function [ n_data, n, x, fx ] = legendre_poly_values ( n_data ) %*****************************************************************************80 % %% LEGENDRE_POLY_VALUES returns values of the Legendre polynomials. % % Discussion: % % In Mathematica, the function can be evaluated by: % % LegendreP [ n, x ] % % Differential equation: % % (1-X*X) * P(N,X)'' - 2 * X * P(N,X)' + N * (N+1) = 0 % % First terms: % % P( 0,X) = 1 % P( 1,X) = 1 X % P( 2,X) = ( 3 X^2 - 1)/2 % P( 3,X) = ( 5 X^3 - 3 X)/2 % P( 4,X) = ( 35 X^4 - 30 X^2 + 3)/8 % P( 5,X) = ( 63 X^5 - 70 X^3 + 15 X)/8 % P( 6,X) = ( 231 X^6 - 315 X^4 + 105 X^2 - 5)/16 % P( 7,X) = ( 429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 % P( 8,X) = ( 6435 X^8 - 12012 X^6 + 6930 X^4 - 1260 X^2 + 35)/128 % P( 9,X) = (12155 X^9 - 25740 X^7 + 18018 X^5 - 4620 X^3 + 315 X)/128 % P(10,X) = (46189 X^10-109395 X^8 + 90090 X^6 - 30030 X^4 + 3465 X^2-63 ) /256 % % Recursion: % % P(0,X) = 1 % P(1,X) = X % P(N,X) = ( (2*N-1)*X*P(N-1,X)-(N-1)*P(N-2,X) ) / N % % P'(0,X) = 0 % P'(1,X) = 1 % P'(N,X) = ( (2*N-1)*(P(N-1,X)+X*P'(N-1,X)-(N-1)*P'(N-2,X) ) / N % % Formula: % % P(N,X) = (1/2**N) * sum ( 0 <= M <= N/2 ) C(N,M) C(2N-2M,N) X^(N-2*M) % % Orthogonality: % % Integral ( -1 <= X <= 1 ) P(I,X) * P(J,X) dX % = 0 if I =/= J % = 2 / ( 2*I+1 ) if I = J. % % Approximation: % % A function F(X) defined on [-1,1] may be approximated by the series % % C0*P(0,X) + C1*P(1,X) + ... + CN*P(N,X) % % where % % C(I) = (2*I+1)/(2) * Integral ( -1 <= X <= 1 ) F(X) P(I,X) dx. % % Special values: % % P(N,1) = 1. % P(N,-1) = (-1)**N. % | P(N,X) | <= 1 in [-1,1]. % % P(N,0,X) = P(N,X), that is, for M=0, the associated Legendre % function of the first kind and order N equals the Legendre polynomial % of the first kind and order N. % % The N zeroes of P(N,X) are the abscissas used for Gauss-Legendre % quadrature of the integral of a function F(X) with weight function 1 % over the interval [-1,1]. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, integer N, the order of the function. % % Output, real X, the point where the function is evaluated. % % Output, real FX, the value of the function. % n_max = 22; fx_vec = [ ... 0.1000000000000000E+01, ... 0.2500000000000000E+00, ... -0.4062500000000000E+00, ... -0.3359375000000000E+00, ... 0.1577148437500000E+00, ... 0.3397216796875000E+00, ... 0.2427673339843750E-01, ... -0.2799186706542969E+00, ... -0.1524540185928345E+00, ... 0.1768244206905365E+00, ... 0.2212002165615559E+00, ... 0.0000000000000000E+00, ... -0.1475000000000000E+00, ... -0.2800000000000000E+00, ... -0.3825000000000000E+00, ... -0.4400000000000000E+00, ... -0.4375000000000000E+00, ... -0.3600000000000000E+00, ... -0.1925000000000000E+00, ... 0.8000000000000000E-01, ... 0.4725000000000000E+00, ... 0.1000000000000000E+01 ]; n_vec = [ ... 0, 1, 2, ... 3, 4, 5, ... 6, 7, 8, ... 9, 10, 3, ... 3, 3, 3, ... 3, 3, 3, ... 3, 3, 3, ... 3 ]; x_vec = [ ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.00E+00, ... 0.10E+00, ... 0.20E+00, ... 0.30E+00, ... 0.40E+00, ... 0.50E+00, ... 0.60E+00, ... 0.70E+00, ... 0.80E+00, ... 0.90E+00, ... 1.00E+00 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; n = 0; x = 0.0; fx = 0.0; else n = n_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end