
Facilitating team-based 
data science

Lessons learned from the DSC-WAV Project
Benjamin S. Baumer, Chelsey Legacy, Andrew Zieffler, and Nicholas J. Horton

shorturl.at/jsvxK

http://shorturl.at/jsvxK


While we are getting started
To help us better engage can you please add the following into the Zoom chat?

Your name

Your affiliation

Some good news that you’d like to share



Outline
● What is the DSC-WAV project?
● What are Agile, Scrum, and Kanban 
● Why are these methodologies useful for data science education? 
● Interactive Exercises:

○ Writing user stories
○ Prioritizing user stories on a Kanban Board

● What is code review and how does it work? (as time permits)
● What have we learned from this project? 



DSC-WAV (Wrangle-Analyze-Visualize) 

● NSF funded effort from the Harnessing the Data Revolution 
(HDR) Data Science Corps (DSC) initiative



DSC-WAV (Wrangle-Analyze-Visualize) 
● https://dsc-wav.github.io/www
● Collaborative project with:

○ Five Colleges (Amherst, Smith, Hampshire, Mount Holyoke, and UMass/Amherst)
○ Greenfield Community College, Holyoke Community College, Springfield Technical Community 

College,
○ University of Minnesota

https://dsc-wav.github.io/www


DSC-WAV (Wrangle-Analyze-Visualize) 
● Goal 1: create opportunities for undergraduate students to work on Data Science 

for Social Good projects for community organizations



DSC-WAV (Wrangle-Analyze-Visualize) 
● Building data acumen for undergraduate students

○ HDSR, https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1

● Facilitating team-based data science: lessons learned
○ FDS, under review, https://arxiv.org/abs/2106.11209

https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1
https://arxiv.org/abs/2106.11209


Introduction to Agile and Scrum



Agile Philosophy and Scrum Manifesto
1. Individuals and interactions over processes 

and tools
2. Working software over comprehensive 

documentation
3. Customer collaboration over contract 

negotiation
4. Responding to change over following a plan

Q: Can we port these insights from software 
development into statistics and data science 
education?

Q: Can we use these approaches to improve data 
analysis and team-based collaboration?

https://scrumguides.org/scrum-guide.html

https://scrumguides.org/scrum-guide.html




Key concepts and terms of Agile/Scrum
● 3 Roles:

○ Product owner
○ Scrum master
○ Development team

● Sprints:
○ Spring planning
○ Sprint demos
○ Sprint retrospectives

● Other concepts:
○ Daily stand-ups
○ Backlogs
○ User stories
○ Kanban board











Exercise 1: 
Writing User Stories



Intro Task: Lending Club personal loans
● Q: Do those who have ever failed to pay incur higher interest rates? 
● Worked example

https://dsc-wav.github.io/uscots21/project_example.html


Breakout Rooms for Kanban Boards
1. Open this Google Doc and find your breakout room
2. Write at least 3 user stories for various steps to answer the question
3. Use the phrasing: “As a ____, I want ____, so that ____”
4. Specify the Acceptance Criteria for each task

Some ideas:

a. Exploratory Data Analysis?
b. Modeling?
c. Model validation?
d. Interpret real-world meaning?
e. How will the pieces fit together? 

https://docs.google.com/document/d/1reWwKw1cNWlqiIrSZ_bZpFcl8p23rUhsVW__sPI_g9g/edit?usp=sharing


Exercise 2: 
Populating and Prioritizing a Kanban Board

(using GitHub Projects)

https://github.com/DSC-WAV/uscots-dscwav/projects/1


Alternative Kanban board implementations

Jamboard (Google Apps)

Padlet (https://padlet.com)

Also, Trello

https://jamboard.google.com/d/1JdPyD-ptm266_uFESZyr4YBqcsmlCffv_JKh7AS5AHw/edit?usp=sharing
https://padlet.com/zief0002/bjx21ap8hxi4mvts
https://trello.com/


Code Review



What is code review?
● Systematic quality assurance for code
● Dates back to 1976 (Fagan)
● Performed by someone else
● Best practice for improving code quality

Fagan, M. E. (1999). Design and code inspections to reduce errors in program development. IBM Systems Journal, 
38(2.3), 258-287.



Why do code review?
● Better code quality

○ readability
○ consistency
○ understandability

● Fewer bugs
● Knowledge transfer
● Increased sense of mutual responsibility
● This isn't your code, this is our code



When to review code?
● Code reviews should be short!
● Best practices from 2006 Cisco study:

○ Lines of code (LOC) under review should be less than 200, not exceeding 400, as anything larger 
overwhelms reviewers and they stop uncovering defects.

○ The total review time should be less than 60 minutes, not to exceed 90. Defect detection rates 
plummet after 90 minutes of reviewing.

● Pull requests should be small!
● Dovetails with our recommendation for more frequent, smaller commits

https://smartbear.com/learn/code-review/what-is-code-review/


How to review code?
● Does this code accomplish the author’s purpose?
● Think like an adversary, but be nice about it.
● Think about libraries or existing product code.
● Does the change follow standard patterns?
● Think about your reading experience.
● Does the code adhere to coding guidelines and code style?
● More:

○ Google Engineering Practices code review documentation
○ Code Review Best Practices

https://google.github.io/eng-practices/review/reviewer/
https://blog.palantir.com/code-review-best-practices-19e02780015f


Exercise 3: 
Code Review

(Time permitting) 



In practice
● Send a pull request (PR)

○ For R code, run styler beforehand!
○ Tag someone else as a reviewer

● If you're tagged, review the PR
○ Make line-by-line comments, questions, etc.
○ Approve or request changes

● Cycle continues until the PR is merged
○ It's not rude to request changes!!

● This isn't your code, this is our code

https://github.com/r-lib/styler


Examples of code review in the wild
● https://github.com/rudeboybert/fivethirtyeight/pull/72
● https://github.com/rudeboybert/fivethirtyeight/pull/68
● https://github.com/rudeboybert/fivethirtyeight/pull/67
● https://github.com/rudeboybert/fivethirtyeight/pull/66
● https://github.com/beanumber/macleish/pull/41

https://github.com/rudeboybert/fivethirtyeight/pull/72
https://github.com/rudeboybert/fivethirtyeight/pull/68
https://github.com/rudeboybert/fivethirtyeight/pull/67
https://github.com/rudeboybert/fivethirtyeight/pull/66
https://github.com/beanumber/macleish/pull/41


Project Evaluation



DSC-WAV Implementation
● Students completed surveys at end of project

● Gave insight into:
○ Implementation of these methods
○ Successes
○ Areas for future work



Agile Implementation
● Students were able to implement Agile

○ Faculty help was crucial 
● Many teams made use of sprints to plan work 
● Students recreated a sense of community around the work
● Zoom and Slack helped connect students

“It felt like a simulation of what industry is like as opposed to 
another group project for class. We didn’t have a professor 
assigning us tasks. Rather we as a team had to discuss the best way 
to move forward with the project.”



Use of Kanban Boards
● Most teams used Kanban Boards
● User stories made tasks seem clear
● Students noted this was good tool for project management
● Helped students determine and prioritize tasks



Code Review
● Varied implementation in each team

○ Partners
○ Scrum master
○ Cyclic pattern

● Typically not formal 
● Focus on functionality (more than style)



Final Thoughts & Future Work
● Helped develop technical and non-technical skills

○ Communication 
○ Collaboration
○ Leadership

● Student autonomy in their project direction
○ Particularly if faculty mentor got them started 

● Still too much “divide and conquer”?
● More structure needed for code review



Thank you!

Questions?



Learn more...
Videos from Smith capstone course:

● User stories
● Kanban boards
● Scrum roles
● Sprint mechanics
● Code review

DSC-WAV publications:

● Facilitating Team-Based Data 
Science: Lessons Learned from the 
DSC-WAV Project, under review 
for special issue on "Data Science 
Education Research" in 
Foundations of Data Science, 2021

● The Data Science Corps Wrangle-
Analyze-Visualize program: 
building data acumen for 
undergraduate students, Harvard 
Data Science Review, 2021

DSC-WAV outreach page: https://dsc-wav.github.io/www/outreach.html

https://smith.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2e293ab4-9faf-4550-8f94-acd8011132b1
https://smith.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=674692c4-e1d7-4fb6-864c-acd200e77cc8
https://smith.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fdf30557-7d00-4db6-badc-accf015e1ce1
https://smith.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b8317a12-94f3-410f-a02b-acd200e4ad12
https://smith.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d7ac5093-9a9c-4beb-899c-ace50112f6df
https://arxiv.org/abs/2106.11209
https://arxiv.org/abs/2106.11209
https://arxiv.org/abs/2106.11209
https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1
https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1
https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1
https://hdsr.mitpress.mit.edu/pub/nvflcexe/release/1
https://dsc-wav.github.io/www/outreach.html

