clear page, clear line, reset, and scroll
the screen image any distance up or down. There are also some more unusual features.
For example, since scrolling the screen image is a very slow operation, the user can,
under program control, set the distance to be scrolled when he sends a line feed at the
bottom of the screen. We have discovered that for most purposes scrolling 10 lines
every tenth line feed is perfectly adequate and puts a much lighter load on the terminal
computer than does conventional scrolling. The user can at any time set conventional
line-at-a-time scrolling if wanted.

Several modes can be set in the terminal, either by pushing buttons on the keyboard

1136 JOHN LEVINE

or by sending control character sequences from the main computer. The terminal can
be switched to use the APL character fount rather than the regular 96 character
ASCIT set, and characters from the two can be intermixed, since text already written
does not change when the terminal mode is changed. One can also switch between
having characters overstrike as on a real typewriter and having only the most recent
character at a screen position show, as on a conventional CRT. For demonstrations,
the terminal can switch to double size characters.

T'o help exploit the unique features of CR'T terminals, we have implemented screen
‘windows’ which allow screen activity to be restricted to an arbitrary sub-rectangle of
the screen. A program can send a control sequence that sets the upper, lower, left and
right margins of the screen window. All of the regular terminal-control characters
such as cursor motion, clear page, horizontal tabulate, and scroll up or down then
operate only within the selected window. Unlike most windowing systems, no
program in the main computer need be aware that it is writing to a window rather than
to the full screen, since the terminal computer handles all such activity automatically.

Also note that functions like ‘clear to end of page’ are easily simulated by
performing an existing screen operation within a window. (In this case, the function to
use would be clear-page.)

Communication between the terminal computer and the main computer uses an
extremely simple protocol. The link between the machines transmits 16 bit words of
data in parallel. Each word transmitted in either direction has the logical terminal
number in the high byte and the character to transfer in the lower byte. Each character
is fully processed at the receiving end before the next character is received. This
avoids having any start/stop protocol. In fact, early versions of the terminal emulator
program did have a start/stop protocol that buffered characters in the terminal
computer but we discovered that the amount of computing needed in the terminal
computer to implement the protocol was great enough that we got better response by
processing each character to completion immediately. T'he main computer sends
characters in round-robin fashion for the various terminals so that each user gets a fair
share of the terminal computer’s time.

I'he program inside the terminal computer is also very simple in concept. It consists
of a loop that obtains a character and terminal number from the main computer or
from an internal buffer used for ‘local’ functions, sets the Gem registers to map the
screen memory for the required terminal, and then either draws printable characters
directly or dispatches to routines for interpreting control characters.

For each screen it maintains a small table containing the cursor position, screen
window limits and other related parameters that are updated after each character or
screen operation.

Despite all of the advanced features in our terminals, the emulator program only
takes about 6500 words of memory (not counting about 3000 words for the character
tables).

Operating system

Minimal modification of the operating system was needed in order to exploit the full
power of the Gem terminals.

We added a mechanism to the operating system that lets any program manipulate
the screen memory of its terminal. We have exploited some otherwise unused mode-
switching hardware in the PDP-11 to provide a direct hardware path from every

AN OVERVIEW OF THE YALE GEM SYSTEM 1137

running program to the section of Gemory associated with its terminal.

The PDP-11/45 has three operating modes, each with a full set of address mapping
registers. There are also ‘previous address space’ instructions that let a program access
the address space of a different mode than the one in which the program is running.
The Unix system only uses two of the three available modes, so we modified it so that
the screen memory of the controlling terminal of a process was always mapped into the
address space of the hitherto unused mode and that the ‘previous mode’ for a user
program was always that mode. Once the registers are set up at system initialization
time, this feature adds only one instruction to a context switch, an insignificant
slowdown.

The overall effect is that a user program need only execute some special in-
structions, and words of data are moved in and out of the screen memory without any
further intervention from the operating system. A screen memory can, in this way, be
totally rewritten in about 50ms, which looks like an instantaneous change of the
picture. A user can also map the screen memory directly into the address space of a
running program, which provides faster screen access but severely limits the space
available for the program itself, since the screen takes 16K of the available 32K
program address space. In fact, most programs use the first access mechanism since it
is usually fast enough.

Application routines

All of the major languages used on the system, including Fortran, Basic, APL and C,
have had some sort of graphics interface added. The most sophisticated routines,
which are described below, are for programs written in the language C.

A variety of user software has been written to assist in picture creation. '['he most
widely used package lets the user draw lines and points in subrectangles of the screen.
A frequent approach is to define several screen windows, some for graphics, some for
text and some for a combination of both. For example, there is a screen editor which
has a large window which shows a portion of the file being edited, and a small one-line
window which holds arguments to editor commands.

Another package allows character founts to be created, edited and used to draw text
and pictures on the screen. Besides a wide variety of character sets such as regular
Roman, Greek, Cyrillic and old German, there are character sets that are used to build
more complicated pictures such as musical notes and map symbols, and various
novelty characters including excellent reproductions of the signatures of some of the
faculty members.

Other less widely used software includes Calcomp-compatible Fortran routines for
drawing lines and characters, and some routines for viewing three-dimensional
objects 1n perspective from a variety of viewpoints.

APPLICATIONS

Editors

By far the most heavily used piece of graphics software is the screen oriented text
editor, which is based on Yale’s extensive previous work on screen editors.*! On many
other systems, screen editors have failed to gain acceptance because they have verbose
and confusing syntax and because they generally place a severe load on the computing
system or else run very slowly. The approach we use is that the editor provides a

1138 JOHN LEVINE

[.sp

ey

Block diagram of the GEM suystem.

There 15 a good deal of conventional computing egquipment here not
referred to in the text.

As was mentioned above, the program used to draw thiz was developed
in less than an hour

=p
2
Sample e2ditor sszsi10n
This example shous the words [("dizplsy srEitraru poluhzedra' '] selected
;*‘:‘r an operatiaorn N g
Pl
1z
(A graphi oriznted gamsz
itHote the of a3 text window s
%TxlS window i3 also used for
progran
.sp
‘4 :
{H graphics tree sditor
Thiz particular editor was written 3= an aszignment for a class
The symbals are from 3 standard font and do not, in this s&)
mearn anything
=p
5
Display from a curve plotting progran.,
Mote the ability to easily plot 3 3reat des of information
This data iz not from the Gem zystenm o
CH References
PR
¥*¥ cursor defirned XX File gemZ.n Line 2321
Figure 2. Sample editor session. This example shows the words ‘display arbitrary polvhedra® selected for an

U[):"l'(fu‘[n)i

window into the file, and that the user can simply cross out and overwrite much as he
would on paper. Any text that the user tvpes onto the screen goes directly into the file
being edited. Using single-key commands, the user can invoke a variety of cut-and-
paste operations, as well as the usual editor operations of moving forward and
backward mn the file and doing context searches. e can draw a box around some part
of the text on the screen and then delete 1t, move it somewhere else in that file or to a
ditterent file, or even execute it as commands to the system command interpreter.

By careful design of the terminal emulator program and the interface between the
terminal computer and the main computer, we have been able to make the screen
editor run faster and cheaper than the various line editors, so that most users edit only
with the screen editor and many do not even know how to use any other. Beginning
users find the editor very easy to use because most of the operations are intuitively easy
to grasp, and have close analogies in things they do while typing on an ordinary
typewriter.

Editor implementation
Our screen editor on the Gem system was specifically designed to achieve maximum
performance. "T'he most obvious limitation of the editor is that files that are to be

AN OVERVIEW OF THE YALE GEM SYSTEM 1139

edited are limited to 16K characters. This turns out usually not to be a problem
because most of the files that users want to edit are small anyway, and because the
Unix system already has a variety of tools that make it convenient to break large files
into pieces and to handle groups of files as a unit.

The editor reads the entire file to be edited into program memory, edits it ‘in core’
and rewrites it completely when editing is done. We added a special terminal mode to
the system for editing. In this mode, characters that arrive from the keyboard are
divided into two classes: cursor motion and printing characters are simply echoed
back to the screen and buffered in the system, whereas other control characters are not
cchoed and cause all of the buffered text to be passed to the program. In the case of the
characters that are echoed this way, the echo to the terminal produces a correctly
updated screen image and the underlying editor program need take no immediate
action. IFor the other characters, the editor needs to change the screen so that the
editor program reads and accounts for the buffered characters and then performs the
desired function. The advantage of this scheme is that the editor program need be
swapped in and run only in the comparatively infrequent event that a control function
is requested, and that quick response is guaranteed for cursor control and text
characters which comprise most of what 1s typed to the editor.

In practice we find that even for the functions that require waking up the editor
program, response time 1s usually under a second, whereas for the faster functions
response seems mmstantaneous.

Picture creation

We have found that simple-minded graphics programs are extremely easy to write.
For example, the program used to draw Figure 1 (the block diagram of the system)
only took about half an hour to write and debug. The ability to avoid having a display
list and to work directly with the screen image lets the user bypass a whole level of
complexity inherent in most other graphics systems. If there is some need for more
complicated display data structures, it is usually very easy to write the routines that
translate them into the actual screen image. It is also possible, though we have not
done it much, to read back the picture for further analysis. The most common
application of this is that we usually draw lines in ‘complement mode’, i.e. inverting
the bit values on the screen rather than just turning them on, which has the very useful
effect that a line can be removed just by redrawing it.

The APIL. subsystem makes use of the APL character fount and lets line drawings be
made directly from APL. There has also been work done on mapping rectangular
areas on the screen directly into APL arrays so that pictures can be drawn with the full
Hexibility of the APL operators, working directly on the hardware representation
without interposing relatively inefficient and inflexible line-drawing routines.

Some students have investigated picture creation languages, such as Logol! and
others have created relatively sophisticated systems to manipulate and display
arbitrary polvhedra in perspective with hidden line elimination. Although animation
is quite difficult, display of arbitrarily complex pictures is easy since there need be no
display list that grows with the complexity of the picture.

This ability has encouraged some cartographic work. "I'here is a set of routines with
which users easily create maps of the United States and display information keyed by
Zip code. 'This 1s of interest to groups which maintain mailing lists on the machine. An
undergraduate has created a sophisticated package which keeps track of information

JOHN LEVINE

-
.} A
¥ 5. L .\‘ a x:é;; ;
A
\\‘;a
N
\
n |]]
B
: % ’
D)f D,a” f/)
u 0 / : 8. ﬂ m]
o 't : oY,

To mawve,
move the cur-
sor whsre you
want and plant
3 peyg thers
fwith the home

bar-
creat-
that
511
t the
idte
which sre 3
knights move
away, 1Ff thsre
are no Block-
{ iers

{
behirnd El
your bard

RETURHN =
Take back m

SPAC B &
thru future
o

ax -

il (RS
=2
oie R
o
o
-

.~

Figure 3. 4 graphics oviented game. Note the use of a text window on the right to display instructions. This
window is also used for error messages and comments from the program

about Yale’s underground utility tunnels. It stores data about which tunnels are
connected to which others, what types of pipes go in which direction, which doors
have locks, where the burglar alarms are, etc. The interface to this is almost entirely
graphical: the user has a map of the campus on which he can overlay the various
tunnels and facilities. Information is added and deleted by pointing to the building or
tunnel of interest (by moving a cursor around the screen) and then typing the changes.

Analogue I/O applications

We enhanced the terminal emulator so that bytes of Gemory could be converted to
and from analogue signals, using the above mentioned analogue [/O subsystem. An
exciting application is the analysis of electrocardiagrams, done in co-operation with
the Veterans’ Administration. Analogue tapes of patients’ heartbeats are read into the
A-to-D converter on the terminal computer and the signal digitized every 200 ps. The
digitized information stored in Gemory is then read into the main computer and
usually written on computer digital tapes. People working at the terminals can then
rapidly analyse these tapes. Individual heartbeats are shown graphically on the screen,

AN OVERVIEW OF THE YALE GEM SYSTEM 1141

@

+Z
o
T
Cg
I
C

S

Figure 4. A graphics tree editor. This particular editor was written as an assignment for a class. The symbols
are from a standard fount and do not, in this case, mean anything

and the operator characterizes each as normal or abnormal. As heartbeats are analysed,
they are stored so that further similar heartbeats can be identified automatically. 'T'he
entire data from a typical 12-hour tape can be thoroughly analysed in about half an
hour, which is about an order of magnitude faster than any other method of
comparable accuracy. T'he resolution of the Gem terminals and their ability to display
arbitrarily complex pictures are crucial to this application, since ten or twenty
heartbeats are displayed simultaneously, each with maximum screen detail.

[Taving noticed that analogue signals could be read into the Gem system, some
students investigated the feasibility of producing output analogue signals in real time,
and thus a system that plays music was written. It can play six to ten voices
simultaneously, and operates reasonably well even when other users continue
working, which is unusual for computerized music synthesis. Work is now in progress
to develop a music score editor that lets users manipulate music in the conventional
musical notation and to integrate it with the music playing system.

I'he analogue mmput system has also been used to handle a joystick for picture
drawing. We found that for many purposes, cursor kevs on the keyvboard are more
convenient for pointing than the joystick is, so there has been comparatively little use
of it so far.

1142 JOHN LEVINE

DEC-28 response time ws number of jobs

z50

.8
+

z2aa
+

72
1

s
5]

o

o

T |
.02 45.60 53.66 58.086

(total number ot jobsz)

+ - 258K memory
3 = S12K memory

Figure 5. Display from a curve plotting program. Note the ability to easily plot a great deal of information.
(These data are not from the Gem system)

Other applications

Naturally, a wide variety of games and demonstrations rapidly appeared. "I'he usual
time-of-day command has been supplemented by a ‘clock’ command which draws a
clock face on the screen, with the hands indicating the correct time. A sweep second
hand is optional. When a terminal is idle, the system displays a picture from a library
of appropriate messages, such as the seal of Yale University, various portentious
mottoes, and other computer artwork. 'his actually had some practical benefit, since
users can more easily identify available terminals and, since having a picture selected
for the library is considered something of an honour, there was an incentive to develop
some of the picture display packages.

Two undergraduates developed a ‘Star Wars™ game which lets several people at
different terminals fly space ships, land on planets, and of course blow each other to
smithereens. Each person sees the universe out of the windows of his own ship, and
has a set of controls and indicators. "T'he illusion of being in a 3-D space is quite
persuasive, and the entire game 1s very involving.

USER REACTIONS

The Gem system provides a user interface that is quite ditferent from that provided by
any other time-shared computing system of similar cost that we know. It is one of the
only systems to provide screen-oriented editing (as opposed to typewriter-oriented
editing adapted to a CR'I" terminal). It is absolutely the only system that allows
ordinary users at any terminal to do graphics without making special arrangements in

AN OVERVIEW OF THE YALE GEM SYSTEM 1143

s iy 2
date 7
n May 21 414:47:16 EDT 379 >

% 5 \ 4 AR
Uptiwg: © 47 33 Bk il
% apl ™~ / \\/ \‘\
A P L N -4 - VERSION 14 0CTAGS &
12.232 2 B4c15/79 CONTINUE '\
L1 LSES \
ZeP LIYEF R}
?vo‘l.f‘Hu'i“H- Y
\
z 0 Ay
; ‘.', i \
o 4 S 3,
] / \-.__\.
z / i
7/ ."\\
/ A\
b
/ A,
/ \
; 4

‘l
|

| \ A L Rt

N/ e \/’I

Figure 6. Output from a small APL program. Note the combination of regular characters at the top with APL
characters in the naddle and the graphical figures

advance and having to use special terminals different from the ones used for normal
work. Every introductory computing course that uses the Gem system includes a few
assignments involving graphics. Some of them have been surprisingly sophisticated,
as for instance one that simulated the spread of pollutants downwind from an
explosion.

All users use the graphics editor for text and program preparation. It is much easier
to learn than the standard line editor and, for most functions, allows faster editing.
Our experience has been that when users move to other syvstems that do not provide
window editing they have reactions not unlike those of people accustomed to
interactive computing who have to use batch systems.

The editor has recently been augmented so that a user can automatically execute a
svsterm command of his choice upon leaving the editor, typically to compile a program
or reformat a document. Another increasingly popular feature lets the user execute
part or all of a file as svstem commands. The commands can involve the use of
variables, conditional statements and branches. Some users now have files of favourite
commands from which they select pieces to execute.

1144 '- JOHN LEVINE

An effect of these features has been to make the edit-compile-test sequence, which
users typically repeat over and over, much faster than before. This has sped up
program development considerably.

The primary obstacle that has kept us from using more graphics seems to be the
inherent difficulty of designing a good graphical interface for a system or application.
Typically, much more information is displayed with graphics than with regular
textual outputs and the programs are thus more difficult to write.

SUMMARY AND FUTURE DIRECTIONS

Overall, our experience with this approach to computation has been very positive. We
developed a variety of applications with comparatively little effort, and the utility of a
graphics terminal for program development is now firmly established. T'he bit-map
terminals we developed have turned out to be useful for some types of graphics and
impractical for others. The ability to change selective parts of the screen and to
overlay picture elements on top of each other makes it easy to draw very complex
pictures with parts that change frequently. On the other hand, animation is very
difficult, since continuous animation requires continuous computation to redraw
changing parts of the picture, and this is hard to do in a time-sharing environment.
Animation which is not done in real time should be practical, with the computer
drawing a frame and then triggering a camera, changing parts of the picture and
triggering the camera again, and so on.

Future developments of the systems may go in several directions. With minimal
effort we could arrange grey scale and coloured pictures by suitable combination of
images from multiple screen memories, but we do not see any fundamental break-
throughs in this direction. A direction which we would like to pursue is to provide a
terminal computer for each screen. This would enable animation and permit an
increased amount of the processing to be done in the terminal. There is currently a
restriction that all terminals must be in the same building as the computers, since the
screen images are now transmitted via coaxial cables which are impractical over long
distances; the individual terminal computers would alleviate this. Our work on
windows points the way to transmitting complex pictures with minimum transmission
time, by transmitting only the minimum of windows needed to update or maintain a
screen image. There is also opportunity for work on graphical input devices, such as
tablets and mice.

We also plan to do further work in integrated graphical environments, extending
the screen windows to be more generally useful, with different programs simulta-
neously accessing different windows on the same screen, somewhat in the manner of
Teitelman’s ‘Programmer’s Assistant’'® or the IBM 3270 Session Manager.[”!

Since the screen editor seems to be so generally useful, we are moving toward
making it the standard system interface, so that users only leave it occasionally to do
something unusual. Programs can be run directly from the editor, and their input and
output data can be manipulated just like any other file. In some cases, the output from
a program would even be edited and then fed back into the same program for further
processing without leaving the editor; this is useful in word-processing applications.

Our bit-map terminals make it easy to draw characters on the screen from a variety
of different founts. This would allow technical and scientific reports which include
mathematical symbols and letters from foreign alphabets to be typed up directly.

AN OVERVIEW OF THE YALE GEM SYSTEM 1145

(Current systems for this purpose require that codes for the symbols be used which
are only translated to the correct form when the document is finally printed.) We
could then provide a system that let such documents be prepared with full visual
fidelity maintained from initial keying through editing to final printing. Such a system
would be equally useful for producing slides and transparencies. A matrix printer with
higher resolution than the one we now have would be needed to print documents of
acceptable quality for distribution.

We believe that much work remains to be done on graphical programming tools.
We are now developing a screen-oriented program editor which recognizes the syntax
of the programming language, so that editing commands can be phrased in terms of
the language of the program rather than just in terms of lines and characters.

Finally, many of us have noticed that a graphics terminal allows a program to put an
immense amount of information on the screen in a very short time. Large portions of
most graphical programs are dedicated to maintaining the data structures that hold the
information displayed. 'T'here has been interest in creating data base packages tailored
to the graphics environment so that complicated pictures can be more easily
manipulated. The fount routines mentioned earlier are a simple example of this.

ACKNOWLEDGEMENTS

The original conception of the Gem system was due to Edgar 'I'. Irons and Peter
Weiner. The terminal hardware was primarily designed and built by Charles Minter
and Mark Brown. The keyboard subsystem was designed and built by Inder Singh.
Robert W. "T'uttle is responsible for the design of the two-computer system and also
wrote the screen editor. John Levine designed and wrote the screen access features of
the operating system and the terminal emulator program. The electrocardiogram
software was designed and written by John W. Lewis. The music software is due to
Steven M. Haflich, of the Yale Department of Music.

T'his work was funded in part by grants from the Sloan Foundation and the Exxon
Foundation.

REFERENCES
1. D. M. Ritchic and K. Thompson, “T'he UNIX time-sharing system; CACM 17 (7), 365-375 (1974).
2. Bell System Technical Journal, 57(6), part 2, 1897-2312 (1978).
3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
1978.
4. E.'I'"Irons and . M. Djorup, ‘A CR'I" editing system’, CACM, 15 (1), 16-20 (1972).
5. S. Papert, ‘Teaching children thinking', IEIP Conference on Computing Education, North-Holland,

Amsterdam, 1970.

6. W. Teitelman, The Programmer’s Assistant, Report CS1, 77-3, Xerox Palo Alto Research Center,
1977.

7.]J. M. McCrossin, R. P. O’Hara and L. R. Koster, ‘A time-sharing display terminal session manager’,
IBM Svystems Journal, 17(3), 260-275 (1978).

