function rbf_interp_1d_test01 ( prob, phi, phi_name, r0 ) %*****************************************************************************80 % %% RBF_INTERP_1D_TEST01 tests RBF_INTERP_1D. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 29 July 2012 % % Author: % % John Burkardt % % Parameters: % % Input, integer PROB, the index of the problem. % % Input, @ function PHI ( R ), a handle for the radial basis function. % % Input, string PHI_NAME, the name of the radial basis function. % % Input, real R0, the scale factor. Typically, this might be % a small multiple of the average distance between points. % fprintf ( 1, '\n' ); fprintf ( 1, 'RBF_INTERP_1D_TEST01:\n' ); fprintf ( 1, ' Interpolate data from TEST_INTERP problem #%d\n', prob ); fprintf ( 1, ' using radial basis function %s\n', phi_name ); fprintf ( 1, ' Scale factor R0 = %g\n', r0 ); nd = p00_data_num ( prob ); fprintf ( 1, ' Number of data points = %d\n', nd ); xy = p00_data ( prob, 2, nd ); r8mat_transpose_print ( 2, nd, xy, ' Data array:' ); xd = reshape ( xy(1,1:nd), nd, 1 ); yd = reshape ( xy(2,1:nd), nd, 1 ); m = 1; w = rbf_weight ( m, nd, xd, r0, phi, yd ); % % #1: Does interpolant match function at interpolation points? % ni = nd; xi = xd; yi = rbf_interp ( m, nd, xd, r0, phi, w, ni, xi ); int_error = norm ( yi - yd ) / ni; fprintf ( 1, '\n' ); fprintf ( 1, ' L2 interpolation error averaged per interpolant node = %g\n', int_error ); % % #2: Compare estimated curve length to piecewise linear (minimal) curve length. % Assume data is sorted, and normalize X and Y dimensions by (XMAX-XMIN) and % (YMAX-YMIN). % xmin = min ( xd(1:nd) ); xmax = max ( xd(1:nd) ); ymin = min ( yd(1:nd) ); ymax = max ( yd(1:nd) ); ni = 501; xi = r8vec_linspace ( ni, xmin, xmax ); yi = rbf_interp ( m, nd, xd, r0, phi, w, ni, xi ); ld = sum ( sqrt ( ( ( xd(2:nd) - xd(1:nd-1) ) / ( xmax - xmin ) ).^2 ... + ( ( yd(2:nd) - yd(1:nd-1) ) / ( ymax - ymin ) ).^2 ) ); li = sum ( sqrt ( ( ( xi(2:ni) - xi(1:ni-1) ) / ( xmax - xmin ) ).^2 ... + ( ( yi(2:ni) - yi(1:ni-1) ) / ( ymax - ymin ) ).^2 ) ); fprintf ( 1, '\n' ); fprintf ( 1, ' Normalized length of piecewise linear interpolant = %g\n', ld ); fprintf ( 1, ' Normalized length of polynomial interpolant = %g\n', li ); % % #3: Plot the data. % figure ( 1 ); clf hold on plot ( xd, yd, 'b-', 'Linewidth', 3 ); plot ( xd, yd, 'k.', 'Markersize', 20 ); xlabel ( '<--- X --->' ); ylabel ( '<--- Y --->' ); title ( 'Piecewise Linear Interpolant' ) grid on hold off filename = sprintf ( 'p%02d_data.png', prob ); print ( '-dpng', filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Created plot file "%s".\n', filename ); % % #4: Plot the piecewise linear and polynomial interpolants. % figure ( 2 ); clf ni = 101; xmin = min ( xd ); xmax = max ( xd ); xi = r8vec_linspace ( ni, xmin, xmax ); yi = rbf_interp ( m, nd, xd, r0, phi, w, ni, xi ); hold on plot ( xi, yi, 'r-', 'Linewidth', 3 ); plot ( xd, yd, 'b-', 'Linewidth', 3 ); plot ( xd, yd, 'k.', 'Markersize', 20 ); xlabel ( '<--- X --->' ); ylabel ( '<--- Y --->' ); title ( sprintf ( 'Interpolant using RBF basis %s', phi_name ) ) grid on hold off filename = sprintf ( 'p%02d_%s_poly.png', prob, phi_name ); print ( '-dpng', filename ); fprintf ( 1, ' Created plot file "%s".\n', filename ); return end