function [ n_data, n, x, fx ] = hermite_poly_phys_values ( n_data ) %*****************************************************************************80 % %% HERMITE_POLY_PHYS_VALUES returns some values of the physicist's Hermite polynomial. % % Discussion: % % In Mathematica, the function can be evaluated by: % % HermiteH[n,x] % % Differential equation: % % Y'' - 2 X Y' + 2 N Y = 0 % % First terms: % % 1 % 2 X % 4 X^2 - 2 % 8 X^3 - 12 X % 16 X^4 - 48 X^2 + 12 % 32 X^5 - 160 X^3 + 120 X % 64 X^6 - 480 X^4 + 720 X^2 - 120 % 128 X^7 - 1344 X^5 + 3360 X^3 - 1680 X % 256 X^8 - 3584 X^6 + 13440 X^4 - 13440 X^2 + 1680 % 512 X^9 - 9216 X^7 + 48384 X^5 - 80640 X^3 + 30240 X % 1024 X^10 - 23040 X^8 + 161280 X^6 - 403200 X^4 + 302400 X^2 - 30240 % % Recursion: % % H(0,X) = 1, % H(1,X) = 2*X, % H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X) % % Norm: % % Integral ( -oo < X < +oo ) exp ( - X^2 ) * H(N,X)^2 dX % = sqrt ( PI ) * 2^N * N! % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 16 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, integer N, the order of the polynomial. % % Output, real X, the point where the polynomial is evaluated. % % Output, real FX, the value of the function. % n_max = 18; fx_vec = [ ... 0.1000000000000000E+01, ... 0.1000000000000000E+02, ... 0.9800000000000000E+02, ... 0.9400000000000000E+03, ... 0.8812000000000000E+04, ... 0.8060000000000000E+05, ... 0.7178800000000000E+06, ... 0.6211600000000000E+07, ... 0.5206568000000000E+08, ... 0.4212712000000000E+09, ... 0.3275529760000000E+10, ... 0.2432987360000000E+11, ... 0.1712370812800000E+12, ... 0.0000000000000000E+00, ... 0.4100000000000000E+02, ... -0.8000000000000000E+01, ... 0.3816000000000000E+04, ... 0.3041200000000000E+07 ]; n_vec = [ ... 0, 1, 2, ... 3, 4, 5, ... 6, 7, 8, ... 9, 10, 11, ... 12, 5, 5, ... 5, 5, 5 ]; x_vec = [ ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 5.0E+00, ... 0.0E+00, ... 0.5E+00, ... 1.0E+00, ... 3.0E+00, ... 1.0E+01 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; n = 0; x = 0.0; fx = 0.0; else n = n_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end