<html>

  <head>
    <title>
      SPARSE_GRID_TOTAL_POLY - Total Polynomial Approximation with Sparse Grids
    </title>
  </head>

  <body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">

    <h1 align = "center">
      SPARSE_GRID_TOTAL_POLY <br> Total Polynomial Approximation with Sparse Grids
    </h1>

    <hr>

    <p>
      <b>SPARSE_GRID_TOTAL_POLY</b>
      is a MATLAB library which
      investigates the limits of total polynomial approximation
      using sparse grids.
    </p>

    <h3 align = "center">
      Licensing:
    </h3>

    <p>
      The computer code and data files described and made available on this web page
      are distributed under
      <a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
    </p>

    <h3 align = "center">
      Related Data and Programs:
    </h3>

    <p>
      <a href = "../../m_src/nint_exactness/nint_exactness.html">
      NINT_EXACTNESS</a>,
      a MATLAB program which
      measures the polynomial exactness of an M-dimensional quadrature rule
      defined over a finite rectangular product region.
    </p>

    <p>
      <a href = "../../m_src/sparse_grid_cc/sparse_grid_cc.html">
      SPARSE_GRID_CC</a>,
      a MATLAB library which
      creates sparse grids based on Clenshaw-Curtis rules.
    </p>

    <h3 align = "center">
      Reference:
    </h3>

    <p>
      <ol>
        <li>
          Philip Davis, Philip Rabinowitz,<br>
          Methods of Numerical Integration,<br>
          Second Edition,<br>
          Dover, 2007,<br>
          ISBN: 0486453391,<br>
          LC: QA299.3.D28.
        </li>
      </ol>
    </p>

    <h3 align = "center">
      Source Code:
    </h3>

    <p>
      <ul>
        <li>
          <a href = "ccc_nested_rule.m">ccc_nested_rule.m</a>
          computes the nested Clenshaw Curtis Closed rule.
        </li>
        <li>
          <a href = "ccc_rule.m">ccc_rule.m</a>
          computes a Clenshaw Curtis closed rule.
        </li>
        <li>
          <a href = "cco_nested_rule.m">cco_nested_rule.m</a>
          computes the nested Clenshaw Curtis Open rule.
        </li>
        <li>
          <a href = "cco_rule.m">cco_rule.m</a>
          computes a Clenshaw Curtis open rule.
        </li>
        <li>
          <a href = "ccoh_nested_rule.m">ccoh_nested_rule.m</a>
          computes the nested Clenshaw Curtis Open Half rule.
        </li>
        <li>
          <a href = "ccoh_rule.m">ccoh_rule.m</a>
          computes a Clenshaw Curtis Open Half rule.
        </li>
        <li>
          <a href = "i4_log_2.m">i4_log_2.m</a>
          returns the integer part of the logarithm base 2 of |I|.
        </li>
        <li>
          <a href = "lagrange_factor.m">lagrange_factor.m</a>
          evaluates the polynomial Lagrange factor at a point.
        </li>
        <li>
          <a href = "nc_compute.m">nc_compute.m</a>
          computes a Newton-Cotes quadrature rule.
        </li>
        <li>
          <a href = "ncc_nested_rule.m">ncc_nested_rule.m</a>
          computes the nested Newton Cotes Closed rule.
        </li>
        <li>
          <a href = "ncc_rule.m">ncc_rule.m</a>
          computes the Newton Cotes Closed rule.
        </li>
        <li>
          <a href = "nco_nested_rule.m">nco_nested_rule.m</a>
          computes the nested Newton Cotes Open rule.
        </li>
        <li>
          <a href = "nco_rule.m">nco_rule.m</a>
          computes the Newton Cotes Open rule.
        </li>
        <li>
          <a href = "ncoh_nested_rule.m">ncoh_nested_rule.m</a>
          computes the nested Newton Cotes Open Half rule.
        </li>
        <li>
          <a href = "ncoh_rule.m">ncoh_rule.m</a>
          Newton Cotes Open Half quadrature rule.
        </li>
        <li>
          <a href = "ccc_rule.m">ccc_rule.m</a>
        </li>
        <li>
          <a href = "timestamp.m">timestamp.m</a>
          prints the current YMDHMS date as a timestamp.
        </li>
        <li>
          <a href = "vdc_numerator_sequence.m">vdc_numerator_sequence.m</a>
          van der Corput numerator sequence base 2.
        </li>
        <li>
          <a href = "vdc_sequence.m">vdc_sequence.m</a>
          N elements of a van der Corput sequence base 2
        </li>
      </ul>
    </p>

    <h3 align = "center">
      Examples and Tests:
    </h3>

    <p>
      <ul>
        <li>
          <a href = "sparse_grid_total_poly_test.m">sparse_grid_total_poly_test.m</a>
          tests the SPARSE_GRID_TOTAL_POLY library by calling all the tests.
        </li>
        <li>
          <a href = "sparse_grid_total_poly_test_output.txt">
          sparse_grid_total_poly_test_output.txt</a>
          the output file.
        </li>
        <li>
          <a href = "point_quality_test.m">point_quality_test.m</a>
          computes the point quality for quadrature rules.
        </li>
        <li>
          <a href = "rule_test.m">rule_test.m</a>
          tests a rule simply by printing out some examples of it.
        </li>
        <li>
          <a href = "rules_test.m">rules_test.m</a>
          calls RULE_TEST for each of the rules.
        </li>
        <li>
          <a href = "weight_quality_test.m">weight_quality_test.m</a>
          computes the weight quality for quadrature rules.
        </li>
      </ul>
    </p>

    <p>
      You can go up one level to <a href = "../m_src.html">
      the MATLAB source codes</a>.
    </p>

    <hr>

    <i>
      Last revised on 03 February 2011.
    </i>

    <!-- John Burkardt -->

  </body>

  <!-- Initial HTML skeleton created by HTMLINDEX. -->

</html>