function step_domain %step_domain standard L-shaped domain Q2 grid generator % step_domain; % % Neumann boundary condition on right-hand edge % grid defining data is saved to the file: step_grid.mat % IFISS function: DJS; 7 May 2006. % Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage clear fprintf('\n\nGrid generation for a step shaped domain.\n') nc=default('grid parameter: 3 for underlying 8x24 grid (default is 4)',4); if nc<2, error('illegal parameter choice, try again.'), end %stretch=default('grid stretch factor (default is 1)',1); stretch=1; n=2^nc; np=n/2; nq=n/4; ny=n;nx=3*n; % %% compute (x,y) coordinates of vertices % y-direction if stretch >1 dy=(1-stretch)/(1-stretch^np); yy(1)=dy; for k=1:np-1, yy(k+1)=yy(k)+dy*stretch^k; end yy(np)=1; else yy=[1/np:1/np:1]; end ypos=[0,yy]; yneg=-yy(length(yy):-1:1); y=[yneg,ypos]; % x-direction xx=yneg; xneg=[xx]; xpos=[0:1/np:5]; x=[xneg,xpos]; % %% compute biquadratic element coordinates nvtx= np*(np+1) + (5*np+1)*(n+1); % negative x-values [Xneg,Ypos]=meshgrid(xneg,ypos); xx=reshape(Xneg',np*(np+1),1); yy=reshape(Ypos',np*(np+1),1); xyleft=[xx(:),yy(:)]; kx = 1; ky = 1; mel=0; % symbolic assembly % loop over 2x2 macroelements for j=1:nq for i=1:nq mref=np*(ky-1)+kx; mel=mel+1; nvv(1) = mref; nvv(2) = mref+2; nvv(3) = mref+2*np+2; nvv(4) = mref+2*np; nvv(5) = mref+1; nvv(6) = mref+np+2; nvv(7) = mref+2*np+1; nvv(8)= mref+np; nvv(9)= mref+np+1; mv(mel,1:9)=nvv(1:9); kx = kx + 2; end ky = ky + 2; kx = 1; end % correction along the internal boundary mref=2*np*(3*np+1)+1; for mel=nq:nq:nq*nq; nvv=mv(mel,:); nvv(2) = mref; nvv(3) = mref+10*np+2; nvv(6) = mref+5*np+1; mv(mel,1:9)=nvv(1:9); mref=mref+10*np+2; end % % positive x_values [Xpos,Y]=meshgrid(xpos,y); xx=reshape(Xpos',(5*np+1)*(n+1),1); yy=reshape(Y',(5*np+1)*(n+1),1); xyright=[xx(:),yy(:)]; xy=[xyleft;xyright]; % kx = 1; ky = 1; mel=nq*nq; for j=1:np for i=1:5*nq mref = (5*np+1)*(ky-1)+kx + np*(np+1); mel=mel+1; nvv(1) = mref; nvv(2) = mref+2; nvv(3) = mref+10*np+4; nvv(4) = mref+10*np+2; nvv(5) = mref+1; nvv(6) = mref+5*np+3; nvv(7) = mref+10*np+3; nvv(8)= mref+5*np+1; nvv(9)= mref+5*np+2; mv(mel,1:9)=nvv(1:9); kx = kx + 2; end ky = ky + 2; kx = 1; end % %% compute boundary vertices % six boundary edges k1=find( xy(:,1) <0 & xy(:,2)==0 ); e1=[]; for k=1:mel, if any(mv(k,5)==k1), e1=[e1,k]; end, end ef1=ones(size(e1)); % k2=find( xy(:,1)==0 & xy(:,2)<=0 ); e2=[]; for k=1:mel, if any(mv(k,8)==k2), e2=[e2,k]; end, end ef2=4*ones(size(e2)); % k3=find( xy(:,1) >0 & xy(:,2)==-1); e3=[]; for k=1:mel, if any(mv(k,5)==k3), e3=[e3,k]; end, end ef3=ones(size(e3)); % % k5=find( xy(:,2)==1 ); e5=[]; for k=1:mel, if any(mv(k,7)==k5), e5=[e5,k]; end, end ef5=3*ones(size(e5)); % k6=find( xy(:,1)==-1 & xy(:,2)<1 & xy(:,2) >0 ); e6=[]; for k=1:mel, if any(mv(k,8)==k6), e6=[e6,k]; end, end ef6=4*ones(size(e6)); % bound=sort([k1;k2;k3;k5;k6]); mbound=[e1',ef1';e2',ef2';e3',ef3';;e5',ef5';e6',ef6']; % % %% gohome cd datafiles save step_grid.mat mv xy bound mbound stretch x y clear return