HELLO_PARFOR
A Parallel MATLAB Function Using PARFOR


HELLO_PARFOR is a directory which illustrates how a MATLAB function using the PARFOR statement can be run in parallel.

Here, the underlying MATLAB program is a simple function that says "Hello, world!" a certain number of times. The loop used to print these statements is controlled by a parfor command.

The function has the form:

function hello_fun ( n )
where

Depending on the situation, the function could be executed in parallel:

Related Data and Programs:

COLLATZ_PARFOR, a MATLAB program which seeks the maximum Collatz sequence between 1 and N, running in parallel using MATLAB's parfor feature.

HEATED_PLATE_PARFOR, a MATLAB program which solves the steady (time independent) heat equation in a 2D rectangular region, using MATLAB's parfor facility to run in parallel.

HELLO, a MATLAB program which prints out "Hello, world!".

HIGH_CARD_PARFOR, a MATLAB program which uses the parfor statement to compute in parallel the statistics for a card game in which you are required to guess the location of the highest card.

MATLAB_PARALLEL, MATLAB programs which illustrate "local" parallel programming on a single computer with MATLAB's Parallel Computing Toolbox.

MATRIX_ASSEMBLE_PARFOR, a MATLAB program which demonstrates the parfor parallel programming feature by assembling the Hilbert matrix in a parallel loop.

MD_PARFOR, a MATLAB program which carries out a molecular dynamics simulation, running in parallel using MATLAB's "PARFOR" feature.

ODE_SWEEP_PARFOR, a MATLAB program which demonstrates how the PARFOR command can be used to parallelize the computation of a grid of solutions to a parameterized system of ODE's.

PRIME_PARFOR, a MATLAB program which counts the number of primes between 1 and N; running in parallel using MATLAB's "PARFOR" feature.

QUAD_PARFOR, a MATLAB program which estimates an integral using quadrature; running in parallel using MATLAB's "PARFOR" feature.

SATISFY_PARFOR, a MATLAB program which demonstrates, for a particular circuit, an exhaustive search for solutions of the circuit satisfiability problem, running in parallel using MATLAB's "PARFOR" feature.

SPARSE_PARFOR, a MATLAB library which demonstrates how a sparse matrix can be constructed by evaluating individual blocks in parallel with the parfor command, and then assembled (on a single processor) using the sparse() command.

Reference:

The User's Guide for the Parallel Computing Toolbox is available at http://www.mathworks.com/access/helpdesk/help/pdf_doc/distcomp/distcomp.pdf

Source Code:

Examples and Tests:

HELLO_POOL executes the function locally and interactively.

HELLO_BATCH_LOCAL executes the function locally and noninteractively.

HELLO_FSU executes the function on the FSU HPC cluster.

You can go up one level to the MATLAB source codes.


Last revised on 23 May 2012.