function linpack_z_test02 ( ) %*****************************************************************************80 % %% TEST02 tests ZCHEX. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 25 June 2009 % % Author: % % John Burkardt % n = 3; lda = n; ldz = n; nz = 1; fprintf ( 1, '\n' ); fprintf ( 1, 'TEST02\n' ); fprintf ( 1, ' For a double precision complex (C)\n' ); fprintf ( 1, ' Hermitian positive definite matrix,\n' ); fprintf ( 1, ' ZCHEX can shift columns in a Cholesky factorization.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' The number of equations is N = %d\n', n ); % % Set the values of the matrix A. % a(1,1) = complex ( 2.5281, 0.0000 ); a(2,1) = complex ( 2.1341, 0.2147 ); a(3,1) = complex ( 2.4187, -0.2932 ); a(1,2) = complex ( 2.1341, -0.2147 ); a(2,2) = complex ( 3.0371, 0.0000 ); a(3,2) = complex ( 2.0905, -1.1505 ); a(1,3) = complex ( 2.4187, 0.2932 ); a(2,3) = complex ( 2.0905, 1.1505 ); a(3,3) = complex ( 2.7638, 0.0000 ); fprintf ( 1, '\n' ); fprintf ( 1, ' The matrix A:\n' ); fprintf ( 1, '\n' ); for i = 1 : n for j = 1 : n fprintf ( 1, ' (%8f %8f)', real ( a(i,j) ), imag ( a(i,j) ) ); end fprintf ( 1, '\n' ); end for i = 1 : n z(i,1) = i; end fprintf ( 1, '\n' ); fprintf ( 1, ' The vector Z:\n' ); fprintf ( 1, '\n' ); for i = 1 : n fprintf ( 1, ' (%8f %8f)\n', real ( z(i,1) ), imag ( z(i,1) ) ); end % % Decompose the matrix. % fprintf ( 1, '\n' ); fprintf ( 1, ' Decompose the matrix.\n' ); job = 0; ipvt(1:n) = 0; [ a, ipvt, info ] = zchdc ( a, lda, n, ipvt, job ); if ( info ~= n ) fprintf ( 1, '\n' ); fprintf ( 1, ' ZCHDC returned INFO = %d\n', info ); fprintf ( 1, ' This means the matrix is not positive definite.\n' ); return end % % Zero out the lower diagonal. % for i = 2 : n for j = 1 : i-1 a(i,j) = 0.0; end end % % Print the factorization. % fprintf ( 1, '\n' ); fprintf ( 1, ' The Cholesky factor U:\n' ); fprintf ( 1, '\n' ); for i = 1 : n for j = 1 : n fprintf ( 1, ' (%8f %8f)', real ( a(i,j) ), imag ( a(i,j) ) ); end fprintf ( 1, '\n' ); end % % Right circular shift columns L through K. % k = 1; l = 3; fprintf ( 1, '\n' ); fprintf ( 1, ' Right circular shift columns K = %d through L = %d\n', ... k, l ); job = 1; [ a, z, c, s ] = zchex ( a, lda, n, k, l, z, ldz, nz, job ); % % Left circular shift columns K+1 through L. % k = 2; l = 3; fprintf ( 1, '\n' ); fprintf ( 1, ' Left circular shift columns K = %d through L = %d\n', ... k, l ); job = 2; [ a, z, c, s ] = zchex ( a, lda, n, k, l, z, ldz, nz, job ); % % Print the factorization. % fprintf ( 1, '\n' ); fprintf ( 1, ' The shifted Cholesky factor U:\n' ); fprintf ( 1, '\n' ); for i = 1 : n for j = 1 : n fprintf ( 1, ' (%8f %8f)', real ( a(i,j) ), imag ( a(i,j) ) ); end fprintf ( 1, '\n' ); end fprintf ( 1, '\n' ); fprintf ( 1, ' The shifted vector Z:\n' ); fprintf ( 1, '\n' ); for i = 1 : n fprintf ( 1, ' (%8f %8f)\n', real ( z(i,1) ), imag ( z(i,1) ) ); end % % Compute the Cholesky product. % a(1:n,1:n) = a(1:n,1:n)' * a(1:n,1:n); fprintf ( 1, '\n' ); fprintf ( 1, ' The shifted product U'' * U:\n' ); fprintf ( 1, '\n' ); for i = 1 : n for j = 1 : n fprintf ( 1, ' (%8f %8f)', real ( a(i,j) ), imag ( a(i,j) ) ); end fprintf ( 1, '\n' ); end return end