function lcvt_dataset ( ) %*****************************************************************************80 % %% LCVT_DATASET generates a Latinized CVT dataset and writes it to a file. % % Discussion: % % This program is meant to be used interactively. It's also % possible to prepare a simple input file beforehand and use it % in batch mode. % % The program requests input values from the user: % % * DIM_NUM, the spatial dimension; % * N, the number of points to generate; % * SEED_INIT, a seed to use for random number generation; % * INIT, initialize the points: % ** file, by reading data from file; % ** GRID, picking points from a grid; % ** HALTON, from a Halton sequence; % ** RANDOM, using FORTRAN RANDOM function; % ** UNIFORM, using a simple uniform RNG; % ** USER, call the "user" routine; % * CVT_IT_NUM, the maximum number of iterations; % * SAMPLE, how to conduct the sampling: % ** GRID, picking points from a grid; % ** HALTON, from a Halton sequence; % ** RANDOM, using FORTRAN RANDOM function; % ** UNIFORM, using a simple uniform RNG; % ** USER, call the "user" routine. % * SAMPLE_NUM, the number of sampling points; % * BATCH, the number of sampling points to create at one time. % * LAT_IT_NUM, the maximum number of iterations; % * OUTPUT, a file in which to store the data. % % To indicate that no further computations are desired, it is % enough to input a nonsensical value, such as -1. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 22 September 2006 % % Author: % % John Burkardt % % Reference: % % Qiang Du, Vance Faber, and Max Gunzburger, % Centroidal Voronoi Tessellations: Applications and Algorithms, % SIAM Review, % Volume 41, 1999, pages 637-676. % DEBUG = 1; timestamp ( ); fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' MATLAB version)\n' ); fprintf ( 1, ' Generate a Latinized CVT dataset.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' This program is meant to be used interactively.\n' ); fprintf ( 1, ' It is also possible to prepare a simple input \n' ); fprintf ( 1, ' file beforehand and use it in batch mode.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' The program requests input values from the user:\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' * DIM_NUM, the spatial dimension,\n' ); fprintf ( 1, ' * N, the number of points to generate,\n' ); fprintf ( 1, ' * SEED_INIT, a seed to use for random number generation,\n' ); fprintf ( 1, ' * INIT, initialize the points:\n' ); fprintf ( 1, ' ** file, read data from a file;\n' ); fprintf ( 1, ' ** ''GRID'', by picking points from a grid;\n' ); fprintf ( 1, ' ** ''HALTON'', from a Halton sequence;\n' ); fprintf ( 1, ' ** ''RAND'', using MATLAB''s RAND function;\n' ); fprintf ( 1, ' ** ''UNIFORM'', using a simple uniform RNG;\n' ); fprintf ( 1, ' ** ''USER'', refers to the USER routine;\n' ); fprintf ( 1, ' * CVT_IT_NUM, the number of CVT iterations.\n' ); fprintf ( 1, ' * SAMPLE, how to conduct the sampling.\n' ); fprintf ( 1, ' ** ''GRID'', by picking points from a grid;\n' ); fprintf ( 1, ' ** ''HALTON'', from a Halton sequence;\n' ); fprintf ( 1, ' ** ''RAND'', using MATLAB''s RAND function;\n' ); fprintf ( 1, ' ** ''UNIFORM'', using a simple uniform RNG;\n' ); fprintf ( 1, ' ** ''USER'', refers to the USER routine;\n' ); fprintf ( 1, ' * SAMPLE_NUM, the number of sample points;\n' ); fprintf ( 1, ' * BATCH, the number of sample points to create at a time;\n' ); fprintf ( 1, ' * LAT_IT_NUM, the number of Latinizing iterations.\n' ); fprintf ( 1, ' * OUTPUT, a file into which the data is stored.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' To indicate that no further computations are \n' ); fprintf ( 1, ' desired, it is enough to input a nonsensical value, \n' ); fprintf ( 1, ' such as -1.\n' ); fprintf ( 1, ' *\n' ); fprintf ( 1, ' *\n' ); fprintf ( 1, '* Ready to generate a new dataset:\n' ); fprintf ( 1, ' *\n' ); fprintf ( 1, ' *\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' DIM_NUM is the spatial dimension.\n' ); fprintf ( 1, ' (Try ''2'' if you have no preference.)\n' ); fprintf ( 1, ' (Any value less than 1 terminates execution.)\n' ); dim_num = []; dim_num = input ( ' Enter DIM_NUM: ' ); fprintf ( 1, ' User input DIM_NUM = %12d\n', dim_num ); if ( dim_num < 1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of DIM_NUM = %d\n', dim_num ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' N is the number of points to generate.\n' ); fprintf ( 1, ' (Try ''25'' if you have no preference.)\n' ); fprintf ( 1, ' (Any value less than 1 terminates execution.)\n' ); n = []; n = input ( ' Enter N: ' ); fprintf ( 1, ' User input N = %12d\n', n ); if ( n < 1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of N = %d\n', n ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' SEED_INIT is a seed for the random number generation.\n' ); fprintf ( 1, ' (Try ''123456789'' if you have no preference.)\n' ); fprintf ( 1, ' (Any value less than 0 terminates execution.)\n' ); seed_init = []; seed_init = input ( ' Enter SEED_INIT: ' ); fprintf ( 1, ' User input SEED_INIT = %d\n', seed_init ); if ( seed_init < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of SEED_INIT = %d\n', seed_init ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end seed = seed_init; fprintf ( 1, '\n' ); fprintf ( 1, ' INIT is the method of initializing the data:\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' file read data from a file;\n' ); fprintf ( 1, ' ''GRID'' by picking points from a grid;\n' ); fprintf ( 1, ' ''HALTON'' from a Halton sequence;\n' ); fprintf ( 1, ' ''RAND'' using MATLAB''s RAND function;\n' ); fprintf ( 1, ' ''UNIFORM'' using a simple uniform RNG;\n' ); fprintf ( 1, ' ''USER'' refers to the USER routine;\n' ); fprintf ( 1, ' \n' ); fprintf ( 1, ' (Try ''RAND'' if you have no preference.)\n' ); fprintf ( 1, ' (A blank value terminates execution).\n' ); fprintf ( 1, ' (Be sure to INCLUDE QUOTES around the string!\n' ); fprintf ( 1, ' \n' ); init_string = []; init_string = input ( ' Enter INIT: ' ); fprintf ( 1, ' User input INIT = "%s".\n', init_string ); if ( s_len_trim ( init_string ) <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of INIT \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end input_file_name = []; if ( s_eqi ( init_string, 'RAND' ) ) init = -1; elseif ( s_eqi ( init_string, 'RANDOM' ) ) init_string = 'RAND'; init = -1; elseif ( s_eqi ( init_string, 'UNIFORM' ) ) init = 0; elseif ( s_eqi ( init_string, 'HALTON' ) ) init = 1; elseif ( s_eqi ( init_string, 'GRID' ) ) init = 2; elseif ( s_eqi ( init_string, 'USER' ) ) init = 3; elseif ( 0 < s_len_trim ( init_string ) ) init = 4; input_file_name = init_string; else fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of INIT \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' CVT_IT_NUM is the number of CVT iterations.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' A CVT iteration carries out the following steps:\n' ); fprintf ( 1, ' * the Voronoi region associated with each\n' ); fprintf ( 1, ' generator is estimated by sampling;\n' ); fprintf ( 1, ' * the centroid of each Voronoi region is estimated.\n' ); fprintf ( 1, ' * the generator is replaced by the centroid.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' If "enough" sampling points are used,\n' ); fprintf ( 1, ' and "enough" iterations are taken, this process\n' ); fprintf ( 1, ' will converge.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''50'' if you have no preference.)\n' ); fprintf ( 1, ' (A negative value terminates execution).\n' ); fprintf ( 1, '\n' ); cvt_it_num = []; cvt_it_num = input ( ' Enter CVT_IT_NUM: ' ); fprintf ( 1, ' User input CVT_IT_NUM = %12d\n', cvt_it_num ); if ( cvt_it_num < 0 ) fprintf ( 1, ' \n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of CVT_IT_NUM = %d\n', cvt_it_num ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' SAMPLE is the method of sampling the region:\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' ''GRID'' by picking points from a grid;\n' ); fprintf ( 1, ' ''HALTON'' from a Halton sequence;\n' ); fprintf ( 1, ' ''RAND'' using MATLAB''s RAND function;\n' ); fprintf ( 1, ' ''UNIFORM'' using a simple uniform RNG;\n' ); fprintf ( 1, ' ''USER'' refers to the USER routine;\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''RAND'' if you have no preference.)\n' ); fprintf ( 1, ' (A blank value terminates execution).\n' ); fprintf ( 1, ' (Be sure to INCLUDE QUOTES around the string!\n' ); fprintf ( 1, '\n' ); sample_string = []; sample_string = input ( ' Enter SAMPLE: ' ); fprintf ( 1, ' User input SAMPLE = "%s".\n', sample_string ); if ( s_len_trim ( sample_string ) <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of SAMPLE \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end if ( s_eqi ( sample_string, 'RAND' ) ) sample = -1; elseif ( s_eqi ( sample_string, 'RANDOM' ) ) sample = -1; sample_string = 'RAND'; elseif ( s_eqi ( sample_string, 'UNIFORM' ) ) sample = 0; elseif ( s_eqi ( sample_string, 'HALTON' ) ) sample = 1; elseif ( s_eqi ( sample_string, 'GRID' ) ) sample = 2; elseif ( s_eqi ( sample_string, 'USER' ) ) sample = 3; else fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of SAMPLE \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' SAMPLE_NUM is the number of sample points.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' The Voronoi regions will be explored by generating\n' ); fprintf ( 1, ' SAMPLE_NUM points. For each sample point, the\n' ); fprintf ( 1, ' nearest generator is found. Using more points\n' ); fprintf ( 1, ' gives a better estimate of these regions.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' SAMPLE_NUM should be much larger than N, the\n' ); fprintf ( 1, ' number of generators.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''10000'' if you have no preference.)\n' ); fprintf ( 1, ' (A zero or negative value terminates execution.)\n' ); fprintf ( 1, '\n' ); sample_num = []; sample_num = input ( ' Enter SAMPLE_NUM: ' ); fprintf ( 1, ' User input SAMPLE_NUM = %12d\n', sample_num ); if ( sample_num <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of SAMPLE_NUM = %12d\n', sample_num ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' BATCH is the number of sample points to create\n' ); fprintf ( 1, ' at one time\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' BATCH should be between 1 and SAMPLE_NUM.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' It is FASTER to set BATCH to SAMPLE_NUM;\n' ); fprintf ( 1, ' setting BATCH to 1 requires the least memory.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''%d'' if you have no preference.)\n', ... min ( 1000, sample_num ) ); fprintf ( 1, ' (A zero or negative value terminates execution.)\n' ); fprintf ( 1, '\n' ); batch = []; batch = input ( ' Enter BATCH: ' ); fprintf ( 1, ' User input BATCH = %d\n', batch ); if ( batch <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of BATCH = %d\n', batch ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' LAT_IT_NUM is the number of Latinizing iterations.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' Each step of the latinizing iteration begins\n' ); fprintf ( 1, ' by carrying out CVT_IT_NUM steps of CVT iteration,\n' ); fprintf ( 1, ' after which the data is \"latinized\".\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' Often, one latinizing step is enough.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' In some cases, it may be worth while to carry\n' ); fprintf ( 1, ' out several latinizing steps; that is, the\n' ); fprintf ( 1, ' Latinized data is smoothed by another series\n' ); fprintf ( 1, ' of CVT steps, then latinized, and so on.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''1'' if you have no preference.)\n' ); fprintf ( 1, ' (A negative value terminates execution).\n' ); fprintf ( 1, '\n' ); lat_it_num = []; lat_it_num = input ( ' Enter LAT_IT_NUM: ' ); fprintf ( 1, ' User input LAT_IT_NUM = %12d\n', lat_it_num ); if ( lat_it_num < 0 ) fprintf ( 1, ' \n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of LAT_IT_NUM = %d\n', lat_it_num ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end fprintf ( 1, '\n' ); fprintf ( 1, ' OUTPUT is a file into which the data is stored;\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' (Try ''lcvt.txt'' if you have no preference.)\n' ); fprintf ( 1, ' (A blank value terminates execution).\n' ); fprintf ( 1, ' (Be sure to INCLUDE QUOTES around the string!\n' ); fprintf ( 1, ' \n' ); output_file_name = []; output_file_name = input ( ' Enter OUTPUT: ' ); fprintf ( 1, ' User input OUTPUT = "%s".\n', output_file_name ); if ( s_len_trim ( output_file_name ) <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of OUTPUT \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end if ( s_len_trim ( output_file_name ) <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET\n' ); fprintf ( 1, ' The input value of OUTPUT \n' ); fprintf ( 1, ' is interpreted as a request for termination.\n' ); fprintf ( 1, ' Normal end of execution.\n' ); return end % % Initialize the data. % if ( init == 4 ) r = r8mat_data_read ( input_file_name, dim_num, n ); else n_total = n; reset = 1; [ r, seed ] = region_sampler ( dim_num, n, n_total, init, reset, seed ); end if ( 1 ) fprintf ( 1, '\n' ); fprintf ( 1, ' Latin IT CVT Energy Latin Energy\n' ); fprintf ( 1, '\n' ); end for lat_it = 1 : lat_it_num if ( 1 ) fprintf ( 1, '\n' ); fprintf ( 1, ' CVT IT Change\n' ); fprintf ( 1, '\n' ); end for cvt_it = 1 : cvt_it_num [ r, seed, cvt_it_diff ] = cvt_iteration ( dim_num, n, r, sample_num, ... sample, seed ); if ( 0 ) fprintf ( 1, ' %8d %14f\n', cvt_it, cvt_it_diff ); end end if ( 0 ) fprintf ( 1, '\n' ); end [ cvt_energy, seed ] = cluster_energy ( dim_num, n, r, sample_num, ... sample, seed ); r = r8mat_latinize ( dim_num, n, r ); [ lat_energy, seed ] = cluster_energy ( dim_num, n, r, sample_num, ... sample, seed ); fprintf ( 1, ' %8d %14f %14f\n', lat_it, cvt_energy, lat_energy ); end % % Write the data to a file. % lcvt_write ( dim_num, n, seed_init, init, input_file_name, sample, ... sample_num, cvt_it_num, cvt_energy, lat_it_num, lat_energy, ... r, output_file_name ); fprintf ( 1, '\n' ); fprintf ( 1, ' The data was written to the file "%s".\n', ... output_file_name ); % % Terminate. % fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_DATASET:\n' ); fprintf ( 1, ' Normal end of execution.\n' ); fprintf ( 1, '\n' ); timestamp ( ); return end function c = ch_cap ( c ) %*****************************************************************************80 % %% CH_CAP capitalizes a single character. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 22 November 2003 % % Author: % % John Burkardt % % Parameters: % % Input, character C, the character to capitalize. % % Output, character C, the capitalized character. % if ( 'a' <= c & c <= 'z' ) c = c + 'A' - 'a'; end return end function [ energy, seed ] = cluster_energy ( dim_num, n, cell_generator, ... sample_num_cvt, sample_function_cvt, seed ) %*****************************************************************************80 % %% CLUSTER_ENERGY returns the energy of a dataset. % % Discussion: % % The energy is the integral of the square of the distance from each point % in the region to its nearest generator. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 09 August 2005 % % Author: % % John Burkardt % % Parameters: % % Input, integer DIM_NUM, the spatial dimension. % % Input, integer N, the number of Voronoi cells. % % Input, real CELL_GENERATOR(DIM_NUM,N), the Voronoi % cell generators. % % Input, integer SAMPLE_NUM_CVT, the number of sample points. % % Input, integer SAMPLE_FUNCTION_CVT, specifies how the region is sampled: % -1, the sampling function is RANDOM_NUMBER (Fortran90 intrinsic), % 0, the sampling function is UNIFORM, % 1, the sampling function is HALTON, % 2, the sampling function is GRID. % % Input, integer SEED, the random number seed. % % Output, real ENERGY, the (estimated) energy of the dataset. % % Output, integer SEED, the updated random number seed. % energy = 0.0; reset = 1; for j = 1 : sample_num_cvt % % Generate a sampling point X. % [ x, seed ] = region_sampler ( dim_num, 1, sample_num_cvt, ... sample_function_cvt, reset, seed ); reset = 0; % % Find the nearest cell generator. % nearest = find_closest ( dim_num, n, 1, x, cell_generator ); % % Add the contribution to the energy. % energy = energy ... + sum ( cell_generator(1:dim_num,nearest) - x(1:dim_num) ).^2; end energy = energy / sample_num_cvt; return end function [ generator_new, change_l2, seed ] = cvt_iteration ( m, n, ... generator, sample_num_cvt, sample_function_cvt, seed ) %*****************************************************************************80 % %% CVT_ITERATION takes one step of the CVT iteration. % % Discussion: % % The routine is given a set of points, called "generators", which % define a tessellation of the region into Voronoi cells. Each point % defines a cell. Each cell, in turn, has a centroid, but it is % unlikely that the centroid and the generator coincide. % % Each time this CVT iteration is carried out, an attempt is made % to modify the generators in such a way that they are closer and % closer to being the centroids of the Voronoi cells they generate. % % A large number of sample points are generated, and the nearest generator % is determined. A count is kept of how many points were nearest to each % generator. Once the sampling is completed, the location of all the % generators is adjusted. This step should decrease the discrepancy % between the generators and the centroids. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 05 May 2003 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, the spatial dimension. % % Input, integer N, the number of Voronoi cells. % % Input, real GENERATOR(M,N), the Voronoi cell generators. % % Input, integer SAMPLE_NUM_CVT, the number of sample points. % % Input, integer SAMPLE_FUNCTION_CVT, region sampling function: % -1, sampling function is RAND (MATLAB intrinsic); % 0, sampling function is UNIFORM; % 1, sampling function is HALTON; % 2, sampling function is GRID; % % Input, integer SEED, the random number seed. % % Output, real GENERATOR_NEW(M,N), the new Voronoi cell generators. % % Output, integer SEED, the new random number seed. % % Output, real CHANGE_L2, the L2 norm of the difference between % the input and output data. % generator_new(1:m,1:n) = 0.0; tally(1:n) = 0; reset = 1; for j = 1 : sample_num_cvt % % Generate a sampling point X. % [ x(1:m), seed ] = region_sampler ( m, 1, sample_num_cvt, ... sample_function_cvt, reset, seed ); reset = 0; % % Find the nearest cell generator. % nearest = find_closest ( m, n, 1, x, generator ); % % Add X to the averaging data for GENERATOR(*,NEAREST). % for i = 1 : m generator_new(i,nearest) = generator_new(i,nearest) + x(i); end tally(nearest) = tally(nearest) + 1; end % % Compute the new generators. % for j = 1 : n if ( tally(j) ~= 0 ) generator_new(1:m,j) = generator_new(1:m,j) / tally(j); end end % % Determine the change. % change_l2 = 0.0; for j = 1 : n for i = 1 : m change_l2 = change_l2 + ( generator_new(i,j) - generator(i,j) )^2; end end change_l2 = sqrt ( change_l2 ); return end function nearest = find_closest ( dn, gn, sn, s, g ) %*****************************************************************************80 % %% FIND_CLOSEST finds the nearest G point to each S point. % % Discussion: % % Given two sets of points G and S, this function finds, for every % s in S, the index of the closest point g in G. % % This procedure would seem to naturally require GN * SN operations, % and that is how this function is programmed. However, for large % datasets, this cost can be prohibitive, and there are procedures % for preprocessing the dataset G that can greatly reduce this cost. % % Modified in accordance with suggestions by Gene Cliff, 08 July 2010. % % Modified yet again to deal with the special case of DN = 1, % 15 September 2010. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 15 September 2010 % % Author: % % John Burkardt % % Parameters: % % Input, integer DN, the spatial dimension. % % Input, integer GN, the number of cell generators. % % Input, integer SN, the number of sample points. % % Input, real S(DN,SN), the points to be checked. % % Input, real G(DN,GN), the cell generators. % % Output, integer NEAREST(SN), the index of the cell generator nearest % to the sample point. % ones_k = ones ( 1, gn ); nearest = NaN ( 1, sn ); for i = 1 : sn d1(1:dn,1:gn) = g(1:dn,1:gn) - s(1:dn,i) * ones_k; d2 = sum ( d1 .* d1, 1 ); [ min_val, min_loc ] = min ( d2 ); nearest(i) = min_loc; end return end function r = i4_to_halton ( seed, base ) %*****************************************************************************80 % %% I4_TO_HALTON computes an element of a Halton sequence. % % Reference: % % John Halton, % On the efficiency of certain quasi-random sequences of points % in evaluating multi-dimensional integrals, % Numerische Mathematik, % Volume 2, pages 84-90, 1960. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 02 March 2003 % % Author: % % John Burkardt % % Parameters: % % Input, integer SEED, the seed or index of the desired element. % SEED should be nonnegative. Only the integer part of SEED is used. % SEED = 0 is allowed, and returns R = 0. % % Input, integer BASE(1:ndim), the Halton bases, which are typically % prime numbers. Only the integer part of BASE is used. % BASE must be greater than 1. % % Output, real R(1:ndim), the SEED-th element of the Halton sequence. % ndim = length ( base ); r(1:ndim) = 0.0E+00; % % Ensure that BASE is an integer, and acceptable. % base = floor ( base ); if ( any ( base <= 1 ) ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4_TO_HALTON - Fatal error!\n' ); fprintf ( 1, ' Some input base is <= 1!\n' ); return end % % Ensure that SEED is an integer, and acceptable. % seed = floor ( seed ); if ( seed < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4_TO_HALTON - Fatal error!\n' ); fprintf ( 1, ' The input SEED is < 0!\n' ); fprintf ( 1, ' SEED = %d\n', seed ); return end % % Carry out the computation. % base_inv(1:ndim) = 1.0E+00 ./ base(1:ndim); seed2(1:ndim) = seed; while ( any ( seed2 ~= 0 ) ) digit = mod ( seed2, base ); r = r + digit .* base_inv; base_inv = base_inv ./ base; seed2 = floor ( seed2 ./ base ); end return end function lcvt_write ( dim_num, n, seed_start, sample_function_init, ... file_in_name, sample_function_cvt, sample_num_cvt, cvt_it, ... cvt_energy, latin_it, latin_energy, cell_generator, file_out_name ) %*****************************************************************************80 % %% LCVT_WRITE writes a Latinized CVT dataset to a file. % % Discussion: % % The initial lines of the file are comments, which begin with a % '#' character. % % Thereafter, each line of the file contains the M-dimensional % components of a Latinized CVT generator. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 09 September 2006 % % Author: % % John Burkardt % % Parameters: % % Input, integer DIM_NUM, the spatial dimension. % % Input, integer N, the number of points. % % Input, integer SEED_START, the initial random number seed. % % Input, integer SAMPLE_FUNCTION_INIT, specifies how the initial % generators are chosen: % -1, the initialization function is RANDOM_NUMBER (Fortran90 intrinsic), % 0, the initialization function is UNIFORM, % 1, the initialization function is HALTON, % 2, the initialization function is GRID, % 3, the initial values are read in from a file. % % Input, string FILE_IN_NAME, the name of the file % from which initialization values were read for the generators, % if SAMPLE_FUNCTION_INIT = 3. % % Input, integer SAMPLE_FUNCTION_CVT, specifies how the region is sampled: % -1, the sampling function is RANDOM_NUMBER (Fortran90 intrinsic), % 0, the sampling function is UNIFORM, % 1, the sampling function is HALTON, % 2, the sampling function is GRID. % % Input, integer SAMPLE_NUM_CVT, the number of sampling points used on % each CVT iteration. % % Input, integer CVT_IT, the number of CVT iterations. % % Input, real CVT_ENERGY, the energy of the final CVT dataset. % % Input, integer LATIN_IT, the number of Latin iterations. % % Input, real LATIN_ENERGY, the energy of the Latinized % CVT dataset. % % Input, real CELL_GENERATOR(DIM_NUM,N), the points. % % Input, string FILE_OUT_NAME, the name of % the output file. % comment = 1; file_out_unit = fopen ( file_out_name, 'w' ); if ( file_out_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'LCVT_WRITE - Fatal error!\n' ); fprintf ( 1, ' Could not open the output file:\n' ); fprintf ( 1, ' "%s".\n', file_out_name ); error ( 'LCVT_WRITE - Fatal error!' ); end if ( comment ) today = timestring ( ); fprintf ( file_out_unit, '# %s\n', file_out_name ); fprintf ( file_out_unit, '# created by LCVT_WRITE.M\n' ); fprintf ( file_out_unit, '# at %s\n', timestring ); fprintf ( file_out_unit, '#\n' ); fprintf ( file_out_unit, ... '# Spatial dimension DIM_NUM = %12d\n', dim_num ); fprintf ( file_out_unit, '# Number of points N = %12d\n', n ); fprintf ( file_out_unit, '# EPSILON (unit roundoff ) = %e\n', eps ); if ( sample_function_init == 0 | ... sample_function_init == 1 | ... sample_function_cvt == 0 | ... sample_function_cvt == 1 ) fprintf ( file_out_unit, '#\n' ); fprintf ( file_out_unit, '# Initial SEED = %d\n', seed_start ); end fprintf ( file_out_unit, '#\n' ); if ( sample_function_init == -1 ) fprintf ( file_out_unit, ... '# Initialization by RAND (MATLAB intrinsic).\n' ); elseif ( sample_function_init == 0 ) fprintf ( file_out_unit, '# Initialization by UNIFORM.\n' ); elseif ( sample_function_init == 1 ) fprintf ( file_out_unit, '# Initialization by HALTON.\n' ); elseif ( sample_function_init == 2 ) fprintf ( file_out_unit, '# Initialization by GRID.\n' ); elseif ( sample_function_init == 3 ) fprintf ( file_out_unit, '# Initialization from file: "%s"\n', ... file_in_name ); end if ( sample_function_cvt == -1 ) fprintf ( file_out_unit,'# Sampling by RAND (MATLAB intrinsic).\n' ); elseif ( sample_function_cvt == 0 ) fprintf ( file_out_unit, '# Sampling by UNIFORM.\n' ); elseif ( sample_function_cvt == 1 ) fprintf ( file_out_unit, '# Sampling by HALTON.\n' ); elseif ( sample_function_cvt == 2 ) fprintf ( file_out_unit, '# Sampling by GRID.\n' ); end fprintf ( file_out_unit, '# Number of sample points = %d\n', ... sample_num_cvt ); fprintf ( file_out_unit, '# Number of CVT iterations = %d\n', ... cvt_it ); fprintf ( file_out_unit, '# Energy of CVT dataset = %f\n', ... cvt_energy ); fprintf ( file_out_unit, '# Number of Latin iterations = %d\n', ... latin_it ); fprintf ( file_out_unit, '# Energy of Latinized CVT dataset = %f\n', ... latin_energy ); fprintf ( file_out_unit, '#\n' ); end for j = 1 : n for i = 1 : dim_num fprintf ( file_out_unit, ' %10f', cell_generator(i,j) ); end fprintf ( file_out_unit, '\n' ); end fclose ( file_out_unit ); return end function p = prime ( n ) %*****************************************************************************80 % %% PRIME returns returns any of the first PRIME_MAX prime numbers. % % Discussion: % % PRIME_MAX is 1600, and the largest prime stored is 13499. % % Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 18 February 2005 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964, pages 870-873. % % Daniel Zwillinger, % CRC Standard Mathematical Tables and Formulae, % 30th Edition, % CRC Press, 1996, pages 95-98. % % Parameters: % % Input, integer N, the index of the desired prime number. % In general, is should be true that 0 <= N <= PRIME_MAX. % N = -1 returns PRIME_MAX, the index of the largest prime available. % N = 0 is legal, returning PRIME = 1. % % Output, integer P, the N-th prime. If N is out of range, P % is returned as -1. % prime_max = 1600; prime_vector(1:1600) = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, ... 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, ... 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, ... 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, ... 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, ... 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, ... 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, ... 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, ... 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, ... 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, ... 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, ... 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, ... 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, ... 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, ... 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, ... 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, ... 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, ... 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, ... 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, ... 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, ... 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, ... 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, ... 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, ... 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, ... 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, ... 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, ... 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, ... 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, ... 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, ... 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, ... 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, ... 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, ... 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, ... 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, ... 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, ... 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, ... 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, ... 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, ... 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, ... 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, ... 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, ... 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, ... 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, ... 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, ... 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, ... 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, ... 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, ... 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, ... 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, ... 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, ... 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, ... 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, ... 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, ... 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, ... 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, ... 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, ... 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, ... 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, ... 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, ... 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, ... 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, ... 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, ... 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, ... 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, ... 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, ... 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, ... 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, ... 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, ... 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, ... 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, ... 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, ... 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, ... 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, ... 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, ... 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, ... 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, ... 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, ... 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, ... 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, ... 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, ... 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, ... 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, ... 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, ... 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, ... 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, ... 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, ... 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, ... 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, ... 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, ... 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, ... 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, ... 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, ... 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, ... 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, ... 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, ... 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, ... 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, ... 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, ... 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, ... 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, ... 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, ... 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, ... 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, ... 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, ... 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, ... 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, ... 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, ... 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, ... 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, ... 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, ... 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, ... 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, ... 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, ... 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, ... 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, ... 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, ... 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, ... 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, ... 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, ... 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, ... 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, ... 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, ... 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, ... 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, ... 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, ... 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, ... 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, ... 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, ... 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, ... 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, ... 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, ... 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, ... 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, ... 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, ... 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, ... 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, ... 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, ... 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, ... 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, ... 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, ... 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, ... 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, ... 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, ... 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, ... 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, ... 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, ... 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, ... 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, ... 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, ... 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, ... 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, ... 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, ... 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, ... 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, ... 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, ... 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, ... 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, ... 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, ... 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 ]; if ( n == -1 ) p = prime_max; elseif ( n == 0 ) p = 1; elseif ( n <= prime_max ) p = prime_vector(n); else p = -1; end return end function [ r, seed ] = r8_uniform_01 ( seed ) %*****************************************************************************80 % %% R8_UNIFORM_01 returns a unit pseudorandom R8. % % Discussion: % % This routine implements the recursion % % seed = 16807 * seed mod ( 2**31 - 1 ) % r8_uniform_01 = seed / ( 2**31 - 1 ) % % The integer arithmetic never requires more than 32 bits, % including a sign bit. % % If the initial seed is 12345, then the first three computations are % % Input Output R8_UNIFORM_01 % SEED SEED % % 12345 207482415 0.096616 % 207482415 1790989824 0.833995 % 1790989824 2035175616 0.947702 % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 21 September 2006 % % Author: % % John Burkardt % % Reference: % % Paul Bratley, Bennett Fox, Linus Schrage, % A Guide to Simulation, % Second Edition, % Springer, 1987, % ISBN: 0387964673, % LC: QA76.9.C65.B73. % % Bennett Fox, % Algorithm 647: % Implementation and Relative Efficiency of Quasirandom % Sequence Generators, % ACM Transactions on Mathematical Software, % Volume 12, Number 4, December 1986, pages 362-376. % % Pierre L'Ecuyer, % Random Number Generation, % in Handbook of Simulation, % edited by Jerry Banks, % Wiley, 1998, % ISBN: 0471134031, % LC: T57.62.H37. % % Peter Lewis, Allen Goodman, James Miller, % A Pseudo-Random Number Generator for the System/360, % IBM Systems Journal, % Volume 8, Number 2, 1969, pages 136-143. % % Parameters: % % Input, integer SEED, the integer "seed" used to generate % the output random number. SEED should not be 0. % % Output, real R, a random value between 0 and 1. % % Output, integer SEED, the updated seed. This would % normally be used as the input seed on the next call. % i4_huge = 2147483647; if ( seed == 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'R8_UNIFORM_01 - Fatal error!\n' ); fprintf ( 1, ' Input SEED = 0!\n' ); error ( 'R8_UNIFORM_01 - Fatal error!' ); end seed = floor ( seed ); seed = mod ( seed, i4_huge ); if ( seed < 0 ) seed = seed + i4_huge; end k = floor ( seed / 127773 ); seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) seed = seed + i4_huge; end r = seed * 4.656612875E-10; return end function table = r8mat_data_read ( input_filename, m, n ) %*****************************************************************************80 % %% R8MAT_DATA_READ reads data from an R8MAT file. % % Discussion: % % An R8MAT is an array of R8's. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 08 February 2010 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILENAME, the name of the input file. % % Input, integer M, N, the number of rows and columns of data. % % Output, real TABLE(M,N), the point coordinates. % % % Build up the format string for reading M real numbers. % string = ' '; for i = 0 : m string = strcat ( string, ' %f' ); end input_unit = fopen ( input_filename ); if ( input_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'R8MAT_DATA_READ - Error!\n' ); fprintf ( 1, ' Could not open the file.\n' ); error ( 'R8MAT_DATA_READ - Error!' ); end table = zeros(m,n); i = 0; while ( i < n ) line = fgets ( input_unit ); if ( line == -1 ) break; end if ( line(1) == '#' ) elseif ( s_len_trim ( line ) == 0 ) else [ x, count ] = sscanf ( line, string ); if ( count == m ) i = i + 1; table(1:m,i) = x(1:m); end end end fclose ( input_unit ); return end function table = r8mat_latinize ( m, n, table ) %*****************************************************************************80 % %% R8MAT_LATINIZE "Latinizes" an R8MAT. % % Discussion: % % It is assumed, though not necessary, that the input dataset % has points that lie in the unit hypercube. % % In any case, the output dataset will have this property. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 30 March 2004 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, the spatial dimension. % % Input, integer N, the number of cells. % % Input, real TABLE(M,N), the dataset to be "Latinized". % % Output, real TABLE(M,N), the Latinized dataset. % for i = 1 : m indx = r8vec_sort_heap_index_a ( n, table(i,1:n) ); for j = 1 : n table(i,indx(j)) = ( 2 * j - 1 ) / ( 2 * n ); end end return end function indx = r8vec_sort_heap_index_a ( n, a ) %*****************************************************************************80 % %% R8VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8VEC. % % Discussion: % % The sorting is not actually carried out. Rather an index array is % created which defines the sorting. This array may be used to sort % or index the array, or to sort or index related arrays keyed on the % original array. % % Once the index array is computed, the sorting can be carried out % "implicitly: % % A(INDX(I)), I = 1 to N is sorted, % % or explicitly, by the call % % call R8VEC_PERMUTE ( N, A, INDX ) % % after which A(I), I = 1 to N is sorted. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 30 March 2004 % % Author: % % John Burkardt % % Parameters: % % Input, integer N, the number of entries in the array. % % Input, real A(N), an array to be index-sorted. % % Output, integer INDX(N), the sort index. The % I-th element of the sorted array is A(INDX(I)). % if ( n < 1 ) indx = []; return; end indx(1:n) = 1:n; if ( n == 1 ) return; end l = floor ( n / 2 ) + 1; ir = n; while ( 1 ) if ( 1 < l ) l = l - 1; indxt = indx(l); aval = a(indxt); else indxt = indx(ir); aval = a(indxt); indx(ir) = indx(1); ir = ir - 1; if ( ir == 1 ) indx(1) = indxt; break; end end i = l; j = l + l; while ( j <= ir ) if ( j < ir ) if ( a(indx(j)) < a(indx(j+1)) ) j = j + 1; end end if ( aval < a(indx(j)) ) indx(i) = indx(j); i = j; j = j + j; else j = ir + 1; end end indx(i) = indxt; end return end function [ x, seed ] = region_sampler ( m, n, n_total, sample_function, ... reset, seed ) %*****************************************************************************80 % %% REGION_SAMPLER returns a sample point in the physical region. % % Discussion: % % This routine original interfaced with a lower routine called % TEST_REGION, which tested whether the points generated in the % bounding box were actually inside a possibly smaller physical % region of interest. It's been a long time since that option % was actually used, so it's been dropped. % % A point is chosen in the bounding box, either by a uniform random % number generator, or from a vector Halton sequence. % % The entries of the local vector HALTON_BASE should be distinct primes. % Right now, we're assuming M is no greater than 3. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 05 May 2003 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, the spatial dimension. % % Input, integer N, the number of points to generate now. % % Input, integer N_TOTAL, the total number of points to generate. % % Input, integer SAMPLE_FUNCTION, sampling function: % -1, sampling function is RAND (MATLAB intrinsic); % 0, sampling function is UNIFORM; % 1, sampling function is HALTON; % 2, sampling function is GRID; % 3, sample points are generated elsewhere, and this routine is skipped. % % Input, logical RESET, if TRUE, then this is the first call for a given % computation. % % Input, integer SEED, the random number seed. % % Output, real X(M,N), the sample points. % % Output, integer SEED, the updated random number seed. % global region_sampler_HALTON_BASE global region_sampler_HALTON_SEED global region_sampler_NGRID global region_sampler_RANK if ( sample_function == -1 ) x(1:m,1:n) = rand ( m, n ); elseif ( sample_function == 0 ) for j = 1 : n for i = 1 : m [ x(i,j), seed ] = r8_uniform_01 ( seed ); end end elseif ( sample_function == 1 ) if ( reset ) region_sampler_HALTON_SEED = 1; for i = 1 : m region_sampler_HALTON_BASE(i) = prime(i); end end % % It really does annoy me that MATLAB is so peculiar about its conventions % for row and column vectors. I much prefer the FORTRAN 90 convention, in which % N numbers go to N slots, and the language can figure it out on its own! % for j = 1 : n x(1:m,j) = ( i4_to_halton ( region_sampler_HALTON_SEED, ... region_sampler_HALTON_BASE ) )'; region_sampler_HALTON_SEED = region_sampler_HALTON_SEED + 1; end elseif ( sample_function == 2 ) if ( reset ) region_sampler_RANK = 0; exponent = 1.0 / m; region_sampler_NGRID = floor ( n_total^exponent ); if ( region_sampler_NGRID^m < n_total ) region_sampler_NGRID = region_sampler_NGRID + 1; end end for j = 1 : n tuple = tuple_next_fast ( region_sampler_NGRID, m, region_sampler_RANK ); region_sampler_RANK = region_sampler_RANK + 1; x(1:m,j) = ( ( 2 * tuple(1:m) - 1 ) / ( 2 * region_sampler_NGRID ) )'; end elseif ( sample_function == 3 ) else fprintf ( 1, '\n' ); fprintf ( 1, 'REGION_SAMPLER - Fatal error\n' ); fprintf ( 1, ' Illegal SAMPLE_FUNCTION = %d\n', sample_function ); error ( 'REGION_SAMPLER - Fatal error!' ); end return end function value = s_eqi ( s1, s2 ) %*****************************************************************************80 % %% S_EQI is a case insensitive comparison of two strings for equality. % % Example: % % S_EQI ( 'Anjana', 'ANJANA' ) is TRUE. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 30 April 2004 % % Author: % % John Burkardt % % Parameters: % % Input, string S1, S2, the strings to compare. % % Output, logical VALUE, is TRUE if the strings are equal. % FALSE = 0; TRUE = 1; len1 = length ( s1 ); len2 = length ( s2 ); lenc = min ( len1, len2 ); value = FALSE; for i = 1 : lenc c1 = ch_cap ( s1(i) ); c2 = ch_cap ( s2(i) ); if ( c1 ~= c2 ) value = FALSE; return end end for i = lenc + 1 : len1 if ( s1(i) ~= ' ' ) value = FALSE; return end end for i = lenc + 1 : len2 if ( s2(i) ~= ' ' ) value = FALSE; return end end value = TRUE; return end function len = s_len_trim ( s ) %*****************************************************************************80 % %% S_LEN_TRIM returns the length of a character string to the last nonblank. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 14 June 2003 % % Author: % % John Burkardt % % Parameters: % % Input, string S, the string to be measured. % % Output, integer LEN, the length of the string up to the last nonblank. % len = length ( s ); while ( 0 < len ) if ( s(len) ~= ' ' ) return end len = len - 1; end return end function timestamp ( ) %*****************************************************************************80 % %% TIMESTAMP prints the current YMDHMS date as a timestamp. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 14 February 2003 % % Author: % % John Burkardt % t = now; c = datevec ( t ); s = datestr ( c, 0 ); fprintf ( 1, '%s\n', s ); return end function s = timestring ( ) %*****************************************************************************80 % %% TIMESTRING returns a string containing the current YMDHMS date. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 07 August 2003 % % Author: % % John Burkardt % % Parameters: % % Output, string S, a string containing the current YMDHMS date. % t = now; c = datevec ( t ); s = datestr ( c, 0 ); return end function x = tuple_next_fast ( m, n, rank ) %*****************************************************************************80 % %% TUPLE_NEXT_FAST computes the next element of a tuple space, "fast". % % Discussion: % % The elements are N vectors. Each entry is constrained to lie % between 1 and M. The elements are produced one at a time. % The first element is % (1,1,...,1) % and the last element is % (M,M,...,M) % Intermediate elements are produced in lexicographic order. % % This code was written as a possibly faster version of TUPLE_NEXT. % % Example: % % N = 2, % M = 3 % % INPUT OUTPUT % ------- ------- % Rank X % ---- ---- % -1 -1 -1 % % 0 1 1 % 1 1 2 % 2 1 3 % 3 2 1 % 4 2 2 % 5 2 3 % 6 3 1 % 7 3 2 % 8 3 3 % 9 1 1 % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 11 August 2004 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, the maximum entry in each component. % M must be greater than 0. % % Input, integer N, the number of components. % N must be greater than 0. % % Input, integer RANK, indicates the rank of the tuples. % Typically, 0 <= RANK < N**M; values greater than this are % legal and meaningful, being equivalent to the corresponding % value mod N**M. RANK < 0 indicates that this is the first % call for the given values of (M,N). Initialization is done, % and X is set to a dummy value. % % Output, integer X(N), the next tuple of the given rank, % or a dummy value if initialization is being done. % global tuple_next_fast_BASE if ( rank < 0 ) if ( m <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TUPLE_NEXT_FAST - Fatal error!\n' ); fprintf ( 1, ' M <= 0 is illegal.\n' ); fprintf ( 1, ' M = %d\n', m ); error ( 'TUPLE_NEXT_FAST - Fatal error!' ); end if ( n <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TUPLE_NEXT_FAST - Fatal error!\n' ); fprintf ( 1, ' N <= 0 is illegal.\n' ); fprintf ( 1, ' N = %d\n', n ); error ( 'TUPLE_NEXT_FAST - Fatal error!' ); end tuple_next_fast_BASE(n) = 1; for i = n-1 : -1 : 1 tuple_next_fast_BASE(i) = tuple_next_fast_BASE(i+1) * m; end x(1:n) = -1; else x(1:n) = mod ( floor ( rank ./ tuple_next_fast_BASE(1:n) ), m ) + 1; end return end