10-Feb-2008 10:50:37 INT_EXACTNESS_JACOBI MATLAB version Investigate the polynomial exactness of a Gauss-Jacobi quadrature rule by integrating all monomials up to a given degree over the [-1,+1] interval. The rule will be adjusted to the [0,1] hypercube. INT_EXACTNESS_JACOBI: User input: Quadrature rule X file = "jac_o8_a0.5_b1.5_x.txt". Quadrature rule W file = "jac_o8_a0.5_b1.5_w.txt". Quadrature rule R file = "jac_o8_a0.5_b1.5_r.txt". Maximum degree to check = 18 Exponent of (1-x), ALPHA = 0.500000 Exponent of (1+x), BETA = 1.500000 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Jacobi rule ORDER = 8 ALPHA = 0.500000 BETA = 1.500000 Standard rule: Integral ( -1 <= x <= +1 ) (1-x)^alpha (1+x)^beta f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w(1) = 0.0079432513833170 w(2) = 0.0557415005793228 w(3) = 0.1640573457854426 w(4) = 0.3008492695346398 w(5) = 0.3883180543538824 w(6) = 0.3606436566318294 w(7) = 0.2248513392666373 w(8) = 0.0683919092594677 Abscissas X: x(1) = -0.8900098006603341 x(2) = -0.6866356906720188 x(3) = -0.4095019972429185 x(4) = -0.0886053454426694 x(5) = 0.2412867334092741 x(6) = 0.5444273641737976 x(7) = 0.7879673764819101 x(8) = 0.9455158043974035 Region R: r(1) = -1.000000e+00 r(2) = 1.000000e+00 A Gauss-Jacobi rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 0.0000000000002274 0 0.0000000000002273 1 0.0000000000002272 2 0.0000000000002265 3 0.0000000000002269 4 0.0000000000002269 5 0.0000000000002267 6 0.0000000000002262 7 0.0000000000002262 8 0.0000000000002266 9 0.0000000000002236 10 0.0000000000002273 11 0.0000000000002173 12 0.0000000000002345 13 0.0000000000002269 14 0.0000000000002225 15 0.0003885003887313 16 0.0004088141345353 17 0.0019210596554893 18 INT_EXACTNESS_JACOBI: Normal end of execution. 10-Feb-2008 10:50:37