function [ n_data, n, m, x, fx ] = legendre_associated_values ( n_data ) %*****************************************************************************80 % %% LEGENDRE_ASSOCIATED_VALUES returns values of associated Legendre functions. % % Discussion: % % The function considered is the associated Legendre polynomial P^M_N(X). % % In Mathematica, the function can be evaluated by: % % LegendreP [ n, m, x ] % % Differential equation: % % (1-X*X) * Y'' - 2 * X * Y + ( N (N+1) - (M*M/(1-X*X)) * Y = 0 % % First terms: % % M = 0 ( = Legendre polynomials of first kind P(N)(X) ) % % P00 = 1 % P10 = 1 X % P20 = ( 3 X^2 - 1)/2 % P30 = ( 5 X^3 - 3 X)/2 % P40 = ( 35 X^4 - 30 X^2 + 3)/8 % P50 = ( 63 X^5 - 70 X^3 + 15 X)/8 % P60 = (231 X^6 - 315 X^4 + 105 X^2 - 5)/16 % P70 = (429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 % % M = 1 % % P01 = 0 % P11 = 1 * SQRT(1-X*X) % P21 = 3 * SQRT(1-X*X) * X % P31 = 1.5 * SQRT(1-X*X) * (5*X*X-1) % P41 = 2.5 * SQRT(1-X*X) * (7*X*X*X-3*X) % % M = 2 % % P02 = 0 % P12 = 0 % P22 = 3 * (1-X*X) % P32 = 15 * (1-X*X) * X % P42 = 7.5 * (1-X*X) * (7*X*X-1) % % M = 3 % % P03 = 0 % P13 = 0 % P23 = 0 % P33 = 15 * (1-X*X)**1.5 % P43 = 105 * (1-X*X)**1.5 * X % % M = 4 % % P04 = 0 % P14 = 0 % P24 = 0 % P34 = 0 % P44 = 105 * (1-X*X)**2 % % Recursion: % % if N < M: % P(N,M) = 0 % if N = M: % P(N,M) = (2*M-1)!! * (1-X*X)**(M/2) where N!! means the product of % all the odd integers less than or equal to N. % if N = M+1: % P(N,M) = X*(2*M+1)*P(M,M) % if M+1 < N: % P(N,M) = ( X*(2*N-1)*P(N-1,M) - (N+M-1)*P(N-2,M) )/(N-M) % % Restrictions: % % -1 <= X <= 1 % 0 <= M <= N % % Special values: % % P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre % polynomial of the first kind equals the Legendre polynomial of the % first kind. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, integer N, integer M, real X, % the arguments of the function. % % Output, real FX, the value of the function. % n_max = 20; fx_vec = [ ... 0.0000000000000000E+00, ... -0.5000000000000000E+00, ... 0.0000000000000000E+00, ... 0.3750000000000000E+00, ... 0.0000000000000000E+00, ... -0.8660254037844386E+00, ... -0.1299038105676658E+01, ... -0.3247595264191645E+00, ... 0.1353164693413185E+01, ... -0.2800000000000000E+00, ... 0.1175755076535925E+01, ... 0.2880000000000000E+01, ... -0.1410906091843111E+02, ... -0.3955078125000000E+01, ... -0.9997558593750000E+01, ... 0.8265311444100484E+02, ... 0.2024442836815152E+02, ... -0.4237997531890869E+03, ... 0.1638320624828339E+04, ... -0.2025687389227225E+05 ]; m_vec = [ ... 0, 0, 0, 0, ... 0, 1, 1, 1, ... 1, 0, 1, 2, ... 3, 2, 2, 3, ... 3, 4, 4, 5 ]; n_vec = [ ... 1, 2, 3, 4, ... 5, 1, 2, 3, ... 4, 3, 3, 3, ... 3, 4, 5, 6, ... 7, 8, 9, 10 ]; x_vec = [ ... 0.00E+00, ... 0.00E+00, ... 0.00E+00, ... 0.00E+00, ... 0.00E+00, ... 0.50E+00, ... 0.50E+00, ... 0.50E+00, ... 0.50E+00, ... 0.20E+00, ... 0.20E+00, ... 0.20E+00, ... 0.20E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00, ... 0.25E+00 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; else n = n_vec(n_data); m = m_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end