function value = p06_f ( dim_num, point_num, x ) %*****************************************************************************80 % %% P06_F evaluates the integrand for problem 06. % % Dimension: % % DIM_NUM arbitrary. % % Region: % % 0 <= X(1:DIM_NUM) <= 1 % % Integrand: % % product ( 2 * abs ( 2 * x(1:dim_num) - 1 ) ) % % Exact Integral: % % 1 % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 02 June 2007 % % Author: % % John Burkardt % % Reference: % % Paul Bratley, Bennett Fox, Harald Niederreiter, % Implementation and Tests of Low-Discrepancy Sequences, % ACM Transactions on Modeling and Computer Simulation, % Volume 2, Number 3, pages 195-213, 1992. % % Philip Davis, Philip Rabinowitz, % Methods of Numerical Integration, % Second Edition, % Dover, 2007, % ISBN: 0486453391, % LC: QA299.3.D28. % % Parameters: % % Input, integer DIM_NUM, the dimension of the argument. % % Input, integer POINT_NUM, the number of points. % % Input, real X(DIM_NUM,POINT_NUM), the evaluation points. % % Output, real VALUE(POINT_NUM), the integrand values. % value(1:point_num) = 0.0; for point = 1 : point_num value(point) = prod ( 2.0 * abs ( 2.0 * x(1:dim_num,point) - 1.0 ) ); end p06_i4 ( 'I', '#', point_num ); return end