03-Feb-2008 11:49:43 INT_EXACTNESS_GEN_LAGUERRE MATLAB version Investigate the polynomial exactness of a generalized Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval, [A,+oo) in which case it is adjusted to the [0,+oo) interval. INT_EXACTNESS_GEN_LAGUERRE: User input: Quadrature rule X file = "gen_lag_o8_a0.5_x.txt". Quadrature rule W file = "gen_lag_o8_a0.5_w.txt". Quadrature rule R file = "gen_lag_o8_a0.5_r.txt". Maximum degree to check = 18 Weighting function exponent ALPHA = 0.500000 OPTION = 0, integrate x^alpha*exp(-x)*f(x). Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Laguerre rule ORDER = 8 A = 0.000000 ALPHA = 0.500000 OPTION = 0, standard rule: Integral ( A <= x < oo ) x^alpha exp(-x) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w(1) = 0.2271393619524718 w(2) = 0.3935945428036146 w(3) = 0.2129089708672283 w(4) = 0.0478774832031382 w(5) = 0.0045425174747626 w(6) = 0.0001624046001853 w(7) = 0.0000016423774138 w(8) = 0.0000000021739431 Abscissas X: x(1) = 0.2826336481165992 x(2) = 1.1398738015816141 x(3) = 2.6015248434060290 x(4) = 4.7241145375277904 x(5) = 7.6052562992316144 x(6) = 11.4171820765458296 x(7) = 16.4994107976558197 x(8) = 23.7300039959347089 Region R: r(1) = 0.000000e+00 r(2) = 1.000000e+30 A generalized Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 0.0000000000000001 0 0.0000000000000002 1 0.0000000000000003 2 0.0000000000000002 3 0.0000000000000000 4 0.0000000000000004 5 0.0000000000000002 6 0.0000000000000005 7 0.0000000000000006 8 0.0000000000000006 9 0.0000000000000006 10 0.0000000000000020 11 0.0000000000000017 12 0.0000000000000036 13 0.0000000000000051 14 0.0000000000000045 15 0.0000561671454580 16 0.0004926661044402 17 0.0022799523824517 18 INT_EXACTNESS_GEN_LAGUERRE: Normal end of execution. 03-Feb-2008 11:49:43