LAGUERRE_POLYNOMIAL
Laguerre Polynomials
LAGUERRE_POLYNOMIAL
is a MATLAB library which
evaluates the Laguerre polynomial, the generalized Laguerre polynomials,
and the Laguerre function.
The Laguerre polynomial L(n,x) can be defined by:
L(n,x) = exp(x)/n! * d^n/dx^n ( exp(-x) * x^n )
where n is a nonnegative integer.
The generalized Laguerre polynomial Lm(n,m,x) can be defined by:
Lm(n,m,x) = exp(x)/(x^m*n!) * d^n/dx^n ( exp(-x) * x^(m+n) )
where n and m are nonnegative integers.
The Laguerre function can be defined by:
Lf(n,alpha,x) = exp(x)/(x^alpha*n!) * d^n/dx^n ( exp(-x) * x^(alpha+n) )
where n is a nonnegative integer and -1.0 < alpha is a real number.
Licensing:
The computer code and data files described and made available on this
web page are distributed under
the GNU LGPL license.
Languages:
LAGUERRE_POLYNOMIAL is available in
a C++ version and
a FORTRAN90 version and
a MATLAB version.
Related Data and Programs:
CHEBYSHEV_POLYNOMIAL,
a MATLAB library which
evaluates the Chebyshev polynomial and associated functions.
GEN_LAGUERRE_RULE,
a MATLAB program which
can compute and print a generalized Gauss-Laguerre quadrature rule.
HERMITE_POLYNOMIAL,
a MATLAB library which
evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial,
the Hermite function, and related functions.
JACOBI_POLYNOMIAL,
a MATLAB library which
evaluates the Jacobi polynomial and associated functions.
LAGUERRE_RULE,
a MATLAB program which
can compute and print a Gauss-Laguerre quadrature rule.
LEGENDRE_POLYNOMIAL,
a MATLAB library which
evaluates the Legendre polynomial and associated functions.
POLPAK,
a MATLAB library which
evaluates a variety of mathematical functions.
TEST_INT_LAGUERRE,
a MATLAB library which
defines test integrands for integration over [A,+oo).
TEST_VALUES,
a MATLAB library which
supplies test values of various mathematical functions.
Reference:
-
Theodore Chihara,
An Introduction to Orthogonal Polynomials,
Gordon and Breach, 1978,
ISBN: 0677041500,
LC: QA404.5 C44.
-
Walter Gautschi,
Orthogonal Polynomials: Computation and Approximation,
Oxford, 2004,
ISBN: 0-19-850672-4,
LC: QA404.5 G3555.
-
Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
NIST Handbook of Mathematical Functions,
Cambridge University Press, 2010,
ISBN: 978-0521192255,
LC: QA331.N57.
-
Gabor Szego,
Orthogonal Polynomials,
American Mathematical Society, 1992,
ISBN: 0821810235,
LC: QA3.A5.v23.
Source Code:
-
imtqlx.m,
diagonalizes a symmetric tridiagonal matrix.
-
l_exponential_product.m,
exponential product table for L(n,x).
-
l_integral.m,
evaluates a monomial integral associated with L(n,x).
-
l_polynomial.m,
evaluates the Laguerre polynomial L(n,x).
-
l_polynomial_coefficients.m,
coefficients of the Laguerre polynomial L(n,x).
-
l_polynomial_values.m,
some values of the Laguerre polynomial L(n,x).
-
l_polynomial_zeros.m,
zeros of the Laguerre polynomial L(n,x).
-
l_power_product.m,
power product table for L(n,x).
-
l_quadrature_rule.m,
Gauss-Laguerre quadrature based on L(n,x).
-
lf_integral.m,
evaluates a monomial integral associated with Lf(n,alpha,x).
-
lf_function.m,
evaluates the Laguerre function Lf(n,alpha,x).
-
lf_function_values.m,
returns values of the Laguerre function Lf(n,alpha,x).
-
lf_function_zeros.m,
returns the zeros of Lf(n,alpha,x).
-
lf_quadrature_rule.m,
Gauss-Laguerre quadrature rule for Lf(n,alpha,x);
-
lm_integral.m,
evaluates a monomial integral associated with Lm(n,m,x).
-
lm_polynomial.m,
evaluates Laguerre polynomials Lm(n,m,x).
-
lm_polynomial_coefficients.m,
coefficients of Laguerre polynomial Lm(n,m,x).
-
lm_polynomial_values.m,
returns values of Laguerre polynomials Lm(n,m,x).
-
lm_polynomial_zeros.m,
returns the zeros for Lm(n,m,x).
-
lm_quadrature_rule.m,
Gauss-Laguerre quadrature rule for Lm(n,m,x);
-
r8_factorial.m,
computes the factorial of N.
-
r8_gamma.m,
evaluates Gamma(X) for an R8..
-
r8_sign.m,
returns the sign of an R8.
-
r8mat_print.m,
prints an R8MAT.
-
r8mat_print_some.m,
prints some of an R8MAT.
-
r8vec_print.m,
prints an R8VEC.
-
r8vec2_print.m,
prints a pair of R8VEC's.
-
timestamp.m,
prints the current YMDHMS date as a time stamp.
Examples and Tests:
-
laguerre_polynomial_test.m,
calls all the tests.
-
laguerre_polynomial_test01.m,
tests L_POLYNOMIAL.
-
laguerre_polynomial_test02.m,
tests L_POLYNOMIAL_COEFFICIENTS.
-
laguerre_polynomial_test03.m,
tests L_POLYNOMIAL_ZEROS.
-
laguerre_polynomial_test04.m,
tests L_QUADRATURE_RULE.
-
laguerre_polynomial_test05.m,
tests LM_POLYNOMIAL.
-
laguerre_polynomial_test06.m,
tests LM_POLYNOMIAL_COEFFICIENTS.
-
laguerre_polynomial_test07.m,
tests L_EXPONENTIAL_PRODUCT.
-
laguerre_polynomial_test08.m,
tests L_POWER_PRODUCT.
-
laguerre_polynomial_test_output.txt,
the output file.
You can go up one level to
the MATLAB source codes.
Last revised on 09 March 2012.