01-Feb-2008 10:48:17 INT_EXACTNESS_LAGUERRE MATLAB version Investigate the polynomial exactness of a Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval, [A,+oo) in which case it is adjusted to the [0,+oo) interval. INT_EXACTNESS_LAGUERRE: User input: Quadrature rule X file = "lag_o8_x.txt". Quadrature rule W file = "lag_o8_w.txt". Quadrature rule R file = "lag_o8_r.txt". Maximum degree to check = 18 OPTION = 0, integrate exp(-x)*f(x). Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Laguerre rule ORDER = 8 A = 0.000000 OPTION = 0, standard rule: Integral ( A <= x < oo ) exp(-x) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w(1) = 0.3691885893416375 w(2) = 0.4187867808143430 w(3) = 0.1757949866371718 w(4) = 0.0333434922612156 w(5) = 0.0027945362352257 w(6) = 0.0000907650877336 w(7) = 0.0000008485746716 w(8) = 0.0000000010480012 Abscissas X: x(1) = 0.1702796323051010 x(2) = 0.9037017767993799 x(3) = 2.2510866298661307 x(4) = 4.2667001702876588 x(5) = 7.0459054023934655 x(6) = 10.7585160101809958 x(7) = 15.7406786412780040 x(8) = 22.8631317368892653 Region R: r(1) = 0.000000 r(2) = 1000000000000000019884624838656.000000 A Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 0.0000000000000002 0 0.0000000000000000 1 0.0000000000000000 2 0.0000000000000000 3 0.0000000000000000 4 0.0000000000000000 5 0.0000000000000000 6 0.0000000000000002 7 0.0000000000000000 8 0.0000000000000000 9 0.0000000000000002 10 0.0000000000000002 11 0.0000000000000002 12 0.0000000000000002 13 0.0000000000000002 14 0.0000000000000000 15 0.0000777000777000 16 0.0006627359568536 17 0.0029866284768244 18 INT_EXACTNESS_LAGUERRE: Normal end of execution. 01-Feb-2008 10:48:17