function a = cauchy ( n, x, y ) %*****************************************************************************80 % %% CAUCHY returns the Cauchy matrix. % % Formula: % % A(I,J) = 1.0D+00 / ( X(I) + Y(J) ) % % Example: % % N = 5, X = ( 1, 3, 5, 8, 7 ), Y = ( 2, 4, 6, 10, 9 ) % % 1/3 1/5 1/7 1/11 1/10 % 1/5 1/7 1/9 1/13 1/12 % 1/7 1/9 1/11 1/15 1/14 % 1/10 1/12 1/14 1/18 1/17 % 1/9 1/11 1/13 1/17 1/16 % % or, in decimal form, % % 0.333333 0.200000 0.142857 0.0909091 0.100000 % 0.200000 0.142857 0.111111 0.0769231 0.0833333 % 0.142857 0.111111 0.0909091 0.0666667 0.0714286 % 0.100000 0.0833333 0.0714286 0.0555556 0.0588235 % 0.111111 0.0909091 0.0769231 0.0588235 0.0625000 % % Properties: % % A is generally not symmetric: A' /= A. % % A is totally positive if 0 < X(1) < ... < X(N) and 0 < Y1 < ... < Y(N). % % A will be singular if any X(I) equals X(J), or % any Y(I) equals Y(J), or if any X(I)+Y(J) equals zero. % % A is generally not normal: A' * A /= A * A'. % % The Hilbert matrix is a special case of the Cauchy matrix. % % The Parter matrix is a special case of the Cauchy matrix. % % The Ris or "ding-dong" matrix is a special case of the Cauchy matrix. % % det ( A ) = product ( 1 <= I < J <= N ) ( X(J) - X(I) )* ( Y(J) - Y(I) ) % / product ( 1 <= I <= N, 1 <= J <= N ) ( X(I) + Y(J) ) % % The inverse of A is % % INVERSE(A)(I,J) = product ( 1 <= K <= N ) [ (X(J)+Y(K)) * (X(K)+Y(I)) ] / % [ (X(J)+Y(I)) * product ( 1 <= K <= N, K /= J ) (X(J)-X(K)) % * product ( 1 <= K <= N, K /= I ) (Y(I)-Y(K)) ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 28 September 2007 % % Author: % % John Burkardt % % Reference: % % Robert Gregory, David Karney, % Example 3.26, % A Collection of Matrices for Testing Computational Algorithms, % Wiley, New York, 1969, page 54, % LC: QA263.G68. % % Nicholas Higham, % Accuracy and Stability of Numerical Algorithms, % SIAM, 1996. % % Donald Knuth, % The Art of Computer Programming, % Volume 1, Fundamental Algorithms, Second Edition % Addison-Wesley, Reading, Massachusetts, 1973, page 36. % % Olga Taussky, Marvin Marcus, % Eigenvalues of finite matrices, % in Survey of Numerical Analysis, % Edited by John Todd, % McGraw-Hill, New York, pages 279-313, 1962. % % Evgeny Tyrtyshnikov, % Cauchy-Toeplitz matrices and some applications, % Linear Algebra and Applications, % Volume 149, 1991, pages 1-18. % % Parameters: % % Input, integer N, the order of A. % % Input, real X(N), Y(N), vectors that determine A. % % Output, real A(N,N), the matrix. % for i = 1 : n for j = 1 : n if ( x(i) + y(j) == 0.0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'CAUCHY - Fatal error!\n' ); fprintf ( 1, ' The denominator X(I)+Y(J) was zero\n' ); fprintf ( 1, ' for I = %d\n', i ); fprintf ( 1, ' X(I) = %f\n', x(i) ); fprintf ( 1, ' and J = %d\n', j ); fprintf ( 1, ' Y(J) = %d\n', y(j) ); error ( 'CAUCHY - Fatal error!' ); end a(i,j) = 1.0 / ( x(i) + y(j) ); end end return end