function [ n_data, n, x, fx ] = cheby_u_poly_values ( n_data ) %*****************************************************************************80 % %% CHEBY_U_POLY_VALUES returns values of Chebyshev polynomials U(n,x). % % Discussion: % % In Mathematica, the function can be evaluated by: % % ChebyshevU[n,x] % % The Chebyshev U polynomial is a solution to the differential equation: % % (1-X*X) Y'' - 3 X Y' + N (N+2) Y = 0 % % First terms: % % U(0)(X) = 1 % U(1)(X) = 2 X % U(2)(X) = 4 X^2 - 1 % U(3)(X) = 8 X^3 - 4 X % U(4)(X) = 16 X^4 - 12 X^2 + 1 % U(5)(X) = 32 X^5 - 32 X^3 + 6 X % U(6)(X) = 64 X^6 - 80 X^4 + 24 X^2 - 1 % U(7)(X) = 128 X^7 - 192 X^5 + 80 X^3 - 8X % % Recursion: % % U(0)(X) = 1, % U(1)(X) = 2 * X, % U(N)(X) = 2 * X * U(N-1)(X) - U(N-2)(X) % % Norm: % % Integral ( -1 <= X <= 1 ) ( 1 - X^2 ) * U(N,X)^2 dX = PI/2 % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 15 August 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, integer N, the order of the function. % % Output, real X, the point where the function is evaluated. % % Output, real FX, the value of the function. % n_max = 13; fx_vec = [ ... 0.1000000000000000E+01, ... 0.1600000000000000E+01, ... 0.1560000000000000E+01, ... 0.8960000000000000E+00, ... -0.1264000000000000E+00, ... -0.1098240000000000E+01, ... -0.1630784000000000E+01, ... -0.1511014400000000E+01, ... -0.7868390400000000E+00, ... 0.2520719360000000E+00, ... 0.1190154137600000E+01, ... 0.1652174684160000E+01, ... 0.1453325357056000E+01 ]; n_vec = [ ... 0, 1, 2, ... 3, 4, 5, ... 6, 7, 8, ... 9, 10, 11, ... 12 ]; x_vec = [ ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00, ... 0.8E+00 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; n = 0; x = 0.0; fx = 0.0; else n = n_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end