function s2 = stirling2 ( n, m ) %*****************************************************************************80 % %% STIRLING2 computes the Stirling numbers of the second kind. % % Discussion: % % S2(N,M) represents the number of distinct partitions of N elements % into M nonempty sets. For a fixed N, the sum of the Stirling % numbers S2(N,M) is represented by B(N), called "Bell's number", % and represents the number of distinct partitions of N elements. % % For example, with 4 objects, there are: % % 1 partition into 1 set: % % (A,B,C,D) % % 7 partitions into 2 sets: % % (A,B,C) (D) % (A,B,D) (C) % (A,C,D) (B) % (A) (B,C,D) % (A,B) (C,D) % (A,C) (B,D) % (A,D) (B,C) % % 6 partitions into 3 sets: % % (A,B) (C) (D) % (A) (B,C) (D) % (A) (B) (C,D) % (A,C) (B) (D) % (A,D) (B) (C) % (A) (B,D) (C) % % 1 partition into 4 sets: % % (A) (B) (C) (D) % % So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. % % % First terms: % % N/M: 1 2 3 4 5 6 7 8 % % 1 1 0 0 0 0 0 0 0 % 2 1 1 0 0 0 0 0 0 % 3 1 3 1 0 0 0 0 0 % 4 1 7 6 1 0 0 0 0 % 5 1 15 25 10 1 0 0 0 % 6 1 31 90 65 15 1 0 0 % 7 1 63 301 350 140 21 1 0 % 8 1 127 966 1701 1050 266 28 1 % % Recursion: % % S2(N,1) = 1 for all N. % S2(I,I) = 1 for all I. % S2(I,J) = 0 if I < J. % % S2(N,M) = M * S2(N-1,M) + S2(N-1,M-1) % % Properties: % % sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J) % % X**N = sum ( 0 <= K <= N ) S2(N,K) X_K % where X_K is the falling factorial function. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 25 August 2004 % % Author: % % John Burkardt % % Parameters: % % Input, integer N, the number of rows of the table. % % Input, integer M, the number of columns of the table. % % Output, integer S2(N,M), the Stirling numbers of the second kind. % if ( n <= 0 ) s2 = []; return end if ( m <= 0 ) s2 = []; return end s2(1,1) = 1; s2(1,2:m) = 0; for i = 2 : n s2(i,1) = 1; for j = 2 : m s2(i,j) = j * s2(i-1,j) + s2(i-1,j-1); end end return end